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Abstract

Stochastic quantities of interest are expanded in generalized polynomial chaos expansions using stochastic
Galerkin methods. When applied to hyperbolic differential equations, the coefficients of the series do
not inherit hyperbolicity in general. Here, we present convex entropies for the systems of coefficients
for Burgers’ and shallow water equations. This allows to obtain hyperbolicity, wellposedness and energy
estimates.

1 Introduction

Wellposedness is an important property that systems of partial differential equations (PDEs)
should fulfil. Wellposedness means the solution exists, it is unique and the solution depends con-
tinuously on initial conditions [27]. Classical solutions to most hyperbolic conservation laws have
this property, which explains, why these equations are widely used to model fluid dynamics [36]
and other applications like traffic flow [37]. Most physically motivated systems can be endowed
with an entropy that describes the decay of the energy of a hyperbolic system, which in turn
guarantees well-posed classical solutions [22, 7, 33]. A famous example is the physical entropy
for Euler and shallow water equations, see e.g. [12, 2].

Classical solutions, however, exist in finite time only up to the possible occurence of shocks [49].
Therefore, weak solutions are considered which are not necessarily unique. Existence and unique-
ness of bounded weak entropy solutions have been shown in [33] using entropy-entropy flux pairs.
All of these entropy-entropy flux pairs must satisfy an entropy inequality. In the scalar case a
strictly convex flux function and one entropy-entropy flux pair is sufficient to characterize the
entropy solution uniquely [43, 34]. This result could not been extended to arbitrary systems,
when entropies rarely exist or remain unknown [34]. A single entropy-entropy flux pair, however,
manages to weed out all but one weak solution, as long as a classical solution exists [12]. Thus,
an entropy inherits the wellposedness of classical solutions to a weak formulation.

When initial data are not known exactly, but are given by their probability law or by sta-
tistical moments, the deterministic entropy concepts should be extended to the stochastic case.
A mathematical framework for random entropy solutions of scalar random hyperbolic equations
is developed in [42, 55]. It is shown that existing statistical moments in the initial conditions are
inherited to the solution. In this non-intrusive point of view, first pointwise entropy solutions
are determined, then the expectation is computed.
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In contrast, we investigate the case, where the expectation is evaluated first. This intrusive
stochastic Galerkin method represents stochastic processes by piecewise orthogonal polynomials,
which is known as generalized polynomial chaos (gPC) expansion [58, 5, 18, 61]. Expansions
of the stochastic input are substituted into the governing equations and they are projected
to obtain deterministic evolution equations for the gPC coefficients. The applications of this
procedure has been proven successful for diffusion [62, 16] and kinetic equations [52, 28, 6]. So
far, results for general hyperbolic systems are not available [14, 15, 40], since desired properties
like hyperbolicity and the existence of entropies are not inherited to the intrusive formulation.
A problem is posed by the fact that the deterministic Jacobian of the projected system differs
from the random Jacobian of the original system and therefore not even real eigenvalues, which
are necessary for hyperbolicity, are guaranteed in general.

It is possible for some systems to first transform the partial differential equations into non-
conserved variables and then apply the Galerkin method. See [15, 59] for quasilinear systems,
[14, 15] for entropy variables, [45, 17] for Euler equations using the Roe variable transform
from [50]. Also, formulations of hyperbolic systems with eigenvectors that are independent of
the uncertainty remain hyperbolic [57]. However, for classical fluid-dynamic equations, like the
shallow water equations, eigenvectors are stochastic.

Even if the Jacobian has real eigenvalues, which implies unique classical solutions, the system
may not be well-posed in the sense that the solution does not depend on initial conditions in a
stable way. For this property at least a complete set of eigenvectors must exist. Eigenvalues of
most physically motivated hyperbolic systems are separated. Then, a complete set of eigenvectors
exists, which implies wellposedness [53]. This argument, however, cannot be used for stochastic
Galerkin formulations, when eigenvalues are no more separated.

So far, general well-posed solutions can be established for the gPC systems of scalar conser-
vation laws only [8, 23, 48, 31, 44], since the resulting Jacobian is symmetric and hence diago-
nalizable with real eigenvalues and a complete set of eigenvectors. In fact, an entropy-entropy
flux pair exists for these symmetric systems [21]. This wellposedness result can be extended to
hyperbolic systems that do not have necessarily a symmetric Jacobian, but admit an entropy.
Then, the system is symmetrizable and hence well-posed [22, 7, 21].

Loss of entropies and hyperbolicity, however, is rather an exception than the rule. It is fre-
quently related to the loss of symmetries [12]. In particular for a stochastic Galerkin formulation
of shallow water equations, the loss of hyperbolicity and hence the loss of all entropy-entropy
flux pairs is proven in [15, Prop. 2]. Also stochastic Galerkin formulations for isothermal Eu-
ler equations are in general not hyperbolic [17, 30]. Fortunately, there is flexibility to truncate
and project the series expansion. With the introduction of Roe variables [50, 45] the Galerkin
projections preserve symmetries in the flux function. Another open problem [40, Sec. 10.2]
is the representation of positive quantities, which may occur with stochastic Galerkin square
roots [13, 17]. This issue arises also for splitting and semi-intrusive methods and may lead to
the loss of hyperbolicity [10, 9, 51].

In general, entropy solutions exist on finite time domains only. For deterministic Euler and
shallow water equations, which have distinct eigenvalues and genuinely nonlinear or linearly
degenerate characteristic fields, an entropy solution exists for all t ∈ R+

0 as long as the total
variation of initial values is sufficently small [2, Th. 7.1]. Although the assumption of genuine
nonlinearity can be weakend [38, 39, 2], the eigenvalues of stochastic Galerkin formulations may
coincide and the total variation of initial values may be not sufficiently small. Therefore, we
expect that weak solutions exist in finite time only and we study the following setting:
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A weak formulation on a bounded time domain [0, T ) is considered, when an entropy solution
exists in the weak sense. If additionally a classical solution exists it should be well-posed also
in the weak sense. Furthermore, the solution should coincide in the deterministic case with the
physically relevant entropy solution.

The main contribution of this paper is to introduce the required entropy-entropy flux pair for
a stochastic Galerkin formulation of shallow water equations. First, we present two families
of entropy-entropy flux pairs for Burgers’ equation in Theorem 3.1 that are valid for arbitrary
gPC expansions. We use entropies to define the stochastic Galerkin root uniquely. Namely, the
positive root can be interpreted as the unique minimum of a strictly convex entropy. Then, we
consider a hyperbolic stochastic Galerkin formulation for shallow water equations, which is based
on Roe variables from [50, 45]. The main Theorem 4.3 endows this system with an entropy.

Although only truncated series expansions are considered for numerical purposes, a serious
problem remains the convergence to the solution. Convergence for Burgers’ equation is shown
in [15] using an entropy concept. This ansatz, however, is valid for smooth solutions only.
Convergence of weak solutions remains still an open question [15]. At least for smooth solutions
we answer this question for the presented formulation of shallow water equations by using the
similar entropy framework from [33, 12, 15, 19, 20].

The stabilizing effect of entropies is also seen in the finite domain of the influence of initial
data [12, Th. 4.1.1]. Thus, it is expected that gPC expansions should have bounded support.
Indeed, bounded initial data are assumed for the pointwise entropies of scalar conservation laws
in [42, 55]. For the stochastic Galerkin formulation of Burgers’ equation, there are entropies
for arbitrary gPC expansions with possibly unbounded support. An intuitive explanation would
be a truncation error due to Galerkin projections. For the shallow water equations, however,
our analysis is restricted to a class of gPC expansions with bounded support, including the
Wiener-Haar expansion [41]. These wavelet expansions are motivated by a robust expansion for
solutions that depend on the stochastic input in a non-smooth way and are used for stochastic
multiresolution as well as adaptivity in the stochastic space [1, 3, 32, 4, 47, 56].

We illustrate numerically theoretical results for the Wiener-Haar expansion. The results show
the hyperbolic character of the system, the smoothness properties of truncated gPC expansions
and wellposedness, which follows from the decay of entropies. This confirms the use of wavelet-
based gPC expansions in previous works.

2 Cauchy Problem and Weak Solutions

We briefly recall basic results from [12, 36, 35, 2]. A function

y : [0, T )× R→ Rn, (t, x) 7→ y(t, x)

is a weak solution to the Cauchy problem

yt + f(y)x = 0 with y(0, x) = I(x) for x ∈ R (1)

if the map t 7→ y(t, ·) is continuous with values in L1
loc, the initial condition is satisfied for every

C1-function ϕ with compact support contained in the open strip (0, T ) × R and the solution
satisfies ∫ T

0

∫
R

[
y(t, x)ϕt(t, x) + f

(
y(t, x)

)
ϕx(t, x)

]
dxdt = 0.

Given a strictly convex entropy η with entropy flux µ, a solution is called η-admissible if
the entropy inequality

η(y)t + µ(y)x ≤ 0 (2)
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is satisfied in the distributional sense. For all non-negative testfunctions we have∫ T

0

∫
R

[
η
(
y(t, x)

)
ϕt(t, x) + µ

(
y(t, x)

)
ϕx(t, x)

]
dxdt ≥ 0.

For this homogeneous system the entropy and the entropy flux are smooth functions defined on
a open ball H ⊂ Rn [12] and satisfy the compatibility condition

Dyµ(y) = Dyη(y)Dyf(y). (3)

Similar to [40, 13, 46, 60, 54, 24] we extend the Cauchy problem (1) to have initial conditions
depending on a possibly multidimensional random parameter ξ, which we call similar to [40]
“germ”. We consider the weak formulation∫ T

0

∫
R
E
[(
y(t, x; ξ)ϕt(t, x) + f

(
y(t, x; ξ)

)
ϕx(t, x)

)
φk(ξ)

]
dx dt = 0

for all k = 0, . . . ,K, where the orthogonal polynomials φk form a basis of

L2(Ω,P) :=
{
Z
∣∣∣ Z : Ω→ R measurable, ‖Z‖ <∞

}
with

〈Z1, Z2〉 :=
∫
Z1Z2 dP.

We introduce a generalized polynomial chaos (gPC) as a set of orthogonal subspaces Ŝk ⊂ L2(Ω,P)
with

SK :=
K⊕
k=0
Ŝk → L2(Ω,P) for K →∞.

We refer to an orthogonal basis of SK as a gPC basis {φ(ξ)}Kk=0 with germ ξ ∼ P. We as-
sume y(t, x; ·) ∈ L2(Ω,P) and approximate for any fixed (t, x) the solution by

GK [y](t, x; ξ) :=
K∑
k=0

ŷk(t, x)φk(ξ), ŷk(t, x) :=
〈
y(t, x; ·), φk(·)

〉
‖φk‖2

,

where GK denotes the projection operator of the stochastic process y(t, x; ξ) onto the gPC basis
of degree K ∈ N0. Due to the Cameron-Martin Theorem [5] the expansion converges in the
sense

∥∥GK [y](t, x; ·)− y(t, x; ·)
∥∥→ 0 for K →∞. We will assume normed basis polynomials

with ‖φk‖ = 1. Then, the Galerkin product is defined as

Ĝk[y, z](t, x; ξ) :=
K∑
k=0

(ŷ ∗ ẑ)k(t, x)φk(ξ) with

(ŷ ∗ ẑ)k(t, x) :=
K∑

i,j=0
ŷi(t, x)ẑj(t, x)

〈
φiφj , φk

〉
.

The third and fourth moment are approximated by

Ĝ(`)
k [y](t, x; ξ) :=

K∑
k=0

ŷ`∗k (t, x)φk(ξ) with

ŷ3∗ :=
(
(ŷ ∗ ŷ) ∗ ŷ

)
and ŷ4∗ :=

(
(ŷ ∗ ŷ) ∗ (ŷ ∗ ŷ)

)
.

(4)
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Similar to [45, 46], we express these terms with the symmetric matrix

P(ŷ) :=
K∑
`=0

ŷ`M` with M` :=
(
〈φ`, φiφj〉

)
i,j=0,...,K

such that ŷ ∗ ẑ. The Galerkin product is symmetric, but not associative [13, 54], i.e. (ŷ ∗ ẑ) ∗ q̂ 6= ŷ ∗ (ẑ ∗ q̂).
An intuitive explanation would be the truncation errors that arise from disregarding the com-
ponents of the product (yz) which are orthogonal to SK . Therefore, the definitions (4) are
rather arbitrary and we refer the interested reader to [40, 13], where other approximations of the
moments are discussed. In particular, the choice (4) allows an extension of desired properties,
e.g. hyperbolicity, to the stochastic case.

3 Intrusive Formulation of Burgers’ Equation

We consider the stochastic Galerkin formulation of the Burgers’ equation. The stochastic
Galerkin method applied to the flux function f(α) := α2

2 leads to

α̂t + f̂(α̂)x = 0 for f̂(α̂) := α̂ ∗ α̂
2 . (5)

The Jacobian of the projected flux function is Dα̂f̂(α̂) = P(α̂). Note that there is no restriction
on the gPC expansion and also bases with unbounded support are admitted.

3.1 Entropie and Entropy Flux Pairs
We state two families of entropy-entropy flux pairs for the stochastic Galerkin formulation of
Burgers’ equation (5).

Theorem 3.1 (Burgers’ Equation). Define the entropy-entropy flux pairs

(
η1(α̂), µ1(α̂)

)
=
(
‖α̂‖22

2 ,
α̂TP(α̂)α̂

3

)
,

(
η2(α̂), µ2(α̂)

)
=
(
α̂TP(α̂)α̂

3 ,
α̂TP2(α̂)α̂

4

)
.

The pair (η1, µ1) is a strictly convex entropy-entropy flux pair of system (5) for all α̂ ∈ RK+1.
The pair (η2, µ2) is a strictly convex entropy-entropy flux pair on the convex set

H+ :=
{
α̂ ∈ RK+1

∣∣∣ P(α̂) is strictly positive definite
}
.

Furthermore, shifted entropy-entropy flux pairs are given by(
ηi(α̂; ĥ), µi(α̂; ĥ)

)
=
(
ηi(α̂), µi(α̂)

)
+
(
ĥTα̂, ĥT α̂ ∗ α̂

2

)
for all ĥ ∈ RK+1.

Proof. The set H+ is convex, since for arbitrary α̂, β̂ ∈ H+ the matrix

P
(
λα̂+ (1− λ)β̂

)
=

K∑
k=0

(
λα̂+ (1− λ)β̂

)
k
Mk = λP(α̂) + (1− λ)P(β̂)
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is strictly positive definite for all λ ∈ [0, 1] as a sum of strictly positive definite matrices. The
gradients and the Hessian of the auxiliary functions

ϕ0(α̂) := 1
2 α̂

Tα̂, ϕ1(α̂) := 1
3 α̂

TP(α̂)α̂, ϕ2(α̂) := 1
4 α̂

TP2(α̂)α̂

are ∇α̂ϕ0(α̂) = α̂, ∇2
α̂ϕ0(α̂) = 1, ∇α̂ϕ1(α̂) = α̂2∗, ∇2

α̂ϕ1(α̂) = 2P(α̂) and∇α̂ϕ2(α̂) = P2(α̂)α̂.
This follows from the symmetry of the Galerkin product and

3∇α̂ϕ1(α̂) = ∇α̃
[ K∑
k=0

α̃kα̂
TMkα̂

]∣∣∣∣
α̃=α̂

+
K∑
k=0

α̂k∇α̂
[
α̂TMkα̂

]
=
(
α̂TMkα̂

)
k=0,...,K

+ 2
K∑
k=0

α̂kMkα̂

=
(
α̂2∗
k

)
k=0,...,K

+ 2P(α̂)α̂

= 3α̂ ∗ α̂,

∇2
α̂ϕ1(α̂) = Dα̂

[
∇α̂ϕ1(α̂)

]
= 2P(α̂),

4∇α̂ϕ2(α̂) = 2∇α̂
[
P(α̂)α̂

]
P(α̂)α̂ = 4α̂3∗.

The Hessian∇2
α̂ϕ0(α̂) = 1 is strictly positive definite with all eigenvalues being one independently

of the solution α̂. Therefore, the choice η0(α̂) := ϕ0(α̂) is an entropy for all α̂ ∈ RK+1. The
corresponding entropy flux µ1(α̂) = ϕ1(α̂) satisfies

Dα̂µ1(α̂) = Dα̂ϕ1(α̂) = α̂TP(α̂) = Dα̂η1(α̂)Dα̂f(α̂). (6)

The Hessian ∇2
α̂ϕ1(α̂) = P(α̂) is strictly positive definite for all α̂ ∈ H+ and hence, η2(α̂) is an

entropy on the restricted set H+. The corresponding entropy flux µ2(α̂) = ϕ2(α̂) satisfies

Dα̂µ2(α̂) = Dα̂ϕ2(α̂) = α̂TP2(α̂) = Dα̂η2(α̂)Dα̂f̂(α̂). (7)

Since the Hessian matrices of the shifts ĥTα̂ are zero, there is no influence on the convexity of
entropies. We conclude with equations (6) and (7)

Dα̂µi(α̂; ĥ) = Dα̂ηi(α̂)Dα̂f̂(α̂) + ĥTP(α̂) = Dα̂ηi(α̂; ĥ)Dα̂f̂(α̂).

In fact, the choice η1(α̂) = ‖α̂‖22 gives an entropy for general systems with symmetric Jaco-
bian [21, Ex. 3.2] and it is already used in [15].

3.2 Stochastic Galerkin Square Root
The Galerkin square root of gPC modes ĥ ∈ RK+1 is introduced e.g. in [40] as the solution of
the nonlinear system α̂ ∗ α̂ = ĥ. It is already remarked in [13] that the representation of positive
physical quantities is difficult. To illustrate the point, we consider an expansion with Hermite
polynomials for K = 1. The solutions read

α̂+ := 1
2

(√
ĥ0 + ĥ1 +

√
ĥ0 − ĥ1√

ĥ0 + ĥ1 −
√
ĥ0 − ĥ1

)
, α̂− := −1

2

(√
ĥ0 + ĥ1 +

√
ĥ0 − ĥ1√

ĥ0 + ĥ1 −
√
ĥ0 − ĥ1

)
,

α̃(1) := 1
2

(√
ĥ0 + ĥ1 −

√
ĥ0 − ĥ1√

ĥ0 + ĥ1 +
√
ĥ0 − ĥ1

)
, α̃(2) := −1

2

(√
ĥ0 + ĥ1 −

√
ĥ0 − ĥ1√

ĥ0 + ĥ1 +
√
ĥ0 − ĥ1

)
.
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We observe that the solution of the nonlinear system α̂ ∗ α̂ = ĥ may neither be unique nor real,
which is similar to the deterministic case. Therefore, a more precise characterization is necessary,
which is based on the following observations:

(i) Let a deterministic state with ĥ0 > 0, ĥ1 = 0 be given. The solutions α̃(1) and α̃(2) yield
stochastic expansions, which are not meaningful. The solution α̂+ gives the positive and α̂−
the negative root.

(ii) The matrix P(α̂+) is positive definite and P(α̂−) is negative definite. Both solutions are
related by P(α̂−) = −P(α̂+). On the other hand, the solutions α̃(1), α̃(2) yield indefinite
matrices.

(iii) If the variance ĥ2
1 is sufficiently large, there is no real valued solution.

Corollary 1 generalizes these observations for arbitrary expansions by identifying the positive
square root as the unique minimum of the entropy η2(·; ĥ) on the set H+. Figure 3.2 shows the
sets H± in terms of α̂, where H− denotes states of a negative definite matrix P(α̂). For given ĥ
the entropy η2(·; ĥ) and contours are plotted in the third dimension. The local extrema, which
are projected on the (α̂0, α̂1)-plain, are the square roots. Contours illustrate that extrema are
unique on the sets H± only. Note that we do not claim that a solution α̂ ∈ H+ with α̂ ∗ α̂ = ĥ
exists. Corollary 1 is only a uniqueness result and we refer the interested reader to [17, Sec. 4],
where existence has been discussed.

Fig. 1: Contour plot of the entropy η2(α̂;−ĥ). Solutions α̂+ = (0.8,−0.5)T and
α̂− = (−0.8, 0.5)T for ĥ = (0.89,−0.8)T.

Corollary 1 (Stochastic Galerkin Square Root). Let a state ĥ ∈ R+ × RK be given such that
there exists α̂ ∈ H+ satisfying α̂ ∗ α̂ = ĥ. Then, the minimum

α̂+ = argmin
α̂∈H+

{
η2(α̂;−ĥ)

}
of the entropy η2(α̂;−ĥ) = α̂TP(α̂)α̂

3 − ĥTα̂

is unique and a solution of stochastic Galerkin square roots, i.e. α̂+ ∈
{
α̂ ∈ RK+1

∣∣ α̂ ∗ α̂ = ĥ
}
.
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Proof. Due to Theorem 3.1 the entropy η2(α̂;−ĥ) is a strictly convex function on H+. Therefore,
it has a unique minimum that is attained for

0 = ∇α̂η2(α̂;−ĥ) = α̂+ ∗ α̂+ − ĥ ⇔ α̂+ ∗ α̂+ = ĥ.

There is a numerical implication of Corollary 1. The initial guess of numerical solvers should
be in the set H+. Flat level sets close to extrema suggest that gradient free methods should be
used to find roots numerically. Namely, the minimum of η2(α̂; ĥ) may be determined without
the roots of the gradient ∇α̂η2(α̂; ĥ).

4 Shallow Water Equations

We consider the shallow water equations

∂

∂t

(
h(t, x)
q(t, x)

)
+ ∂

∂x

(
q(t, x)

q2(t,x)
h(t,x) + 1

2gh
2(t, x)

)
= 0 (C)

with the conserved quantities height, momentum y := (h, q)T and the gravitational constant g > 0.
For smooth solutions an equivalent formulation is

yt + Dyf(y) yx = 0, Dyf(y) =
(

0 1
gh− u2(y) 2u(y)

)
, u(y) := q

h
.

The eigenvalues of the Jacobian read λ±(y) = u(y)±
√
gh with the velocity u(y) as auxiliary

variable. We use the idea of Roe variables [50, 35, 45].
Definition 4.1 (Roe Variables). With velocity u(y) := q/h as auxiliary variable the Roe variables
are defined as ω :=

(
α, β

)
:=
(√
h,
√
hu(y)

)
. The gPC modes are denoted as ω̂ := (α̂, β̂). The

mapping between Roe and conserved variables is

Y : R+ × R → R+ × R, ω̂ 7→
(
α2

αβ

)
= y for K = 0,

Ŷ : H+ × RK+1 →
(
R+ × RK

)
× RK+1, ω̂ 7→

(
α̂ ∗ α̂
α̂ ∗ β̂

)
= ŷ for K ∈ N.

Note that the expected water height ĥ0 = (α̂ ∗ α̂)0 = ‖α̂‖22 > 0 is positive and that mappings are
bijective due to Corollary 1. We parameterize the shallow water equations by the germ ξ to
obtain the equivalent formulations:

∂

∂t

(
h(t, x; ξ)
q(t, x; ξ)

)
+ ∂

∂x

(
q(t, x; ξ)

q2(t,x;ξ)
h(t,x;ξ) + 1

2gh
2(t, x; ξ)

)
= 0 P-a.s. (C(ξ))

∂

∂t

(
α2(t, x; ξ)

(αβ)(t, x; ξ)

)
+ ∂

∂x

(
(αβ)(t, x; ξ)

β2(t, x; ξ) + 1
2gα

4(t, x; ξ)

)
= 0 P-a.s. (R(ξ))

We substitute the truncated gPC expansions into the systems (C(ξ)) and (R(ξ)) to obtain

∂

∂t

(
GK [h](t, x; ξ)
GK [q](t, x; ξ)

)
+ ∂

∂x

(
GK [q](t, x; ξ)

G2
K [q](t,x;ξ)
GK [h](t,x;ξ) + 1

2gG
2
K [h](t, x; ξ)

)) = 0, (CK(ξ))

∂

∂t

(
ĜK [α, α](t, x; ξ)
ĜK [α, β](t, x; ξ)

)
+ ∂

∂x

(
ĜK [α, β](t, x; ξ)

ĜK [β, β](t, x; ξ) + 1
2gĜ

(4)
K [α](t, x; ξ)

)
= 0. (RK(ξ))
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The truncated systems (CK(ξ)) and (RK(ξ)) are no more equivalent and should be solved for the
gPC modes in L2(Ω,P)-sense. The solution, however, does in general not exist due to truncation
errors. Indeed, it is shown in [15] that equation (CK(ξ)) leads to a non-hyperbolic system due
to the term q2

/h. Similarily for isothermal Euler equations, a stochastic Galerkin method that
is only based on conserved variables does not preserve hyperbolicity [17, 30]. This issue can be
circumvented by introducing Roe variables, which preserve the symmetry of the term β2. The
gPC modes of the formulation (RK(ξ)) are described by the system(

α̂ ∗ α̂
α̂ ∗ β̂

)
t

+
(

α̂ ∗ β̂
β̂ ∗ β̂ + 1

2g (α̂ ∗ α̂) ∗ (α̂ ∗ α̂)

)
x

= 0, (R̂K)

which we will endow with an entropy. We reformulate it in terms of the conserved vari-
ables ŷ = Ŷ(ω̂) to obtain the conservative formulation ŷt + f̂(ŷ) = 0 with flux function

f̂(ŷ) := f̂1(ŷ) + f̂2(ŷ) for f̂1(ŷ) :=
(

q̂
1
2g ĥ ∗ ĥ

)
and f̂2(ŷ) := f̃2

(
Ŷ−1(ŷ)

)
:=
(

O
β̂ ∗ β̂

)
. (8)

Note that the first part f1(ŷ) of the flux in equation (8) is expressed in terms of conserved
variables alone, which motivates the choice of the 4-th moment (4). The proof of the following
Lemma is moved to the appendix.
Lemma 4.2. Assume there is an eigenvalue decomposition P(α̂) = V DP(α̂)V T with constant,
orthonormal eigenvectors. Define the variables û(ω̂) := P−1(α̂)β̂, û2(ω̂) := P2

1 (ω̂)β̂ and the ma-
trices P1(ω̂) := P(β̂)P−1(α̂), P2(ω̂) := P(β̂)P−2(α̂). Then, it holds

ûT(ω̂)P(ĥ) = (α̂ ∗ β̂)T, (9)

Dω̂
[
β̂TP1(ω̂)β̂

]
=
(
− β̂TP2

1 (ω̂), 3β̂TP1(ω̂)
)
, (10)

Dω̂
[
(α̂ ∗ α̂)T(α̂ ∗ β̂)

]
=
(

3α̂TP(α̂)P(β̂), α̂TP2(α̂)
)
, (11)

Dα̂
[
û(ω̂)

]
=
(
− P2(ω̂),P−1(α̂)

)
, (12)

Dω̂
[
P2(ω̂)β̂

]
=
(
− 2P1(ω̂)P2(ω̂), 2P2(ω̂)

)
. (13)

Finally, we state an entropy-entropy flux pair for shallow water equations in our main theorem.
Theorem 4.3 (Shallow Water Equations). Assume there is an eigenvalue decomposition with
constant eigenvectors, i.e. P(α̂) = V DP(α̂)V T. Let states in the open, admissible set

H :=
{
ŷ := (ĥ, q̂)T ∈

(
R+ × RK

)
× RK+1

∣∣∣ α̂ ∈ H+ for (α̂, β̂)T = Ŷ−1(ŷ)
}

be given. Then, the Jacobian of the flux function (8) is

Dŷ f̂(ŷ) =
(

O 1

gP(ĥ)− P2
1 (ω̂) 2P1(ω̂)

)
for ω̂ = (α̂, β̂). Its eigenvalues are real and read

σ
{
Dŷ f̂(ŷ)

}
= DP(β̂)D−1

P (α̂)±√gDP(ĥ)D−1
P (α̂).

An entropy-entropy flux pair is (η, µ)(ŷ) :=
(
η1 + η2, µ1 + µ2

)
(ŷ) with

η1(ŷ) := g

2 ‖ĥ‖
2
2 and η2(ŷ) := η̃2

(
Ŷ−1(ŷ)

)
:= 1

2‖β̂‖
2
2,

µ1(ŷ) := g ĥTq̂ and µ2(ŷ) := µ̃2

(
Ŷ−1(ŷ)

)
:= 1

2 β̂
TP1(ω̂)β̂.
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Proof. The Jacobian of the flux function and the Jacobian of the entropy read

Dŷ f̂(ŷ) = Dŷ f̂1(ŷ) + Dω̂ f̃2(ω̂)[Dω̂Ŷ]−1(ω̂)

=
(

O 1

gP(ĥ) O

)
+
(
O O
O 2P(β̂)

)( 1
2P
−1(α̂) O

− 1
2P2(ω̂) P−1(α̂)

)
=
(

O 1

gP(ĥ)− P2
1 (ω̂) 2P1(ω̂)

)
,

Dŷη(ŷ) = Dŷη1(ŷ) + Dω̂ η̃2(ω̂)[Dω̂Ŷ]−1(ω̂) = (gĥT,O) + (O, β̂T)[Dω̂Ŷ]−1(ω̂)

=
(
gĥT − 1

2 β̂
TP2(ω̂), β̂TP−1(α̂)

)
.

The compatibility condition (3) is equivalent to

Dŷη(ŷ)Dŷ f̂(ŷ) = Dŷµ(ŷ) = Dω̂
[
µ̃(ω̂)

]
[Dω̂Ŷ]−1(ω̂) for µ̃(ω) := µ

(
Ŷ(ω̂)

)
.

This holds due to Lemma 4.2, which yields(
Dŷη(ŷ)Dŷ f̂(ŷ)

)
Ŷ(ω̂)

=
(
gûT(ω̂)P(ĥ)− ûT(ω̂)P2

1 (ω̂), gĥT + 3
2 β̂

TP2(ω̂)
)
Ŷ(ω̂)

=
(
g(α̂ ∗ β̂)T − ûT(ω̂)P2

1 (ω̂), gĥT + 3
2 β̂

TP2(ω̂)
)
Ŷ(ω̂)

=
(

3g(ĥ ∗ β̂)T − 1
2 β̂

TP2
1 (ω̂), g(ĥ ∗ α̂)T + 3

2 β̂
TP1(ω̂)

)
= Dω̂

[
µ̃(ω̂)

]
.

We define the auxiliary variables ∇̃η(ω̂) := ∇ŷη
(
Ŷ(ω̂)

)
and D1(ω̂) := DP(β̂)D−1

P (α̂). Using
Lemma 4.2 we obtain the eigenvalue decomposition of the Hessian

∇2
ŷη
(
Ŷ(ŷ)

)
= Dω̂∇̃η(ω̂)[Dω̂Ŷ]−1(ω̂) =

(
g1 + P2

2 (ω̂) −P1(ω̂)P−2(α̂)
−P1(ω̂)P−2(α̂) P−2(α̂)

)
= T (α̂)Dη(ω̂)T−1(α̂) with

T (α̂) :=
(
P−1(α̂)V

P−1(α̂)V

)
, Dη(ω̂) :=

(
gD2
P(α̂) +D2

1(ω̂) −D1(ω̂)
−D1(ω̂) 1

)
.

Due to the block diagonal structure of the similar and symmetric matrix Dη(ω̂) we calculate the
real eigenvalues componentwise as

σ
{
Dη(ω̂)

}
= 1

2

(
gD2
P(α̂) +D2

1(ω̂) + 1
)

± 1
2

[(
gD2
P(α̂) +D2

1(ω̂) + 1
)2
− 4gD2

P(α̂)
]1/2

.

They are strictly positive if and only if
∣∣DP(α̂)

∣∣ 6= 0.

Note that the entropy-entropy flux pair reduces to the physical entropy in the deterministic case,
see e.g. [12] for

η0(y) := 1
2
q2

h
+ g

2h
2, µ0(y) := 1

2
q3

h2 + gqh. (14)
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Remark 1. Isothermal Euler equations describe the density of gas ρ and read

∂

∂t

(
ρ(t, x)
q(t, x)

)
+ ∂

∂x

(
q(t, x)

q2(t,x)
ρ(t,x) + a2ρ(t, x)

)
= 0

with the speed of sound a > 0. An intrusive formulation is

∂

∂t

(
ρ̂(t, x)
q̂(t, x)

)
+ ∂

∂x

(
q̂(t, x)

β̂(t, x) ∗ β̂(t, x) + a2ρ̂(t, x)

)
= 0. (15)

It has been shown in [17] for arbitrary gPC bases that the eigenvalues of system (15) are real and
there is a full set of eigenvectors provided that ρ̂ ∈ H+ holds. We cannot show symmetric hyper-
bolicity for arbitrary bases and we cannot state an entropy. At least for bases with eigenvalue
decompositions of the form P(α̂) = V DP(α̂)V T, however, the system remains symmetrizable:
We define the matrix

H(ŷ) := H̃
(
Ŷ−1[ŷ]

)
:=
(
P2(β̂)P−4(α̂) + a2P−2(α̂) −P(β̂)P−3(α̂)

−P(β̂)P−3(α̂) P−2(α̂)

)
,

which reduces in the deterministic case for the entropy η(y) = q2
/2ρ + a2ρ ln(ρ) to the Hes-

sian ∇2
yη(y) = H(y). Provided that α̂ ∈ H+ holds, the matrix H(ŷ) is strictly positive definite

and the product H(ŷ)Dŷ f̂(ŷ) is symmetric.

The assumption of constant eigenvectors is borrowed from [45]. It holds for the Wiener-Haar
basis [45, Appendix B]. Then, corresponding eigenvectors are related to the Haar matrix [26].
In [45] this property is also shown for piecewise linear multi-wavelets with sufficiently small
number of gPC truncation K.

5 Energy Estimates

We summarize our findings and state the notion of hyperbolicity in more detail. Similar to [25, 21]
we call a system

weakly hyperbolic if eigenvalues of the Jacobian are real,
strongly hyperbolic if eigenvalues are real and there exists a complete set

of eigenvectors,
strictly hyperbolic if eigenvalues of the Jacobian are real and distinct,

symmetric hyperbolic if a symmetric, strictly positive definite matrix H(ŷ)
exists so that the product H(ŷ)Dŷ f̂(ŷ) is symmetric.

Note that weakly hyperbolic systems are not necessarily stable [25]. All systems in this paper
are at least strongly hyperbolic and hence stable. As illustrated in Figure 2, symmetric and
strictly hyperbolic systems form important classes, which will be elaborated below. Deterministic
Burgers’, Euler and shallow water equations are both symmetric and strictly hyperbolic. In
general, stochastic Galerkin formulations fail to have distinct eigenvalues. As an example one may
consider the state α̂ := (α̂0, 0, . . . , 0), where the Jacobian of Burgers’ equation reads P(α̂) = α̂01.
The presented formulations, however, remain symmetric hyperbolic, since they are endowed with
entropy-entropy flux pairs [7, 22]. This allows energy estimates, which do not hold for general
strongly hyperbolic systems [25].
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strongly hyperbolic systems
real eigenvalues, independent eigenvectors

symmetric hyperbolicstrictly
hyperbolic deterministic

Burgers’ and
Euler equations

systems of gPC modes
for Burgers’ and

shallow water equations

arbitrary bases for
for isothermal flow

distinct
eigenvalues

Fig. 2: Summary of considered hyperbolic systems

5.1 Wellposedness of Cauchy Problems
We state important results on stable hyperbolic systems endowed with entropies [12, Th. 5.3.1].

Corollary 2 (Wellposedness of Classical Solutions). Let ŷ∗(t, x) ∈ Hc denote a Lipschitz con-
tinuous classical solution of the Cauchy problem (1) on a finite time domain [0, T ) with initial
data Î∗(x) which takes values in a convex, compact subset Hc ⊂ H. Let ŷ(t, x) ∈ Hc be any
η-admissible weak solution with initial values Î(x). Then, we obtain:

(i) The classical solution exists up to some point in time T > 0.

(ii) The classical solution ŷ∗ with initial values Î∗ is the unique η-admissible weak solution.

(iii) For any r > 0, t ∈ [0, T ), there are positive constants a, b, s ≥ 0 such that∫
‖x‖<r

∥∥ŷ∗(t, x)− ŷ(t, x)
∥∥ dx ≤ aebt ∫

‖x‖<r+st

∥∥Î∗(x)− Î(x)
∥∥dx.

The constant b depends on the Lipschitz continuity of the classical solution ŷ∗.

Note that general classical solutions of strongly hyperbolic systems are not well-posed in the
weak sense, which explains the classes in Figure 2. Another reason is a stronger stability result
for initial boundary value problems (IBVP) on a bounded space interval Ωb ⊂ R

ŷt + f̂(ŷ)x = 0 on (0, T )× Ωb, ŷ(0, x) = Î(x) on Ωb, ŷ(t, x) = B̂(t, x) on [0, T ]× ∂Ωb

with energy estimates of the form∫
Ωb

∥∥ŷ(t, x)
∥∥2 dx+

∫ t

0

∫
∂Ωb

∥∥ŷ(s, x)
∥∥2 dxds

≤ c(t)
(∫

Ωb

∥∥Î(x)
∥∥2 dx+

∫ t

0

∫
∂Ωb

∥∥B̂(s, x)
∥∥2 dx ds

)
.
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Then, the solution is bounded by initial data plus the growth due to boundary data [25]. Es-
timates are derived in [23] for the advection equation and in [44] for Burgers’ equation un-
der the assumption of compatible boundary conditions. We elaborate this point for subcriti-
cal water flows: Gravitational forces dominate the relatively slow velocity and eigenvalues sat-
isfy λ−(y) < 0 < λ+(y), i.e.

√
gh > |q/ρ|. As stochastic analogue, we assume
√
g GK [h] >

∣∣GK [β]
∣∣ P-a.s. (16)

We obtain with [59, Th. 2.1] the eigenvalue estimate
√
g GK [h] >

∣∣GK [β]
∣∣ P-a.s ⇔ GK [√g h± β] > 0 P-a.s ⇒ √

gDP(ĥ)±DP(β̂) > 0.

Thus, the inequality
∣∣DP(β̂)D−1

P (α̂)
∣∣ < √gDP(ĥ)D−1

P (α̂) is satisfied and due the eigendecompo-
sition in Theorem 4.3 at each boundary K + 1 conditions must be imposed.

5.2 Error Estimates for Truncated Polynomial Chaos Expansions
We define the residuum R(ŷ) := ŷt + f̂(ŷ)x and we assume that the infinite gPC expansion
with modes ŷ∗k, k ∈ N0 solves the underlying system, i.e. R(ŷ∗) = 0. For the orthogonal pro-
jection ŷ ∈ `2 we have

∥∥R(ŷ)
∥∥→ 0 for K → 0. However, it is not clear if the solution itself

converges against the exact solution. Similarly to [12, 15, 20] we discuss this question for smooth
solutions and introduce the relative entropy and the relative entropy flux as

η(ŷ∗|ŷ) := η(ŷ∗) − η(ŷ) −Dŷη(ŷ)
(
ŷ∗ − ŷ

)
,

µ(ŷ∗|ŷ) := µ(ŷ∗)− µ(ŷ)−Dŷη(ŷ)
(
f(ŷ∗)− f(ŷ)

)
.

Then, for general systems that are endowed with an entropy the following Lemma is proven in
the appendix. It is related to Kruzhkov’s entropy framework [33] and is similar to [12, Th. 5.2.1],
[19, Lemma 2.7], [20, Th. 3.8].

Lemma 5.1. Assume the approximation ŷ is Lipschitz continuous in space x ∈ R. Then, the
following inequality holds:∫

R
η
(
ŷ∗(t, x)

∣∣∣ŷ(t, x)
)
dx ≤

∫
R
η
(
Î∗(x)

∣∣∣Î(x)
)
dx

−
∫ t

0

∫
R
RT
(
ŷ(s, x)

)
∇2
ŷη
(
ŷ(s, x)

)(
ŷ∗(s, x)− ŷ(s, x)

)
+ ŷT

x (s, x)∇2
ŷη
(
ŷ(s, x)

)[
Dŷ f̂

(
ŷ(s, x)

)(
ŷ∗(s, x)− ŷ(s, x)

)
−
(
f̂
(
ŷ∗(s, x)

)
− f̂

(
ŷ(s, x)

))]
dxds

The inner product 〈ŷ∗, ŷ〉∇2 :=
〈
ŷ∗,∇2

ŷη(ŷ)ŷ
〉
is well-defined for strictly convex entropies. Second-

order Taylor approximations of the scalar entropy and the vector valued flux function yield the
expressions

η(ŷ∗|ŷ) = 1
2‖ŷ

∗ − ŷ‖2∇2 +O
(
‖ŷ∗ − ŷ‖22

)
,∥∥∥Dŷ f̂(ŷ)(ŷ∗ − ŷ)−

(
f̂(ŷ∗)− f̂(ŷ)

)∥∥∥ ≤ cf̂ (ŷ)
2 ‖ŷ∗ − ŷ‖2∇2 ,
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where cf̂ (ŷ) depends only on the flux function and on the approximated states. With this second
order approximation, Lemma 5.1, Cauchy-Schwarz and Young’s inequality for products we obtain∫

‖ŷ∗ − ŷ‖2∇2 dx−
∫
‖Î∗ − Î‖2∇2 dx

≤ 2
∫ T

0

∫
R

∣∣∣〈ŷ∗ − ŷ,R(ŷ)
〉
∇2

∣∣∣+
∣∣∣〈Dŷ f̂(ŷ)(ŷ∗ − ŷ)−

(
f̂(ŷ∗)− f̂(ŷ)

)
, ŷx

〉
∇2

∣∣∣ dx ds
≤
∫ T

0

∫
R
‖ŷ∗ − ŷ‖2∇2 +

∥∥R(ŷ)
∥∥2
∇2 + ‖ŷx‖∇2cf̂ (ŷ)‖ŷ∗ − ŷ‖2∇2 dxds

≤
∫ T

0
c(s; ŷ)

∫
‖ŷ∗ − ŷ‖2∇2 dx+

∫ T

0

∫
R

∥∥R(ŷ)
∥∥2
∇2 dx ds

with the constant c(s; ŷ) := max
x∈R

{
1 +

∥∥ŷx(s, x)
∥∥
∇2cf̂

(
ŷ(s, x)

)}
.

Gronwall’s inequality yields the a posteriori estimate∫
R

∥∥∥ŷ∗(t, x)− ŷ(t, x)
∥∥∥2

∇2
dx ≤

[∫
R

∥∥∥Î∗(x)− Î(x)
∥∥∥2

∇2
dx

+
∫
R

∥∥∥R(ŷ(s, x)
)∥∥∥2

∇2
dxds

]
exp
(∫ t

0
c(s; ŷ)dx

)
.

(17)

Once an estimate of the form (17), without second order approximation, is derived, the con-
vergence of the gPC expansion in the PDE is inherited to the solution – at least for smooth
solutions. We will derive an estimate for shallow water equations. Similar estimates for Burgers’
equation are given in [15, 20].

Theorem 5.2 (Convergence of Shallow Water Equations). Define the auxiliary functions

V̂
(
ω̂(t, x)

)
:= P−1(α̂(t, x)

) ∂
∂x
β̂(t, x)− P−2(α̂(t, x)

)
P
(
β̂(t, x)

) ∂
∂x
α̂(t, x),

P0
(
α̂∗(t, x), α̂(t, x)

)
:= P−1(α̂(t, x)

)
P
(
α̂∗(t, x)

)
and assume the approximation ŷ is Lipschitz continuous. For states ŷ∗, ŷ ∈ Hc ⊂ H there is a
constant c ∈ [1,∞) such that the spectral radius σmax

{
P0(α̂∗, α̂)

}
<
√
c is bounded and there is

the estimate∫
R
η
(
ŷ∗(t, x)

∣∣∣ŷ(t, x)
)
dx ≤

[ ∫
R
η
(
Î∗(x)

∣∣∣Î(x)
)
dx

+ c

∫ t

0

∫
R

∥∥∥R(ŷ(s, x)
)∥∥∥2

2
dxds

]
exp
(∫ t

0

1
2 + max

x∈R

{∥∥∥P(V̂ (ω̂(s, x)
))∥∥∥

2

}
ds
)
.

Proof. Due to the equality

Dŷη(ŷ)(ŷ∗ − ŷ) =
[
gĥ− 1

2P2(ω̂)β̂,P−1(α̂)β̂
]T

(ŷ∗ − ŷ)

= gĥT(ĥ∗ − ĥ)− 1
2‖β̂‖

2
2 −

1
2
∥∥P0(ω̂∗, ω̂)β̂

∥∥2
2 + β̂TP0(ω̂∗, ω̂)β̂∗
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we obtain the relative entropy

η
(
ŷ∗
∣∣ŷ) =

[g
2‖ĥ

∗‖22 + 1
2‖β̂

∗‖22
]

−
[g

2‖ĥ‖
2
2 + 1

2‖β̂‖
2
2

]
−
[
gĥ− 1

2P2(ω̂)β̂,P−1(α̂)β̂
]
(ŷ∗ − ŷ)

= g

2‖ĥ
∗ − ĥ‖22 + 1

2
∥∥β̂∗ − P0(ω̂∗, ω̂)β̂

∥∥2
2.

By definition we have V̂ (ω̂) = (O,1)∇2
ŷη(ŷ)ŷx and we calculate∣∣∣∣∣(Dŷ f̂(ŷ)(ŷ∗ − ŷ)−
(
f̂(ŷ∗)− f̂(ŷ)

))T
∇2
ŷη(ŷ)ŷx

∣∣∣∣∣
=

∣∣∣∣∣
(

O
g
2
(
ĥ∗ − ĥ

)2∗ +
(
β̂∗ − P0(ω̂∗, ω̂)β̂

)2∗)T

∇2
ŷη(ŷ)ŷx

∣∣∣∣∣
=

∣∣∣∣∣(g2(ĥ∗ − ĥ)2∗ +
(
β̂∗ − P0(ω̂∗, ω̂)β̂

)2∗)T
V̂ (ω̂)

∣∣∣∣∣
≤
∣∣∣∣g2(ĥ∗ − ĥ)TP

(
V̂ (ω̂)

)(
ĥ∗ − ĥ

)∣∣∣∣
+
∣∣∣∣(β̂∗ − P0(ω̂∗, ω̂)β̂

)TP
(
V̂ (ω̂)

)(
β̂∗ − P0(ω̂∗, ω̂)β̂

)∣∣∣∣
≤ 2

∥∥∥P(V̂ (ω̂)
)∥∥∥

2
η(ŷ∗|ŷ). (18)

For states ŷ∗, ŷ ∈ Hc and α̂∗, α̂ ∈ H+ the constant c := max
{

1, c21
}
∈ [1,∞) with

c1 := max
t∈[0,T ],
x∈R

{
σ−1

min
{
P
(
α̂(t, x)

)}
σmax

{
P
(
α̂∗(t, x)

)}}
≥ σmax

{
P0
(
α̂∗(t, x), α̂(t, x)

)}
.

is bounded. Then, we obtain the estimate∥∥ŷ∗ − ŷ∥∥2
∇2 =

(
ĥ∗ − ĥ
q̂∗ − q̂

)T(
g(ĥ∗ − ĥ)− P−2(α̂)P0(ω̂∗, ω̂)P(β̂)

[
β̂∗ − P0(ω̂∗, ω̂)β̂

]
P−2(α̂)P(α̂∗)

[
β̂∗ − P0(ω̂∗, ω̂)β̂

] )
= g‖ĥ∗ − ĥ‖22 +

[
β̂∗ − P0(ω̂∗, ω̂)β̂

]TP2
0 (ω̂∗, ω̂)

[
β̂∗ − P0(ω̂∗, ω̂)β̂

]
≤ g‖ĥ∗ − ĥ‖22 + c21

∥∥β̂∗ − P0(ω̂∗, ω̂)β̂
∥∥2

2

≤ 2 max{1, c21}η(ŷ∗|ŷ). (19)

Estimate (19), Cauchy-Schwarz and Young’s inequality for products imply∣∣∣〈R(ŷ), ŷ∗ − ŷ
〉
∇2

∣∣∣ ≤ ∥∥R(ŷ)
∥∥
∇2

∥∥ŷ∗ − ŷ∥∥∇2 ≤
∥∥R(ŷ)

∥∥
∇2

√
2 max{1, c1}η(ŷ∗|ŷ)1/2

≤ max{1, c21}
2

∥∥R(ŷ)
∥∥2
∇2 + η(ŷ∗|ŷ). (20)
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Lemma 5.1 with the estimates (18) and (20) yield∫
R
η(ŷ∗

∣∣ŷ)dx

≤
∫
R
η(Î∗|Î)dx+

∫ t

0

∫
R

c

2
∥∥R(ŷ)

∥∥2
∇2 + η(ŷ∗|ŷ) + 2

∥∥∥P(V̂ (ω̂)
)∥∥∥

2
η(ŷ∗|ŷ)dxds

≤
∫
R
η(Î∗|Î)dx+

∫ T

0

∫
R

c

2
∥∥R(ŷ)

∥∥2
∇2 dx ds

+
∫ T

0

(
1 + 2 max

x∈R

{∥∥∥P(V̂ (ω̂)
)∥∥∥

2

})∫
R
η(ŷ∗|ŷ)dxds.

The claim follows from Gronwall’s inequality.

The presented estimate shows that the convergence of the residuum is inherited to the solution
as long as the solution remains smooth and η-admissible. In general, this holds local in time
only, since we do not guarantee that the solution is admissible on unbounded time domains. This
is an expected result, since normally also the solutions of deterministic hyperbolic systems cease
to exist [2].

6 Numerical Illustration of the Theoretical Results

First, we show the solutions and the entropies for truncated Wiener-Haar expansions. In partic-
ular, we highlight their smoothness properties and state statistics of interest. Then, we illustrate
the decay of entropies, which mimics the stability of the system.

To this end, an interval [0, xend] is divided into N cells by a space discretization ∆x > 0 with
∆xN = xend. The centers are xj :=

(
j + 1

2
)
∆x and the edges are xj+1/2 := j∆x for j = 0, . . . , N .

The evolution of cell averages are desribed by the ordinary differential equation

d
dt ȳj(t) = − 1

∆x

[
f̂
(
ŷ(t, xj+1/2)

)
− f̂

(
ŷ(t, xj−1/2)

)]
, ȳj(t) := 1

∆x

xj+1/2∫
xj−1/2

ŷ(t, x)dx.

To obtain a semi-discretization in space for an approximation ŷj ≈ ȳj , we use the local Lax-
Friedrichs flux

f̂(ŷ`, ŷr) := 1
2

(
f̂(ŷ`) + f̂(ŷr)

)
− 1

2 max
j=`,r

{
σ
{
Dŷ f̂(ŷ)

∣∣
ŷ=ŷj

}}(
ŷr − ŷ`

)
,

where the spectrum σ
{
Dŷ f̂(ŷ)

}
is given in Theorem 4.3. Furthermore, the central, weighted,

essentially non oscillatory (CWENO) reconstruction from [11] is applied. We denote the re-
construction at the left side of a cell interface by ŷ−j+1/2(t) and at the right side by ŷ+

j+1/2(t),
respectively. Then, a third order reconstruction at the edge xj+1/2 is of the form

CWENO :
[
ŷj−1, ŷj , ŷj+1, ŷj+2

]
7→

[
ŷ−j+1/2, ŷ

+
j+1/2

]
and the resulting semi-discretization reads

d
dt ŷj(t) = − 1

∆x

[
f̂
(
ŷ−j+1/2(t), ŷ+

j+1/2(t)
)
− f̂
(
ŷ−j−1/2(t), ŷ+

j−1/2(t)
)]
.
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It is approximated with a strong stability preserving (SSP) Runge-Kutta method with three
stages [29]. A third order SSP-CWENO scheme is applied with space discretization ∆x = 10−3,
CFL-condition 0.99 and gravitational constant g = 1. All simulations are done with Matlab.
The CWENO reconstruction is borrowed from the authors of [11] and compiled in Matlab as
C-implementation.
We illustrate the analysis using a dam break problem [36]. The solution consists of a rar-
efaction wave, moving with negative speed, and a shock wave with positive speed. Both waves
are connected by an intermediate state ym. For given states ȳ` = (h̄`, q̄`)T and ȳr = (h̄r, q̄r)T

with h̄` ≥ h̄r > 0 and q̄` = q̄r = 0, the dam break problem with initial states y(0, x`) = ȳ`
and y(0, xr) = ȳr for x` < 0 < xr is solved by

y(t, x) =


ȳ` if x < tλ−(ȳ`),
yrf(t, x; ȳ`, ȳr) if tλ−(ȳ`) ≤ x < tλ−

(
ym(ȳ`, ȳr)

)
,

ym(ȳ`, ȳr) if tλ−
(
ym(ȳ`, ȳr)

)
≤ x < ts(ȳ`, ȳr),

ȳr if ts(ȳ`, ȳr) < x.

(21)

The expressions for the rarefaction wave yrf, intermediate state ym and shock speed s are found
in [36]. We consider uniformly distributed left initial values h̄`(ξ) ∼ U(3, 4) and the deterministic
right state h̄r = 1.

6.1 Dimension Reduction by the Wiener-Haar Expansion
The Haar sequence [26, 40, 46] with level J ∈ N0 generates a gPC basis SK with K = 2J+1 − 1
elements by

SK :=
{

1, ψ(ξ), ψj,k(ξ)
∣∣ k = 0, . . . , 2j − 1, j = 1, . . . , J

}
for

ψj,k(ξ) := 2j/2ψ
(
2jξ − k

)
and ψ(ξ) :=


1 if 0 ≤ ξ < 1/2,

−1 if 1/2 ≤ ξ < 1,
0 else.

Using a lexicographical order we identify the relation φ1 = ψ, φ2 = ψ1,0 and φ3 = ψ1,1 with the
supports supp{ψ} = [0, 1), supp{ψ1,0} = [0, 1/2) and supp{ψ1,1} = [1/2, 1).

Figure 3 shows those basis elements, as they approximate the continuous uniform distribution of
the left initial values (blue). While the first element φ0 yields the mean (green), the remaining
functions give the details (black). A zoom in the area of the shock reveals that it is described
mostly by the mean φ0 and the first detail function φ1. In fact, we have ĥ2(t, x) = 0 close to
the right half of the shock, since the corresponding basis element φ2 describes low initial heights,
which result in slow shock speeds. Furthermore, the 1.0-confidence region and realisations, corre-
sponding to the jumps in the approximated input distribution, are shown. The entropy according
to Theorem 4.3 is plotted with respect the right y-axis in red. For initial states ȳ = (h̄, 0)T, when
the momentum is zero, we have the relation

E
[
η0

(
GK
[
ȳ(ξ)

])]
= E

[g
2GK

[
h̄(ξ)

]2] = g

2
∥∥ĥ∥∥2

2 = η(ŷ), (22)

where η0 is the pointwise entropy (14). This motivates the choice of the mean of pointwise
entropies as a quantitative comparison. This choice is completely independent from our new
results and only based on a Monte-Carlo simulation. Although the entropies of the intrusive
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formulation converge to the mean for the initial values, we do not claim that there is a convergence
also for t > 0. Confidence regions and the mean of entropies are determined with 105 samples.

Apart from the shock, good agreement is observed for both the entropy and the presented
statistics of interest. The main difference is that there is no longer a smooth expectation of the
shock. This issue has been observed also for continuous input distributions [15, 44, 17].

Fig. 3: Solution of the dam break problem for the intrusive formulation of Theorem 4.3 compared
to a Monte-Carlo simulation in t = 0.5
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Fig. 4: Zoom on shock; semi-intrusive reference solution (dashed) with K + 1 = 32
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Figure 4 consists of the amplifications of shocks and visualizes the regularity of truncated gPC
expansions in more detail. For subcritical flows, which satisfy the assumption (16), the ini-
tial discontinuity splits into at most K + 1 distinct waves that have positive speed. Here,
K + 1 waves move at slightly different speeds to the right. We choose as reference solution the
level J = 4 with K + 1 = 32 basis elements. The gPC modes are determined in a semi-intrusive
way as ŷref

k := E
[
yref(t, x, ξ)φk(ξ)

]
, where yref = (href, qref)T denotes the reference solution (21).

Expectations are computed by a Monte-Carlo method with 105 samples.

L∞-error: rarefaction wave shock units

level J 0 1 2 3 0 1 2 3
Ê

(E)
K 4.43 1.63 0.86 0.56 56.93 28.05 13.03 5.44

[
10−2]

Ê
(V)
K 16.69 5.57 2.39 1.12 32.40 24.77 13.52 5.44

[
10−2]

L1-error: rarefaction wave shock units

level J 0 1 2 3 0 1 2 3
Ê

(E)
K 6.76 3.06 2.01 1.65 35.31 13.16 5.84 2.68

[
10−3]

Ê
(V)
K 137.89 45.97 19.68 9.16 36.77 14.55 6.47 2.89

[
10−3]

relative entropy for Cauchy problem units

level J 0 1 2 3
η(ŷ∗|ŷ) 108.05 27.60 9.89 5.66

[
10−3]

Tab. 1: Observed numerical errors for the dam break problem

Table 1 reports on numerical errors for the mean and the variance

E
(E)
K (t, x) :=

∣∣∣E[href(t, x; ξ)
]
− ĥ0(t, x)

∣∣∣,
E

(V)
K (t, x) :=

∣∣∣∣Var[href(t, x; ξ)
]
−
K+1∑
k=1

ĥ2
k(t, x)

∣∣∣∣.
For each fixed point we obtain estimates Ê(E)

K and Ê(V)
K by a Monte-Carlo method with 105 sam-

ples. Table 1 is divided into the rarefaction wave for x ∈ [−1.5, 0] and the shock for x ∈ [0, 1.5].
Then, for each level J = 0, . . . , 3 with corresponding gPC order K + 1 = 2, 4, 8, 16 the L1-and
L∞-norms

∫
| · |dx and supx | · | are stated. Indeed, we observe a convergence for the mean

and the variance. Furthermore, we show the relative entropy and use again the semi-intrusively
computed gPC modes ŷref

k ∈ R64 as reference solution. We observe the expected decay also for
this error measure. To verify the compatibility condition (3), we consider the L2-error

E
(C)
K (t, x) :=

∥∥∥Dŷµ(ŷ)−Dŷη(ŷ)Dŷ f̂(ŷ)
∥∥∥

2
(t, x)

and we expect it to be close to zero for smooth solutions. The compatibility condition is fulfilled
up to numerical errors, which are two powers smaller than the spatial discretization.
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6.2 Decay of Entropies
The entropy inequality (2) guarantees a decaying entropy, since spatial integration yields

d
dt

∫
R
η
(
ŷ(t, x)

)
dx ≤ 0 =⇒

∫
R
η
(
ŷ(t, x)

)
dx ≤

∫
R
η
(
Î(x)

)
dx. (23)

Figure 5 aims to show this decay over time. We choose both the semi-intrusively computed
gPC modes ŷref

k ∈ R64 and the mean of the pointwise entropies (22) as reference solution, which
are computed for each time step with 105 samples. Indeed, all computed entropies are decreasing.
For higher refinement level J the entropies are close to the reference solutions.

0 0.1 0.2 0.3 0.4 0.5
13.2

13.3

13.4

13.5

Fig. 5: Time evolution of entropies according to inequality (23)

Summary

We have introduced entropy and entropy flux pairs for stochastic Galerkin formulations of hyper-
bolic conservation laws. Two families have been introduced for Burgers’ equation. One of these
entropies has been used to ensure the uniqueness of a stochastic Galerkin square root. An impor-
tant consequence is the bijective mapping between conserved and Roe variables, which has been
used for a hyperbolic formulation of shallow water equations. For this system a generalization
of the physical entropy to the stochastic Galerkin formulation has been presented. As important
conclusions wellposedness of classical solutions as well as energy estimates and convergence of
the polynomial chaos expansion have been stated. Numerical experiments have confirmed the
theoretical findings.
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7 Appendix

For the proof of Lemma 4.2 we recall Dα̂P−1(α̂) = −P−1(α̂)Dα̂P(α̂)P−1(α̂).

Proof of Lemma 4.2. Equation (9) follows from

ûT(ω̂)P(ĥ) = β̂TP(ĥ)P−1(α̂) = α̂TP(α̂)P(β̂)P−1(α̂) = (α̂ ∗ β̂)T,

where we have used symmetry and commutativity according to assumption. We calculate

P(β̂) =
[( K∑

j=0
β̂j〈φiφj , φ0

)∣∣∣∣ · · · ∣∣∣∣( K∑
j=0

β̂j〈φiφj , φK
)]

i=0,...,K
=
[
M0β̂

∣∣∣ · · · ∣∣∣MK β̂
]
,

P
(
û(ω̂)

)
γ̂ = P(γ̂)P−1(α̂)β̂ = P1(ω̂)γ̂, P

(
û2(ω̂)

)
γ̂ = P(γ̂)P−2(α̂)P(β̂)β̂ = P2

1 (ω̂)γ̂

to obtain the equations (10) and (11) as

Dα̂
[
β̂TP1(ω̂)β̂

]
= −

[
β̂TP(β̂)P−1(α̂)MkP−1(α̂)β̂

]
k=0,...,K

= −β̂TP2
1 (ω̂),

Dβ̂
[
β̂TP1(ω̂)β̂

]
= Dβ̄

[
β̄TP1(ω̂)β̄

]∣∣∣
β̄=β̂

+ Dβ̄
[
β̂TP(β̄)û(ω̂)

]∣∣∣
β̄=β̂

= 2β̂TP1(ω̂) + β̂TP
(
û(ω̂)

)
= 3β̂TP1(ω̂),

Dα̂
[
(α̂ ∗ α̂)T(α̂ ∗ β̂)

]
= Dᾱ

[
ᾱTP(α̂)P(β̂)ᾱ

]∣∣∣
ᾱ=α̂

+ Dᾱ
[
α̂TP(ᾱ)P(β̂)α̂

]∣∣∣
ᾱ=α̂

= 2α̂TP(α̂)P(β̂) +
[
α̂TM0P(β̂)α̂

∣∣∣ · · · ∣∣∣α̂TMKP(β̂)α̂
]

= 3α̂TP(α̂)P(β̂),

Dβ̂
[
(α̂ ∗ α̂)T(α̂ ∗ β̂)

]
= Dβ̂

[
α̂TP2(α̂)β̂

]
= α̂TP2(α̂).

The matrices (12) and (13) follow from

Dα̂
[
û(ω̂)

]
= −

[
P−1(α̂)M0P−1(α̂)β̂

∣∣∣ · · · ∣∣∣P−1(α̂)MKP−1(α̂)β̂
]

= −P2(ω̂),

Dα̂
[
P2(ω̂)β̂

]
= −2Dᾱ

[
P1(ω̂)P−1(ᾱ)β̂

]∣∣∣
ᾱ=α̂

= −2P1(ω̂)
[
P−1(α̂)M0P−1(α̂)β̂

∣∣∣ · · · ∣∣∣P−1(α̂)MKP−1(α̂)β̂
]

= −2P1(ω̂)P2(ω̂),

Dβ̂
[
P2(ω̂)β̂

]
= Dβ̂

[
P−2(α̂) β̂ ∗ β̂

]
= 2P2(ω̂).

The proof of Lemma 5.1 is similar to [33, 12, 19, 20]. It is a slight adaptation which follows from
exploiding the fact that systems endowed with entropies are symmetrizable, see e.g. [21, Th. 3.1].
Then, the matrix ∇2

ŷη(ŷ)Dŷ f̂(ŷ) is symmetric.
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Proof of Lemma 5.1. Due to the compatibility condition (3), and due to the symmetry of the
matrix ∇2

ŷη(ŷ)Dŷ f̂(ŷ) we obtain

Dŷη(ŷ)R(ŷ) = Dŷη(ŷ)ŷt + Dŷµ(ŷ)ŷx = η(ŷ)t + µ(ŷ)x, (24)
f̂(ŷ)T

x∇2
ŷη(ŷ)(ŷ∗ − ŷ) = ŷT

xDŷ f̂(ŷ)T∇2
ŷη(ŷ)(ŷ∗ − ŷ) (25)

= ŷT
x∇2

ŷη(ŷ)Dŷ f̂(ŷ)(ŷ∗ − ŷ).

For every non-negative C1-function ϕ with compact support Rademacher’s theorem yields that
the approximation ŷ and hence the auxiliary function ϕ̃ := ∇ŷη(ŷ)ϕ are differentiable almost
everywhere. We obtain in the distributional sense

ϕ̃t = ∇2
ŷη(ŷ)ŷtϕ+∇ŷη(ŷ)ϕt = ∇2

ŷη(ŷ)
(
R(ŷ)− f̂(ŷ)x

)
ϕ+∇ŷη(ŷ)ϕt, (26)

ϕ̃x = ∇2
ŷη(ŷ)ŷxϕ+∇ŷη(ŷ)ϕx. (27)

With equations (26) and (27) we conclude

0 = ϕ̃TR(ŷ) + ϕ̃T(ŷ∗ − ŷ)
t

+ ϕ̃T
(
f̂(ŷ∗)− f̂(ŷ)

)
x
,

0 =
∫ T

0

∫
R
ϕ̃T
s

(
ŷ∗ − ŷ

)
+ ϕ̃T

x

(
f̂(ŷ∗)− f̂(ŷ)

)
− ϕ̃TR(ŷ)dx ds+

∫
R
ϕ̃T

0
(
Î∗ − Î

)
dx

=
∫ T

0

∫
R

[
ϕ
(
R(ŷ)− f̂(ŷ)x

)T∇2
ŷη(ŷ) + ϕsDŷη(ŷ)

](
ŷ∗ − ŷ

)
+
[
ϕŷT

x∇2
ŷη(ŷ) + ϕxDŷη(ŷ)

](
f̂(ŷ∗)− f̂(ŷ)

)
− ϕDŷη(ŷ)R(ŷ)dx ds

+
∫
R
ϕ0DÎη(Î)

(
Î∗ − Î

)
dx.

We rearrange these terms and use equation (25) to obtain∫ T

0

∫
R
Dŷη(ŷ)

(
ŷ∗ − ŷ

)
ϕs + Dŷη(ŷ)

(
f̂(ŷ∗)− f̂(ŷ)

)
ϕx dxds

=−
∫ T

0

∫
R

(
R(ŷ)− f̂(ŷ)x

)T
∇2
ŷη(ŷ)

(
ŷ∗ − ŷ

)
ϕ− ŷx∇2

ŷη(ŷ)
(
f̂(ŷ∗)− f̂(ŷ)

)
ϕ

+ Dŷη(ŷ)R(ŷ)ϕdx ds−
∫
R
DÎη(Î)

(
Î∗ − Î

)
ϕ0 dx

=−
∫ T

0

∫
R
RT(ŷ)∇2

ŷη(ŷ)(ŷ∗ − ŷ)ϕ

− ŷT
x∇2

ŷη(ŷ)
[
Dŷ f̂(ŷ)(ŷ∗ − ŷ)−

(
f̂(ŷ∗)− f̂(ŷ)

)]
ϕdxds

−
∫
R
DÎη(Î)

(
Î∗ − Î

)
ϕ0 dx. (28)

The entropy inequality η(ŷ∗)t + µ(ŷ∗)x ≤ 0 and equation (24) imply in the distributional sense(
η(ŷ∗)− η(ŷ)

)
t

+
(
µ(ŷ∗)− µ(ŷ)

)
x

+ Dŷη(ŷ)R(ŷ) ≤ 0
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which reads with equation (28) as

0 ≤
∫ T

0

∫
R

(
η(ŷ∗)− η(ŷ)

)
ϕs +

(
µ(ŷ∗)− µ(ŷ)

)
ϕx −Dŷη(ŷ)R(ŷ)ϕdxds

+
∫
R

(
η(Î∗)− η(Î)

)
ϕ0 dx

=
∫ T

0

∫
R
η(ŷ∗|ŷ)ϕs + µ(ŷ∗|ŷ)ϕx −Dŷη(ŷ)R(ŷ)ϕdxdt

+
∫ T

0

∫
R
Dŷη(ŷ)

(
ŷ∗ − ŷ

)
ϕs + Dŷη(ŷ)

(
f̂(ŷ∗)− f̂(ŷ)

)
ϕx dxds

+
∫
R

(
η(Î∗)− η(Î)

)
ϕ0 dx

=
∫ T

0

∫
R
η(ŷ∗|ŷ)ϕs + µ(ŷ∗|ŷ)ϕx dx ds+

∫ T

0

∫
R
−RT(ŷ)∇2

ŷη(ŷ)(ŷ∗ − ŷ)ϕ

+ ŷT
x∇2

ŷη(ŷ)
[
Dŷ f̂(ŷ)(ŷ∗ − ŷ)−

(
f̂(ŷ∗)− f̂(ŷ)

)]
ϕdx ds+

∫
R
η(Î∗|Î)ϕ0 dx.

In particular for the non-negative testfunction

ϕε(s, x; t) :=


1 if s < t,

1− s−t
ε if t < s < t+ ε,

0 if t+ ε < s

we obtain for all Lebesgue points t ∈ [0, T )

0 ≤
∫
R
−1
ε

∫ t+ε

t

η
(
ŷ∗(s, x)

∣∣∣ŷ(s, x)
)
dx+

∫
R
η
(
Î∗(x)

∣∣∣Î(x)
)
dx

−
∫ T

0

∫
R
RT
(
ŷ(s, x)

)
∇2
ŷη
(
ŷ(s, x)

)(
ŷ∗(s, x)− ŷ(s, x)

)
ϕε(s, x; t)

+ ŷT
x (s, x)∇2

ŷη
(
ŷ(s, x)

)[
Dŷ f̂

(
ŷ(s, x)

)(
ŷ∗(s, x)− ŷ(s, x)

)
−
(
f̂
(
ŷ∗(s, x)

)
− f̂

(
ŷ(s, x)

))]
ϕε(s, x; t)dxds

ε→0−→ −
∫
R
η
(
ŷ∗(t, x)

∣∣∣ŷ(t, x)
)
dx+

∫
R
η
(
Î∗(x)

∣∣∣Î(x)
)
dx

−
∫ t

0

∫
R
RT
(
ŷ(s, x)

)
∇2
ŷη
(
ŷ(s, x)

)(
ŷ∗(s, x)− ŷ(s, x)

)
+ ŷTx (s, x)∇2

ŷη
(
ŷ(s, x)

)[
Dŷ f̂

(
ŷ(s, x)

)(
ŷ∗(s, x)− ŷ(s, x)

)
−
(
f̂
(
ŷ∗(s, x)

)
− f̂

(
ŷ(s, x)

))]
dx ds.
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