
Kinetic Methods for Inverse Problems

Michael Herty  and  Giuseppe Visconti

Institut für Geometrie und Praktische Mathematik 
Templergraben 55, 52062 Aachen, Germany

Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben 55, D-52056 Aachen, 	
Germany; 
Email: herty@googlemail.com.de, visconti@igpm.rwth-aachen.de	

N
 O

 V
 E

 M
 B

 E
 R

   
 2

 0
 1

 8
 

P 
R 

E 
P 

R 
I N

 T
   

  4
 8

 5



Kinetic Methods for Inverse Problems

Michael Herty and Giuseppe Visconti

Institut für Geometrie und Praktische Mathematik (IGPM)

RWTH Aachen University

Templergraben 55, 52062 Aachen, Germany

November 22, 2018

Abstract

The Ensemble Kalman Filter method can be used as an iterative numerical scheme for
parameter identification or nonlinear filtering problems. We study the limit of infinitely large
ensemble size and derive the corresponding mean-field limit of the ensemble method. The
kinetic equation allows in simple cases to analyze stability of the solution to inverse problems as
mean of the distribution of the ensembles. Further, we present a slight but stable modification
of the method which leads to a Fokker-Planck-type kinetic equation. The kinetic methods
proposed here are able to solve the problem with a reduced computational complexity in the
limit of a large ensemble size. We illustrate the properties and the ability of the kinetic model
to provide solution to inverse problems by using examples from the literature.

Mathematics Subject Classification (2010) 35Q84, 65N21, 93E11, 65N75

Keywords Kinetic Partial Differential Equations, Nonlinear Filtering Methods, Inverse Problems

1 Introduction

We are concerned with the following abstract inverse problem or parameter identification problem

y = G(u) + η (1)

where G : X → Y is the (possible nonlinear) forward operator between Hilbert spaces X and
Y , u ∈ X is the control, y ∈ Y is the observation and η is observational noise. Given noisy
measurements or observations y and the known mathematical model G, we are interested in finding
the corresponding control u. Typically, the observational noise η is not explicitly known but only
information on its distribution is available. Inverse problems, in particular in view of a possible ill-
posedness, have been discussed in vast amount of literature and we refer to [16] for an introduction
and further references. In the following we will investigate a particular numerical method for
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solving problem (1), namely, Ensemble Kalman Filtering (EnKF). While this method has already
been introduced more than ten years ago citeEvensen1994, recent theoretical progress [38] is the
starting point of this work.

In order to set up the mathematical formulation we consider the case X = Rd and Y = RK , with
d,K ∈ N. As in [38] we aim to solve the inverse problem by minimizing the least squares functional

Φ(u, y) :=
1

2

∥∥∥Γ
1
2 (y − G(u))

∥∥∥2
Y

(2)

where Γ normalizes the so-called model-data misfit. This is defined as the covariance of the noise η.
Note that so far there is no regularization of the control u added towards the minimization problem,
see e.g. [4, 20, 22, 28] for examples of Tikhonov and other regularizations.

Later we also explore the link of EnKF to Bayesian inversion and therefore we briefly recall a
Bayesian inversion formulation for problem (1). Following [13, 40] a solution to the inverse problem
is obtained by treating the unknown control u, the data y and the noise η as random variables.
Then, the conditional probability measure of the control u given the observation y, denoted by u|y,
called posterior, is computed via Bayes Theorem. Typically, there is an interest in moments of the
posterior, e.g. choosing the point of maximal probability (MAP estimator). For further details
concerning Bayesian inversion, such as the modeling of the unknown prior distributions and other
choices of estimators, see e.g. [3, 8, 13, 17] and references therein.

Before finally stating the aim of this work, we briefly recall some references on the EnKF method
without aiming to give a complete list. Iterative filtering methods have also been successfully applied
to inverse problems since many years. A particular successful method has been originally proposed
in [27] to estimate state variables, parameters, etc. of stochastic dynamical systems. This method
has been extended to EnKF in [18]. The EnKF sequentially updates each member of an ensemble of
random elements in the space X by means of the Kalman update formula and using the knowledge
of the model G and of given observational data y. It is important to note that no information on
the derivative of G is required. Some examples in mathematical literature of the application of the
filtering method to inverse problems are given in the incomplete list [5, 6, 24, 25, 38, 39]. Our starting
point is [38] where the time-continuous limit of the EnKF has been studied as a regularization
technique for minimization of the least squares functional (2) with a finite ensemble size. Note that
the EnKF can also formally be derived within the Bayesian framework [17, 26, 29, 30, 32]. In the
cited references the ensemble size was fixed and, due to the possible associated high computational
cost, limited to a small number of ensembles. The analysis of the method for a large ensemble
size limit has been investigated in [17, 31]. However, to the best of our knowledge, an evolution
equation for the probability distribution of the ensembles has not been derived. We aim to provide
a continuous representation of the EnKF method that also holds in the limit of infinitely many
ensembles.

We proceed as follows: We start from the continuous time limit equation derived in [38] and
interpret the method as interacting particle system. Then, we study the mean-field limit for large
ensemble sizes. From a mathematical point of view, this technique have been widely used to reduce
the computational complexity and to analyze interacting particle models e.g. in socio-economic
dynamics or gas dynamics [10, 11, 12, 21, 23, 36, 41, 42]. The kinetic equation evolves in time the
probability distribution of the control and the solution to the inverse problem is shown to be the
mean of this distribution. We link this formulation to the Bayesian approach and analyze linear
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stability of the EnKF. Further, we present suitable modifications of the method based on the kinetic
formulation in order to obtain a computational gain in the numerical simulations using a Monte
Carlo approach, similar to [1, 7, 19, 33, 34, 35, 36], and to modify the stability pattern.

2 From the Ensemble Kalman Filter to the gradient descent
equation

The Ensemble Kalman Filter (EnKF) has been introduced [18] as a discrete time method to estimate
state variables, parameters, etc, of stochastic dynamical systems. The estimations are based on
system dynamics and measurement data that is possibly perturbed by known noise. The EnKF is
a generalization and improved version of the classical Kalman Filter method [27]. In the following,
we briefly review the definition of the EnKF which is based on a sequential update of an ensemble
of states and parameters. Then we recover the continuous time limit equation derived in the recent
work [38]. This will be the starting point to introduce and compute in the next sections a mean-field
limit for the limit of a large ensemble size. The arising kinetic partial differential equations allows
subsequent analysis on the nature of the method.

As in [38] we consider a control u ∈ Rd, a given state y ∈ RK coupled by the system dynamic G as
stated by equation (1). The problem is to identify the unknown control u given possibly perturbed
measurements of the state y. Hence, the observation of the system dynamic G(u) is perturbed by
noise η ∈ RK . The noise is assumed independent on the control u ∈ Rd and normally distributed
with zero mean and known covariance matrix Γ−1 ∈ RK×K , i.e. η ∼ N (0,Γ−1). We consider

a number J of ensembles (realizations of the control) combined in U =
{
uj
}J
j=1

. The EnKF is

originally posed as a discrete iteration on U. The iteration index is denoted by n and the collection
of the ensembles by uj,n ∈ Rd, ∀ j = 1, . . . , J and n ≥ 0. According to [38], the EnKF iterates each
component of Un at iteration n+ 1 as

uj,n+1 = uj,n + C(Un)

(
D(Un) +

1

∆t
Γ−1

)−1
(yj,n+1 − G(uj,n))

yj,n+1 = y + ξj,n+1

(3)

for each j = 1, . . . , J . Here, each observation or measurement yj,n+1 ∈ RK has been perturbed by
ξj,n+1 ∼ N (0,∆t−1Σ), and ∆t ∈ R+ is a parameter. As [38] two cases for the covariance Σ will be
discussed: Σ = 0 corresponding to a problem where the measurement data y is unperturbed and
Σ = Γ corresponding to the case where ξj,n+1 are realizations of the noise η.

Note that the update (3) of the ensembles requires the knowledge of the operators C(Un) and
D(Un) being the covariance matrices depending on the ensemble set Un at iteration n and on
G(Un), i.e. the image of Un at iteration n. More precisely,

C(Un) =
1

J

J∑
k=1

(
uk,n − un

)
⊗
(
G(uk,n)− Gn

)
∈ Rd×K

D(Un) =
1

J

J∑
k=1

(
G(uk,n)− Gn

)
⊗
(
G(uk,n)− Gn

)
∈ RK×K

(4)
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where we have defined by un and Gn the mean of Un and G(Un), namely

un =
1

J

J∑
j=1

uj,n, Gn =
1

J

J∑
j=1

G(uj,n).

In recent years, the EnKF was also studied as technique to solve classical and Bayesian inverse
problems. See for instance the works [25] and [17], respectively, and the references therein. Here,
we keep the attention on this type of application. The analysis of the method is proved to have a
comparable accuracy with traditional least-squares approaches to inverse problems [25]. Moreover,
it is known that the method provides an estimate of the unknown control u which lies in the
subspace spanned by the initial ensemble set U0 [25]. We will see in this section that this property
is still true at the continuous time level [38]. Concerning Bayesian inverse problems, instead, the
method is proved to approximate specific Bayes linear estimators but it is able to provide only
an approximation of the posterior measure by a (possibly weighted) sum of Dirac masses. For a
detailed discussion we refer to [2, 17, 32].

As showed in [38], it is straightforward to compute the continuous time limit equation of the
update (3) in the general case of a nonlinear model G, even if the asymptotic analysis was performed
in the easier linear setting. Consider the parameter ∆t as an artificial time step for the iteration
in (3), i.e. we take ∆t ∼ N−1t where Nt is the maximum number of iterations. Assume then

Un ≈ U(n∆t) =
{
uj(n∆t)

}J
j=1

for n ≥ 0. Scaling by ∆t and computing the limit ∆t → 0+, the

continuous time limit equation of (3) reads

duj = C(U)Γ
(
y − G(uj)

)
dt+C(U)Γ

√
Σ dWj (5)

for j = 1, . . . , J , initial condition U(0) = U0 and dWj are Brownian motions. Using the definition
of the operator C(U), see (4), system (5) can be restated as

duj =
1

J

J∑
k=1

〈
G(uk)− G,y − G(uj)

〉
Γ−1 (uk − u) dt+C(U)Γ

√
Σ dWj (6)

for j = 1, . . . , J where 〈·, ·〉Γ−1 = 〈Γ
1
2 ·,Γ

1
2 ·〉 and 〈·, ·〉 is the inner-product on RK . From (6) it is

easy to observe that the invariant subspace property holds also at the continuous time level in the
case Σ ≡ 0 since vector field is in the linear span of the ensemble itself.

In [38] the asymptotic behavior of the continuous time equation is analyzed in the linear setting
with Σ ≡ 0 so that (5) is written as gradient descent. In fact, let us consider the case of G linear, i.e.

G(u) = Gu. Then the computation of the operator C(U) is C(U) = 1
J

∑J
k=1

(
uk − u

) (
uk − u

)T
GT .

Further, note that the least squares functional (2) yields

∇uΦ(u,y) = −GTΓ(y −Gu). (7)

Therefore, equations (5) is stated in terms of the gradient of Φ as

d

dt
uj = − 1

J

J∑
k=1

(uk − u)⊗ (uk − u)∇uΦ(uj ,y) (8)
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for j = 1, . . . , J . Equation (8) describes a preconditioned gradient descent equation for each en-
semble. In fact, C(U) is positive semi-definite and hence

d

dt
Φ(u(t),y) =

d

dt

1

2

∥∥∥Γ 1
2 (y −Gu)

∥∥∥2 ≤ 0.

Observe that, although the forward operator is assumed to be linear, the gradient flow is nonlinear.
For further details and properties of the gradient descent equation (8) we refer to [38]. In particular,
here we recall the important result on the velocity of the collapse of the ensembles towards their
mean in the large time limit.

Lemma 2.1 (Theorem 3 in [38]). Let U0 be the initial set of ensembles. Then the matrix R(t)
whose entries are

(R(t))ij =
〈
G(ui − u), G(uj − u)

〉
Γ

converges to 0 for t→∞ and indeed ‖R(t)‖ = O(Jt−1).

Thus, the previous Lemma states that the collapse slows down linearly as the ensemble size increases.
Later, this property is also obtained in the mean-field limit for large ensemble size.

3 Mean-field limit of the Ensemble Kalman Filter

Typically, EnKF methods are applied for fixed and finite ensemble size. In fact, it is clear from (3)
and (6) that the computational and memory cost of the method increases with number of ensembles.
However, the analysis of the method was also studied in the large ensemble limit, see e.g. [17, 29,
31, 32]. However, to the best of our knowledge, the derivation of a kinetic equation that holds
in the limit of a large number of ensembles has not yet been proposed. In this section, we derive
the corresponding mean-field limit of the continuous time equation focusing on the case of a linear
model G and with Σ = 0 as in [38].

We follow the classical formal derivation to formulate a mean-field equation of a particle system,
see [10, 21, 36, 41]. Let us denote by

f = f(t,u) : R+ × Rd → R+ (9)

the compactly supported on Rd probability density in u at time t and introduce the first moment
m ∈ Rd and the second moment E ∈ Rd×d of f at time t, respectively, as

m(t) =

∫
Rd

uf(t,u)du, E(t) =

∫
Rd

u⊗ uf(t,u)du. (10)

Since u ∈ Rd, the corresponding discrete measure on the ensemble set U =
{
uj
}J
j=1

is therefore

given by the empirical measure

f(t,u) =
1

J

J∑
j=1

δ(uj − u) =
1

J

J∑
j=1

d∏
i=1

δ(uji − ui), (11)
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where uji ∈ R is the component i of the j-th ensemble. Let us define the operator

C(U) =
1

J

J∑
k=1

(uk − u)⊗ (uk − u)

with the corresponding entry

(C(U))κ,` =
1

J

J∑
k=1

ukκu
k
` − uκ

1

J

J∑
k=1

uk` − u`
1

J

J∑
k=1

ukκ + uκu` =
1

J

J∑
k=1

ukκu
k
` − uκu`,

where ui denotes the component i of the mean u of the ensembles. This formulation allows for a
mean-field limit as

(C(t))κ,` =

∫
Rd

uκu`f(t,u)du−
∫
Rd

uκf(t,u)du

∫
Rd

u`f(t,u)du

and therefore C(U) can be written in terms of the moments (10) of the empirical measure only as

C(t) = E(t)−m(t)⊗m(t). (12)

Let us denote ϕ(u) ∈ C1
0 (Rd) a sufficiently smooth test function. We compute

d

dt
〈f, ϕ〉 =

d

dt

∫
Rd

1

J

J∑
j=1

δ(u− uj)ϕ(u)du = − 1

J

J∑
j=1

∇uϕ(uj) · C(t)∇uΦ(uj ,y)

= −
∫
Rd

∇uϕ(u) · C(t)∇uΦ(u,y)f(t,u)du.

which finally leads to the following strong form of the mean-field kinetic equation to the gradient
descent equation (8):

∂tf(t,u)−∇u · (C(t))∇uΦ(u,y)f(t,u)) = 0. (13)

Equation (13) provides a closed formula for the evolution in time of the distribution f of the
unknown control u when the observations y and the linear model G are given and when endowed
with an initial guess f0(u) = f(t = 0,u) for the control.

3.1 Moments and approximation of a Bayesian estimator

As discussed in Section 2, the EnKF computes a solution to the inverse problem as mean of the
ensembles in the large time behavior. Since the kinetic equation (13) formally holds in the limit of
a large number of ensembles, we expect that the first moment m(t), defined in (10), approaches to
the solution of the inverse problems as t→∞.

Due to definition (10), multiplying (13) by u, integrating over Rd and integrating by parts the
second term, we get the following evolution equation for the first moment:

d

dt
m(t) +

∫
Rd

C(t)∇uΦ(u,y)f(t,u)du = 0.
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In particular, since we are assuming the simple setting of a linear model G(u) = Gu, using (7), we
can explicitly compute the integral and obtain

d

dt
m(t) + C(t)∇uΦ(m,y) = 0. (14)

Multiplying (13) by u ⊗ u and integrating over Rd we obtain the following evolution equation for
the second moment:

d

dt
E(t) +

d∑
k=1

∫
Rd

T
(1)
k (u) (C(t)∇uΦ(u,y)f(t,u))k du = 0, T

(1)
k (u) =

∂

∂uk
u⊗ u. (15)

Hence, equation (14) and equation (15) provide a closed system of ordinary differential equations.

Remark 3.1. As in Bayesian approach to inverse problems, also equation (13) poses the problem
of selecting a solution out of f which only provides a distribution for the control u. As pointed
out at the beginning of this subsection, since the kinetic equation is derived via mean-field limit we
choose, accordingly to the solution provided by the EnKF, the expected value m as estimator of the
distribution f . Observe that a steady-state m∞ of equation (14) is given by

m∞ = arg min
u

Φ(u,y),

corresponding to a control that minimizes the least squares functional Φ. In the case of a linear
model G, the above condition can be also stated as y −Gu ∈ kerGT . Neither, u nor m∞ needs to
be unique.

We show that the kinetic equation (13) provides also a link between the solution of a deterministic
and a Bayesian approach to inverse problems. It was already proved that the EnKF fails in the
approximation of the posterior, see [17]. However, Lemma 3.2 below formally proves that the
expected value of the mean-field equation (13) approximates the mean estimator of the Bayesian
posterior.

Lemma 3.2 (formal result). Let η ∼ N (0,Γ−1) be a noise normally distributed with zero mean and
known covariance matrix Γ−1 ∈ RK×K independent on the control u. Assume that all the probability
measures involved in the Bayes formula have a density. Then equation (14) is an approximation of
the Bayesian posterior mean estimator.

Proof. Due to the Bayes’ Theorem, the posterior distribution is given by

g(u|y) =
exp(log(ν(η)))g0(u)

µ(y)
(16)

where g(u) is the prior distribution, ν(η) is the likelihood and

µ(y) =

∫
Rd

exp(log(ν(η)))g0(u)du

7



is the distribution of the observation y treated as random variable. It is easy to show that under
the hypothesis η ∼ N (0,Γ−1) the negative log likelihood coincides with the covariance weighted
model-data misfit least squares functional Φ given by (2), namely

Φ(u,y) ≡ − log(ν(η)).

Hence, using Bayes’ formula (16) we obtain

g(u|y)− g0(u) =
1

µ(y)

(
exp(−Φ(u,y))g0(u)du− g0(u)

∫
Rd

exp(−Φ(v,y))g0(v)dv

)
and then we multiply by u and integrate over Rd to obtain∫

Rd

ug(u|y)du−m0 =
1

µ(y)

(∫
Rd

exp(−Φ(u,y))g0(u)(u−m0)du

)
. (17)

Here, m0 =
∫
Rd ug0(u)du is the first moment of the prior distribution. We establish the link to

the evolution equation (14) of the first moment of the kinetic distribution by approximating the
right-hand side of (17) by first-order Taylor expansion at m0. Thus, since

exp(−Φ(u,y)) ≈ exp(−Φ(m0,y))− exp(−Φ(m0,y))(u−m0)T∇uΦ(m0,y)

we compute

µ(y) =

∫
Rd

exp(−Φ(u,y))g0(u)du ≈ exp(−Φ(m0,y))

∫
Rd

g0(u)du

and∫
Rd

exp(−Φ(u,y))g0(u)(u−m0)du ≈ − exp(−Φ(m0,y))

∫
Rd

(u−m0)⊗ (u−m0)g0(u)du∇uΦ(m0,y)

= − exp(−Φ(m0,y)) (E0 −m0 ⊗m0)∇uΦ(m0,y),

where we have defined E0 =
∫
Rd u⊗ug0(u)du the second moment of the prior distribution. Plugging

the expansions into (17) we obtain∫
Rd

ug(u|y)du−m0 ≈ − (E0 −m0 ⊗m0)∇uΦ(m0,y).

We define now m1 =
∫
Rd ug(u|y)du the mean estimator of the posterior distribution and scale Γ−1

as ∆tΓ−1 to obtain ∇uΦ(u,y) = ∆t∇uΦ(u,y). Then,

m1 = m0 −∆t (E0 −m0 ⊗m0)∇uΦ(m0,y)

which gives a first-order approximation in time of (14).

8



3.2 One-dimensional control: linear stability analysis

The expected value m depends on E since equation (14) and (15) give rise to a coupled system of
ordinary differential equations. In the following, we employ a stability analysis for these equations
in the simpler case of a one-dimensional control in order to analyze the stability of the estimator
m.

First, we observe that in the case of a scalar control the system of the moment equations reduces
to

d

dt
m(t) = G(E(t)−m2(t))(y −Gm(t))

d

dt
E(t) = 2G(E(t)−m2(t))(ym(t)−GE(t))

(18)

with y ∈ R and G ∈ R \ {0}. The nullclines of the system of ODEs (18) are given by

m =
y

G
, E =

y

G
m, E = m2.

The equilibrium or fixed points of (18) are the intersections of the nullclines and therefore we have
the following three sets of points:

F0 = (0, 0), F1 = (
y

G
,
y2

G2
), Fk = (k, k2), k ∈ R,

i.e. all the fixed points are on the parabola E = m2 in the phase plane (m,E). Given the Jacobian
J ∈ R2×2 of the ODE system (18)

J(m,E) =

 3G2m2 − 2Gym−G2E −G2m+Gy

2GyE + 4G2mE − 6Gym2 −4G2E + 2Gym+ 2G2m2

 (19)

we can compute that J(Fk) has eigenvalues µ1 = µ2 = 0. Clearly, the same holds for F0 and
F1, since they are points of the type Fk. Therefore all the fixed points are non-hyperbolic and
the stability must be analyzed directly. More precisely, since µ1 = µ2 = 0, the fixed points are
Bogdanov-Takens-type equilibria and hence unstable as we indeed show in the following analysis.

The vector field of the system (18) can be easily analyzed on nullclines and on the m- and E-axis
of the phase plane. For the sake of simplicity, let us assume that y

G > 0. The analysis is equivalent

in the opposite case. Let m(0) = y
G so that d

dtm = 0 for all t. We have that

d

dt
E = − 2

G2
(y2 −G2E)2 < 0

and therefore E is decreasing in time on the nullcline m = y
G which in turn means that F1 is an

attractor only if E(0) > y
G2 . Let now E(0) = y

Gm(0), for some m(0). Then we have d
dtE = 0 and

d

dt
m = m(y −Gm)2 =

{
> 0, if m(0) > 0,

< 0, otherwise.

Thus, since m(0) > 0 is the only acceptable initial condition in order to guarantee that E(0) > 0,
the trajectories are moving on the right side of the phase plane on the nullcline E = y

Gm. Obviously,
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Figure 1: Left: vector field of the ODE system (18) with (y,G) = (2, 1). Red lines are the nullclines.

Right: trajectory behavior around the equilibrium ( yG ,
y2

G2 ) = (2, 4).

each trajectory is still in time on the nullcline E = m2 since d
dtm = d

dtE = 0. The nullclines and
the complete vector field for the case (y,G) = (2, 1) is shown in the left panel of Figure 1. We
immediately observe that the behavior around the equilibrium point F1 is unstable as showed also
in the right panel of Figure 1.

The previous considerations can be also derived by looking at the solutions of (18). Assuming that
the initial conditions are such that E(0) 6= m(0)2, we get then the following pairs of analytical
solutions:

m(t) =
y

G
, E(t) =

y2

G2
+

1

2G2(C + t)

m(t) =
y

G
± 1

G
√
−2C1Gt− 2C2G

, E(t) = m2 +
d
dtm

G(y −Gm)

with C,C1, C2 ∈ R constants uniquely prescribed by the initial conditions. In particular, the first
set of solutions is found by assuming that m(0) = y

G and solving the following Riccati’s equation
with constant coefficients

d

dt
E(t) = −2G2E2 + 4Ey − 2

y4

G2
.

In this case, let E(0) = E0, the constant is given by C = 1
2 (G2E2

0 − y2) which is positive when

E0 >
y2

G2 and negative otherwise. In this latter case we also observe that there exists a time t in
which the trajectory E(t) has a vertical asymptote. For the above discussion we know that E(t) is
also decreasing. It is also simple to observe that in the second pair of solutions E(t) can blow up
driving m(t) away from the equilibrium.
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4 Extension of the mean-field EnKF method

The analysis of Section 3.2 shows that, at least in a one-dimensional setting, the system of moment
equations (18) could lead to unconditionally unstable equilibria. This is due to the possible decay
of the energy which drives the expected value far from the equilibrium value. In the general case
of a d-dimensional control u, the situation may be even more complex.

The instability of fixed points of (18) can be related to the loss of an O(∆t) term in the derivation of
the continuous time limit equation (5). In fact, instability could occur also for (8) but it is possible
to show that the discrete equation (3) has stable equilibria.

Next, we stabilize the system of the moment equations (18) by introducing additional uncertainty
to the microscopic interactions. This leads to a diffusive term in the kinetic equation avoiding the
decay of kinetic energy and the appearance of unstable equilibria. First, we write binary microscopic
interactions corresponding to the mean-field kinetic equation (13). Then, we introduce noise in these
interactions and we derive a Fokker-Planck-type equation. Finally, we study the stability of the
resulting moment system.

Let again f = f(t,u) : R+×Rd → R be the probability density of the control u ∈ Rd at time t > 0
as defined in (9). Let m ∈ Rd and E ∈ Rd×d be the first and the second moment of f , respectively,
as given in (10). We introduce the microscopic interaction rules:

u = u∗ − ε(E−m⊗m)∇uΦ(u∗,y) +
√
εK(u∗)ξ

= u∗ − εC(t)∇uΦ(u∗,y) +
√
εK(u∗)ξ

(20)

where u is the post-interaction value of the ensemble member, u∗ is its pre-interaction value and
ξ ∈ Rd is a random variable with given distribution θ(ξ) having zero mean and covariance matrix
Λ ∈ Rd×d. Instead, K(u∗) ∈ Rd×d is an arbitrary function of u∗. For K = C we observe a similar
structure as in equation (5). The quantity ε describes the strength of the interactions and it is a
scattering rate.

Remark 4.1. Observe that (20) is in fact the microscopic interaction corresponding to the mean-
field equation (13), that is in the case of a linear model

u =
(
1− εC(t)GTΓG

)
u∗ + εC(t)GTΓGG−1y, (21)

with an additional term representing the uncertainty in the interaction. The interaction (21) has a
probabilistic interpretation [1] provided

ε ρ
(
C(t)GTΓG

)
≤ 1,

where ρ(·) is the spectral radius.

The probability density f satisfies the following (linear) Boltzmann equation in weak form

d

dt

∫
Rd

f(t,u)ϕ(u)du =

〈∫
Rd

(ϕ(u)− ϕ(u∗))f(t,u)du

〉
(22)
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where ϕ ∈ C∞c (Rd) is a test function and where the operator 〈·〉 denotes the mean with respect to
the distribution θ, i.e. 〈g〉 =

∫
Rd g(ξ)θ(ξ)dξ. Consider the time asymptotic scaling by setting

τ = tε, f(t,u) = f̃(τ,u) (23)

and allow ε→ 0+. This corresponds to large interaction frequencies and small interaction strengths,
a situation similar to the so-called grazing collision limit [14, 15, 37, 43]. We denote the scaled
quantities again by f and t, respectively. A second-order Taylor expansion yields the corresponding
formal Fokker-Planck equation:

ϕ(u)− ϕ(u∗) =∇uϕ(u∗) · (u− u∗) +
1

2
(u− u∗)

TH(ϕ(u∗))(u− u∗)

+
1

2
(u− u∗)

T Ĥ(ϕ; ũ,u∗)(u− u∗)

with ũ = αu∗ + (1− α)u, α ∈ (0, 1) and where H ∈ Rd×d is the Hessian matrix and Ĥ(ϕ; ũ,u∗) =
H(ϕ(ũ))−H(ϕ(u∗)). Substituting this expression in equation (22) and using definition (20) of the
microscopic interactions, we obtain

d

dt

∫
Rd

f(t,u)ϕ(u)du =
1

ε
(A+ B +R) ,

A = −ε
〈∫

Rd

∇uϕ(u∗) · (C(t)∇uΦ(u∗,y)) f(t,u∗)du∗

〉
+
√
ε

〈∫
Rd

∇uϕ(u∗) ·K(u∗)ξf(t,u∗)du∗

〉
,

B =
ε2

2

〈∫
Rd

(C(t)∇uΦ(u∗,y))
T

H(ϕ(u∗)) (C(t)∇uΦ(u∗,y)) f(t,u∗)du∗

〉
− ε
√
ε

〈∫
Rd

(K(u∗)ξ)
T

H(ϕ(u∗)) (C(t)∇uΦ(u∗,y)) f(t,u∗)du∗

〉
+
ε

2

〈∫
Rd

Tr
(
(ξ ⊗ ξ)TK(u∗)

TH(ϕ(u∗))K(u∗)
)
f(t,u∗)du∗

〉
,

where Tr(·) is the matrix trace and R is the remaining term. One can easily prove that ε−1R
vanishes in the asymptotic scaling (23). In order to show this, it is sufficient the fact that ϕ is
an enough smooth function and thus each second partial derivative is Lipschitz continuous so that
∃L > 0 such that∣∣∣∣∂2ϕ(ũ)

∂uiuj
− ∂2ϕ(u∗)

∂uiuj

∣∣∣∣ ≤ L|ũ− u∗| < L|u− u∗| = L|εC(t)∇uΦ(u∗,y) +
√
εK(u∗)ξ|

ε→0+−−−−→ 0

for all i, j = 1, . . . , d.

For K(u∗) constant or depending on moments of the kinetic distribution f , the grazing limit in
strong form is then obtained as

∂tf(t,u) = ∇u · (C(t)∇uΦ(u,y)f(t,u)) +
1

2
∇u ·

(
ΛKTK∇uf(t,u∗)

)
(24)

where we used the basic fact

Tr
(
ΛKTKH(f(t,u∗))

)
= ∇u ·

(
ΛKTK∇uf(t,u∗)

)
.
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Some remarks are in order. As expected, the Fokker-Planck-type equation (24) is consistent with
the kinetic equation (13) in the limit of vanishing covariance Λ. The introduction of the uncertainty
in (20) allows for a different interpretation of the data perturbation in (3) and (6) within the kinetic
model.

4.1 Moments equations and linear stability analysis

In the setting of [38] we have G(u) = Gu and, for K = I identity matrix, a straightforward
computation leads to the following moment equations based on the Fokker–Planck equation (24).

d

dt
m(t) = −C(t)∇uΦ(m,y)

d

dt
E(t) = −

d∑
k=1

∫
Rd

T
(1)
k (u) (C(t)∇uΦ(u,y)f(t,u))k du +

1

2

d∑
i,j=1

Λ2
ij

∫
Rd

T
(2)
ij (u)f(t,u)du,

(25)

where m and E are defined as before and where we have

T
(1)
k (u) =

∂

∂uk
u⊗ u, T

(2)
ij (u) =

∂

∂uiuj
u⊗ u.

Comparing equation (25) and (14), we observe that they are equivalent. This implies that the
equation for m is still providing a solution according to Remark 3.1 and Lemma 3.2. Instead, the
equation of the second moment E has an additional term that stabilize the equilibria of (25).

We analyze linear stability of (25) in the case of a one-dimensional control. In this particular case
the moment equations are

d

dt
m(t) = G(E(t)−m(t)2)(y −Gm(t))

d

dt
E(t) = 2G(E(t)−m(t)2)(ym(t)−GE(t)) + λ2

(26)

with y ∈ R, G ∈ R \ {0} and where now λ2 ∈ R represents the variance of the univariate noise
ξ. Following the same analysis performed in Section 3.2, we compute the nullclines of the ODE
system (26) and they are given by

m =
y

G
, E = m2, E =

m(y +Gm)±
√
m2(y −Gm)2 + 2λ2

2G
.

We are interested in the behavior around the equilibrium with m = y
G which is obtained as inter-

section of the first and the third nullcline:

F̃±1 = (
y

G
,
y2

G2
±
√

2λ2

2G
).

Observe that this equilibrium point is in fact the equilibrium point F1 given in Section 3.2 when
λ → 0+. For simplicity, in the following we consider y,G > 0. Similar considerations can be done
in the other cases. Letting m(0) = y

G so that d
dtm = 0 for all t, we have

d

dt
E = −2G2

(
E − y2

G2

)2

+ λ2

13



where the right-hand side represents a parabola in E with negative leading coefficient. Therefore,
using classical arguments of stability theory for ODEs, we can state that the greater root F̃+

1 is
the stable equilibrium and the smaller root F̃−1 is the unstable equilibrium. This result can be also
obtained by looking at the eigenvalues of the Jacobian matrix of the system (26) which is equivalent
to (19). In fact, computing the eigenvalues µ±1,2 of J(m,E) evaluated in F̃±1 we have

µ±1 = ∓G
2

√
2λ2, µ±2 = ∓2G

√
2λ2

and therefore the equilibrium F̃+
1 corresponding to the two negative eigenvalues is stable. Moreover,

we stress the fact that the in the case of (26) the equilibria are no longer non-hyperbolic as in the
case of (18). However, the variance λ2 plays the role of a bifurcation parameter since for λ2 → 0+

we recover the Bogdanov-Takens-type equilibria and thus λ2 changes the stability of the equilibrium
point. In view of this consideration we wish to avoid λ2 going to zero and, furthermore, we can
apply a control on it in order to guarantee that the unstable equilibrium F̃−1 is always negative and
thus not admissible. More precisely, the standard deviation should satisfy

λ >
y2
√

2

G
.

Then, the solutions of (26) are given by

m(t) =
y

G
, E(t) =

(
tanh(

√
2λ2GC +

√
2λ2Gt

)√
2λ2G+ 2y2

2G2

and

m(t) =
±e2

√
2λ2GtC1y ∓ C2y +

√√
2λ2C1e3

√
2λ2Gt − C2

√
2λ2e2

√
2λ2Gt

(C1e2
√
2λ2Gt − C2)G

,

E(t) =
m(t)3G2 −m(t)2Gy − d

dtm(t)

m(t)G2 −Gy

with C,C1, C2 ∈ R constants uniquely prescribed by the initial conditions. We observe that, in
the large time behavior, m → y

G unconditionally, as in the case of (18). Instead, the large time
behavior of E is changed and shifted by a quantity depending on λ2 which avoids the possibility of
having a decay in the energy which drives m away from the expected equilibrium value. In Figure 2
we show the nullclines and the complete vector field for the case (y,G) = (2, 1) (left panel) and the
behavior around the stable equilibrium point F̃+

1 = (2, 8) (right panel).

Remark 4.2. Lemma (2.1) shows that the collapse of the ensembles towards their mean slows down
linearly as the number of the ensemble increases. The kinetic equation (24) holds in the limit of
a large ensemble size and the energy E gives information on the concentration of the distribution
f of the control u around its mean. The previous analysis shows also that, in fact, the result of
Lemma (2.1) holds at the kinetic level since E does not decay to zero as t→∞.
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Figure 2: Left: vector field of the ODE system (26) with (y,G) = (2, 1). Red lines are the nullclines.
Right: trajectory behavior around the equilibrium F̃+

1 = (2, 8).

5 Numerical simulation results

The simulations are performed by using a standard Monte Carlo approach [9] to solve the kinetic
equation (24). More precisely, we use a simple modification of the mean-field interaction algorithm
given in [1] which is a direct simulation Monte Carlo method based on the mean-field microscopic
dynamics described by (20) giving rise to the corresponding kinetic equation (24). For further
details on the method we refer to [7, 19, 33, 34, 35, 36].

The algorithmic details are as follows. In each example we consider a sampling of J controls {uj}Jj=1

from the prior or initial distribution f0(u). Then, each sample is updated according to the mean-
field microscopic rule (20) by selecting M ≤ J interacting particles uniformly distributed without
repetition. The parameter ε in (20) is closely related with the concept of a time step and it is
taken such that stability of the discrete method is guaranteed. [1]. In particular, for the kinetic
model (13) we require that

ε ≤ 1

maxi (|(<(µi)|)
(27)

where the µi’s are the eigenvalues of C(t)GTΓG, cf. Remark 4.1. In the following we will use
an adaptive choice of ε by recomputing it at each iteration. As we observe that C(t)GTΓG is
characterized by large spectral radius at initial time that reduces over time, we chose an adaptive
computation of ε.

As already pointed out in Section 4, the microscopic interactions (20) are closely related to a time
discretization of the gradient descent equation (8). However, a deterministic numerical method
for (8) requires O(J2) operations due to the direct evaluation of the sum for J ensembles. The
numerical discretization of the kinetic equation by means of a Monte Carlo approach allows to
compute the microscopic dynamics with a cost directly proportional to the number J of ensembles.
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Information on the simulation results is presented in the following norms

v =
1

J

J∑
j=1

‖vj‖22, r =
1

J

J∑
j=1

‖rj‖22

V =
1

J

J∑
j=1

|Vjj |2, R =
1

J

J∑
j=1

|Rjj |2
(28)

at each iteration, where

vj = uj − u, rj = uj − u†

Vij =
〈
Gvi, Gvj

〉
Γ−1 , Rij =

〈
Gri, Grj

〉
Γ−1 .

(29)

The quantity vj measures the deviation of the j-th sample from the mean u of the approximated
distribution by the samples and rj measures the deviation of the j-th sample from the truth solution
u†. The quantities V and R give information on the deviation of vj and rj under application of
the model G.

Another additional important quantities is given by the misfit which allows to measure the quality
of the solution at each iteration. The misfit for the j-th sample is defined as

ϑj = Grj − η. (30)

By using (30) we finally look at

ϑ =
1

J

J∑
j=1

‖ϑj‖2
Γ−1 . (31)

Driving this quantity to zero leads to over-fitting of the solution. For this reason, usually it is
suitable introducing a stopping criterion which avoids this effect. In the following we will consider
the discrepancy principle which check and stop the simulation when the condition ϑ ≤ ‖η‖22 is
satisfied.

5.1 Linear elliptic problem

A test proposed e.g. in [25, 38], is the ill-posed inverse problem of finding the force function of an
elliptic equation in one spatial dimension assuming that noisy observation of the solution to the
problem are available. This problem is widely used since is explicitly solvable due to the linearity
of the model.

The problem is prescribed by the following one dimensional elliptic equation

− d2

dx2
p(x) + p(x) = u(x), x ∈ [0, π]

endowed with boundary conditions p(0) = p(π) = 0. The linear model is thus defined as

A =

(
− d2

dx2
+ 1

)−1
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which can be discretized, for instance, by a finite difference method or by the explicit solution

p(x) = Au(x) = exp(x)

(
C1 −

1

2

∫ x

0

exp(y)u(y)dy

)
+ exp(−x)

(
C2 +

1

2

∫ x

0

exp(−y)u(y)dy

)
where the constants C1 and C2 can be uniquely determined by the boundary conditions. We assign
a continuous control u(x) and then introduce a uniform mesh consisting of d = K = 28 equidistant
points in the interval [0, π]. Let u† ∈ Rd be the vector of the evaluations of the control function
u(x) on the mesh. We simulate noisy observations y ∈ RK as

y = p + η = Gu† + η,

where G is the finite difference discretization of the continuous operator A. For simplicity we assume
that η is a Gaussian white noise, more precisely η ∼ N (0, γ2I) with γ ∈ R+ and I ∈ Rd×d is the
identity matrix. We are interested in recovering the control u† ∈ Rd from the noisy observations
y ∈ RK only.

The initial ensemble of particles is sampled by an initial distribution f0(u) = N (0,C0). The choice
of f0(u) is related to the choice of the prior distribution in Bayesian problems. In this case f0(u)
represents a Brownian bridge as in [38]

Test case 1. Let us consider u(x) = 1, ∀x ∈ [0, π]. We solve the inverse problem by the proposed
method for different values M of the interacting samples. We observe that taking M < J does not
strongly influence the results of the simulation. But, M < J allows to have a computational gain.

We allow for two values of the noise level γ = 0.01, see Figure 3, and γ = 0.1, see Figure 4. In
both figures, the top panels show the residual (left) and misfit (right) decrease over the number
of iterations. Due to the discrepancy principle, the simulation is automatically stopped when the
misfit reaches ‖η‖. The final residual values are obviously larger in the case of γ = 0.1 due to
the larger noise level present in the initial observations. The bottom panels show, form left to
right, the initial noisy data which are spread around the exact solution p(x) of the problem, the
reconstruction of p(x) and the reconstruction of the control u(x) by using the mean of the samples
as estimator of the solution. We observe that the different values of M does not give significantly
different results.

In the left panel of Figure 5 we show the spectrum of C(t)GTΓG at initial time for γ = 0.01
and γ = 0.1. We observe that the ratio between the largest and smaller eigenvalues is very large,
reflecting the ill-posedness of the problem and the need of using a small ε in (21) in order to
guarantee stability. However, we consider an adaptive ε since the spectral radius is observed to
decrease quickly over iterations. See the red lines in the right panel of Figure 5, where, instead, the
blue lines show the corresponding values of ε which avoid the lack of stability.

Test case 2. Let us consider u(x) = sin(8x), ∀x ∈ [0, π], and a fixed value of the noise level
γ = 0.01. We show that the method provides a good performance also cases where the control
function has a high-frequency profile. In Figure 6 we consider the results obtained with J = 25 and
J = 25 · 29 = 12800 sampling from the initial distribution f0(u). In order to measure the quality of
the solution to the inverse problem, we again compare the residual r and the projected residual R
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Figure 3: Elliptic problem - Test case 1 with γ = 0.01. Top row: plots of the residual r, the
projected residual R and the misfit ϑ for M = 250, 500, 1000. Bottom row: plots of the noisy
data, the reconstruction of p(x) and the reconstruction of the control u(x) at final iteration for
M = 250, 500, 1000.

(top left plot) and the misfit ϑ (top right plot) for the two values of J . The misfit reaches the noise
level in a very small number of iterations for both J ’s but the residual r for J = 12800 is reaching a
smaller value than the residual computed with J = 25. This result is observable also in the middle
right plot and in the bottom left plot where we compare the reconstruction of p(x) and of the exact
control u(x) at the final iteration with the two values of J and using the mean as estimator of the
solution. It is very clear that the case with J = 12800 is providing a better resolution. Finally, in

the bottom right plot we show the relative error
‖u−u‖22
‖u‖22

as function of the increasing value of J

noticing a decreasing behavior.

5.2 Nonlinear elliptic problem

The second numerical experiment is a slightly modified example proposed in [17]. We consider a
one-dimensional elliptic boundary value problem given by

− d

dx

(
exp(u1)

d

dx
p(x)

)
= f(x), x ∈ [0, 1]
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Figure 4: Elliptic problem - Test case 1 with γ = 0.1. Top row: plots of the residual r, the
projected residual R and the misfit ϑ for M = 250, 500, 1000. Bottom row: plots of the noisy
data, the reconstruction of p(x) and the reconstruction of the control u(x) at final iteration for
M = 250, 500, 1000.

with boundary conditions p(0) = p0 and p(1) = u2, where u = (u1, u2) is the unknown control.
The exact solution of this problem is given by

p(x) = p0 + (u2 − p0) + exp(−u1) (−Sx(F ) + S1(F )x)

where Sx(g) =
∫ x
0
g(y)dy and F (x) = Sx(f) =

∫ x
0
f(y)dy. In the following example we consider

f(x) = 1, ∀x ∈ [0, 1] and p0 = 0, so that the explicit solution is given by

p(x) = u2x+ exp(−u1)

(
−x

2

2
+
x

2

)
.

We assume to have noisy measurements of p at the points x1 = 1
4 and x2 = 3

4 with value y =
(27.5, 79.7). The goal is to seek the control u based on the knowledge of y, of the prior f0(u) and of
the noise model. More precisely, we consider a prior information given by u ∼ N (0, 1)⊗U(90, 110)
and a Gaussian white noise η ∼ N (0, γ2I), with γ = 0.1 and I ∈ R2×2 begin the identity matrix.
Thus, as in Section 5.1, noisy observations are simulated by

y = p + η = G(u†) + η
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Figure 5: Elliptic problem - Test case 1. Left: spectrum of C(t)GTΓG for the initial data with
γ = 0.01 and γ = 0.1. Right: adaptive ε and spectral radius of C(t)GTΓG over iterations with
γ = 0.01 and γ = 0.1.

where the forward model is defined as

G : u ∈ R2 7→ p = (p(x1), p(x2)) ∈ R2.

The example has d = 2 dimension of the control in order to make a comparison between the solution
to the inverse problem provided by the kinetic method and by the Bayes’ formula. In particular,
it is possible to analyze the approximation of the mean estimator and of the posterior distribution
computed by the kinetic equation (24). However, observe that (24) is derived by assuming a linear
forward operator G but in this example the model G is nonlinear. Thus, inspired by (5), we consider
a small modification of the microscopic interaction rule (20) with K = I identity matrix given by

u = u∗ + εC(U∗)Γ(y − G(u∗)) +
√
ε ξ

in order to perform the simulations for the nonlinear model.

For this example, the true posterior mean is computed in [17] thanks to Bayes’ formula and it is
given by (−2.65, 104.5). In Figure 7 we show the results provided by the kinetic model. The top
row shows the density estimation of the J = 105 sampling from the initial distribution (left plot)
and the positions of the samples at the last iterations. Again, we use the discrepancy principle as
stopping criterion. The middle row shows the marginals of u1 and u2 as relative frequency plots.
The solution computed as the mean estimator of the kinetic distribution is u = (−2.56, 104.77) is
very close to the true posterior mean, as proved also by the plot of the residuals in the bottom left
panel of Figure 7.

6 Conclusions

In this paper we have introduced a kinetic model for the solution to inverse problems. The kinetic
equation has been derived as mean-field limit of the Ensemble Kalman Filter method for infinitely
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large ensemble. The introduction of a continuous equation describing the evolution of the proba-
bility distribution of the unknown control guarantees several advantages: information on statistical
quantities of the solution, implicit regularization modeled by the initial distribution, analysis of the
properties of the solution and computational gain for numerical simulations.

Thanks to Lemma 3.2, we have proved that when the solution to the inverse problem is selected
as the mean of the kinetic distribution, it provides an approximation of the linear mean Bayes’
estimator. A linear stability analysis for the simple setting of a one dimensional control has showed
that the method has only stable solutions. Numerical simulations have been performed in order to
investigate the good performance of the kinetic equation in providing solutions to inverse problems.
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