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Abstract

The Ensemble Kalman Filter method can be used as an iterative particle numerical scheme
for state dynamics estimation and control–to–observable identification problems. In applica-
tions it may be required to enforce the solution to satisfy equality constraints on the control
space. In this work we deal with this problem from a constrained optimization point of view,
deriving corresponding optimality conditions. Continuous limits, in time and in the number
of particles, allows us to study properties of the method. We illustrate the performance of the
method by using test inverse problems from the literature.
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37N35 (Dynamical systems in control), 35Q93 (PDEs in connection with control and optimization)

Keywords Inverse problems, constrained optimization, nonlinear filtering methods, DAE sys-
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1 Introduction

We are concerned with the following abstract inverse problem or parameter identification problem

y = G(u) + η (1)

where G : X → Y is the (possible nonlinear) forward operator between Hilbert spaces X and
Y , u ∈ X is the control, y ∈ Y is the observation and η is observational noise. Given noisy
measurements or observations y and the known mathematical model G, we are interested in finding
the corresponding control u. Typically, the observational noise η is not explicitly known but only
information on its distribution is available. Inverse problems, in particular in view of a possible ill–
posedness, have been discussed in vast amount of literature and we refer to [12] for an introduction
and further references.
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We are interested in particle methods for solving numerically (1). In particular, in the following
we will investigate the Ensemble Kalman Filter (EnKF). While this method has already been
introduced more than ten years ago [14], recent theoretical progress [4, 5, 9, 10, 11, 17, 21, 30, 31]
have been done. In order to set up the mathematical formulation of the EnKF we consider to have
the finite dimensional case X = Rd and Y = RK , with d,K ∈ N.

Solving inverse problems or identification problems arising in realistic applications usually requires
to consider constraints on the unknown control, as well as on the data. This has been demonstrated
in the recent literature in several research fields, as for instance in weather forecasting [23], milling
process [33] and process control [34]. Including constraints in Kalman filtering is usually done
via optimization techniques, see e.g. [3]. Recently, algorithms for the ensemble Kalman filter for
constrained problems have been studied in [1] where the authors propose to solve the constrained
compromise step for all the ensemble members that do not fulfill the constraints. Notice that
no optimality conditions have been formally derived and that the solution of a large number of
constrained optimization problems may be required.

Here, we follow a similar approach to [1] by incorporating equality constraints in the compromise
or update step of the unconstrained EnKF. Using the Lagrange theory for optimization problems,
we derive first order necessary optimality conditions and discuss the link to game theory. The
formulation of the optimality conditions shows that the unconstrained EnKF automatically satisfies
linear equality constraints. Our analysis is therefore mainly focused to the case of nonlinear equality
constraints. Under suitable scaling assumptions, we then compute the corresponding continuous
time limit of the optimality conditions, which leads to a system of differential algebraic equations
(DAEs). This reformulation allows us to perform an analysis of the method. A further continuous
limit is analyzed in the mean–field limit, i.e. in the regime of infinitely many ensembles.

The paper is organized as follows. In Section 2 we briefly review the derivation of the EnKF and then
we compute first order necessary optimality conditions for the constrained optimization problem,
assuming only equality constraints. In Section 3 we study continuous limits, in time and in the
number of ensembles, of the optimality conditions, providing an analysis for the resulting system
of DAEs and mean–field equation. In Section 4 we investigate the ability of the method to provide
solution to an inverse problem with two types of equality constraints. Finally, we summarize the
results in Section 5.

2 Ensemble Kalman filter for constrained problems

A particular numerical method for solving (1) is the Ensemble Kalman Filter (EnKF), which has
been originally introduced to estimate state variables, parameters, etc. of stochastic dynamical
systems. The estimations are based on system dynamics and measurement data that are possibly
perturbed by known noise. Therefore, in order to apply the EnKF to the inverse problem (1),
this is usually rewritten as a partially observed and artificial dynamical system based on state
augmentation, e.g. cf. [1, 2, 22].

Let us introduce the new variable w = G(u), so that (1) can be reformulated as

w = G(u)

y = w + η.
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Taking yn+1 = y and ηn+1 = η as the given data and the given noise, respectively, we obtain the
following dynamical system:

un+1 = un

wn+1 = G(un)

yn+1 = wn+1 + ηn+1.

(2)

Remark 2.1. We stress the fact that here n is an artificial time index, while in the case of a
dynamic inverse problem physical time is included in G. Moreover, in the following we keep the
notation yn+1 even if we consider the free noise case where no perturbation in time is added to the
initial noisy observation.

In the following we briefly recall the derivation of the EnKF. We use a compact formulation of the
artificial dynamic process by defining v = (u,w)ᵀ ∈ Rd+K , Ξ(v) = (u,G(u))ᵀ ∈ Rd+K and the
observational matrices H = [0, I] ∈ RK×(d+K), H⊥ = [I,0] ∈ Rd×(d+K). We note that Hv = w and
H⊥v = u. Then, we rewrite (2) in the typical setting where the EnKF is applied for the solution
of the inverse problem (1):

vn+1 = Ξ(vn)

yn+1 = Hvn+1 + ηn+1.
(3)

Let us introduce {vj,n}Jj=1 the J particles (ensembles) at time n. The objective of the EnKF is to

reach a compromise vj,n+1 between the background estimate v̂j,n+1 of the model and additional
information provided by data yn+1, for each ensemble member. The state of the particles at time
n+ 1 is predicted using the dynamics model (3) to obtain

v̂j,n+1 = Ξ(vj,n), j = 1, . . . , J. (4)

Let Cn+1 ∈ R(d+K)×(d+K) and Γ−1 ∈ RK×K be the two covariance matrices characterizing the
uncertainties on prediction v̂j,n+1 and data yn+1, respectively. In particular, we assume η ∼
N (0,Γ−1) and

Cn+1 =
1

J

J∑
k=1

(v̂j,n+1 − v̂
n+1

)⊗ (v̂j,n+1 − v̂
n+1

), v̂
n+1

=
1

J

J∑
k=1

v̂j,n+1.

Throughout the work, we also assume that Γ−1 is positive definite. It is also easy to check that

Cn+1 =

[
Cn+1

uu Cn+1
uw

Cn+1ᵀ

uw Cn+1
ww

]
(5)

where, using the definition of Ξ,

Cn+1
uu =

1

J

J∑
k=1

(uj,n − un)⊗ (uj,n − un), Cn+1
uw =

1

J

J∑
k=1

(uj,n − un)⊗ (G(uj,n)− Gn)

Cn+1
ww =

1

J

J∑
k=1

(G(uj,n)− Gn)⊗ (G(uj,n)− Gn)
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are the covariance matrices depending on the ensemble set {uj,n}Jj=1 at iteration n and on {G(uj,n)}Jj=1,

i.e. the image of {uj,n}Jj=1 at iteration n, and where we define by un and Gn the mean of {uj,n}Jj=1

and {G(uj,n)}Jj=1, namely

un =
1

J

J∑
j=1

uj,n, Gn =
1

J

J∑
j=1

G(uj,n).

Remark 2.2. The covariance matrix of the ensembles is in fact computed by information at iter-
ation step n. However, we keep the notation Cn+1

uu .

The compromise that is sought should have vj,n+1 close to v̂j,n+1 and Hvj,n+1 close to yn+1. Then
vj,n+1 is defined by the solution of the following minimization problem:

vj,n+1 = arg min
v
J j,n(v) :=

1

2

∥∥yn+1 −Hv
∥∥2

Γ−1 +
1

2

∥∥v − v̂j,n+1
∥∥2

Cn+1 . (6)

We notice that the first term of J j,n(v) corresponds to the least squares functional Φ given by

Φ(u,y) :=
1

2

∥∥∥Γ 1
2 (y − G(u))

∥∥∥2 . (7)

Further, J j,n(v) can be written as

J j,n(v) =
1

2
vᵀ(HᵀΓH + Cn+1−1

)v − (Cn+1−ᵀ

v̂j,n+1 + HᵀΓᵀyn+1)ᵀv + J (8)

where J collects all the terms independent on v. The EnKF update formula is derived by imposing
first order necessary condition ∇vJ j,n(v) = 0. For an extensive discussion, we refer e.g. to [1, 22].

2.1 Equality constraints on the control space

We consider imposing equality constraints in the space of the control and formulate those as

A(u) = 0Rm (9)

where A is the vector valued differentiable operator A : u ∈ Rd 7→ A(u) ∈ Rm, containing the
m ≤ d constraint values.

Remark 2.3. Throughout the paper, we use the subscript (`), ` = 1, . . . , N , to denote the `–th
component of vectors and vector–valued functions on RN .

Let JA =
[
∇uA(1), . . . ,∇uA(m)

]ᵀ
be the m × d Jacobian matrix of the operator A. In order to

satisfy constraint qualification for equality constraints, we require that if u∗ is a feasible point then
JA(u∗) has full rank, i.e. m. In other words, u∗ is a regular point of the constraint.

Theorem 2.4 (see [16, 24]). If u∗ is a feasible point and JA(u∗) is a full rank matrix, the constraint
qualification LICQ holds at u∗. Hence, the Lagrange multipliers theorem gives necessary optimality
condition.
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In order to formulate the constrained optimization problem associated to the minimization of (8),
we define also the extension of the operator A to the space Rd+K as Ã : v ∈ Rd+K 7→ Ã(v) =
A(H⊥v) ∈ Rm. Then observe that the Jacobian JÃ ∈ Rm×(d+K) of the operator Ã is JÃ = [JA,0]
with 0 ∈ Rm×K since ∂v(`)

A(k) = 0, for ` = d+ 1, . . . , d+K and k = 1, . . . ,m. Moreover, if u∗ is
feasible and JA(u∗) has rank m, then JÃ(u∗) has also rank m.

The optimization step becomes then

min
v
J j,n(v), subject to Ã(v) = 0Rm , j = 1, . . . , J. (10)

It is clear that (10) requires to solve J constrained optimization problems sequentially, at each
iteration step n. We point out that the objective functional (8) is convex.

Proposition 2.5. Let vj,n+1 be an optimal solution to the constrained optimization problem (10)
for a given j and n, satisfying the constraint qualification for the differentiable equality constraint
defined by Ã. Then uj,n+1 = H⊥vj,n+1 satisfies the first order necessary optimality conditions

uj,n+1 =uj,n + Cn+1
uw (Cn+1

ww + Γ−1)−1(yn+1 − G(uj,n))

+ Cn+1
uw (Cn+1

ww + Γ−1)−1Cn+1ᵀ

uw Jᵀ
A(uj,n+1)λj,n+1 −Cn+1

uu Jᵀ
A(uj,n+1)λj,n+1

A(uj,n+1) =0Rm .

(11)

Proof. We apply Lagrange multiplier technique and the constrained minimum of J j,n(v) corre-
sponds to a stationary point of the Lagrangian function

L(v,λ) = J j,n(v) + λᵀÃ(v)

where the vector λ ∈ Rm contains the Lagrange multipliers. Variations of the Lagrangian function
L with respect to v and λ are

∇vL(v,λ) = (HᵀΓH + Cn+1−1

)v − (HᵀΓᵀyn+1 + Cn+1−ᵀ

v̂j,n+1) + (λᵀJÃ(v))ᵀ

∇λL(v,λ) = Ã(v).

If (vj,n+1,λj,n+1) ∈ Rd+K×Rm is an optimal solution then it satisfies∇vL(vj,n+1,λj,n+1) = 0Rd+K
and ∇λL(vj,n+1,λj,n+1) = 0Rm , that are the first order necessary optimality conditions.

Due to the assumption of a regular point, the system of optimality conditions is determined. In
particular, imposing ∇vL(vj,n+1,λj,n+1) = 0Rd+K , it is possible to determine

vj,n+1 = (HᵀΓH+Cn+1−1

)−1(HᵀΓᵀyn+1+Cn+1−ᵀ

v̂j,n+1)−(HᵀΓH+Cn+1−1

)−1Jᵀ
Ã(vj,n+1)λj,n+1.

(12)
Now we apply to the term multiplying v̂j,n+1 and to the last term in (12) the Woodbury matrix
identity:

(M + UNV)−1 = M−1 −M−1U(N−1 + VM−1U)−1VM−1,

for all matrices M, U, N, V. While for the term multiplying yn+1 in (12), we observe that

(HᵀΓH + Cn+1−1

)−1HᵀΓᵀ = Cn+1Hᵀ(HCn+1Hᵀ + Γ−1)−1.
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Then we get

vj,n+1 =v̂j,n+1 + Cn+1Hᵀ(HCn+1Hᵀ + Γ−1)−1(yn+1 −Hv̂j,n+1)

− (Cn+1 −Cn+1Hᵀ(HCn+1Hᵀ + Γ−1)−1HCn+1)Jᵀ
Ã(vj,n+1)λj,n+1

If we multiply the previous equation by the observation matrix H⊥, we obtain the update formula
for the control:

uj,n+1 = H⊥vj,n+1 =H⊥v̂j,n+1 + H⊥Cn+1Hᵀ(HCn+1Hᵀ + Γ−1)−1(yn+1 −Hv̂j,n+1)

−H⊥(Cn+1 −Cn+1Hᵀ(HCn+1Hᵀ + Γ−1)−1HCn+1)Jᵀ
Ã(vj,n+1)λj,n+1.

This can be further simplified by noticing that

H⊥v̂j,n+1 = uj,n, H⊥Cn+1Hᵀ = Cn+1
uw , HCn+1Hᵀ = Cn+1

ww , Hv̂j,n+1 = G(uj,n)

HCn+1Jᵀ
Ã(vj,n+1) = Cn+1ᵀ

uw Jᵀ
A(uj,n+1), H⊥Cn+1Jᵀ

Ã(vj,n+1) = Cn+1
uu Jᵀ

A(uj,n+1).

We finally obtain

uj,n+1 =uj,n + Cn+1
uw (Cn+1

ww + Γ−1)−1(yn+1 − G(uj,n))

+ Cn+1
uw (Cn+1

ww + Γ−1)−1Cn+1ᵀ

uw Jᵀ
A(uj,n+1)λj,n+1 −Cn+1

uu Jᵀ
A(uj,n+1)λj,n+1,

coupled to A(uj,n+1) = 0Rm , which provide a set of necessary optimality conditions for the con-
strained optimization problem (10).

Observe that control update (11) is the classical ensemble Kalman filter update formula, given by
the first two terms in the right hand side, perturbed by the last two terms due to the constraint (9).
Moreover, (11) depends also on the multipliers and their values must be determined as part of the
solution

Corollary 2.6. Consider the assumptions of Proposition 2.5. If the feasible set is convex, then the
optimization problem (10) is convex, and this implies that the necessary optimality conditions (11)
are also sufficient. In particular, this holds true for affine equality constraints.

2.1.1 A Game Theory viewpoint and existence results

Proposition 2.5 is stated for a fixed ensemble j at a fixed iteration n, by assuming that the other
ensembles play a role of parameters in the optimization problem. This is closely related to the fact
that problem (10) can be seen from a game theoretic point of view. In fact, if we interpret each
ensemble j ∈ {1, . . . , J} as a player which chooses a control variable vj,n+1 in his set of feasible
controls given by the constraint Ã(vj,n+1) = 0 while seeking to minimize his payoff function J j,n
which depends, via the covariance matrix Cn+1, on all other players’ controls v−j,n+1. Here, we
indicate v−j,n+1 = {vk,n+1 : k = 1, . . . , J, k 6= j}. Observe that each player has no knowledge on
the strategy adopted by other players. Moreover, we notice that we are in presence of a repeated
game.
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In a non–cooperative and simultaneous game, we recall that {vj,n+1 : j = 1, . . . , J} represents a
Nash equilibrium if for every v satisfying the constraint one has J j,n(v,v−j,n+1) ≥ J j,n(vj,n+1,v−j,n+1),
for j = 1, . . . , J .

In general, a Nash equilibrium may not exist and need not to be unique. Conditions for the existence
of Nash equilibrium are recalled in the following theorem.

Theorem 2.7 (Nikaidô and Isoda [28]). Let Γ = {Xi, fi}Ni=1 be a game with nonempty, compact and
convex strategy sets Xi ⊂ Rni and continuous payoff functions fi : Xi → R, which are quasiconvex
in xi for every fixed x−i for all i = 1, . . . , N . Then Γ has (at least) one Nash equilibrium.

We recall that quasiconvexity is implied by convexity. Then the Nikaidô and Isoda Theorem is
satisfied for problem (10) if the feasible set is convex. In fact, the payoff function (8) is convex

since HᵀΓH + Cn+1−1

is positive semidefinite, and consequently J j,n is quasiconvex for each
j = 1, . . . , J . In particular, there exists at least one equilibria for affine equality constraints. For
further references, we refer to [7, 15, 32].

2.2 The case of linear equality constraints

Let us assume that the constraint A on the control space is linear. Then we can write A(u) = Au,
with A ∈ Rm×d. In this case we need to assume that A ∈ Rm×d is a full row rank matrix in order
to have satisfied the condition of regular point. The linearity of the equality constraint guarantees
an expression to evaluate the multipliers explicitly by substituting the update formula given in (11)
into the constraint (9). The following result holds true in the case of linear equality constraints.

Proposition 2.8. Let A : Rd → Rm be a linear operator and {uj,0}Jj=1 be a set of initial ensembles

such that A(uj,0) = 0Rm . Let {uj,n+1}Jj=1 be the ensemble set computed via the unconstrained

ensemble Kalman filter update. Then A(uj,n+1) = 0Rm , ∀ j = 1, . . . , J .

Proof. We prove the statement by induction on n. Notice that JA = Aᵀ since the constraint is
linear. It is easy to check that if {uj,n}Jj=1 satisfy the constraint then Cn+1ᵀ

uw Aᵀ = 0RK×m and

Cn+1ᵀ

uu Aᵀ = 0Rd×m . Then the update formula given in (11) reduces to

uj,n+1 = uj,n + Cn+1
uw (Cn+1

ww + Γ−1)−1(yn+1 − G(uj,n))

which represents the unconstrained ensemble Kalman filter formula. Substituting into the constraint
we have Auj,n+1 = Auj,n = 0Rm since also ACn+1

uw = 0Rm×K .

We provide an experimental evidence of the result in Proposition 2.8. We consider the inverse
problem of finding the force function of a linear elliptic equation in one spatial dimension assuming
that noisy observation of the solution to the problem are available. This is a standard problem in
the mathematical literature on the EnKF for inverse problems, e.g. see [1, 22, 30].

The problem is prescribed by the following one dimensional elliptic PDE

− d2

dx2
p(x) + p(x) = u(x), x ∈ [0, π] (13)
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Figure 1: Application of the unconstrained ensemble Kalman filter based on the discrete formu-
lation, assuming that the control function satisfies a linear equality constraint given as symmetry
with respect to x = π

2 .

endowed with boundary conditions p(0) = p(π) = 0. We assign a continuous exact control u(x),
being symmetric with respect to x = π

2 , namely u(x) = u(−x + π). Introducing a uniform mesh
consisting of d = K = 28 equidistant points on the interval [0, π], we let u† ∈ Rd be the vector of
the evaluations of the control function u(x) on the mesh. Noisy observations y ∈ RK are simulated
as

y = p + η = Gu† + η,

where G ∈ RK×d is the finite difference discretization of the continuous linear operator defining
the elliptic PDE (13). For simplicity we assume that η is a Gaussian white noise, more precisely
η ∼ N (0, γ2I) with γ ∈ R+ and I ∈ Rd×d is the identity matrix. We are interested in recovering
the control u† ∈ Rd from the noisy observations y ∈ RK only.

Let us consider u(x) = sin(3x), ∀x ∈ [0, π]. In Figure 1 we show the solution to this problem pro-
vided by the unconstrained ensemble Kalman filter. The initial ensemble set {uj,0}Jj=1 is artificially
built in order to satisfy symmetry with respect to x = π

2 , after being sampled from a Brownian

bridge, e.g. as in [30]. This implies that m = d
2 = 27 constraints are taken into account. We solve

the inverse problem by updating the ensemble members with

uj,n+1 = uj,n + Cn+1
uw (Cn+1

ww + Γ−1)−1(y −G(uj,n))

for J = 100 and a noise level γ = 0.01. The filter method converges, meeting the discrepancy
principle in very few iterations, and allowing each ensemble and the corresponding mean to satisfy
the constraint.

Proposition 2.8 guarantees that the constrained optimization problem (10) is solved by the uncon-
strained ensemble Kalman filter when the constraint A is linear, independently on the linearity
of the model G. As consequence, analysis and continuous limits of the ensemble Kalman filter
with linear equality constraints coincide with the recent results [5, 17, 21, 30, 31] for unconstrained
problems, and in the following we will focus on nonlinear constraints only.
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3 Continuous limits of the constrained ensemble Kalman fil-
ter

In this section we investigate continuous limits of the constrained version of the ensemble Kalman
filter, when nonlinear equality constraints are taken into account. These limits allow us to reformu-
late the fully discrete filter into the framework of ordinary and partial differential equations, thus
making the method computationally simpler and amenable to an analysis of its properties.

3.1 Continuous time limit

In order to compute the continuous time limit equation, we make the following assumptions, see
e.g. [21, 30].

Scaling assumption 1. The covariance matrix Γ−1, accounting for uncertainties due to data, is
scaled by a scalar parameter ∆t.

Scaling assumption 2. The multipliers λj,n+1 are scaled as ∆tλj,n+1.

We notice that the second assumption is in fact not restrictive since multipliers are unique up to a
multiplicative constant.

Proposition 3.1. Under the scaling assumptions 1 and 2, the constrained ensemble Kalman fil-
ter (11) formally converges to the semi–explicit system of differential algebraic equations (DAEs)

d

dt
uj = CuwΓ(y − G(uj))−CuuJᵀ

A(uj)λj

0Rm = A(uj(t)),
(14)

in the limit ∆t→ 0+.

Proof. Using the scaling assumptions, the solution (11) to the constrained optimization problem
can be reformulated as

uj,n+1 =uj,n + ∆tCn+1
uw (∆tCn+1

ww + Γ−1)−1(yn+1 − G(uj,n))

−∆tCn+1
uu Jᵀ

A(uj,n+1)λj,n+1 +R(uj,n+1,λj,n+1)
(15)

where R is a term of order O(∆t2), in fact

R(uj,n+1,λj,n+1) = ∆t2Cn+1
uw (∆tCn+1

ww + Γ−1)−1Cn+1ᵀ

uw Jᵀ
A(uj,n+1)λj,n+1.

Now we interpret the parameter ∆t as an artificial time step for the iteration, i.e. we take ∆t ∼ N−1t
where Nt is the maximum number of iterations. Assume then uj,n ≈ uj(n∆t) and λj,n ≈ λj(n∆t)
for n ≥ 0 and j = 1, . . . , J . Computing the limit ∆t → 0+, (15) is a first order implicit–explicit
approximation of the following system of ordinary differential equations (ODEs):

d

dt
uj = CuwΓ(y − G(uj))−CuuJᵀ

A(uj)λj , j = 1, . . . , J. (16)
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Imposing that the constraint needs to be satisfied at each time t > 0, we obtain the system of
DAEs (14) endowed with initial conditions uj,0 = uj(0) ∈ Rd such that A(uj,0) = 0Rm .

In the previous proposition we have seen (11) as first order implicit–explicit time discretization
of (14). However, we stress again the fact that Cn+1

uu is actually computed with information at
time level n, and therefore explicitly, while it appears in the term which is treated implicitly.
Nevertheless, Cn+1

uu can be written in terms of the average quantities, which typically change in a
small time scale, justifying therefore the use of an explicit evaluation.

Corollary 3.2. Assume that G = G, with G ∈ L(Rd,RK), with L(Rd,RK) space of linear operators
mapping Rd to RK . The DAE system (14) can be written in terms of the gradient of the least squares
functional Φ (7), obtaining

d

dt
uj = −Cuu(∇uΦ(uj ,y) + Jᵀ

A(uj)λj)

0Rm = A(uj(t)).
(17)

Proof. Due to the linearity of the model G, we observe that Cuw = CuuGᵀ and use ∇uΦ(uj ,y) =
−GᵀΓ(y −Guj) to rewrite (14) as (17).

In view of the discussion in Section 2.2, it is easy to show that in the case of a linear equality
constraint A(u) = Au ∈ Rm, the DAE system (17) reduces to

d

dt
uj = −Cuu∇uΦ(uj ,y) (18)

which is the preconditioned gradient flow equation for the least square functional Φ, studied
e.g. in [5, 30, 31]. We expect that (18) still allows each ensemble member to satisfy the linear
constraint if the initial condition is feasible.

We observe that the differential equation in (17) can be written as

d

dt
uj = −Cuu∇uΨ(uj ,λj ,y)

Ψ(uj ,λj ,y) = Φ(uj ,y) +

m∑
k=1

λj(k)A(k)(u
j)

(19)

and therefore it still has the structure of a preconditioned gradient type flow, where the flow Φ
is perturbed along the direction of a linear combination of the constraints. However, while Φ is
convex, Ψ is not necessarily convex even if the constraint is since the method lacks information
about the sign of the multipliers.

3.1.1 Analysis in the case of a linear model

DAE systems are usually characterized by two indices, namely the perturbation index and the
differentiation index. Special DAEs are the Hessenberg–type, having the property that perturbation
and differentiation indices coincide. In particular, a DAE is said to be of high order index if their
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perturbation and differentiation indices are greater than or equal to 2. Under suitable sufficient
conditions it is possible to guarantee that a DAE has indices equal to 1 [18].

Proposition 3.3. Let I = [t0, T ] ⊂ R, t0 < T be a compact time interval. Let x : I → Rdx and
y : I → Rdy . Consider the semi–explicit DAE system

d

dt
x(t) = f(t,x(t),y(t)),

0Rdy = g(t,x(t),y(t)).

Assume that

(a) f is Lipschitz continuous with respect to x and y with Lipschitz constant Lf uniformly with
respect to t;

(b) g is continuously differentiable and Jy
g = [∇yg1, . . . ,∇ygdy ]ᵀ is non–singular and bounded for

all (t,x,y) ∈ I × Rdx × Rdy .

Then, the semi–explicit DAE system has perturbation index 1. If additionally the inverse of Jy
g is

bounded for all (t,x,y) ∈ I × Rdx × Rdy , then the semi–explicit DAE system has differentiation
index 1.

Using Proposition 3.3, the following results hold true for (17), in which we recall that the dependence
of the algebraic equation on the multipliers is given implicitly by the differential variables, namely
A(uj(t)) is in fact A(uj(t;λj)).

Corollary 3.4. Consider the semi–explicit DAE system (17) for each fixed j = 1, . . . , J . Assume
that condition (b) in Proposition 3.3 holds for the vector valued function A with respect to the
algebraic variables λ. Then, system (17) has perturbation index 1. If additionally the inverse of

Jλj

A is bounded for all (uj ,λj) ∈ Rd × Rm, then system (17) has differentiation index 1.

Proof. Continuous differentiability of the vector valued function A with respect to the dynamical
variable uj gives a sufficient condition to the right hand side of the dynamical equation in (17) to
be Lipschitz continuous with respect to uj and λj , for each fixed j = 1, . . . , J . Then, the statement
follows as application of Proposition 3.3.

Corollary 3.5. For each fixed j = 1, . . . , J , consider the DAE system (17) with initial condition

uj(0) = uj,0. Let (ũj , λ̃
j
) be the solution of the perturbed system

d

dt
ũj = −Cũũ∇ũΨ(ũj , λ̃

j
,y) + δ1(t), ũj(0) = ũj,0

0Rm = A(ũj) + δ2(t)

on t ∈ [0, T ] ⊂ R and with Ψ defined in (19). Then, under the assumptions of Corollary 3.4,
∃L1, L2 ≥ 0 such that the following bound holds true:

∥∥uj(t)− ũj(t)
∥∥ ≤ (∥∥uj,0 − ũj,0

∥∥+ T

(
L1L2 max

0≤τ≤t
‖δ2(τ)‖+ max

0≤τ≤t
‖δ1(τ)‖

))
exp (L1(1 + L2)t)

11



Proof. The assumptions of Corollary 3.4 guarantee that the implicit function theorem can be applied
to the algebraic equation 0Rm = A(ũj) + δ2. Therefore, we can solve for λj ∈ Rm, ∀ t ∈ [0, T ],

ũj ∈ Rd, obtaining λ̃
j

= Λ(ũj , δ2). Moreover, Λ is locally Lipschitz continuous with respect to ũj

and δ2 with Lipschitz constant L2. Then for the multipliers we get the bound∥∥∥λj(t)− λ̃j(t)∥∥∥ =
∥∥Λ(uj(t),0Rm)−Λ(ũj(t), δ2)

∥∥ ≤ L2

(∥∥uj(t)− ũj(t)
∥∥+ ‖δ2(t)‖

)
.

Let L1 be the Lipschitz constant of the right–hand side of the dynamical equation. We have

∥∥uj(t)− ũj(t)
∥∥ ≤∥∥uj,0 − ũj,0

∥∥+ L1

∫ t

0

∥∥uj(τ)− ũj(τ)
∥∥+

∥∥∥λj(τ)− λ̃j(τ)
∥∥∥dτ +

∥∥∥∥∫ t

0

δ1(τ)dτ

∥∥∥∥
≤
∥∥uj,0 − ũj,0

∥∥+ L1 (1 + L2)

∫ t

0

∥∥uj(τ)− ũj(τ)
∥∥dτ

+ L1L2

∫ t

0

‖δ2(τ)‖ dτ +

∫ t

0

‖δ1(τ)‖dτ.

Then the statement follows easily by application of the Gronwall’s lemma.

The DAE system (17) is derived by starting from the first order necessary optimality conditions
stated in Proposition 2.5. We recall that these conditions are also sufficient if the feasible set
is convex, see Corollary 2.6. Now we study the large time behavior of the solution of the DAE
system (17).

Let us introduce the following notation. We define m(t) and m(t) be the mean and the energy of
the ensembles, respectively, at time t ≥ 0, namely

m(t) =
1

J

J∑
j=1

uj(t), m(t) =
1

J

J∑
j=1

uj(t)⊗ uj(t).

Further, for each j = 1, . . . , J , we define

ej(t) = uj(t)−m(t), rj(t) = uj(t)− u∗ (20)

be the ensemble spread and the residual to a value u∗, respectively. We observe that the evolution
in time of m and m are governed by

d

dt
m(t) = −Cuu

∇uΦ(m,y) +
1

J

J∑
j=1

Jᵀ
A(uj)λj


= −Cuu

∇uΦ(m,y) +

m∑
k=1

1

J

J∑
j=1

λj(k)∇uA(k)(u
j)

 ,

d

dt
m(t) = −2Cuu

∇uΦ (m,y ⊗m) +
1

J

J∑
j=1

Jᵀ
A(uj)λj ⊗ uj


(21)
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where we have used the linearity of ∇uΦ. While the evolution in time of ej is governed by

d

dt
ej(t) = −Cuu

(
GᵀΓGej + Jᵀ

A(uj)λj − 1

J

J∑
`=1

Jᵀ
A(u`)λ`

)

= −Cuu

(
GᵀΓGej +

m∑
k=1

λj(k)∇uA(k)(u
j)−

m∑
k=1

1

J

J∑
`=1

λ`(k)∇uA(k)(u
`)

)
, j = 1, . . . , J,

(22)
respectively. The covariance matrix can be written in terms of the mean and the energy of the
ensembles as

Cuu(t) :
(
u1(t), . . . ,uJ(t)

)
∈ Rd × · · · × Rd 7−→ m(t)−m(t)⊗m(t) ∈ Rd×d. (23)

Equations (21) and (22) are coupled with J algebraic equations imposing the validity of the con-
straint for each ensemble member. In particular, we stress the fact that the systems for the ensemble
mean, energy and spread are not closed, due to the presence of the multipliers and since the con-
straint is nonlinear and needs to be satisfied by each ensemble member. This requires the knowledge
of the evolution in time of the ensembles. Further, it is not ensured that the mean of the ensemble
satisfies the constraint.

We prove the following results for the residuals in the space of the control.

Proposition 3.6. Let u∗ be an optimal solution of the minimization problem

min
u∈Rd

Φ(u,y) subject to A(u) = 0Rm

for a given y ∈ RK . Let uj,0 ∈ Rd be an initial condition of the DAE system (17) such that
A(uj,0) = 0Rm , for all j = 1, . . . , J . Then the steady state (uj,∞,λj,∞) ∈ Rd ×Rm is a KKT point
of the minimization problem provided that C∞uu is positive definite. Moreover, if A(u) = 0Rm is a
convex feasible domain, then uj,∞ provides a first order approximation of u∗ and ‖rj(t)‖ → 0 as
t→∞.

Proof. We have that the steady state (uj,∞,λj,∞) of the DAE system (17) solves

0Rd = ∇uΦ(uj,∞,y) +

m∑
k=1

λj,∞(k) ∇uA(k)(u
j,∞), 0Rm = A(uj,∞)

due to the hypothesis of positive definiteness of C∞uu. For a given y ∈ RK , this is a KKT system and
they are the first order necessary optimality conditions for uj,∞ as solution to the minimization
problem minu∈Rd Φ(u,y) subject to A(u) = 0Rm . If the set A(u) = 0Rm is convex, the KKT
conditions are also sufficient. Then uj,∞ is a solution of the minimization problem, and ‖rj(t)‖ → 0
as t→∞.

Since the typical estimator of the EnKF is provided by the mean of the ensemble, we discuss
properties of the ensemble mean.
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Proposition 3.7. Let u∗ = {uj,∗}Jj=1 be an optimal solution of the minimization problem

min
u1,...,uJ

Φ(m,y) subject to A(u1) = · · · = A(uJ) = 0Rm

for a given y ∈ RK . Let u0 = {uj,0}Jj=1 be an initial condition such that A(uj,0) = 0Rm , for all

j = 1, . . . , J . Then the steady state (m∞,λj,∞) ∈ Rd × Rm is a KKT point of the minimization
problem provided that C∞uu is positive definite. Moreover, if A(u) = 0Rm is a convex feasible domain,
then m∞ provides a first order approximation of u∗ and ‖m(t)− u∗‖ → 0 as t→∞.

Proof. We have that the steady state (m∞,λj,∞) solves

0Rd = ∇uΦ(m∞,y) +

m∑
k=1

1

J

J∑
j=1

λj,∞(k) ∇uA(k)(u
j,∞), 0Rm = A(uJ,∞) = · · · = A(u1,∞)

due to the hypothesis of positive definiteness of Cuu and where the uj,∞’s are the steady states
of (17). For a given y ∈ RK , this is a KKT system and they are the first order necessary optimality
conditions for m∞ as solution to the minimization problem minu Φ(m,y) subject to A(u1) = · · · =
A(uJ) = 0. If the set A(u) = 0Rm is convex, the KKT conditions are also sufficient. Then m∞ is
a solution of the minimization problem, and ‖m(t)− u∗‖ → 0 as t→∞.

Remark 3.8. The optimization problems in Proposition 3.6 and Proposition 3.7 are the same if
the constraint is linear.

From Proposition 3.7 it is clear that the steady state of the mean of the ensembles depends on
the steady states of the ensembles. Moreover, Proposition 3.7 does not guarantee that the mean
of the ensembles at equilibrium satisfies the constraint. A sufficient condition to guarantee that
A(m∞) = 0Rm is that the KKT point belongs to the set C∞uu = 0Rd×d , which is a set of possible
equilibria for (17) and (21). In fact, we note that a concentration of the particles at any point of
Rd is a stationary solution of the dynamics. In this case

∥∥ej,∞∥∥ = 0, for all j = 1, . . . , J . However,
in Proposition 3.6 and Proposition 3.7 we assume that C∞uu > 0 and therefore the question whether
or not all the equilibria are necessary in the kernel of C∞uu is to be discussed. This is true in the
unconstrained ensemble Kalman filter as proved in [21].

The following counterexample shows that not all the equilibrium solutions of (17) belong to the set
Cuu = 0Rd×d . We consider the case of a one–dimensional control and two ensembles u, v ∈ R, so that
d = 1 and J = 2. In addition, we take a scalar quadratic and convex constraint A(u) = 1

2h1u
2+h2u,

with h1 > 0. In order to study the steady state of the mean and the energy of the ensembles, we
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need to couple the evolution equations (21) with the system of DAEs (17), obtaining

d

dt
u = −Cuv (−GᵀΓ(y −Gu) + h1λu+ h2λ) ,

d

dt
v = −Cuv (−GᵀΓ(y −Gv) + h1µv + h2µ) ,

0 = A(u) = A(v),

d

dt
m = −Cuv

(
−GᵀΓ(y −Gm) +

h1
2

(λu+ µv) + h2 (λ+ µ)

)
,

d

dt
m = −2Cuv

(
−GᵀΓ(ym−Gm) +

h1
2

(
λu2 + µv2

)
+ h2 (λu+ µv)

)
.

(24)

Here, λ and µ are the two multipliers related to u and v, respectively. We compute the steady
states of (24) by solving u̇ = 0, v̇ = 0, A(u) = 0, A(v) = 0, ṁ = 0, ṁ = 0 obtaining the nullclines
in the phase space (u, v, λ, µ,m, m). Solutions are provided by either Cuv = m −m2 = 0 or

u = (GᵀΓG+ h1λ)
−1

(GᵀΓy − h2λ) ,

v = (GᵀΓG+ h1µ)
−1

(GᵀΓy − h2µ) ,

m = (GᵀΓG)
−1
(
GᵀΓy − h1

2
(λu+ µv)− h2

2
(λ+ µ)

)
,

m = (GᵀΓG)
−1
(
GᵀΓym− h1

2

(
λu2 + µv2

)
− h2

2
(λu+ µv)

)
,

(25)

where λ and µ are solutions A(u) = 0 and A(v) = 0, respectively. The equilibrium or fixed points
are the intersections of the nullclines and therefore the question becomes whether or not (m,m)
always belongs to the set where m −m2 = 0. It is easy to observe that this is possible if and only
if λ = µ, since then

m = (GᵀΓG+ h1λ)
−1

(GᵀΓy − h2λ) ,

m = (GᵀΓG+ h1λ)
−1

(GᵀΓy − h2λ)m.

We can then conclude that this counterexample shows that, even in the simplest one–dimensional
setting, the constrained EnKF provides solutions to the constrained optimization problem which
are feasible for the ensemble but not necessarily for the mean of the ensembles.

This consideration opens the question on guaranteeing that the collapse of the ensemble to the
mean occurs, i.e. the equilibria lie on the set where

∥∥ej,∞∥∥ = 0, for j = 1, . . . , J . For instance,
in the case of quadratic constraints, one might reformulate the DAE system (17) as a singularly
perturbed ODE system

d

dt
uj = −Cuu(∇uΦ(uj ,y) + Jᵀ

A(uj)λj)

ε
d

dt
λj = A(uj(t))

(26)

where ε is a positive and small parameter. When ε = 0, system (26) formally converges to (17). The
regularization of the algebraic equation into a differential equation for the multipliers guarantees
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the convergence to the stable steady state. However, for ε very small this system is stiff and its
numerical solution requires methods for stiff ODEs.

A sufficient condition for the existence of a monotonic decay to a bound for the ensemble spread is
guaranteed by the following result, which holds in the space of the control.

Proposition 3.9. Let uj,0 ∈ Rd, j = 1, . . . , J , be an initial condition of the DAE system (17) such

that A(uj,0) = 0Rm . Assume that A : Rd → Rm is convex. Then the quantity 1
J

∑J
j=1

∥∥ej(t)∥∥2 is

decreasing in time and thus in particular we have 1
J

∑J
j=1

∥∥ej(t)∥∥2 ≤ 1
J

∑J
j=1

∥∥ej(0)
∥∥2, for t ≥ 0,

provided that λj(t) = Λ(t) ≥ 0, ∀ j = 1, . . . , J and t > 0.

Proof. For the sake of simplicity we consider a scalar constraint, i.e. m = 1. To prove the statement,

it is sufficient to show that 1
2

d
dt

1
J

∑J
j=1

∥∥ej(t)∥∥2 ≤ 0. Using (22), we compute

1

2

d

dt

1

J

J∑
j=1

∥∥ej(t)∥∥2 =
1

J

J∑
j=1

〈
ej(t),

d

dt
ej(t)

〉

=− 1

J

J∑
j=1

〈
ej(t),CuuGᵀΓGej(t)

〉
− 1

J

J∑
j=1

〈
ej(t),Cuu

(
λj∇uA(uj)− 1

J

J∑
`=1

λ`∇uA(u`)

)〉
.

Let us consider the first term in the right hand side. Using the structure of Cuu we have

− 1

J

J∑
j=1

〈
ej(t),CuuGᵀΓGej(t)

〉
= − 1

J2

J∑
k,j=1

〈
ej(t), ek(t)

〉 〈
ek(t),GᵀΓGej(t)

〉
.

Since GᵀΓG is symmetric and positive semidefinite, it is possible to find a set of eigenpairs
(µi,vi)di=1 with µi ≥ 0 and vi orthonormal basis such that ej =

∑d
i=1 α

ijvi, ∀ j = 1, . . . , J ,
and GᵀΓGvi = µivi, for all i = 1, . . . , d. Then

− 1

J2

J∑
k,j=1

〈
ej(t), ek(t)

〉 〈
ek(t),GᵀΓGej(t)

〉
= − 1

J2

J∑
k,j=1

(
d∑
i=1

√
µiαikαij

)2

≤ 0.

For the second term in the right hand side, using the assumption λj(t) = Λ(t) ≥ 0 and the convexity
of the constraint, we obtain

− 1

J

J∑
j=1

〈
ej(t),Cuu

(
λj∇uA(uj)− 1

J

J∑
`=1

λ`∇uA(u`)

)〉
= −Λ

J

J∑
j=1

〈
ej(t),Cuu∇uA(ej)

〉
≤ 0.
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3.2 Continuous limit in the number of ensembles

Typically, the EnKF method is applied for a fixed and finite ensemble size. It is clear that the
computational and memory cost of the method increases with the number of the ensembles, but
there is a substantial gain in accuracy. The analysis of the method was also studied in the large
ensemble limit, see e.g. [9, 11, 13, 17, 21, 25, 26, 27]. In this limit a slow down of the ensemble
spread has been observed. In this section, we derive the corresponding mean–field limit of the
continuous time equation (17) and provide an analysis of the resulting PDE equation.

We follow the classical formal derivation to formulate a mean–field equation of a particle system,
see [8, 19, 29, 35]. Let us denote by

f = f(t,u,λ) : R+ × Rd × Rm → R+ (27)

the compactly supported on Rd×Rm probability density of the pair (u,λ) at time t and introduce
the following moments of f at time t with respect to u and λ, respectively, as[

m1(t)
Λ1(t)

]
=

∫∫
Rd×Rm

[
u
λ

]
f(t,u,λ)dudλ,

[
m2(t)
Λ2(t)

]
=

∫∫
Rd×Rm

[
u⊗ u
λ⊗ λ

]
f(t,u,λ)dudλ (28)

Since (u,λ) ∈ Rd × Rm, the empirical measure is given by

f(t,u,λ) =
1

J

J∑
j=1

δ(uj − u)δ(λj − λ). (29)

This formulation allows for a representation of the covariance operator (23) as

C(t) =

∫∫
Rd×Rm

u⊗ uf(t,u,λ)dudλ−
∫∫

Rd×Rm
uf(t,u,λ)dudλ

∫∫
Rd×Rm

uf(t,u,λ)dudλ

= m2(t)−m1(t)⊗m1(t) ≥ 0.

Let us denote ϕ(u,λ) ∈ C∞0 (Rd × Rm) a test function. We compute

d

dt
〈f, ϕ〉 =

d

dt

∫
Rd

1

J

J∑
j=1

δ(u− uj)δ(λj − λ)ϕ(u,λ)dudλ

= − 1

J

J∑
j=1

∇uϕ(uj ,λj) · C
(
∇uΦ(uj ,y) + Jᵀ

A(uj)λj
)

= −
∫∫

Rd×Rm
∇uϕ(u,λ) · C (∇uΦ(u,y) + Jᵀ

A(u)λ) f(t,u)dudλ

coupled to the mean–field of the algebraic constraint. Finally the mean–field kinetic equation
corresponding to the DAE system (17) reads:

∂tf(t,u,λ)−∇u · [C(t)(∇uΦ(u,y) + Jᵀ
A(u)λ)f(t,u,λ)] = 0∫∫

Rd×Rm
A(u)f(t,u,λ)dudλ = 0Rm .

(30)
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Proposition 3.10. Let f(t,u,λ) be a solution in distributional sense of the mean–field equa-
tion (30) at t > 0 for compactly supported initial probability distribution f(t = 0,u,λ). Then,
f(u,λ) = δ(u− v)δ(λ− µ) is a steady state solution in distributional sense of (30) provided that
either C = 0Rd×d or (v,µ) is a KKT point of the minimization problem

min
u∈Rd

Φ(u,y) subject to A(u) = 0Rm .

Proof. Let ϕ(u,λ) ∈ C∞0 (Rd × Rm) be a test function. Then, weak steady state solutions, say
f∞(u,λ), to (30) satisfy formally∫∫

Rd×Rm
∇uϕ(u,λ) · C (∇uΦ(u,y) + Jᵀ

A(u)λ)) df∞(u,λ) = 0∫∫
Rd×Rm

ϕ(u,λ)A(u)df∞(u,λ) = 0Rm

Substituting f∞ with f(u,λ) = δ(u − v)δ(λ − µ), we easily obtain that the above conditions
are satisfied when either C = 0Rd×d or ∇uΦ(u,y)|u=v = − (Jᵀ

A(u)λ) |u=v,λ=µ and simultaneously
A(u)|u=v = 0Rm .

The previous proposition states that, as in the discrete case, not all the steady states are in the
kernel of C due to the presence of the multipliers.

It is clear that the mean–field equation (30) does not provide a closed differential system of the
moments. In order to show an energy decay estimate, we perform a preliminary moment analysis
in the simple setting of a one–dimensional control and scalar constraint. Thus, similarly to the
previous section, we assume that (u, λ) ∈ R×R and consider a strictly convex quadratic constraint
A(u) ∈ R. We write

∇uΦ(u, y) = b1u+ b2, ∇uA(u) = h1u+ h2, h1 > 0.

Then by the second equation in (30) we have

0 =

∫∫
R2

(
1

2
h1u

2f(t, u, λ) + h2uf(t, u, λ)

)
dudλ =

1

2
h1m2(t) + h2m1(t)

which implies the following link between the first and the second moment due to the constraint:

m2(t) = −2
h2
h1
m1(t). (31)

Then, it suffices to study the evolution of the first moment in order to obtain information on the
evolution of the second moment. Using the first equation in (30) we derive the following evolution
equation for the first moment:

d

dt
m1(t) = −C

∫∫
R2

∇uΦ(u, y)f(t, u, λ)dudλ− C
∫∫

R2

(h1uλf(t, u, λ) + h2λf(t, u, λ)) dudλ. (32)

The evolution of the multiplier is computed from (30) obtaining for each k ≥ 0

d

dt

∫∫
R2

λkf(t, u, λ)dudλ = 0 ⇒
∫∫

R2

λkf(t, u, λ)dudλ =

∫∫
R2

λkf0(u, λ)dudλ =: Λk.
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For an arbitrary small positive quantity ε we have∫∫
R2

(
√
εu)

λ√
ε
f(t, u, λ)dudλ ≤ ε

2
m2(t) +

1

2ε
Λ2.

Using the above relation and (31), from (32) we obtain the following bound for the evolution
equation of the first moment:

d

dt
m1(t) ≤ LεC(t)

(
m1(t) +

Kε

Lε

)
, Lε = εh2 − b1, Kε = −b2 −

h1
2ε

Λ2 − h2Λ1

with Lε < 0 for ε sufficiently small. Defining m̃1(t) = m1(t) + Kε
Lε

, by application of the Gronwall
lemma we have

d

dt
m̃1(t) ≤ LεC(t)m̃1(t) ⇒ m̃1(t) ≤ m̃1(0) exp

(
Lε

∫ t

0

C(τ)dτ

)
→ 0.

Finally,

m1(t) ≤ −Kε

Lε
=

∣∣∣∣Kε

Lε

∣∣∣∣
and the mean is hence bounded. Consequently, also the second moment m2 is bounded by the
relation (31). This shows that, according to Proposition 3.10, not necessarily all the steady states
are Dirac distributions on Rd × Rm.

4 Numerical experiments

The simulations are performed for the case of linear models G by solving the system of DAEs (17).
The details on the scheme and on the setting of the experiments are as follows. Many numerical
methods for DAEs are known and based on Runge–Kutta and BDF methods, see e.g. the mono-
graphs [6, 20]. Here, for the sake of simplicity, we employ straightforwardly first order implicit–
explicit (IMEX) time integration coupled to Newton’s method. The IMEX discretization of (17)
with time step ∆t then reads as

un+1
j = unj −∆tCn

uu∇uΦ(unj ,y)−∆tCn
uuJA(un+1

j )λn+1
j

0Rm = A(un+1
j ).

(33)

This represents a possible high dimensional system of nonlinear equations for un+1
j ∈ Rd and

λn+1
j ∈ Rm, for j = 1, . . . , J , to be solved at each time integration step n. Inspired by the

derivation of (17) we consider the covariance matrix Cuu computed explicitly at time level n. This
is motivated by the fact that Cuu can be written in terms of moments. Observe that then the
IMEX discretization is (17) in the limit ∆t→ 0+.

The differential point of view allows us to employ an adaptive time step to avoid stability issues.
In the numerical experiments we use

∆t ≤ 1

maxi (|(<(µi)|)
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where the µi’s are the eigenvalues of Cn
uuGᵀΓG. As we observe that Cn

uuGᵀΓG is characterized by
large spectral radius at initial time that reduces over time, the adaptive computation of ∆t allows
also to reach equilibrium in less time steps compared to the choice of a fixed ∆t.

We are interested to solve the inverse problem described in Section 2.2 aimed to find the force
function of the linear elliptic equation in (13). This is a typical example used in the mathematical
literature to test the property of the ensemble Kalman filter [1, 21, 22, 30]. We consider the same
setup as in Section 2.2, but in this case we take into account a nonlinear constraint. In particular,
we focus on a scalar (m = 1) quadratic constraint A : Rd → R of the form A(u) = 1

2uᵀAu + uᵀb,
with A ∈ Rd×d and b ∈ Rd given. In this setting, the gradient of A is linear, ∇uA = Au + b.
Therefore, (33) can be explicitly solved by un+1

j obtaining

un+1
j =

(
I + ∆tλn+1

j Cn
uu

)−1 (
unj −∆tCuu∇uΦ(unj ,y)−∆tλn+1

j Cuub
)
, (34)

where I ∈ Rd×d is the identity matrix. Then, the scalar multiplier λn+1
j is computed by solving the

nonlinear equation A(un+1
j ) = 0 for each j = 1, . . . , J at each integration step. The multipliers are

finally inserted into (34) to determine the final update of the feasible ensembles at time level n+ 1.

In each example the exact force function is chosen as u(x) = sin(πx) and then suitable modified
in order to satisfy the constraint. Also, the initial condition uj(0) = u0

j on the ensembles satisfies
the constraints. The vector b, characterizing the linear term in the constraint, is always randomly
sampled from a Gaussian distribution with zero mean and standard deviation 1

2 .

Information on the simulation results is presented in the following norms

E(t) =
1

J

J∑
j=1

‖ej(t)‖2, R(t) =
1

J

J∑
j=1

‖rj(t)‖2 (35)

at each iteration, where the quantities ej(t) and rj(t) are the spread and the residual of the ensem-
bles, respectively, as defined by (20). The residual is measured by taking u∗ as the truth solution
u†.

Another additional important quantities is given by the misfit which allows to measure the quality
of the solution at each iteration. The misfit for the j-th sample is defined as

ϑj(t) = Grj(t)− η, (36)

where G is again the finite difference discretization of the continuous linear operator defining the
elliptic PDE (13). By using (36) we finally look at

ϑ(t) =
1

J

J∑
j=1

‖ϑj(t)‖2. (37)

Driving this quantity to zero leads to over–fitting of the solution. For this reason, usually it is
suitable introducing a stopping criterion which avoids this effect. In the following we will consider
the discrepancy principle which check and stop the simulation if the condition ϑ ≤ ‖η‖2 is satisfied,
with η measurement noise as described in the problem setup in Section 2.2.
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Figure 2: Solution provided by the constrained ensemble Kalman filter using J = 160 ensembles on
the strictly convex nonlinear constraint.

4.1 Quadratic convex constraint

The first situation we consider is the case of a strictly convex constraint by taking A = I ∈ Rd×d,
i.e.,

A(u) =

d∑
k=1

u2
(k) + b(k)u(k).

In order to allow the force function u(x) to satisfy the constraint, we artificially modify it on

the grid introduced on the domain [0, π]. In particular, we determine {u(k)}
d
2

k=1 in such a way

u2
(k) + b(k)u(k) = −u2

(d−k+1) − b(d−k+1)u(d−k+1), for k = 1, . . . , d2 . The initial ensembles are
sampled from a multivariate normal distribution and then also artificially modified to satisfy the
constraint. We consider the same setup as in Section 2.2, thus a noise level γ = 0.01, d = K = 28.

In Figure 2 we compute the solution obtained with J = 160 ensembles. The left plot shows the
solution p(x) of the PDE (13) and noisy observations. The reconstruction of p(x) is provided in the
center panel and it is obtained by using the mean of the ensembles represented in the right panel.
The gray areas gives information on the spread due to the ensembles. The constrained ensemble
Kalman filter accurately reconstructs both the control and its projection through the PDE model.

The analysis of the solution is performed with three values of the ensemble size J ∈ {40, 80, 160},
see Figure 3. In particular, we consider the behavior in time of the residual, the misfit, the ensemble
collapse and the value of the constraint computed on the ensemble mean. We observe that increasing
the value of the ensembles allows a more accurate reconstruction. In fact, the solution is able to meet
the discrepancy principle, i.e. the misfit reaches the noise level, and the residual values decreases.
However, the collapse to the mean slows down causing the increase of the ensemble spread. This
in turn does not allow the mean to satisfy exactly the constraint when the simulation stops due to
the discrepancy principle.

In Figure 4 we show the evolution of the minimum value of the multipliers, noticing that it re-
mains always positive. Moreover, the spread of the multipliers to their mean decays to zero. This
two results justify the ensemble spread observed in Figure 3 and reflect the analysis provided in
Section 3.1.1, cf. the discussion after Proposition 3.7 and the statement of Proposition 3.9
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Figure 3: Time evolution of the residual (top left), the misfit (top right), the ensemble collapse
(bottom left) and the value of the constraint computed on the ensemble mean (bottom right) for
the strictly convex nonlinear constraint.

4.2 Quadratic non–convex constraint

The second situation we consider is the case of a non–convex constraint by taking A =

[
I 0
0 −I

]
∈

Rd×d. Then the constraint reads as

A(u) =

d
2∑

k=1

u2
(k) + b(k)u(k) +

d∑
`= d

2+1

b(k)u(k) − u2
(`).

We use the same setup as in Section 4.1. Now the force function u(x) is artificially modified

to satisfy the constraint by determining {u(k)}
d
2

k=1 in such a way u2
(k) + b(k)u(k) = u2

(d−k+1) −
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Figure 4: Time evolution of the minimum value of the multipliers (left) and of the multipliers spread
around their mean (right) for the strictly convex nonlinear constraint.
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Figure 5: Solution provided by the constrained ensemble Kalman filter using J = 160 ensembles on
the non–convex nonlinear constraint.

b(d−k+1)u(d−k+1), for k = 1, . . . , d2 . We proceed similarly for the initial ensembles.

In Figure 5 we compute the solution obtained with J = 160 ensembles. The left plot shows the
solution p(x) of the PDE (13) and the noisy observations. The reconstruction of p(x) is provided
in the center panel and it is obtained by using the mean of the ensembles represented in the right
panel. The gray areas gives information on the spread due to the ensembles. Compared to the
previous example, here we notice that the ensembles are widely spread around the exact control
function, cf. the right plot in Figure 5. The method does not reproduce a very accurate control
function but the application of the model still allows to obtain a good reconstruction of the solution.

We perform the analysis of the method with five values of the ensemble size J ∈ {40, 80, 160, 320, 640},
see Figure 6. Again we consider the behavior in time of the residual, the misfit, the ensemble collapse
and the value of the constraint computed on the ensemble mean. We observe that the ensemble
spread is decreasing in time very slowly, even with a small number of ensembles. This result also
affects the value of the constraint computed on the mean of the ensembles, which is far from zero.
The residual shows a decreasing behavior in time only with very large number of ensembles. How-
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Figure 6: Time evolution of the residual (top left), the misfit (top right), the ensemble collapse
(bottom left) and the value of the constraint computed on the ensemble mean (bottom right) for
the non–convex nonlinear constraint.

ever, in all cases the misfit is able to meet the noise level and therefore the discrepancy principle
holds. These results can be motivated by the use of a non–convex constraint, and the method is
providing a solution which minimizes the least square functional but the mean does not exactly
satisfy the constraint.

5 Summary

In this paper, inspired by [1], we have focused on the formulation of the ensemble Kalman filter to
solve constrained inverse problems. We have worked in the setting of optimization theory deriving
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first order necessary optimality conditions for the case of equality constraints in the space of the
controls. We have observed that the method relaxes to the unconstrained one when linear equality
constraints are considered. Therefore, we have mainly focused on nonlinear constraints and analyzed
the method by computing continuous limits, in time and in the regime of infinitely many ensembles.
The numerical results have shown that the method is able to provide solution to constrained inverse
problems with quadratic convex and non–convex equality constraints.
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