
Qualitative Properties of 
Mathematical Model for Data Flow

Cory D. Hauck†, Michael Herty‡ and Giuseppe Visconti§

Institut für Geometrie und Praktische Mathematik 
Templergraben 55, 52062 Aachen, Germany

† Computational and Applied Mathematics Group, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 5700, Oak  
 Ridge, TN 37831-6164, USA and Department of Mathematics, University of Tennessee, 227 Ayres Hall. 1403 Circle  
 Drive. Knoxville TN 37996-1320, USA
 (hauckc@ornl.gov)
‡ Institut für Geometrie und Praktische Mathematik, RWTH-Aachen University, 52056 Aachen, Germany 
 (herty@igpm.rwth-aachen.de)
§ Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, 52056 Aachen, Germany 
 (visconti@igpm.rwth-aachen.de)

O
 C

 T
 O

 B
 E

 R
   

 2
 0

 1
 9

 
P 

R 
E 

P 
R 

I N
 T

   
  4

 9
 4



Qualitative Properties of Mathematical Model For Data Flow∗

Cory D. Hauck†

Computational and Applied Mathematics Group

Oak Ridge National Laboratory

1 Bethel Valley Road, Bldg. 5700, Oak Ridge, TN 37831-6164, USA

and

Department of Mathematics

University of Tennessee

227 Ayres Hall. 1403 Circle Drive. Knoxville TN 37996-1320, USA

Michael Herty‡

Giuseppe Visconti§

Institut für Geometrie und Praktische Mathematik (IGPM)

RWTH Aachen University

Templergraben 55, 52062 Aachen, Germany

October 22, 2019

Abstract

In this paper, properties of a recently proposed mathematical model for data flow in large-
scale asynchronous computer systems are analyzed. In particular, the existence of special
weak solutions based on propagating fronts is established. Qualitative properties of these
solution are investigated, both theoretically and numerically.
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1 Introduction

The increasing number and diversity of processing units in modern supercomputers presents the
significant challenge of understanding how data is distributed globally in these systems [4, 8].
With the help of new mathematical models, a more efficient utilization of available processing
units might be possible. Recently, a mathematical model for the evolution of processed data in a
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large-scale asynchronous computer systems has been proposed [1]. In the current work, we analyze
some qualitative properties of this model, with regard to front propagation, and present simulation
results that highlight the theoretical findings.

In [1], a microscopic ordinary differential equation (ODE) model is constructed to describe
how data evolves in a lattice of processors. It is assumed that each processor performs the same
task, which is broken up into discrete stages. The rate at which a given processor moves data
from stage to stage depends not only its intrinsic processing rate, but also on the availability of
usable data in the processor and its neighbors. From this microscopic model, a macroscopic fluid
model is derived in the limit of infinitely many processors and infinitely many stages. Here we
briefly review the microscopic model and the macroscopic limit.

In a one-dimensional periodic lattice, the amount of data at time t that sits in stage k ∈
{1, . . . , kmax} of processor i ∈ {1, . . . , imax} is given by qi,k(t). In the absence of any throttling,
the flow of data between stages is given by a (processor dependent) rate ai(t) ≥ 0. However the
actual flow may be reduced due to a lack of available data in a given processor or its nearest
neighbors. Throttling due to a lack of usable data in the nearest neighbors is characterized by a
parameter η := kmax/imax > 0 that, at the discrete level, is equal to the ratio of task stages to
total processors. Thus as η increases the global effect of local slowdowns increases.

For each i ∈ {1, . . . , imax} and k ∈ {1, . . . , kmax}, the evolution of qi,k is modeled by the
ordinary differential equation

q̇i,k(t) = fi,k−1(t)− fi,k(t), qi,k(0) = q0
i,k, fi,0(t) = f̄i(t), (1.1)

where q0
i,k is the (known) initial amount of data present in each processor i at each stage k and f̄i(t)

is the (known) inflow of unprocessed (or raw) data at processor i and time t. For k ∈ {1, . . . , kmax},
fi,k is the flow of data in processor i from stage k to k+1; its precise form depends of the parameters
ai and η and is given in [1, equation (4)].1 For i ∈ {1, . . . , imax} and k ∈ {1, . . . , kmax}, Qi,k(t) is
the total amount of data that by time t has traversed the first k − 1 stage in processor i:

Qi,k(t) =

kmax∑
j=k

qi,j(t) +

∫ t

0

fi,kmax
(s)ds. (1.2)

This quantity plays an important role in modeling processor throttling by neighbors.
A continuum approximation for (1.1) is derived in the limit of infinitely many processors

(imax → ∞) and stages (kmax → ∞), subject to that constraint that η is a fixed, positive, finite,
constant. For each i ∈ {1, . . . , imax} and k ∈ {0, 1, . . . , kmax}, let

xi = iδx and zk = kδz, (1.3)

where δz := 1/kmax is the fraction of work completed at each stage and δx = 1/imax is the fraction
of work to be completed by each processor. Let the data density ρ, flux F , and processed data P
be bounded, measurable functions on [0,∞)× [0, 1)× [0, 1] such that

ρ(t, xi, zk) =
qi,k
δxδz

, F (t, xi, zk) =
fi,k(t)

δx
, and P (t, xi, zk) = Qi,k(t). (1.4)

Further, let ρ0 : [0, 1)× [0, 1]→ [0,∞), F̄ : [0,∞)× [0, 1)→ [0,∞), and α : [0,∞)× [0, 1)× [0, 1]→
[0,∞) be (a.e) bounded measurable functions such that

ρ0(xi, zk) =
q0
i,k

δxδz
, F̄ (t, xi) =

f̄i(t)

δx
, and α(t, xi, zk) =

ai,k(t)

δx
. (1.5)

1There is another parameter β ∈ [0, 1] in [1, Section2.1] which measures the effective strength of coupling between
process. Here we assume β = 1 and do not consider it any further.
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Then for any smooth function ϕ on [0,∞) × [0, 1) × [0, 1], it follows from the ODE model (1.1)
that

δzδx

imax∑
i=1

kmax∑
k=1

ϕ(t, xi, zk)∂tρ(t, xi, zk)− δx
imax∑
i=1

kmax−1∑
k=0

(
ϕ(t, xi, zk+1)− ϕ(t, xi, zk)

)
F (t, xi, zk)

= δx

imax∑
i=1

ϕ(t, xi, 0)F̄ (t, xi)− ϕ(t, xi, 1)F (t, xi, 1) (1.6)

In the limit δz, δx → 0 with η = δx/δz constant, (1.5) and (1.6) converge formally to a weak form
of the partial differential equation (PDE)

∂tρ(t, x, z) + ∂zΦ(ρ(t, x, z), ∂xP (t, x, z)) = 0, (t, x, z) ∈ R+ × T× (0, 1), (1.7a)

ρ(0, x, z) = ρ0(x, z), (x, z) ∈ T× (0, 1), (1.7b)

Φ
(
ρ(t, x, 0), ∂xP (t, x, 0)

)
= F̄ (t, x), (t, x) ∈ R+ × (0, 1), (1.7c)

where R+ = (0,∞), T is the torus parameterized by x ∈ [0, 1), and P and Φ are given by

P (t, x, z) =

∫ 1

z

ρ(t, x, y)dy +

∫ t

0

Φ
(
ρ(s, x, 1), ∂xP (s, x, 1)

)
ds, (1.8a)

Φ(ρ, σ) = α w1

(
w2(ρ, σ,−σ)), (1.8b)

with

w1(u) = min

{
max

{
u

ρ∗
, 0

}
, 1

}
(1.9a)

w2(u, v1, v2) = min
{
u,max{u+ ηv1, 0},max{u+ ηv2, 0}

}
. (1.9b)

The functions w1 and w2 (see Figure 1) model processor throttling and are arise during the
formulation of the microscopic flux fi,k. First w2 determines the amount of data available based
on the local density and the density of left and right neighbors. Once w2 is specified, w1 computes
the effective processing speed assuming a linear ramp, where the parameter ρ∗ > 0 is the minimum
data density needed to operate at full capacity. As in the microscopic model, the parameter η
controls degree of throttling due to the lack of available data in neighboring processors.

At first glance, (1.7) appears to include a recursive definition of the flux function Φ due to
equation (1.8a). However, after integrating (1.7a) over (s, z) ∈ [0, t] × [0, 1] and applying (1.7c)
and (1.7b), the result can substituted into (1.8a) to find the following formula for P :

P (t, x, z) =

∫ t

0

F̄ (s, x)ds+

∫ 1

0

ρ0(x, z)dz −
∫ z

0

ρ(t, x, z)dz. (1.10)

Alternatively, since ∂zP (t, x, z) = −ρ(t, x, z), (1.7a) can be rewritten as a closed Hamilton-Jacobi
equation for P :

∂tP − Φ(−∂zP, ∂xP ) = 0. (1.11)

The reformulation of (1.7a) in terms of (1.11) has been the basis for the analysis and simulation
performed in [1]. In the current work, we proceed by analyzing (1.7) directly in terms of ρ.

2 Qualitative properties of the mathematical model

In this section, we investigate qualitative properties of (1.7). We begin by simplifying the expres-
sion for Φ in (1.8b) using the auxiliary function

W2(s) = min{w2(s), w2(−s)}, (2.1)
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Figure 1: Shape of the throttling functions used in the definition of the flux Φ in (2.3).

where
w2(s) = min{1,max{1 + ηs, 0}}; (2.2)

(see Figure 1). In terms of w1 and W2, Φ takes the form

Φ(ρ, σ) =

α w1

(
ρW2

(
σ

ρ

))
, ρ 6= 0

0, ρ = 0.
(2.3)

Next for simplicity, we artificially extend the domain in z to [0,∞) and assume initial data
with compact support. This assumption allows us to ignore the contribution of the outflow in
(1.8a). With this assumption, we modify the definition of P as follows:

Assumption : P (t, x, z) =

∫ ∞
z

ρ(t, x, y)dy ∀t ≥ 0, x ∈ T, z ∈ [0,∞). (2.4)

Hence, in the following we consider the model (1.7) on the extended domain

D := R+ × T× R+ (2.5)

and introduce the auxiliary variable

σ(t, x, z) := ∂x

∫ ∞
z

ρ(t, x, y)dy, (t, x, z) ∈ D. (2.6)

The resulting system for (ρ, σ) : D2 → R2 is then

∂tρ+ ∂zΦ(ρ, σ) = 0, (t, x, z) ∈ D, (2.7a)

∂xρ+ ∂zσ = 0, (t, x, z) ∈ D, (2.7b)

ρ(0, x, z) = ρ0(x, z), (x, z) ∈ T× R+, (2.7c)

ρ(t, x, 0) = ρb(t, x), σ(t, x, 0) = σb(t, x), (t, x) ∈ R+ × T. (2.7d)
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The relation of the quantities (ρ, σ) to the original model (1.7), modified by the previous Assump-
tion, is as follows:

σb(t, x) = ∂x

∫ ∞
0

ρ(t, x, y)dy, (2.8a)

Φ
(
ρb(t, x), σb(t, x)

)
= F̄ (t, x), (2.8b)

lim
z→∞

σ(t, x, z) = 0 (2.8c)

Definition 1 (Weak solution). Given initial data ρ0 ∈ L∞(T×R+) and boundary data (ρb, σb) ∈
L∞(R+ × T)2, we call (ρ, σ) ∈ [L∞(D)]2 a weak solution of (2.7) if for all smooth compactly
supported functions ϕ : D→ R and ψ : D→ R,∫

D

ρ ∂tϕ+ Φ(ρ, σ) ∂zϕ dz dx dt+

∫
T×R+

ρ0(x, z)ϕ(0, x, z) dz dx

+

∫
R+×T

Φ(ρb(t, x), σb(t, x))ϕ(t, x, 0) dxdt = 0, (2.9a)∫
D

ρ ∂xψ + σ ∂zψ dzdxdt+

∫
R+×T

σb(t, x)ψ(t, x, 0) dxdt = 0. (2.9b)

We do not know whether a solution in the sense of Definition 1 exists for (2.7) with general
initial and boundary data or whether such a solution is unique and depends continuously on the
data.2 However, for the particular initial and boundary data given in (2.18), we establish the
existence of special solutions below.

The weak formulation (2.9) gives rise to a Rankine–Hugoniot jump condition [3]. Consider the
surface

S := {(t, x, z) ⊂ D : z = ζ(t, x)} (2.10)

for a differentiable function ζ : R+
0 ×T→ R+

0 and assume that the functions ρ and σ satisfy (2.7)
point-wise in the interior of D\S. Then standard arguments (see for example [5, Section 11.1.1])
can be used to establish that

Φ(ρ`, σ`)− Φ(ρr, σr) = ∂tζ(t, x) (ρ` − ρr) , (2.11)

where

ρ` = ρ(t, x, ζ(t, x)−), σ` = σ(t, x, ζ(t, x)−), (2.12)

ρr = ρ(t, x, ζ(t, x)+), σr = σ(t, x, ζ(t, x)+). (2.13)

2.1 Special solutions for front propagation

In this section, we investigate solutions to (2.7) that take the form of fronts; see Figure 2. Such
solutions are important from the point of view of applications.

2.1.1 Existence of Solutions

In the case of a single front, the initial and boundary conditions for ρ take the form

ρ0(x, z) = rH(ζ0(x)− z) and ρb(t, x) = r, (2.14)

where H denotes the Heaviside function and r > 0 is a positive constant. In addition, we enforce
the consistency of σb as prescribed in (2.8a):

σb(t, x) = r∂xζ(t, x). (2.15)
2In [1], a continuous vanishing viscosity solution is established using known results from the mathematical

literature on Hamilton-Jacobi equations. However, translating such a result to an L1-theory for ρ would require P
to be absolutely continuous. While possible, this additional regularity has not yet been determined.
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Figure 2: Left: Contour plot of the density ρ(t, x, z) for a fixed time t. Processed data with
constant density r > 0 is depicted in blue up to a stage of completion z = ζ(t, x). Zero data
(grey) is prescribed for completion stages z > ζ(t, x), c.f. equation (2.18). Right: Similar plot of
a density with constant values r1 and r2 and regions separated by functions ζ1(t, x) and ζ2(t, x).

Proposition 1. Let ρ∗, η > 0 be positive constants and let α = α(t, x) ∈ C1(R+×T) be a strictly
positive function. Given initial and boundary conditions of the form (2.14) and (2.15), where

0 < r < ρ∗ (2.16)

and ζ0 ∈ C1(T) is non-negative, assume that there is a C1 solution ζ : R+
0 ×T→ R+ that satisfies

∂tζ(t, x) =
α(t, x)

ρ∗
W2(∂xζ(t, x)), ζ(0, x) = ζ0(x). (2.17)

Then there pair (ρ, σ) given by

ρ(t, x, z) = rH(ζ(t, x)− z), σ(t, x, z) = rH(ζ(t, x)− z)∂xζ(t, x) (2.18)

is a weak solution for (2.7) in the sense of Definition 1 with initial and boundary conditions given
in (2.14) and (2.15)

Before proving this lemma, some remarks are in order.

1. The condition in (2.16) guarantees that r
ρ∗
W2(σr ) < 1. In this case the flux function Φ (c.f.

(2.3)) is given by the simplified formula

Φ(ρ, σ) =


αρ

ρ∗
W2

(
σ

ρ

)
, ρ 6= 0,

0, ρ = 0.

(2.19)

This formula and the Rankine–Hugoniot condition in (2.11) together form the key compo-
nents of the existence proof.

2. While the condition r < ρ∗ is sufficient to obtain (2.19), it is not necessary. Indeed
W2(σ/ρ) = 0 for σ sufficiently large; in particular, (2.19) holds at any (x, t) such that
∂xζ(t, x) > η−1.

3. It is currently open as to whether equation (2.17) has a C1 solution. However, since α, ρ∗,
and W2 are non-negative, it is clear that any such solution will be non-decreasing. This fact
is consistent with the notion that data is always processed toward completion.
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4. A result similar to Proposition 1 can be obtained for initial data separated by a finite number
of non-intersecting fronts. Consider for example the case of two fronts (see Figure 2-b):

ρ0(x, z) = r1H
(
ζ1,0(x)− z

)
+ r2

[
H
(
ζ2,0(x)− z

)
−H

(
ζ1,0(x)− z

)]
(2.20)

with positive constants r1 6= r2 and r1 < ρ∗ and r2 < ρ∗. If 0 < ζ1,0(x) < ζ2,0(x) for all
x ∈ T, then there is a weak solution (ρ, σ) in the sense of Definition 1 of the form

ρ(t, x, z) = (r1 − r2)H
(
ζ1(t, x)− z

)
+ r2H

(
ζ2(t, x)− z

)
(2.21a)

σ(t, x, z) = (r1 − r2)∂xζ1(t, x)H
(
ζ1(t, x)− z

)
(2.21b)

+ r2∂xζ2(t, x)H
(
ζ2(t, x)− z

)
, (2.21c)

provided ζ1(0, x) = ζ1,0(x), ζ2(0, x) = ζ2,0(x), and

∂tζ1(t, x) =
α(t, x)

ρ∗(r2 − r1)

[
r2W2

(
∂xζ2(t, x)

)
− r1W2

((r1 − r2

r1

)
∂xζ1(t, x) +

r2

r1
∂xζ2(t, x)

)]
,

(2.22a)

∂tζ2(t, x) =
α(t, x)

ρ∗
W2

(
∂xζ2(t, x)

)
. (2.22b)

Proof of Lemma 1. With the C1 assumption on ζ, (ρ, σ) given by equation (2.18) clearly belongs
to L∞(D)2. By construction the given solution (2.18) fulfills boundary and initial condition
pointwise and hence also in weak form. It therefore remains to verify that (ρ, σ) is a weak solution
in the interior of D.

We first verify that (ρ, σ) fulfills (2.9b). For ψ smooth and compactly supported in the interior
of D, we need to show that:∫

D

[
rH(ζ(t, x)− z)∂xψ(t, x, z) + rH(ζ(t, x)− z)∂xζ(t, x)∂zψ(t, x, z)

]
dzdxdt = 0. (2.23)

By definition of the Heaviside function,∫
D

[
rH(ζ(t, x)− z)∂xψ(t, x, z) + rH(ζ(t, x)− z)∂xζ(t, x)∂zψ(t, x, z)

]
dzdxdt

= r

∫
R+

0 ×T

∫ ζ(t,x)

0

[
∂xψ(t, x, z) + ∂xζ(t, x)∂zψ(t, x, z)

]
dzdxdt

= r

∫
R×T

[∫ ζ(t,x)

0

∂xψ(t, x, z)dz + ∂xζ(t, x)ψ(t, x, ζ(t, x))

]
dxdt

= r

∫
R+×T

∂

∂x

(∫ ζ(t,x)

0

ψ(t, x, z)dz

)
dxdt = 0, (2.24)

where the integral in the last line vanishes due to periodicity of the domain with respect to x.
We next verify that (ρ, σ) fulfills (2.9a). Let S = {(t, x, z) ⊂ D : z = ζ(t, x)} ⊂ D be the

surface of the front described by ζ, and let S+ := {(t, x, z) ⊂ D : z > ζ(t, x)} and S− := {(t, x, z) ⊂
D : z < ζ(t, x)}. For z < ζ(t, x) the explicit form of (ρ, σ) implies the following relation

σ(t, x, z)

ρ(t, x, z)
= ∂xζ(t, x). (2.25)

Hence according to (2.19),

Φ(ρ(t, x, z), σ(t, x, z)) =


α(t, x)r

ρ∗
W2(∂xζ(t, x)) (t, x, z) ∈ S−

0 (t, x, z) ∈ S+.

(2.26)
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Let ϕ be any smooth, compactly supported function in the interior of D. In S±, Φ(ρ, σ) and ρ are
constant, and in S+, they both vanish. Hence,∫

D

ρ ∂tϕ+ Φ(ρ, σ) ∂zϕ dz dxdt =

∫
S−

r ∂tϕ+
αr

ρ∗
W2(∂xζ) ∂zϕ dz dxdt

=

∫
T

∫
{(t,z):z=ζ(t,x)}

ϕ

(
−r∂tζ +

αr

ρ∗
W2(∂xζ)

)
1

‖(1, ∂tζ)‖dA(t, z)dx, (2.27)

where dA(t, z) denotes the surface measure on the curve {(t, z) : z = ζ(t, x)}. The final expression
above vanishes the definition of ζ given in (2.17). This finishes the proof.

2.1.2 Properties of fronts and their associated weak solutions

It is the equation for the front ζ in (2.17) that essentially determines the behavior of the special
solutions (2.18). We assume again that 0 < r < ρ∗. With the definition of W2 in (2.1), this
equation takes the form

∂tζ(t, x) =
α(t, x)

ρ∗
×
{

1− η |∂xζ(t, x)|, |∂xζ(t, x)| < η−1,

0, |∂xζ(t, x)| ≥ η−1.
(2.28)

In general, we do not know if there exists a solution to (2.28), due to the discontinuous flux.
However, we may consider particular solutions related to special initial conditions ζ0(x). Those
special solutions are used as test cases for numerical simulations in the next section.

• If for all (t, x) ∈ R+×T, |∂xζ(t, x)| < η−1 and α(t, x) = α is constant, then formally ∂xζ(t, x)
fulfills the conservation law

∂t(∂xζ)(t, x) +
αη

ρ∗
∂x|(∂xζ)(t, x)| = 0, (∂xζ)(0, x) = ∂xζ0(x) (2.29)

with flux function f(u) = C|u| and C = αη
ρ∗
. It is known that there exists a weak (entropic)

solution to (2.29) as long as ∂xζ0(x) is in L∞, has locally bounded variation, and is continuous
from the left [2, Proposition 3.1]. Moreover, if ∂xζ0(x) is piecewise constant, this solution is
given by piecewise constant states separate by a finite number of traveling discontinuities [2,
Lemma 3.2]. We investigate such piece-wise solutions in Examples 2 and 3 in the numerical
results of Section 3.

• If α is constant, and if 0 ≤ ∂xζ0(x) < η−1 locally in x, then for sufficiently small t,

ζ(t, x) = ζ0

(
x− η α

ρ∗
t

)
+
α

ρ∗
t. (2.30)

Similarly if −η−1 < ∂xζ0(x) ≤ 0 locally, then for sufficiently small t,

ζ(t, x) = ζ0

(
x+ η

α

ρ∗
t

)
+
α

ρ∗
t. (2.31)

We use these formulas to make comparisons with numerical results in Examples 2-4 in Section
3.

• If locally |∂xζ0(x)| ≥ η−1, then ζ(t, x) = ζ0(x) for t sufficiently small. In this case the
model predicts that all processors are stalled. However, the condition on ζ0 cannot hold
globally due to the periodicity assumption in x. We explore the behavior of the model for
this scenario in Example 5.
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3 Numerical simulations

In this section, we present numerical simulations that illustrate the behavior of special front-type
solutions discussed in the previous section.

3.1 Discretization

Since the system in (2.7) is of mixed type, we approximate it by the following relaxed system of
equations

∂tρ+ ∂zΦ(ρ, σ) = 0 (3.1a)

ε∂tσ + ∂xρ+ ∂zσ = 0, (3.1b)

where ε > 0 is a small parameter. Formally, (2.7a) and (2.7b) are obtained from (3.1) in the limit
as ε→ 0.

Before discretizing (3.1), we investigate hyperbolicity in the simplified case that α(t, x) > 0 is
constant.3 In this case, (3.1) takes the non-conservative form

∂tU +Bx(U)∂xU +Bz(U)∂zU = 0, (3.2)

where U = (ρ, σ) and

Bx(U) =

0 0

1

ε
0

 , Bz(U) =

∂ρΦ ∂σΦ

0
1

ε

 . (3.3)

Under the assumption (2.16) and provided that ρ > 0, the simplified form of Φ in (2.19) implies
that

∂ρΦ(ρ, σ) =
α

ρ∗

(
W2(s)− sW ′2(s)

)
, ∂σΦ(ρ, σ) =

α

ρ∗
W ′2(s), (3.4)

where s = σ/ρ.
The system (3.2) is hyperbolic if for any ξ = (ξ1, ξ2) ∈ R2 the matrix B(U, ξ) = ξ1B

x(U) +
ξ2B

z(U) is diagonalizable in the field of real numbers [5]. Because the function W2 is not smooth,
B(U, ξ) is not differentiable when s = 0 or s = ±1/η. However, away from these points,

B(U, ξ) =



 0 0

ξ1
ε

ξ2
ε

 , |s| > 1

η
,

]

ξ2
α

ρ∗
−ξ2 sgn(s)η

α

ρ∗
ξ1
ε

ξ2
ε

 , 0 < |s| < 1

η
,

(3.5)

and the eigenvalues of B(U, ξ) are

(λ1, λ2) =



(
0,
ξ2
ε

)
, |s| > 1

η
,

(λ∗1, λ
∗
2), 0 < |s| < 1

η
,

(3.6)

where (λ∗1, λ
∗
2) are the roots of the characteristic polynomial

p(λ) = λ2 − ξ2
(
α

ρ∗
+

1

ε

)
λ+

ξ2α

ερ∗
(ξ2 + sgn(s)ξ1η) . (3.7)

3The hyperbolicity properties of (2.7a) will not change if α is space or time–dependent, provided it is sufficiently
smooth.
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ξ2
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Cξ1

Region of non-hyperb.

Region of non-hyperb.

Region of

strict hyperbolicity

Region of

strict hyperbolicity

(a) Case: − 1
η < s < 0 (b) Case: 0 < s < 1

η

Figure 3: Domain of hyperbolicity of system (3.1). In both cases, the non-hyperbolic region (gray)
is bounded by the ξ1-axis and by ξ2 = ±Cξ1 with slope C = 4εαρ∗η

(εα−ρ∗)2
→ 0 as ε→ 0+.

For |s| > η−1, the system is strictly hyperbolic. For 0 < |s| < η−1, the polynomial p in (3.7) has
discriminant

dε(ξ1, ξ2) =

(
ξ2
ερ∗

)2 [
(εα− ρ∗)2 − 4 sgn(s)εαρ∗η

ξ1
ξ2

]
(3.8)

which, for ξ2 6= 0, is negative (so that λ∗1 and λ∗2 have non-zero imaginary component) if and only
if

sgn(s)
ξ1
ξ2
>

(εα− ρ∗)2

4εαρ∗η
. (3.9)

For any ε > 0, the non-hyperbolic region {(ξ1, ξ2) : dε(ξ1, ξ2) < 0} is nontrivial; see Figure 3.
However, for any fixed (ξ1, ξ2), there exists an ε∗(ξ1, ξ2) small enough that dε(ξ1, ξ2) ≥ 0 for all
ε < ε∗(ξ1, ξ2). Hence as εto0+, the non-hyperbolic region vanishes. The numerical method below
is constructed by discretizing the relaxation system in (3.1) and then setting ε = 0. This fact
partially justifies the use of (3.1) even though it is not everywhere hyperbolic when ε > 0.

To derive a numerical scheme for (3.1), we first discretize in time with a first-order method.
We are eventually interested in the ε→ 0 limit of the fully discretized scheme; hence the equation
for ρ in (3.1a) is treated explicitly, but the equation for σ in (3.1b) is treated implicitly. Let
ρn(x, z) ' ρ(n∆t, x, z) and σn(x, z) ' σ(n∆t, x, z) be the discrete approximations of ρ and σ,
respectively, at time n∆t. We set

ρn+1 = ρn −∆t ∂zΦ(ρn, σn), (3.10a)

σn+1 = σn − ∆t

ε

(
∂xρ

n+1 + ∂zσ
n+1
)
. (3.10b)

To discretize (3.10) in x and z, we introduce a bounded computational domain (x, z) ∈ [0, 1)×
[0, 1], which is divided into Nx ×Nz uniform cells of size ∆x×∆z. The cell centers are denoted
by (xi, zj), for i ∈ {1, . . . , Nx} and j ∈ {1, . . . , Nx}; and the cell edges are denoted by xi+ 1

2
=

(i + 1
2 )∆x and zj+ 1

2
= (j + 1

2 )∆z, respectively, for i ∈ {0, . . . , Nx} and j ∈ {0, . . . , Nz}. The

approximate cell averages of ρn and σn on the cell centered at (xi, zj) are denoted by

R
n

ij '
1

∆x∆z

∫ xi+1/2

xi−1/2

∫ zj+1/2

zj−1/2

ρn(x, z)dxdz (3.11)
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and

S
n

ij '
1

∆x∆z

∫ xi+1/2

xi−1/2

∫ zj+1/2

zj−1/2

σn(x, z)dxdz, (3.12)

respectively.
We use a Lax-Friedrichs approximation of ∂zΦ in (3.10a) and in (3.10b) a centered discretization

for ∂xρ and a one-sided discretization of ∂zσ. The resulting fully discrete scheme is

R
n+1

ij = R
n

ij −
∆t

∆z

(
Fni,j+1/2 − Fni,j−1/2

)
+

1

4

(
R
n

i+1,j − 2R
n

ij +R
n

i−1,j

)
, (3.13a)

S
n+1

ij = S
n

ij −
∆t

2ε∆x

(
R
n+1

i+1,j −R
n+1

i−1,j

)
− ∆t

ε∆z

(
S
n+1

i,j+1 − S
n+1

ij

)
, (3.13b)

where

Fni,j+ 1
2

=
1

2

(
Φ(R

n

i,j+1, S
n

i,j+1) + Φ(R
n

ij , S
n

ij)− a(R
n

i,j+1 −R
n

ij)
)
. (3.14)

The monotonicity of the numerical flux Fn
i,j+ 1

2

is guaranteed provided that

max
(R,S)

∥∥∥∂ρΦ(R,S)
∥∥∥ =: a ≤ ∆z

∆t
. (3.15)

This condition motivates an adaptive choice of ∆t: At each time level tn we set ∆t = ∆z
an for

an = max
(i,j):1≤i≤Nx,1≤j≤Nz

∥∥∥∂ρΦ(R
n

ij , S
n

ij)
∥∥∥. (3.16)

The right-biased stencil in the discretization of ∂zσ in equation (3.13b) deserves some discus-
sion. Indeed, given that the boundary condition for σ is given at z = 0, it seems more natural
to use a left-biased stencil. However, such an approach does not allow the boundary condition to
be computed implicitly via the consistency relation in (2.8a). However, if ρ has compact support,
then (2.8c) holds. As long as the support of the solution does not reach the boundary of the
computational domain at z = 1, this condition can be enforced there, in an implicit fashion. This
approach is consistent with the fact that σ at a given z∗ is determined entirely by ρ at values of
z > z∗. Moreover, numerical calculations confirm that enforcing the boundary condition in this
way yields the most stable results.

The final scheme used in Section 3.2 is given by the formal limit of (3.13) in the limit ε→ 0:

R
n+1

ij −Rnij = −∆t

∆z

[
Fni,j+1/2 − Fni,j−1/2

]
+

1

4

(
R
n

i+1,j − 2R
n

ij +R
n

i−1,j

)
, (3.17a)

S
n+1

ij =
∆z

2∆x

(
R
n+1

i+1,j −R
n+1

i−1,j

)
+ S

n+1

i,j+1. (3.17b)

This scheme above must be accompanied by boundary and initial conditions. The initial values

R
0

ij is obtained by integration of the initial data ρ0:

R
0

ij =
1

∆x∆z

∫ xi+1/2

xi−1/2

∫ zj+1/2

zj−1/2

ρ0(x, y)dxdz. (3.18)

The cell averages S
0

ij are obtained by applying a midpoint rule to the consistency relation (2.8a):

S
0

ij =
1

∆x

Nz∑
`=j

ρ0(xi+1/2, zj)− ρ0(xi−1/2, zj). (3.19)
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For S
n

ij zero boundary conditions are prescribed at j = Nz consistent with the right-based stencil
in the discretization of ∂zσ:

S
n

i,Nz = 0. (3.20)

For R
n

ij boundary conditions at z = 0 are given by ρbc(t). For the special solutions discussed in
the previous section ρbc(t) = r and hence

R
n

i,1 = r. (3.21)

Due to the central discretization of ∂zρ, boundary conditions for R
n

ij at j = Nz need to be pre-
scribed. Since in the simulation no data reaches this boundary we implement Neumann boundary
conditions

R
n

i,Nz = R
n

i,Nz−1. (3.22)

3.2 Simulation results

Example 1: validation with the microscopic model. We consider the test problem intro-
duced in [1] which is used to to validate the macroscopic model (2.7) and the numerical method
(3.17) by comparing with a simulation of the microscopic model introduced in [1]. For this problem,
ρ∗ = 1.0 and η = 1.0. The initial and boundary conditions are given by

ρ0(x, z) = 1.5 (sin(2πz))
6
χ[0,0.5](z), ρb(t, x) = 0, σb(t, x) = 0, (3.23)

and the processor speed is
α(x) = 1− 0.4(sin(πx))2. (3.24)

Both models are simulated up to a final time Tfin = 0.5.
The (x, z) domain for the macroscopic model is discretized using Nx = Nz = 800 cells,

and simulated with the algorithm in (3.17). In order to be consistent with the choice of η, the
microscopic model uses imax = 800 processors and kmax = 800 stages. The model is integrating in
time using a forward Euler method.

In Figure 4 we show the initial density and the final density profiles for both models at time
Tfin. We observe qualitative agreement between the microscopic and the macroscopic solutions.
In both cases, the data around x = 0.5 is processed more slowly than the data in the rest of the
domain, due to a slower processing rate α there.

(a) initial density profile (b) macroscopic model (c) microscopic model (d) macro minus micro

Figure 4: Density profiles for Examples 1.

In the remaining examples of this subsection, we explore the behavior of front-type solutions.
Unless otherwise stated the following parameters are used in all simulations:

r = 0.5, ρ∗ = 0.8, α = 0.1, Tfin = 2.0. (3.25)
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The value of Tfin ensures that data does not reach z = 1; in particular the assumption in (2.4)
holds. These parameter choices, along with the initial and boundary conditions ensure that

0 ≤ ρ(t, x, z) < ρ∗, for all (t, x, z) ∈ D, (3.26)

in which case the flux Φ is given by the simplified formula in (2.19).

Example 2: front with constant profile. We consider the case of an initial constant front,
namely

ζ0(x) = ζ0 = 0.2, ∀x ∈ T, (3.27)

which provides a trivial example for a piece-wise constant solution ∂xζ to (2.29). Moreover, the
evolution of this front is given explicitly in (2.30) and (2.31):

ζ(t, x) = ζ0 +
α

ρ∗
t. (3.28)

In this example η is set to 0.5 although the solution in (3.28) is independent of this choice.
Numerical results are shown in Figure 5. Since the processing rate α is constant the front

moves with the same speed for each x ∈ [0, 1), as expected. Moreover, the analytical and the
numerical solutions provide the same position of the front at final time.

Example 3: V-shaped front with small η. We consider an initial condition characterized
by a V-shape front under the condition that η|∂xζ| < 1; cf. (2.28). This models the physical
situation in which processors are not initially at the same stage of completion. Such a situation
can be generated if a local group of processors is, at some previous time, slower than the rest [1].
Specifically, we let

ζ0(x) = (1− 2z0) |x− 0.5|+ z0 (3.29)

where z0 = ζ0(0.5) < 0.5 is a fixed parameter.
Based on the theoretical findings in [2] for (2.29), we expect that the front at later times will

be piecewise linear. Moreover, the formulas in (2.30) and (2.31) can be used to generate the local
solution analytically. Indeed, under the assumption η|∂xζ| < 1 a short calculation shows that the
local, short time solution away from x = 0.5 is given by

ζloc(t, x) = ζ0(x) +
α

ρ∗

(
1− η|∂xζ0|

)
t. (3.30)

where |∂xζ0| = (1− 2z0). However at x = 0.5, Proposition 1 does not apply, since the front is not
C1 there; hence (2.30) and (2.31) are not valid. We conjecture that at this point, the front moves
forward at full speed α/ρ∗ and, as it catches up with neighboring points in the front, these points
also move forward at full speed. This means that the global front solution for the front is given
by

ζ(t, x) = max

{
ζloc(t, x), z0 +

α

ρ∗
t,

}
, (3.31)

In Figure 6 we show numerical results for this test problem based on the algorithm in (3.17).
We use a grid with Nx = Nz = 800 computational cells and simulate the solution to a time
horizon Tfin = 2. We set z0 = 0.2 (so that |∂xζ0(x)| = 0.6) and let η = 1/1.1. It is clear from
these plots that the analytic solution (3.31) and the numerical solution provide the same position
of the front.

Example 4: Smooth front with small η. We repeat the test problem above, except now the
initial front is given by a smooth function:

ζ0(x) = 0.25 cos(2πx) + 0.3. (3.32)

In order to fulfill the condition η|∂xζ| < 1 we choose η−1 = maxx ζ0(x) + 1 = π/2 + 1.
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(a) initial density profile (b) density profile at t = Tfin = 2

0 0.2 0.4 0.6 0.8 1
0
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0.2
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0.4
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Initial state T=0
Analytical T=2
Numerical T=2

(c) slice at x = 0.5

0.4 0.42 0.44 0.46 0.48 0.5
0
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0.2

0.3
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0.5

0.6
Analytical

Nx=N z=1600

Nx=N z=800

Nx=N z=400

(d) slice at x = 0.5, t = Tfin = 2

Figure 5: Density profiles based on the a simulation of the constant front solution (3.28) with the
scheme in (3.17). The simulations in panels (a)-(c) use Nx = Nz = 800 computational cells, while
in panel (d), numerical solutions are computed at different refinement levels. In the top row, the
analytical front is marked by circles.

In Figure 7 we show numerical results for this test problem based on the algorithm in (3.17).
We use a grid with Nx = Nz = 800 computational cells and simulate the solution to a time
horizon Tfin = 2. As in the previous example, (3.31) can be used to evaluate the location of the
front analytically. The results in Figure 7 demonstrate that the numerical and analytical solutions
agree even when ∂xζ0 is not piece-wise constant.

Example 5: V-shaped front with large η. We consider again the initial condition (3.29)
characterized by a V-shape front. The model parameters are the same as in Example 3, except
that η is now large enough to ensure that η|∂xζ| > 1. In particular |∂xζ| = 0.6, but η = 10. In this
case, we expect stalling for those processors x 6= 0.5; see (2.28). Again at x = 0.5 the solution is
not described by Lemma 1, since there the front is not C1. We expect that the front at this point
will proceed at the maximum speed α/ρ∗ and that the stalled points away front x = 0.5 will also
begin to move at this rate after they have been overtaken. In other words, we conjecture that the
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(a) initial density profile (b) density profile at t = 1 (c) density profile at Tfin = 2
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(d) slice at x = ∆x
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Figure 6: Density profiles based on the simulation of the V-shaped initial front (3.29) with the
scheme in (3.17) using Nx = Nz = 800. The analytic solution is computed using (3.31). In the
top row, the analytical front is marked by circles.

global formula for the solution front is

ζ(t, x) = max

{
ζ0(x), z0 +

α

ρ∗
t

}
. (3.33)

In Figure 8 we show numerical results for a grid with Nx = Nz = 800 computational cells and
a time horizon Tfin = 2. These results agree with the analytical solution in (3.33).

3.3 Variations in the processor rate.

The ultimate purpose of the discrete model in (1.1) is to understand how variations in the processor
rate affect computer performance, and whether these rates can be controlled to achieve a prescribed
objective, such as faster throughput. For the continuum model in (2.7), such a control is specified
via the function α. In this section, we briefly explore the effects of adapting α with the intent of
a more extensive study in later work.

We assume that for all t, ∫
T
α(t, x)dx = ᾱ (3.34)

in order to normalize the control action. Since α is non-negative, so too is ᾱ; we assume further
that ᾱ > 0. Then several choices for α can be envisioned. The simplest choice is to set α equal to
a constant. In this case, the normalization in (3.34) implies that α = ᾱ. For a front-type solution,
this simple choice will be compared with a policy that depends on initial data

ρ0(x, z) = rH(ζ0(x)− z), r < ρ∗, and ζ0(x) > 0, (3.35)
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(a) initial density profile (b) density profile at t = 1 (c) density profile at Tfin = 2
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Figure 7: Density profiles based on the simulation of the V-shaped initial front in (3.29), using
the scheme in (3.17) with Nx = Nz = 800. The analytic solution is computed using (3.31). In
the top row, the analytical front is marked by circles.

Since the slope ∂xζ(t, x) controls the throttling due to neighboring processors, the condition
∂xζ(t, x) = 0 is desirable.

We therefore propose a choice for α that gives priority to processors that are trailing in the
initial configuration. Specifically, we consider

α(x) = Cα ρ∗ (ζmax − ζ0(x)) , (3.36)

where ζmax > maxx∈T ζ0(x) is a fixed constant and Cα, which depends on ζ0, is chosen so that
(3.34) holds. This choice of α will increase the speed of trailing processors

In order to compare the temporal and spatial evolution of ρ based on the policy (3.36) versus
the constant α = ᾱ policy, we compute some quantities of interest

ω1(t, z) :=

∫ t

0

∫
T

Φ(ρ(s, x, z), σ(s, x, z))dxds,

ω2(t, z) :=

∫
T

Φ(ρ(t, x, z), σ(t, x, z)dx,

ω3(t, z) :=

∫ t

0

∫
T
ρ(s, x, z)dxds.

(3.37)

The quantity ω1 measures the cumulative outflow at stage of completion z up to time t; the
quantity ω2 measures the current outflow at stage of completion z; and the quantity ω2 measures
the cumulative part density at stage of completion z. The first two quantities are indicators of the
processed data whereas the last indicator shows the load of the processors, which may be related
to the consumption of energy during computation. Larger values of ω1 are preferable.
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(a) initial density profile (b) density profile at t = 1 (c) density profile at Tfin = 2
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Figure 8: Density profiles based on the simulation of the V-shaped initial front (3.29) with the
scheme in (3.17) using Nx = Nz = 800. The analytical solution is computed using (3.33). In the
top row, the analytical front is marked by circles.

(a) initial data (b) α = 0.5 (c) α in (3.36) (d) Difference

Figure 9: Density profiles for two different policies choices of α with the scheme in (3.17) using
Nx = Nz = 800.

For our numerical tests, we set Tfin = 1 and ᾱ = 0.5. The initial front ζ0(x) is given as in (3.29)
with z0 = 0.1, in which case Cα ≈ 0.5/0.575. The quantities of interest are evaluated for z = 0.5
and z = 0.75. Figure 9 shows the initial density profile and the profiles at Tfin = 1 for each of the
two policies. For the policy based on (3.36), the control has been been active long enough to push
the processors that were initially trailing ahead of the others. This means the control has been
on for too long and should have been modified or turned off at an earlier time. While the results
of the two policies appear similar, the quantities of interest wi(t), i = 1, . . . , 3 displayed in Figure
10 demonstrate the differences. In particular, with respect to w1, the policy in (3.36) outperforms
the constant α policy.
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Figure 10: Comparison of the quantities of interest wi, i = 1, 2, 3 given in (3.37).

4 Summary

In this paper, we have analyzed a recently derived mathematical model for the evolution of pro-
cessed data in large-scale, asynchronous computers [1]. After a suitable reformulation, the model
is expressed as a system of partial differential equations of mixed type. It is possible to prove
existence of (discontinuous) solutions to this system for a particular class of initial and boundary
conditions. These solutions take the form of moving fronts. A numerical scheme for the reformu-
lated system has also been designed based on a relaxation approximation. Numerical simulations
based on this scheme demonstrate qualitative agreement with theoretical findings.

We have also briefly explored the effects of local processor speed on quantities of interest pre-
dicted by the model. In future work, we intend to investigate more extensively control mechanisms
for optimizing important objectives related to performance of the large-scale computers.

Acknowledgment

This work has been supported by HE5386/14,15,18-1, ID390621612 Cluster of Excellence Internet
of Production (IoP), the US National Science Foundation, RNMS (KI-Net) grant 11-07444, and
the U.S. Department of Energy, Office of Advanced Scientific Computing Research. The work of
CDH was performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle,
LLC under Contract No. De-AC05-00OR22725.

References

[1] Barnard, R. C. and Hauck C. D. and Huang, K., A Discrete and Continuum Model of Data
Flow, arXiv preprint arXiv:1910.09305, 2019.

18



[2] Dafermos, C. M., Polygonal approximations of solutions of the initial value problem for a
conservation law, J. Math. Anal. Appl., Vol. 38, 1972.

[3] Dafermos, C. M., Hyperbolic conservation laws in continuum physics, Springer Publisher,
Series: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences], Vol. 325, 2nd Edition, 2005

[4] Dongarra, J. and Hittinger, J. and Bell, J. and Chacón, L. and Falgout, R. and Heroux, M.
and Hovland, P. and Ng, E. and Webster, C. and Wild. S, Applied mathematics research for
exascale computing, Technical report, U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research Program, 2014.

[5] Evans, L. C., Partial differential equations, American Mathematical Society, 2010.

[6] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comp. Phys., 49,
357–393, 1983.

[7] Pareschi, L. and Russo, G., Implicit–explicit Runge–Kutta schemes and applications to hy-
perbolic systems with relaxation, J. Sci. Comput., 25, 129–155, 2005.

[8] Stevens, R. and White, A., Architectures and technology for extreme scale computing, In
ASCR Scientific Grand Challenges Workshop Series, 2009.

19


	IGPM494-Deckblatt
	IGPM494-Original
	Introduction
	Qualitative properties of the mathematical model
	Special solutions for front propagation
	Existence of Solutions
	Properties of fronts and their associated weak solutions 


	Numerical simulations 
	Discretization
	Simulation results 
	Variations in the processor rate. 

	Summary


