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Coupling of Linear Elastic Equations and
Compressible Euler Equations and Stiffened Gas
Equations of State ∗

Michael Herty, Siegfried Müller and Aleksey Sikstel

Abstract Modelling of cavitation phenomena requires coupling of models for fluid
and solid materials. For this purpose we extend a strategy based on the solution of
coupled Riemann problems, proposed in [9]. The coupling strategy for the case of
perfect gas equation of state has been established and validated in [8]. In this work
we include the case of a stiffened gas and derive conditions under which there exists
a unique solution to coupled Riemann problems.

Key words: Linear elastic equations, compressible Euler equations, coupling con-
ditions, coupled Riemann problem, Lax curves

1 Introduction

Cavitation erosion is caused in solids exposed to strong pressure waves developing in
an adjacent fluid field. The knowledge of the transient distribution of stresses in the
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solid is important to understand the cause of damaging by comparisons to breaking
points of the material. The modelling of this problem requires coupling of models
for fluid and solid.

This concept has been realised by coupling linear elastic structures and fluids
governed by the compressible Euler equations at a steady interface. We refer to
this kind of problems as fluid-structure coupling problem (FSC). For a perfect gas
equation of state (EoS) the FSC has been solved previously in [8] by means of
coupled RPs. This leads in fact to identifying the unique root of a scalar nonlinear
function. Properties of this function, and hence, conditions for the existence of a
unique solution of the FSC have been presented in Theorem 3.1, [8].

In this work we present a new result, namely the FSC with a stiffened gas EoS.
Those EoS are more suitable for fluids such as water. The stiffened gas EoS models
the fluid as an ideal gas under high pressure. For that purpose, pressure and internal
energy of an ideal gas EoS are scaled. Although the shift from ideal to stiffened gas
is linear, the solution of the FSC with stiffened gas EoS may differ drastically from
the ideal fluid case due to the nonlinear nature of the fluid. Lax curves corresponding
to the compressible Euler equations with stiffened gas EoS have to be determined
to obtain states at the coupling interface. A scalar nonlinear function is then con-
structed. Its root provides a unique solution to the FSC. We state similar results and
accompanying proofs as in [8].

2 Riemann Problems for Coupled Conservation Laws

Coupling the dynamics requires to postulate conditions to be fulfilled at the interface
for almost all times t ≥ 0. Let the domain Ω be partitioned into two subdomains

Ω− Ω+Ω−

ww

Γ

δΩ

Fig. 1 Domain of the coupled conservation laws.
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Ω− ∪ Ω+ ∪ Γ = Ω by a fixed interface plane Γ , see Figure 1. Assume that the
dynamics in Ω− are governed by a system of conservation laws

wt + div(f(w)) = 0, x ∈ Ω−, t ≥ 0, (1)
w(0,x) = w0(x), x ∈ Ω− (2)

for the conserved quantityw : R+×Ω− → D and differentiable flux function f : D →
Rm where D ⊂ Rm is the set of admissible values for w. The dynamics in the other
half of the domain, Ω+, is governed by the system

wt + div(f(w)) = 0, x ∈ Ω+, t ≥ 0 (3)
w(0,x) = w0(x) for x ∈ Ω+ (4)

forw : R+×Ω+ → D and a possibly different differentiable flux function f : D → Rm
where D ⊂ Rm is the set of admissible values for w. At the non-interface boundary
of each domain δΩ−\Γ and δΩ+\Γ we prescribe boundary conditions, cf. [7]. At the
interface Γ we prescribe coupling conditions

Ψ (w(t,x),w(t,x)) = 0, x ∈ Γ (5)

where Ψ : Rm+m → R` . We refer to [2] for a precise definition in the case of a 2× 2
system of conservation laws.

Definition 1 Let the domain Ω be separated by a smooth interface Γ, i.e. Ω =
Ω− ∪ Ω+ ∪ Γ, see Figure 1. As a weak solution of the coupled problem we
understand a pair of weak entropy solutions (w(t,x),w(t,x)) to equation (1) and
equation (3) for x ∈ Ω− and x ∈ Ω+, respectively. Further, assuming the traces of w
and w at Γ exist, the solution at x ∈ Γ fulfils a.e. in t the coupling condition Ψ = 0,
that is

Ψ(w(t,x−),w(t,x+)) = 0, t > 0, x ∈ Γ, (6)

where

w(x−) := lim
ε→0+

w(x − εn),

w(x+) := lim
ε→0+

w(x + εn)
(7)

denote the limits in the normal direction n = n(x) of Γ.

Remark 1 It is reasonable to assume that whenever ` = m = m, f = f and Ψ(v,v) =
f(v) − f(v) the solution of the coupling problem coincides with the solution of the
single conservation law

wt + div(f(w)) = 0, x ∈ Ω, t ≥ 0, (8)
w(0,x) = w0(x), x ∈ Ω−, (9)
w(0,x) = w0(x), x ∈ Ω+. (10)
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In order to solve the coupled problem (1)–(5) an approach is to iterate the coupling
condition at each time step solving alternately the conservation laws (1) and (3) as
in [5, 10]. Besides being computationally expensive such methods have significant
drawbacks. Firstly, it is in general an open question if and how fast the iterative
method for the coupling condition converges. Secondly, given a convergent method
there is no guarantee that the limit constitutes an entropy solution in Ω±.

Alternatively, one may use a strategy based on the solution of coupled Riemann
Problems (RP) that has been applied and validated e.g. in [1, 8]. To this end, we
project the conservation laws (1) and (3) to the normal direction at Γ and define two
(half-)RPs that are coupled by conditions Ψ = 0 at Γ. A (half-)RP associated with
the conservation law (1) on Ω− consists of the initial data

w(0,x) =

{
wL if x ∈ Ω−,
wΓ if x ∈ Γ

(11)

where wL and wΓ are constant. The solution w = w(t,x) of the (half-)RP is the
solution restricted to Ω− of the classical RP for the projected conservation law (1)
and initial data (11). Similarly, we consider a (half-)RP associated with the projected
conservation law (3) on Ω+ and initial data

w(0,x) =

{
wΓ if x ∈ Γ,
wR if x ∈ Ω+

(12)

where again wΓ and wR are constant. In view of the coupling problems, particularly
interesting are solutions where the trace of the solution inΩ− fulfils w(t,x−) = v, and
in Ω+ the trace of the solution fulfils w(t,x+) = v such that the coupling conditions
Ψ(v,v) = 0 hold true.

Given a constant state wL we introduce the notion of admissible boundary states
as follows. The set

V(wL) :=
{
v ∈ D : ∃ (εi)Mi=1 ⊂ R

M ,

v = L
+

M

(
εM ; L

+

M−1
(
εM−1; . . . ; L

+

1 (ε1,wL) . . .
) )}

(13)

consists of all states v = w(t,x−) that solve a (half-)RP in Ω−, i.e. are attainable
by a composition of forward Lax curves L

+

m(· ; wm
0 ), m ∈ {1, . . . M} each emerging

at some wm
0 ∈ D. Furthermore, M is chosen such that for the eigenvalues of the

Jacobian of the flux f in (1) λM < 0 and λM+1 > 0 holds. Thus, the M-th Lax
curve L

+

M (· ; w0) connects w0 to a state that is located at the interface. Similarly, for
a given state wR the set of admissible boundary states in Ω+ is defined by
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V(wR) :=
{
v ∈ D : ∃ (θi)Mi=1 ⊂ R

M ,

v = L−M
(
θM ; L−M−1

(
θM−1; . . . ; L−1 (θ1,wR) . . .

) )}
(14)

where M is chosen such that the eigenvalues of the Jacobian of the flux f in (3)
λM > 0 and λM−1 < 0.

Definition 2 Having the sets V(wL) and V(wR) at hand the solution to the coupled
problem is constructed as follows: we need to prove that there exist unique states
v ∈ V(wL) and v ∈ V(wR) such that Ψ(v,v) = 0. Provided the traces of the solutions
in Ω± are well-defined and unique v and v are identified the solution to the coupled
RP is given by the solution of the two half-RPs with the corresponding initial data
(wL,v) and (v,wR), respectively.

By definition of the sets V(wR),V(wL), the trace of the solution fulfils the coupling
condition. The solution of the coupled RP is summarised in the following algorithm.

Algorithm 1 Riemann Solver for Coupled Problems
1: Let x ∈ Γ be a point at the interface, wL = w(t , x−) and wR = w(t , x+) be the attached

interface states for the systems in Ω− and Ω+ respectively.
2: Project the systems of conservation laws on the normal interface direction n = n(x).
3: Solve the coupled RP consisting of two half-RPs. Thus, identify the sets of admissible bound-

ary states V and V by compositions of Lax curves. Find parameters (ε∗i )
M
i=1 and (θ∗i )

M
i=1

corresponding to v∗ ∈ V (wL ) and v∗ ∈ V (wR ), respectively, satisfying Ψ(v∗, v∗) = 0.
4: Evaluate the Lax curves with respect to ε∗ and θ∗ to determine the boundary values w = w(ε∗)

and w = w(θ∗) for both systems of conservation laws.
5: Project the systems of conservation laws back on Ω±.

3 Fluid-Structure Coupling: Linear Elastic and Compressible
Euler Equations

In this section Algorithm 1 is applied to the FSC problem with stiffened gas EoS.
After introducing the model for the FSC the sets V and V are determined. Finally,
the existence of a unique solution of a RP for the FSC is analysed.

3.1 Modelling of the Fluid-Structure Coupling Problem

Consider a situation as sketched in Figure 2where the interface Γ separates amaterial
and a compressible fluid. It is assumed that the interface remains unaffected by the
interaction of the fluid flow with a material structure [5], i.e. we do not account for
deformation of the structure. The solid regime and the fluid regime is assumed to be
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Ω− Ω+

linear elastic material compressible fluid

xI

Γ

n

Fig. 2 Sketch of the 2D FSC problem with elastic material on the left and compressible fluid on
the right. Shown is the interface Γ (dashed) with its normal direction n starting at xI ∈ Γ.

governed by the linear elastic equations

∂ v
∂ t
−

1
ρ
∇ · σ = 0, (15a)

∂ σ

∂ t
− λ(∇ · v) I − µ

(
∇v + ∇vT

)
= 0. (15b)

Here, the density of the material is denoted by ρ and assumed to be constant.
The deformation velocities are v = (v1, . . . , vd)

T , the stress tensor is denoted by
σ = (σi j)i, j ,=1,...,d = σT , and the Lamé constants are λ, µ > 0. Finally, the
dilatation wave velocity and the shear wave velocity are c2

1 := (2µ + λ)/ρ and
c2

2 := µ/ρ, respectively. Due to the symmetry of the stress tensor σ, the system of
equations (15) contains redundant equations. Those may be removed and the system
can be written in the canonical form of a system of conservation laws, see equation
(29) in the Appendix A of [8].

The fluid regime is governed by the compressible Euler equations

∂ ρ

∂ t
+ ∇ · (ρv) = 0, (16a)

∂ ρv
∂ t
+ ∇ · (ρvTv + pI ) = 0, (16b)

∂ ρE
∂ t
+ ∇ · (ρ v(E + p/ρ)) = 0, (16c)

where we use the notation ρ for the gas density, v = (v1, . . . , vd)
T for its velocity,

E for the total energy E = e + 1
2 v2, pressure p, internal energy e and total enthalpy

H := E + p
ρ . The fluid equations have to be supplemented with an EoS, see [11, 4].

Here, we consider a stiffened gas EoS

p(ρ, e) = (γ − 1)ρ(e −Q) − γπ, (17)
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where γ,Q and π are constants, see for instance [6]. In particular, γ > 1 denotes
the ratio of specific heats at constant pressure, Q is the formation enthalpy and π is
referenced to as the pressure stiffness. Setting Q and π to zero results in the ideal gas
EoS.

Across the interface we couple the fluid dynamics model (16) to the solid model
(15). To this end, we again project the system of equations onto the normal direction
n of the interface. For notational convenience we assume the normal direction n
pointing from the solid towards the fluid regime, see Figure 2. The projection of the
linear elastic model in d ∈ {1,2,3} spatial dimensions is realised by means of the
matrices Rd , Sd and Gd , introduced in the Appendix A of [8], to obtain a quasi–
1D model in the normal direction. Similarly, we project the fluid equations (16)
assuming there is no flow in tangential directions. Since both systems (16) and (15)
are invariant under rotation and reflection, it is sufficient to consider the projection
onto direction n = e1 = (1,0, . . . ,0)T ∈ Rd , as depicted in Figure 2.

The basic problem is now to couple the two projected systems at the interface Γ.
Note that the projected linear elastic model is defined in Ω− and the projected Euler
equations inΩ+. To distinguish the fluid states from the solid states, quantities of the
solid shall be denoted by a bar, e.g. u, ρ, λ and so on.

According to the transition conditions of continuum mechanics at a material
interface we model the coupling by requiring the following conditions Ψ = 0 to be
fulfilled at the interface:

nTσn ≡ σnn
!
= −p, (18a)

vT n ≡ vn
!
= vn ≡ vT n, (18b)

where we neglect viscosity and heat conduction in the fluid flow. The conditions
prescribe a continuous normal stress and pressure at the interface. Also, we assume
that across the interface the normal velocities are equal. The conditions (18) are re-
ferred to as transition and kinematic conditions or coupling conditions, respectively.
These conditions are used to provide boundary condition at some point xI ∈ Γ of
the interface for both the solid and the fluid. The procedure is described in detail
in Algorithm 1, and is realised in the following two sections. For both systems the
Lax curves are used to prove the existence of a unique solution of the FSC problem
provided the initial data in the fluid is subsonic.

3.2 Riemann Problem for the Fluid-Structure Coupling

Solutions of the classical RP for the projected linear elastic and the projected com-
pressible Euler equations are well-known, see [4, 15]. Figure 3 and 4 depict the
wave structures for both systems of conservation laws in the x-t plane. According to
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Algorithm 1, admissible states for both systems given by respective Lax curves are
required.

Definition 3 Let the domain Ω = Rd , d ∈ {1,2,3}, be separated by the interface
plane Γ = {x ∈ Rd : x1 = 0} into a solid and a fluid subdomain Ω− = {x ∈
Rd : x1 < 0} and Ω+ = {x ∈ Rd : x1 > 0}. Let the dynamics of the solid and of
the fluid be governed by the linear elastic equations (15) and by the compressible
Euler equations (16) equippedwith stiffened gas EoS (17), respectively. Furthermore,
let both systems be projected onto e1, the normal of Γ. Then, the FSC Riemann
problem (FSC-RP) is defined by the piecewise constant initial data

u(0,x) =

{
uL if x ∈ Ω−,
uR if x ∈ Ω+.

(19)

First, we consider the solid, i.e. the linear elastic equations. The wave speeds are

x

t

0

uL uR

u1

x

t

0

uL uR

u1

u2

u4

u3

Fig. 3 Wave structure of the linear elastic equations for a classical RP with initial data uL , uR

where d = 1 (left) and d = 3 (right).

constant in u and depend on the material parameters of the solid only. Recall that
coupled quantities, i.e. normal velocity v1 and stress σ11 in the direction n = e1,
are constant across the waves corresponding to the zero eigenvalue. The admissible
states of the solid at Γ are thus obtained by Lax curves Li( · ; uL), given in [8],
emanating from the initial state uL:

d = 1 : u1 = L
+

1 (ε1; uL) = uL + ε1 r1,−, (20a)

d = 2 : u2 = L
+

2 (ε2; L
+

1 (ε1; uL)) = uL + ε1 r1,− + ε2 r2,−, (20b)

d = 3 : u2 = L
+

3 (ε3; L
+

2 (ε2; L
+

1 (ε1; u0))) = uL + ε1 r1,− + ε2 r
1
2,− + ε3 r

2
2,−, (20c)

where r i,− denote the eigenvectors of the flux Jacobian as introduced in the Appendix
A of [8] for d = 1,2,3.

We investigate the fluid part, i.e. the compressible Euler equations equipped with
stiffened gas EoS and subsonic initial data. The wave structure is the same as in the
case of a perfect gas EoS. The coupled quantities, i.e. normal velocity and pressure,
are constant across the contact wave, however the density may jump. The contact
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x

t

0

uL uR

u1

u2

x

t

0

uL uR

u1

u2

Fig. 4 Wave structure of the compressible Euler equations for a classical RP for subsonic initial
data uL , uR where λ0 ≥ 0 (left) and λ0 < 0 (right).

wave corresponds to the 2-Lax curve, L2, and the (multiple) flux Jacobian eigenvalue
λ0. In case λ0 < 0, admissible fluid states u1 at Γ are given by the backward 3-Lax
curve L−3 emanating from the initial data uL . In case λ0 ≥ 0, the contact wave enters
the fluid domain and the composition of L−3 with the backward 2-Lax curve L−2 yields
the admissible fluid states at Γ, see Figure 4. Thus, admissible interface fluid states
u are given by {

u2 = L−3 (θ
∗; uR) if λ0 < 0,

u1 = L−2 (θ2; L−3 (θ
∗; uR)) if λ0 ≥ 0.

(21)

In contrast to the solution of the classical RP for the compressible Euler equations,
it is not necessary to reparametrise the Lax curves by the pressure. The straightfor-
ward parametrisation, as in the definition of Lax curves for the compressible Euler
equations [8], suffices for the solution of the FSC-RP.

The following thermodynamic identities are important for the explicit formulation
of the 1,3- Lax curves corresponding to genuinely nonlinear waves. The square of
the speed of sound, c2, in terms of density and internal energy reads

c2(ρ, e) =
γ(p(ρ, e) + π)

ρ
= γ(γ − 1)

(
e −Q +

π

ρ

)
. (22)

Furthermore, the specific entropy s in terms of density and internal energy

s(ρ, e) = cv

(
ln

(
e −Q − π/ρ

cv

)
− (γ − 1) ln ρ

)
+Q′, (23)

where cv denotes the specific heat at constant volume and Q′ is a thermodynamic
constant. Finally, internal energy depending on density and specific entropy is given
by

e(ρ, s) = exp
(

s −Q′

cv
+ (γ − 1) ln ρ

)
+Q +

π

ρ
. (24)

For details on the derivation of the above equations, we refer to [6, 14, 12, 3].
Plugging equations (22), (23), (24) and (17) into the general definition of the

shock and rarefaction curves for i = 1,3 and applying elementary calculus yields
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the 1- and 3-curves for the compressible Euler equations and stiffened gas EoS. The
backward (S−,R−) and the forward curves (S+,R+) read:

S±i (θ,uR) =



ρ = ±(i − 2)θ + ρR

v = vR ∓

√
1
ρR

θ2κ

ρ(θ)

(
2γρReR −Qκ(2ρR ± (i − 2)θ) − 2γπ

2ρR ± (2 − i)κθ
−Q

)
e =

ρR
ρ(θ)

1
2 ± (2 − i)κθ/ρR

(
(2 ± (i − 2)(γ + 1)θ/ρR)eR±

(2 − i)θ
1
ρ2
R

(Qκ(2ρR ± (i − 2)θ) + 2γπ)
) ,

(25)

R±i (θ,uR) =


ρ = ±(i − 2)θ + ρR

v = vR + 2(2 − i)
√

γ

γ − 1

(
1 −

(
ρ(θ)

ρR

) (γ−1)/2
) √

eR −
(
Q +

π

ρR

)
s = sR

,

(26)

and we have

L±I =

{
S±i if θ < 0
R±i if θ ≥ 0

. (27)

In the following we assume the initial data is subsonic, i.e.

−c(ρR, eR) ≤ vR ≤ c(ρR, eR). (28)

The wave structure of the FSC-RP is illustrated in Figure 5. The initial data and
related quantities are marked with a subscript L and R in the solid and fluid part
respectively. The admissible fluid states (25), (26) and solid states (20) are used in

x

t

0

uL uR

u1

u2

u2

u1

x

t

0

uL uR

u1

u2 u2

Fig. 5 Wave structure of the FSC-RP for d ≥ 2 where λ0 ≥ 0 (left) and λ0 < 0 (right). Blue and
red lines signify the fluid and solid characteristics respectively.

the coupling conditions (18) with n = e1. Then, the coupling conditions (18) depend
on the two parameters ε := ε1 − λ1 and θ
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σ11(ε)
!
= −p(θ), v1(ε)

!
= v1(θ). (29)

These are equivalent to

σ11,L + ερc1β = −p−3 (θ,uR), (30a)

v1,L + εβ = (v1)
−
3 (θ,uR), (30b)

where β is defined in the Appendix A of [8] for d = 1,2,3. Hence, the solution of the
FSC-RP is equivalent to finding a tuple (ε∗, θ∗) that fulfils (30). This is equivalent to

g(θ) := σ11,L + (v1(θ; uR) − v1,L)ρc1 + p−3 (θ; uR) = 0, (31a)
ε = v1(θ; uR) − v1,L . (31b)

Since g does not depend on the parameter ε related to the solid part, it is sufficient
to determine the roots of g. This is done in the same manner as for the perfect gas
case in [8]. The function g is expressed only in terms of the initial data as follows.
For the shock branch, i.e. θ ≤ 0, g reads

g(θ) = σ11,L + ρc

(
vR +

√
2

(2ρR + (γ − 1)θ)(ρR − θ)
|θ |cR − v1,L

)
+

1
γ

2ρR − (γ + 1)θ
2ρR + (γ − 1)θ

ρRc2
R − π,

(32)

while for the rarefaction branch, i.e. θ ≥ 0,

g(θ) = σ11,L+ρc1

(
vR −

2
γ − 1

(
1 −

(
1 −

θ

ρR

) γ−1
2

)
cR − v1,L

)
+ (γ − 1) exp

(
sR −Q′

cv

)
(ρR − θ)

γ − π.

(33)

The structure of the solution of g(θ) = 0 will be detailed below.

3.3 Entropy Solutions of the Riemann Problem for the Fluid-Structure
Coupling

We investigate properties of the scalar, nonlinear function g to conclude on the
existence of its roots and, equivalently, on the solution of the FSC-RP. Statements and
proofs are very similar to those given in [8] for the perfect gas case. However, for the
sake of completeness and in order to show the behaviour of g for the implementation
of the FSC-RP, the following proofs are given at full length.
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Lemma 1 Let γ > 1, ρR, ρ, c1 > 0 and p > −π. Then there exist θm < 0 and θM > 0
such that the function g : (θm, θM ] → R composed of a shock branch (32) and
a rarefaction branch (33) for θ ≤ 0 and θ ≥ 0, respectively, is differentiable and
strictly monotonically decreasing.

Proof The shock branch (θ ≤ 0) is well-defined provided the discriminant in (33)
is positive, i.e.

θm := −
2ρR
γ − 1

< 0.

The rarefaction branch (θ ≥ 0) is well-defined provided that the term (ρR − θ)
γ−1

2 is
well-defined. Here, two cases have to be distinguished:

θM :=

{
∞ if γ−1

2 ∈ N,

ρR if γ−1
2 ∈ (0,∞]\N

.

The derivatives of g for the shock branch θm < θ ≤ 0 and the rarefaction branch
0 ≤ θ ≤ θM read:

g′(θ) = ρ̄c̄1
√

2c

(
(γ − 3)ρRθ − 2(γ − 1)θ2

2[(2ρR + (γ − 1)θ)(ρR − θ)]
3
2
−

1√
(2ρR + (γ − 1)θ)(ρR − θ)

)
−

4ρ2c2

(2ρ + (γ − 1)θ)2
, θ ≤ 0, (34a)

g′(θ) = −
ρ̄c̄1c
ρR

(
1 −

θ

ρR

) γ−3
2

− c2
(
1 −

θ

ρR

)γ−1
, θ ≥ 0. (34b)

Since the limits at θ = 0 fulfil

g(0−) = g(0+) = σ̄11,L + ρ̄c̄1
(
v − v̄1,L

)
+ ρc2/γ − π,

g′(0−) = g′(0+) = − (ρ̄c̄1 + ρc) c/ρ < 0

and the Lax curves are smooth functions of the parameters, g is continuously dif-
ferentiable at θ = 0. Next, we show that along the shock branch (θm < θ ≤ 0) the
function g is strictly monotonically decreasing. According to (34a) this holds true if
the inequality

(γ − 3)ρθ − 2(γ − 1)θ2 − 2(2ρ + (γ − 1)θ)(ρ − θ) ≤ 2
√

2
ρ2c
ρ̄c̄1

√
(ρ − θ)3

2ρ + (γ − 1)θ

holds. The left-hand side of the inequality reduces to −ρ(4ρ + θ(γ − 3)) that is
negative for θm < θ ≤ 0, since{

4ρ + θ(γ − 3) ≥ 4ρ > 0 if 1 < γ < 3,
2ρ(γ + 1)/(γ − 1) > 0 if γ ≥ 3

.
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Along the rarefaction branch (0 ≤ θ ≤ θM ) we obtain from (34b)

g′(θ) = −c2ρ−2r
(
A(ρ − θ)r−1 + (ρ − θ)2r

)
,

where A := c−1ρr ρ̄c̄1 > 0 and r := γ−1
2 . It is obvious that g′ has a single root in ρ.

If r < N or r ∈ N is odd, then g′ is negative for θ ∈ [0, θM ). If r ∈ N is even, then g′
is positive if

ρ < θ < ρ + A
1

r+1 .

Therefore, g is strictly monotonically decreasing, if θ does not exceed θM . This
concludes the proof. �

Since g ∈ C1((θm, θM ]) and g is strictly monotone there exists a unique root of g if g
has opposite signs at θm and θM . This is shown in the next theorem that is equivalent
to Theorem 3.1 in [8].

Theorem 1 Let γ > 1 and ρR, ρ, c1 > 0, pR > −π. The initial data (v1,L, σ11,L) and
(ρR, vR, pR) are assumed to satisfy

vR ≤
2

γ − 1
cR + v1,L −

σ11,L

ρc1
+ π. (35)

Then there exists a unique root θ∗ ∈ (θm, θM ] of the function g : (θm, θM ] → R and
therefore a unique solution of the FSC-RP.

Proof For θ ≤ 0 we have by definition of g on the shock branch (32)

lim
θ→θm

g(θ) = ∞.

If θ ≥ 0 and either (γ − 1)/2 ∈ (0,∞]\N or (γ − 1)/2 ∈ N even then θM = ρR and
g(θM ) ≤ 0 provided that

σ11,L + ρc1

(
vr −

2
γ − 1

cR − v1,L

)
≤ π

holds. This inequality is satisfied by assumption (35). If γ−1
2 ∈ N is odd then

θM = ∞ and limθ→θM g(θ) = −∞. According to Lemma 1 g is strictlymonotonically
decreasing in the interval (θm, θM ]. Thus, by inspecting all cases of limits of g towards
the domain θm and θM the assertion is proven. �

Remark 2 Note that the fluid portion of condition (35) corresponds to the right hand
side of the vacuum condition for the classical RP, cf. [15].
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4 Conclusions

Condition (35) on the initial data demanded in the previous theoremmay be rewritten
using the fact that the initial data are subsonic (28).

Lemma 2 Let γ ∈ (1,3), ρR, ρ, c1 > 0, pR > −π and the initial data in the fluid part
be subsonic, i.e. equation (28) holds. Then

v1,L ≥
σ11,L

ρc1
− π (36)

is a sufficient condition for a unique solution of the RP for the FSC.

Proof The subsonic condition (28) implies

vR ≤ cR < cR
2

γ − 1
.

Thus, with (36) condition (35) is satisfied. �

We have derived a strategy for the FSC problem employing half-RPs and have shown
that under reasonable conditions on the subsonic flow there exists a unique solution
of the FSC-RP. This strategy is applied in the coarse of numerical investigations of
a bubble collapse, see [13].
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