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Abstract

Gas flow through pipeline networks can be described using 2 × 2 hyperbolic balance
laws along with coupling conditions at nodes. The numerical solution at steady state is
highly sensitive to these coupling conditions and also to the balance between flux and
source terms within the pipes. To avoid spurious oscillations for near equilibrium flows,
it is essential to design well-balanced schemes. Recently Chertock, Herty & Özcan [11]
introduced a well-balanced method for general 2×2 systems of balance laws. In this paper,
we extend this approach to a network of pipes. We prove well-balancing for different
coupling conditions and for compressors stations, and demonstrate the advantage of the
scheme by numerical experiments.

1 Introduction

The study of mathematical models for gas flow in pipe networks has recently gained interest in
the mathematical community, see e.g. [3,4,9,14,26]. While in the engineering literature [30] the
topic has been discussed some decades ago, a complete mathematical theory has only emerged
recently, see e.g. [16] for the Euler system on networks, [12] for the p–system on networks
and [8] for a recent review article on general mathematical models on networks. Depending
on the scale of phenomena of interest, different mathematical models for gas flow might be
useful. A complete hierarchy of fluid–dynamic models has been developed and discussed in [9].
Therein, typical flow rates and pressure conditions are given and it is shown that a steady
state algebraic model can be sufficient to describe average states in a gas network. Models
based on an asymptotic expansion of the pressure may lead to further improvements in case
of typical, slowly varying, temporal flow patterns [18, 22]. If a finer resolution of the spatial
and temporal dynamics is required, the isothermal Euler equations (1.1) provide a suitable
model [3]. Here we focus on schemes which capture both steady states and small temporal
and spatial perturbations.

Schemes which preserve a steady state exactly are called well-balanced, and their develop-
ment is a lively topic in the field of hyperbolic balance laws, see e.g. the monograph [31].
Usually, these schemes use specific knowledge of an equilibrium state. As a consequence,
well-balanced schemes for still water such as [1, 28], or for moving water, [29], or for wet-dry
fronts such as [6,10], which all approximate solutions to the shallow water equations, use dif-
ferent discretization techniques. A unified approach to well-balancing in one space dimension
was recently proposed by Chertock et al. [11], who integrate the source term in space and
substract it from the numerical flux. They tested their scheme for subsonic gas flow in a pipe
with wall friction. To the best of our knowledge, there is currently no well–balanced scheme
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for hyperbolic flows on networks. Here spurious oscillations may not only be caused by an
imbalance of numerical fluxes and source terms, but also by discretization errors at junctions
and compressors. In the present paper, we develop a first order well-balanced scheme on a
network. High-order schemes for gas networks have been introduced only recently in [2,7,27].
A challenging question would be to extend our new well-balancing method to these more
accurate schemes.

In the following we introduce the mathematical model for the temporal and spatial dynamics
of gas flow in pipe networks. For simplicity, we study a single node x = xo where M pipes
meet. The flow within each pipe i = 1 . . .M is governed by the isothermal Euler equations

(Ui)t + F (Ui)x = S(Ui) (1.1)

with conservative variables Ui, flux F (Ui) and source S(Ui) given by

Ui =

[
ρi
qi

]
, F (Ui) =

[
qi

q2i
ρi

+ p(ρi)

]
, S(Ui) =

[
0

− fg,i
2Di

qi|qi|
ρi

]
. (1.2)

Here ρi, qi and p(ρi) are the density, momentum, and pressure of the gas, fg,i is the friction
factor and Di the diameter of pipe i. We focus on the practically relevant case of isothermal
pressure with speed of sound a > 0,

p(ρ) = ρRT = a2ρ. (1.3)

We complete (1.1) with initial conditions within and boundary conditions at the ends of the
pipes. The boundary conditions at a node of multiple pipes are implicitly given by coupling
conditions [3,34], which take the form of M nonlinear algebraic equations involving traces Ui
of the conserved variables at node xo. We write them in the general form

φ(U1, U2, ..., UM ) = 0, φ : R2M → RM . (1.4)

In [14,15,34] general conditions are identified which guarantee a well–posed problem for initial
data with suitable small total variation. If at a node the conservation of mass and equality
of adjacent pressures is assumed, then existence, uniqueness and continuous dependence on
the initial data for the p–system was shown in [13].

For pipes with a junction, a flow which is steady within each pipe, and fulfills the coupling
conditions at the junction is called a steady state [21]. The coupling conditions are further
detailed in Sections 2 and 3.
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Figure 1: Intersection of three pipes at junction O. Right- Zoomed view of the junction with
old traces Uoi and new traces U∗i given in Section 2

2 Review of coupling conditions for the p–system

Our construction of well–balanced schemes is based upon analytical results for the isothermal
Euler equations which have already been established (see e.g. [3,13] and the references therein).
For completeness, and to fix the notation, we would like to give a brief summary.

When we study the coupling condition, we set the source terms S(Ui) to zero. This is based
on the heuristic assumption that wall friction can be neglected at the instance of interaction at
the node. It can also be justified rigorously for the semi-discrete scheme (4.1). The eigenvalues
for the homogeneous 2× 2 system (1.1) are λ1 = q

ρ − a and λ2 = q
ρ + a. We assume that all

states are subsonic, i.e.,

λ1(Ui) < 0 < λ2(Ui) for i = 1 . . .M. (2.1)

This assumption is satisfied for typical gas flow conditions in high–pressure gas transmission
systems. We denote the set of all incoming (respectively outgoing) pipes by I− (respectively
I+). For i ∈ I−, we parametrize the incoming pipes by

x ∈ Ωi := (−∞, xo).

Similarly, we parametrize outgoing pipes j ∈ I+ by

x ∈ Ωj := (xo,∞).

Let us fix a time to ≥ 0. It is important to note that there are 2M different traces at the
node (xo, to). We denote them by

Uoi := lim
x↑xo

lim
t↓to

Ui(x, t) for i ∈ I−, (2.2)

U∗i := lim
t↓to

lim
x↑xo

Ui(x, t) for i ∈ I−, (2.3)

Uoj := lim
x↓xo

lim
t↓to

Uj(x, t) for j ∈ I+. (2.4)

U∗j := lim
t↓to

lim
x↓xo

Uj(x, t) for j ∈ I+, (2.5)
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Note that the limits are exchanged in (2.3) and (2.2) (respectively (2.5) and (2.4)), so Uoi and
Uoj are limits along the x-axis. We call them the old traces. The states U∗i and U∗j are limits
along the t axis, and we call them the new traces (see Figure 1).

The construction of the coupling conditions starts by connecting, within each pipe, the old
with the new trace by a Lax curve entering the pipe. For an incoming pipe, this will be a
curve U i(σi) of the first family with left state Ul := Uoi . According to [17], this curve is given
by

1−R : U i(σi) := ρl e
σi

[
1

ul − aσi

]
for σi ≥ 0, (2.6)

1− S : U i(σi) := ρl(1 + σi)

[
1

ul − aσi√
1+σi

]
for σi ∈ (−1, 0). (2.7)

Analogously, for an outgoing pipe, we use curves of the second family with right state Ur :=
Uoj , which are given by

2−R : U j(σj) := ρr e
σj

[
1

ur + aσj

]
for σj ≤ 0, (2.8)

2− S : U j(σj) := ρr(1 + σj)

[
1

ur +
aσj√
1+σj

]
for σj > 0. (2.9)

The Lax curves 1-R and 1-S(respectively 2-R and 2-S) have C2 continuity at the point
Ul(respectively Ur).

The parameters σi, i = 1 . . .M will be determined from the M coupling conditions

φ(σ1, . . . , σM ) := φ(U1(σ1), . . . , UM (σM )) = 0. (2.10)

Now we set
U∗i := U i(σi). (2.11)

By construction, the new traces satisfy the coupling conditions (1.4).

So far, we have reviewed the general framework which was established and applied in [3,13,32].
In the following we focus on a particular coupling condition for which we design a well-
balanced scheme. Let Ai = π

4D
2
i be the area of the cross section of pipe i. The default

coupling condition requires that the total incoming mass flux at each node xo equals the total
outgoing mass flux, ∑

i∈I−
Aiq
∗
i =

∑
j∈I+

Ajq
∗
j , (2.12)

since mass should not be accumulated or lost at the junction. Various approaches have been
studied in order to model the other (M − 1) coupling conditions. A seemingly obvious choice
would be conservation of momentum. However as momentum is a vector quantity it is difficult
to describe the conservation of momentum in a one dimensional model as the junctions of
the pipe are three dimensional. Multi–dimensional approaches considering a 2D node for a
1D flow have been discussed in [5,23]. Coupling conditions based on enthalpy have also been
studied in [3, 26, 33, 34]. In the present paper, we require that the traces of the pressures
should take one and the same value p∗ = p∗(to) at the t-axis,

p(ρ∗i ) = p∗(to) for all i ∈ I− ∪ I+. (2.13)
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This condition is common in the engineering literature and for a certain regime, it is indeed
a suitable approximation of the two dimensional situation [23].

Thus the coupling function (1.4) at a junction reads

φ(U1, . . . , UM ) =


∑

i∈I− Aiqi −
∑

j∈I+ Ajqj
p(ρ2)− p(ρ1)

...
p(ρM )− p(ρM−1)

 . (2.14)

We now turn to a junction which models a compressor between the incoming pipe i = 1 and
the outgoing pipe i = 2, both of the same diameter. The coupling conditions for the new
traces are

q∗1 = q∗2, p(ρ∗2) = CRp(ρ∗1). (2.15)

Here CR ≥ 1 is the compression ratio. It is usually time–dependent, and we consider it to be
a given, external quantity. Thus the coupling function for the compressor becomes

φ(U1, . . . , UM ) =

[
q2 − q1

p(ρ2)− CRp(ρ1)

]
. (2.16)

Summarizing, the analytical problem at the nodes is to connect the old traces Uoi within each
pipe to a new trace U∗i along the incoming Lax curve in such a way that the new traces satisfy
the coupling conditions across the node. It was proven in [14,19,20] that this problem has a
unique solution.

If the old traces are subsonic, and their variation is small enough, then the new traces will be
subsonic as well. The new traces serve as initial data in the Riemann solver which determines
the numerical flux.

3 Coupling conditions in terms of equilibrium variables

The difficulty in preserving steady states is that the divergence of the conservative fluxes is
approximated by a flux-difference, while the source is usually integrated by a quadrature over
the cell. If this is not tuned carefully, the equilibrium state is not maintained, and spurious
oscillations may be created. Chertock, Herty and Özcan [11] resolved this difficulty for one-
dimensional balance laws by integrating the source term and hence writing it in conservative
form. They applied this approach to the Cauchy problem for 2 × 2 balance laws. Here we
extend their method to a node in a network. Equation (1.1) can be stated as

(ρi)t + (Ki)x = 0, (qi)t + (Li)x = 0 (3.1)

where the flux variable,

Vi(Ui, Ri) =

[
Ki

Li

]
= F (Ui) +

[
0
Ri

]
(3.2)

and fluxes Ki, Li and an integrated source term Ri is given by

Ki := qi, Li :=
q2
i

ρi
+ p(ρi) +Ri(x), Ri(x) :=

∫ x

x̃i

fg,i
2Di

qi|qi|
ρi

dx. (3.3)
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The point x̃i belongs to Ωi and is arbitrary but fixed. Later on, we choose x̃i = xo for all i.

We call (K,L) the equilibrium variables, since they are constant for steady states. Given
the integrated source term and the equilibrium variables we can solve equation (3.3) for the
conservative variables (ρ, q). Away from sonic points, this yields a subsonic and supersonic
state. The subsonic root is given by

ρi(Vi, Ri) =
Li −Ri +

√
(Li −Ri)2 − 4K2

i a
2

2a2
, qi(Vi, Ri) = Ki. (3.4)

Rewriting the problem in terms of K and L allows to have constant steady states that are
reconstructed exactly within a numerical scheme. The well–balanced finite volume scheme
introduced in [11] uses the following idea: From point values of the conserved quantities (ρ, q)
and a fixed point x̃, point values of the new variables (K,L) are computed. In order to obtain
values at the cell interfaces, the new variables (K,L,R) are reconstructed instead of the the
conservative ones. Then, the conservative variables at the cell interfaces are obtained using
the transformation (3.4).

Hence, in order to extend the scheme to include the nodal dynamics we need to reformulate
the coupling conditions (2.12),(2.13) in terms of equilibrium variables K,L. The pressure in
terms of K,L is given by,

Pi = P (K∗i , L
∗
i ) :=

L∗i −Ri +
√

(L∗i −Ri)2 − 4(K∗i )2a2

2
(3.5)

Note that Ri appears as a parameter in Pi. Similar to the discussion in the previous section
the conditions are stated for the traces of the equilibrium variables at xo. The dependence on
xo is omitted for readability. ∑

i∈I−
AiK

∗
i =

∑
j∈I+

AjK
∗
j , (3.6)

P (K∗i , L
∗
i ) = p∗, ∀i ∈ I±. (3.7)

Similarly, the coupling condition for a compressor in terms of K and L reads

P (K∗2 , L
∗
2) = CR P (K∗1 , L

∗
1). (3.8)

For subsonic states, the coupling conditions (3.6),(3.7), (3.8) are equivalent to the coupling
conditions (2.12),(2.13), (2.15).

For steady states, Ki and Li are constant within each pipe, and the coupling conditions
are fulfilled at the junction. Evaluating the coupling conditions in terms of the equilibrium
variables V = (K,L) and the parameter R is an essential ingredient of the well-balancing.
Therefore, we rewrite the Lax-curves in terms of the equilibrium variables:

1−R : V i(σi) := ρl e
σi

[
ul − aσi

(ul − aσi)2 + a2

]
+

[
0
Rl

]
for σi ≥ 0, (3.9)

1− S : V i(σi) := ρl(1 + σi)

 ul − aσi√
1+σi(

ul − aσi√
1+σi

)2
+ a2

+

[
0
Rl

]
for σi ∈ (−1, 0).
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Similarly for the admissible boundary states on the pipes i ∈ I+ with given value Rr and
ur = qr/ρr, we obtain

2−R : V j(σj) := ρr e
σj

[
ur + aσj

(ur + aσj)
2 + a2

]
+

[
0
Rr

]
for σj ≤ 0, (3.10)

2− S : V j(σj) := ρr(1 + σj)

 ur +
aσj√
1+σj(

ur +
aσj√
1+σj

)2
+ a2

+

[
0
Rr

]
for σj > 0.

The equilibrium variables satisfying the coupling condition (3.6) and (3.7) are given by

K∗i := Ki(σi) and L∗i := Li(σi). (3.11)

Note that all variables defined along the Lax-curves also depend on the old traces and the
integrated source terms as parameters, e.g. V i(σi) = V i(σi;V

o
i , R

o
i ). For given datum Ul, Ur

we depict the parameterized wave curves for incoming and outgoing pipes in the phase space
of K and L, respectively, in Figure 2. From the figure we observe that in the subsonic region,

(a) Incoming pipes, i ∈ I− (b) Outgoing pipes, i ∈ I+

Figure 2: Phase plot in terms of equilibrium variables

the 1–Lax curve is monotonically decreasing and 2–Lax curves is monotonically increasing.
The following lemma proves that the coupling conditions stated in the variables K and L
locally have a unique solution.

Lemma 3.1. Consider a nodal point with |I−| ≥ 1 incoming and |I+| ≥ 1 outgoing adjacent
pipes. Suppose that the initial data Ûi = (ρ̂i, q̂i), i ∈ I± are subsonic on each pipe and fulfill

the coupling conditions (2.12) and (2.13). Let V̂i = (K̂i, L̂i), i ∈ I± be the corresponding

equilibrium variables, with integrated source terms R̂i.

Then there exists an open neighborhood V ⊂ R2M×M of (V̂ , R̂) := (V̂i, R̂i)i∈I± such that for
any old trace (V o, Ro) ∈ V there exists a unique new trace V ∗ such that (V ∗, Ro) ∈ V fulfill
the coupling conditions (3.6) and (3.7). Moreover, V ∗i is connected to V o

i by an incoming Lax
curve along the respective pipe. The neighborhood can be chosen sufficiently small, such that
the corresponding states are subsonic.

A similar result holds true in the case of the compressor condition (2.15) for any given value
CR > 0.
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Proof. Denote by M = |I−|+ |I+| the total number of connected pipes. For V := (Vi)i∈I± :=
(Ki, Li)i∈I± the coupling conditions (3.6) and (3.7) are given by the function Ψ : R2M ×
R2M × RM → RM .

Ψ(V, (V o, Ro)) :=


∑

i∈I− AiKi −
∑

j∈I+ AjKj

P (V1)− P (V2)
...

P (VM−1)− P (VM )

 (3.12)

where P is defined in equation (3.7). By assumption we have Ψ(V̂ , (V̂ , R̂)) = 0. Now, we
define

Ψ(σ, (V o, Ro)) := Ψ(V (σ), (V o, Ro)) : RM × R2M × RM → RM

where
V (σ) := (V i(σi))i∈I±

and the components of V i(σi) are given by equation (3.9) and equation (3.10), respectively.
Further, σ = (σi)i∈I± . Next, we compute the determinant of DσΨ(σ, (V o, Ro)) at σ = 0. We
have for i ∈ I− and j ∈ I+

DσΨ =



A1
dK1
dσ1

. . . Ai
dK|I−|
dσ|I−|

. . . −Aj dKj

dσj
. . . −A|I+|

dK|I+|
dσ|I+|

dP1
dσ1

−dP2
dσ2

0 . . . . . . . . . 0

0 dP2
dσ2

−dP3
dσ3

0 . . . . . . 0
. . .

. . .

. . .
. . .

0 . . . . . . . . . 0
dPM−1

dσM−1
−dPM
dσM


(3.13)

and therefore

det(DσΨ) = (−1)M−1
∑
i∈I−

(
Ai
dKi

dσi

∏
k∈I−,k 6=i

dPk
dσk

)
+ (−1)M

∑
j∈I+

(
Aj
dKj

dσj

∏
k∈I−,k 6=j

dPk
dσk

)
,

(3.14)

dPi
dσi

=
1

2

(
dLi
dσi

+
(Li −Ri)dLi

dσi
− 4a2Ki

dKi
dσi√

(Li −Ri)2 − 4a2K2
i

)
.

From equations (3.9) and (3.10), we obtain at σi = 0

dKi

dσi
(0) = ql − aρl < 0,

dLi
dσi

(0) =
(ql − aρl)2

ρl
6= 0, ∀i ∈ I−,

dKi

dσi
(0) = qr + aρr > 0,

dLi
dσi

(0) =
(qr + aρr)

2

ρr
6= 0, ∀i ∈ I+.

Hence, also dPi
dσi

(σi = 0) = a2ρoi 6= 0 and therefore detDσΨ(0, (V o, Ro)) 6= 0. By the implicit

function theorem there exists an open neighborhood V of V̂ such that for all initial data
V o ∈ V there exists σ∗ such that V ∗ := V̄ (σ∗) fulfills the coupling conditions, i.e.

Ψ(V ∗, (V o, Ro)) = Ψ(σ∗, (V o, Ro)) = 0.
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Since the corresponding state of V̂ in conservative variables is strictly subsonic we may assume,
by possibility decreasing the size of V, that also the conservative variables corresponding to
(V ∗, Ro) are subsonic.

Remark 3.2. Note that we have omitted the source term when computing the solution along
the Lax curves. This is justified by the semi-discrete formulation of the finite volume scheme
in the next section, which implies that we are evaluating the coupling condition at a set of
measure zero in space-time. Since the source term is bounded, it does not contribute to the
integral over the cells.

Remark 3.3. Another possibility is to reformulate system (3.1) as a system of three equations
in (Ki, Li, Ri) with the equation for Ri given by

∂tRi = 0.

Therefore, the corresponding hyperbolic field has a zero eigenvalue in an independent subspace.
This yields a characteristic boundary at each adjacent pipe. Hence in phase space, at each
pipe i any value R̃i can be connected along a wave curve to Ri leads to a contact discontinuity
of zero velocity at the nodal point. Hence, the trace of Ri at x = xo is independent of R̃i.

4 A Well-balanced Central Upwind Scheme For Nodal Dy-
namics

We compute the evolution of the conservative variables using the second–order central upwind
scheme [11, 24, 25]. The computational domain Ωi is discretized in cells [xj− 1

2
, xj+ 1

2
] of size

∆x and centered at xj = x̄ + (j − 1
2)∆x for j = 1, . . . , N . We choose x̄ such that xN = xo

for i ∈ I− and x0 = xo for i ∈ I+. For simplicity the same number of cells N for all adjacent
pipes will be used. The approximated cell averages at fixed time t are computed as

U ji (t) :=
1

∆x

∫ x
j+1

2

x
j− 1

2

Ui(x, t)dx, , i ∈ I±, j = 1, . . . , N.

The evolution of conservative variables, density and momentum using central upwind scheme
[24,25] reads

dU ji
dt

= −
Vj+1/2
i − Vj−1/2

i

∆x
(4.1)

where Vj−1/2
i ,Vj+1/2

i are the fluxes across the left and right interface of cell j, respectively.
At the junction, the flux is the new trace of the equilibrium variable,

VN+1/2
i = V ∗i , i ∈ I−, (4.2)

V1/2
i = V ∗i , i ∈ I+. (4.3)

The new traces V ∗i are constructed with the help of Lemma 3.1 based on the old traces

V N,E
i , i ∈ I− and V 1,W

i , i ∈ I+. The point values of K and L at the cell interfaces, i.e.,
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Kj,E
i ,Kj,W

i , Lj,Ei , Lj,Wi , are computed using piecewise linear reconstruction of Kj
i and Lji cal-

culated using the cell averages (ρji , q
j
i ) using equation (3.3). The values Ri are computed

using a second–order quadrature rule applied to the integral starting for example at x̃ = xo
with Ri = 0 at each pipe according to the following equations

R
1/2
i = R

N+1/2
k = 0 ∀i ∈ I+, k ∈ I−,

R
j+1/2
i = R

j−1/2
i + ∆x

fg,i
2Di

qji |q
j
i |

ρji
, R

j−1/2
k = R

j+1/2
k + ∆x

fg,k
2Dk

qjk|q
j
k|

ρjk
.

i.e., for W ∈ {K,L},

W j,E
i = W j

i +
∆x

2
(Wx)ji , W

j,W
i = W j

i −
∆x

2
(Wx)ji (4.4)

with numerical derivatives

(Wx)ji =


W j+1

i −W j
i

∆x , j = 1

W j
i −W

j−1
i

∆x , j = N

minmod
(
θ
W j+1

i −W j
i

∆x ,
W j+1

i −W j−1
i

2∆x , θ
W j

i −W
j−1
i

∆x

)
, otherwise,

(4.5)

θ ∈ [1, 2] and minmod limiter

minmod(w1, w2, . . . , wn) =


min(w1, w2, . . . , wn) if wi > 0, ∀i
max(w1, w2, . . . , wn) if wi < 0, ∀i
0 otherwise

(4.6)

For interior interfaces, we may use any conservative numerical flux functions whose numerical
diffusion vanishes at equilibrium states. Here we choose the central upwind flux ,

(
Vj+1/2
i

)(1)
=
a
j+1/2
i,+ Kj,E

i − aj+1/2
i,− Kj+1,W

i

a
j+1/2
i,+ − aj+1/2

i,−

+ α
j+1/2
i (ρj+1,W

i − ρj,Ei )H
( |Kj+1

i −Kj
i |

∆x

|Ω|
maxj{Kj

i }

)
, (4.7)

(
Vj+1/2
i

)(2)
=
a
j+1/2
i,+ Lj,Ei − aj+1/2

i,− Lj+1,W
i

a
j+1/2
i,+ − aj+1/2

i,−

+ α
j+1/2
i (qj+1,W

i − qj,Ei )H
( |Lj+1

i − Lji |
∆x

|Ω|
maxj{Lji}

)
. (4.8)

where |Ω| is the size of computational domain, a
j+1/2
i,± are the maximum and minimum eigen-

values of the Jacobian, i.e.,

a
j+1/2
i,+ = max

(
λ(U j,Ei ), λ(U j+1,W

i ), 0
)
, a

j+1/2
i,− = min

(
λ(U j,Ei ), λ(U j+1,W

i ), 0
)

(4.9)
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and α
j+1/2
i is the local diffusion computed as α

j+1/2
i =

a
j+1/2
i,+ a

j+1/2
i,−

a
j+1/2
i,+ −aj+1/2

i,−
.

Note that the numerical diffusion of the standard HLL-flux (obtained for H = 1) would
not give a well-balanced scheme, because the numerical diffusion of the mass flux is written
in terms of differences of the conservative variables and not the equilibrium variables. The
additional limiter H turns off the numerical diffusion as we approach the equilibrium state.
For some positive C > 0 and m > 0, it is given by

H(z) =
(Cz)m

1 + (Cz)m
. (4.10)

In the interior of the domain the previously defined flux preserves steady state: In steady
state we obtain Kj,E

i = Kj+1,W
i = Kj

i = const and similarly for Lji . Hence, we obtain H = 0

and therefore Vj+1/2
i − Vj−1/2

i = 0 and the steady state is preserved.

Lemma 4.1. The numerical scheme given by (4.1) and flux defined by (4.7) preserves the
steady state across a node of M adjacent pipes and coupling conditions given by (3.6) and
(3.7).

Proof. Consider steady state (V̂ , R̂) := (V̂i, R̂i)i∈I± . Then all numerical derivatives in (4.5)
as well as the numerical diffusion terms vanish. Thus the numerical fluxes are given by

Vj+1/2
i = V̂i for all j = 2, . . . , N −1. At the nodal point the flux variables satisfy the coupling

conditions (3.6) and (3.7). Then, the boundary data K∗i and L∗i are obtained according to

Lemma 3.1. Since the states are unique we obtain Kj
i = K∗i = K̂i and Lji = L∗i = L̂i and

hence the boundary fluxes for each pipe at the junction are VN+1/2
i = VN−1/2

i = (K̂i, L̂i)
T

for incoming pipes i ∈ I− and V1/2
i = V3/2

i = (K̂i, L̂i)
T for outgoing pipes j ∈ I+. Hence, the

scheme is well–balanced across the node.

Data: Given discretized initial conditions U ji (0) = Ui(x, 0)
while terminal time not reached do

Compute equilibrium variables (Kj
i , L

j
i , R

j
i ) by (3.3) ;

Reconstruct the values of K and L at the cell interface by (4.4) ;
Solve the coupling conditions,(3.6),(3.7) to find K∗i , L

∗
i Calculate conservative

variables (ρ, q) at the cell interface by equations (3.4) ;
Calculate fluxes (4.7) for interior cell boundaries and use K∗i , L

∗
i at junction ;

Compute the time step ∆t = CFL∆x

maxi,j |λji |
where λji is the maximal eigenvalue of the

Jacobian in cell j and pipe i;
Evolve the conservative cell averages (4.1).

end

Some remarks are in order. The algorithm uses the same time step for all adjacent pipes. This
is not necessary but simplifies the computation of the coupling condition. Also, the algorithm
is second–order in the pipe but it may reduce to first order at the coupling condition. The
algorithm can be extended to second–order across the nodal point using techniques presented
in [2]. However, note that the steady state is constant and therefore the scheme preserves the
steady state to any order across the nodal point.
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5 Numerical Tests

In this section, we test the well-balanced(WB) scheme with numerical examples for steady
state and near steady state flows. The results of this WB method have been compared with
a second order non well-balanced method(NWB). The NWB scheme is given by,

dU ji
dt

= −
F j+1/2
i −F j−1/2

i

∆x
+ Sji (5.1)

where F is the HLL flux given by,

F j+1/2
i =

a
j+1/2
i,+ F (U j,Ei )− aj+1/2

i,− F (U j+1,W
i )

a
j+1/2
i,+ − aj+1/2

i,−

+ α
j+1/2
i (U j+1,W

i − U j,Ei )

where the flux terms are as defined in (1.2) and Sji is the source term given in (1.2) at the point

U ji . The coupling conditions (2.12), (2.13) are used to calculate the density and momentum
at a node. The coupling conditions at the node are solved with Newton’s methd for both WB
and NWB scheme.

The parameters used in the WB scheme are θ = 1, C=100, m=1 and CFL number=0.4. All
the pipes in the examples have been considered to be of same diameter and friction factor,
fg
2D = 1 and the speed of sound for the gas, a = 1. We compute several well-balanced flows
at junctions and compressors, as well as perturbations of such steady states.

5.1 Steady state at a node

In this example, we study the WB scheme for a steady state at a node with three types of
pipe combinations–one incoming and 1 outgoing pipes; 1 incoming and 2 outgoing pipe; and
2 incoming and 1 outgoing pipe. The initial conditions are selected in such a way that the
node is at steady state with the equilibrium variables constant in each pipe and satisfying the
coupling conditions at the node.

The initial condition for first case with one incoming and outgoing pipe are K1 = K2 = 0.15
and p∗ = 0.332 corresponding to L1 = L2 = 0.4. Similarly for the second case, of 1 incoming
and 2 outgoing pipe, K1 = 0.15,K2 = K3 = 0.075 and p∗ = 0.332 or L1 = 0.4, L2 = L3 =
0.3492; and for 2 incoming and 1 outgoing pipes, K3 = 0.15,K1 = K2 = 0.075 and p∗ = 0.332
or L3 = 0.4, L1 = L2 = 0.3492.

The L-1 error for the three cases is given in the table below, As can be seen from the results
in Table 1, the L-1 error ||K − K̂|| and ||L − L̂|| is upto machine precision using the WB
scheme. Whereas it is of the order of 10−7 to 10−8 with the NWB scheme. We can also note
that the coupling conditions in terms of (K,L) converge quickly using Newton’s method and
do not affect the well-balancing property of the scheme at the node.

5.2 Steady state with a compressor

In the second example, we study the well balancing at steady state for compressor connecting
two pipes with compression ratios CR = 1.5, 2, 2.5. The initial conditions are selected in a
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1 Incoming, 1 Outgoing 1 Incoming, 2 Outgoing 2 Incoming, 1 Outgoing

No. of cells
in each pipe

L1-error
for variable WB NWB WB NWB WB NWB

50 K 2.94x10−17 6.19x10−7 6.74x10−17 3.78x10−7 6.91x10−17 3.45x10−7

L 3.22x10−17 9.48x10−7 5.88x10−17 3.57x10−7 5.77x10−17 7.38x10−7

100 K 8.74x10−17 1.56x10−7 1.30x10−16 9.63x10−8 1.14x10−16 8.67x10−8

L 1.27x10−16 2.43x10−7 7.74x10−17 8.94x10−8 8.30x10−17 1.87x10−7

200 K 5.59x10−17 3.88x10−8 1.09x10−16 2.62x10−8 1.25x10−16 2.69x10−8

L 7.05x10−17 6.13x10−8 1.13x10−16 2.32x10−8 1.12x10−16 5.03x10−8

Table 1: Comparison of L-1 errors between well-balanced(WB) and non well-balanced(NWB)
scheme at steady state for a junction at time T=1

way that the compressor is at steady state for time,T=0. The momentum in the two pipes is
given by K1 = K2 = 0.15 and pressure is given by p∗1 = 0.332 and p∗2 = CRp∗1. The L1 errors
using the WB and NWB scheme are given in the table below. Similar to the first example,

CR=1.5 CR=2.0 CR=2.5

No. of cells
in each pipe

L1-error
for variable WB NWB WB NWB WB NWB

50 K 1.75x10−17 4.16x10−7 6.74x10−17 3.78x10−7 2.33x10−17 3.77x10−7

L 2.72x10−17 4.00x10−7 5.88x10−16 3.57x10−7 1.39x10−17 3.54x10−7

100 K 3.91x10−17 1.05x10−7 1.30x10−16 9.63x10−8 4.72x10−16 9.68x10−8

L 5.59x10−16 1.01x10−7 7.74x10−17 8.94x10−8 3.61x10−17 8.89x10−7

200 K 5.32x10−17 2.64x10−8 1.09x10−16 2.62x10−8 1.08x10−16 2.84x10−8

L 5.88x10−17 2.53x10−8 1.13x10−16 2.32x10−8 1.19x10−16 2.59x10−8

Table 2: Comparison of L-1 errors between well-balanced(WB) and non well-balanced(NWB)
scheme at steady state with a compressor at different compression ratios at time T=1

we see that the L1 errors using the WB scheme are accurate upto machine precision. Also
the coupling conditions for the compressor do not affect the well-balancing of the scheme.

5.3 Perturbations to steady state for a node

From the first two examples, we can see that the WB scheme preserves steady state. In this
example we will compare the results from the WB and NWB scheme for perturbations to the
momentum at steady state. The initial conditions for the perturbed state are given by,

Ki(x) = K̂i + ηie
−100(x−x0)2 , Li = L̂i ∀i = 1, 2 . . .M (5.2)

where K̂i and L̂i are constant steady state equilibrium variables in the two pipes and ηi is
the magnitude of perturbation at the node.

At first, we consider a node connecting two pipes. The equilibrium variables for this case
are given by, K̂i = 0.15 and L̂i = 0.4. At first we consider perturbation of ηi = 10−3 at the
junction. The momentum at time T=0.2 are as shown in figure below,
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(a) First Pipe (b) Second Pipe

Figure 3: Momentum for perturbation of order 10−3 for a node connected to two pipes

We can see from the results that both the WB and NWB schemes provide similar solutions for
the perturbation of order 10−3 at the node. We now reduce this perturbation to ηi = 10−6.

(a) First Pipe (b) Second pipe

Figure 4: Momentum for perturbation of order 10−6 for a node connected to two pipes

From Figure 4 we can see that NWB scheme develops oscillations for N=100 when the per-
turbation of order 10−6. The perturbation is resolved better for a finer grid with N=500 per
pipe. However in the case of WB method, the scheme is able to capture the perturbations
well even for a coarser grid of N=100 per pipe.

We now do a similar test for a node connected to 1 incoming and 2 outgoing pipes. The
equilibrium state are given by, K̂1 = 0.15, K̂2 = K̂3 = 0.075 and L̂1 = 0.4, L̂2 = L̂3 = 0.3492.
Like the previous example we run the simulation for two perturbations upto a time T=0.2.
Figure 5 shows the result for momentum with η∗1 = 10−3, η∗2 = η∗3 = 0.5x10−3 and Figure 6
for η∗1 = 10−6, η∗2 = η∗3 = 0.5x10−6 respectively.
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(a) First pipe (b) Second pipe

(c) Third pipe

Figure 5: Momentum for perturbation of order 10−3 for a node connected to one incoming
and two outgoing pipes

(a) First pipe (b) Second pipe

(c) Third pipe

Figure 6: Momentum for perturbation of order 10−6 for a node connected to one incoming
and two outgoing pipes

We see from the results that even for the perturbations of order 10−3, the results from NWB
scheme are unstable where there is a sharp increase in momentum. The results of NWB
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scheme are even more oscillatory when the perturbations are of order 10−6. Further even
with a finer resolution, we can see a spike in the region where there is sharp increase of
momentum. However, these issues are resolved with the WB scheme. The results of WB
scheme with coarser grid are a little more diffusive than the finer grid, but there are no
instabilities arising in the results.

6 Conclusion

In this paper we have extended a well-balanced scheme, developed by Chertock, Herty and
Özcan [11] for one-dimensional systems, to a network of gas pipelines with friction. In partic-
ular we looked at intersections of pipes at a node and compressors within a pipeline network.
We prove well-posedness and well-balancing of the new scheme. For compressors and for
junctions of three pipes, numerical experiments demonstrate that equilibria are resolved up
to machine accuracy. Most interestingly, near equilibrium flows are resolved robustly and
accurately, even in cases where a standard non-balanced scheme fails.
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[23] M. Herty and M. Seäı d, Simulation of transient gas flow at pipe-to-pipe intersections,
Internat. J. Numer. Methods Fluids, 56 (2008), pp. 485–506.



18

[24] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear
conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000),
pp. 241–282.

[25] , Solution of two-dimensional Riemann problems for gas dynamics without Riemann
problem solvers, Numer. Methods Partial Differential Equations, 18 (2002), pp. 584–608.

[26] A. Morin and G. A. Reigstad, Pipe networks: Coupling constants in a junction for
the isentropic euler equations, Energy Procedia, 64 (2015), pp. 140–149.

[27] A. Naumann, O. Kolb, and M. Semplice, On a third order CWENO boundary treat-
ment with application to networks of hyperbolic conservation laws, Appl. Math. Comput.,
325 (2018), pp. 252–270.

[28] S. Noelle, N. Pankratz, G. Puppo, and J. R. Natvig, Well-balanced finite volume
schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213
(2006), pp. 474–499.

[29] S. Noelle, Y. Xing, and C.-W. Shu, High-order well-balanced finite volume WENO
schemes for shallow water equation with moving water, J. Comput. Phys., 226 (2007),
pp. 29–58.

[30] A. Osiadacz, Nonlinear programming applied to the optimum control of a gas compres-
sor station, Internat. J. Numer. Methods Engrg., 15 (1980), pp. 1287–1301.

[31] G. Puppo and G. Russo, eds., Numerical methods for balance laws, vol. 24 of Quaderni
di Matematica [Mathematics Series], Department of Mathematics, Seconda Università
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