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Transpiration cooling is numerically investigated, where a cooling gas is injected through
a carbon composite material into a hot gas channel. To simulate this process efficiently
an effective problem is derived, where effects induced by micro-scale structures on
macro-scale variables, e.g. cooling efficiency, are taken into account without resolving
the micro-scale structures. The key idea of the effective model is to determine effec-
tive boundary conditions at the interface between hot gas and porous medium flow.
These are derived using an upscaling strategy. Numerical simulations in 2D with effec-
tive boundary conditions are compared with results obtained from computations with
uniform and non-uniform injection. The computations confirm that the effective model
provides a better approximation of the cooling efficiency than the uniform injection.

1. Introduction
To simulate transpiration cooling the process of a cooling gas entering a hot gas flow

through a porous material needs to be modeled. The problem at hand is a channel with
a hot gas flow. Mounted into the wall of the channel is a porous material. A reservoir
containing the cooling gas is attached to the porous material.
Compared with other active cooling techniques such as film or effusion cooling, transpi-
ration cooling might offer advantages regarding the formation of stable films, see Linn et
al. [1,2] and Linn et al. [3], and the cooling efficiency. With the availability of permeable
ceramics, in particular composite carbon/carbon materials, investigated for instance by
Selzer et al. [4], the development of transpiration-cooled combustion chambers is a re-
cent research topic, see for instance Ortelt et al. [5] or Herbertz et al. [6]. Numerical
simulations of hot gas flows exposed to transpiration cooling were conducted by Jiang
et al. [7] and more recently by Liu et al. [8]. The objective of these simulations was the
investigation of the effect of the cooling gas injection on the hot gas flow, especially on
the boundary layer.
Injecting cooling gas through a porous medium into a hot gas channel flow was nu-
merically investigated in [9] and [10] using a two-domain approach. Here, the injection
was modeled uniformly, i.e. all roughness scales are neglected. In [11] to simulate non-
uniform injection the two-domain approach was extended by taking measured interface
outflow distributions into account. The results validated by experimental data confirmed
the assumption that micro-scale effects, e.g. local mass fluxes, have significant influ-
ence on the macro-scale behavior of the cooling effect, such as the cooling film shape
or cooling efficiency. Computations at the interface on the pore scale using reconstruc-
tion methods are presented in [12].
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The turbulent channel flow and the flow within the pore-scale tubes in the porous ma-
terial can be described by the Navier-Stokes equations. A direct numerical simulation
(DNS), i.e., resolution of all scales, of the hot gas flow in the channel and the porous
medium flow is not feasible due to the tremendous computational effort. In [13] the pore
scale for a uniform (coarse) pore distribution was discretized to analyze the effect on
the velocity. Applying well established averaging models like RANS for the hot gas flow
and Darcy-based models for the porous medium flow help understand general effects
of transpiration cooling on the macro-scale at an affordable cost.
Our goal is the development of a new method that combines the advantages of an af-
fordable averaged macro-scale computation with information from the micro-scale. Here
the micro-scale effects that have an impact on macro-scale values are of special inter-
est. In terms of transpiration cooling we would like to analyze how the rough porous
injection interface affects the cooling film or the cooling efficiency in the turbulent chan-
nel flow.
While passing through the porous material the cooling gas is transported through mi-
croscopic channels that form the void space in the porous structure. At the interface the
cooling gas is therefore entering the channel flow through microscopic pores. The dis-
tribution of the pores is assumed to have an influence on the development of a cooling
film.
Typically the effects of the pore-scale (micro-scale) injection at the interface towards the
hot gas flow are neglected in averaged models. Experiments performed in a wind tunnel
at the ITLR Stuttgart show that these micro-scale effects have a significant influence
on the behavior of the cooling film [11]. For a better understanding of the micro-scale
influence at the coupling interface on macro-scale quantities we develop a macro-scale
model that takes micro-scale effects at the interface into account without resolving the
entire micro-scale. This is done by deriving effective boundary conditions using an up-
scaling strategy motivated by the strategy presented in [14].
Derivations of effective boundary conditions for parallel porous medium flow can be
found in [15]. A rigorous analytical derivation is presented in [16] also for parallel porous
flow. In [17] this approach was used to determine boundary conditions for flows that
enter the porous material at the interface. In our case the cooling gas is injected into
the hot gas flow and therefore exits the porous material at the interface. In [18] effective
interfacial velocity boundary conditions based on the Stokes equations were derived.
Since in our setting we are interested in the heat transfer, our derivation is based on the
Navier-Stokes equations.
The physical model of the subsonic channel flow and the porous medium flow as well as
the uniform coupling of the two solvers are briefly summarized in Sec. 2.1. In Sec. 2.2
we introduce the micro-scale interface problem. The arising effective macro-scale model
is presented in Sec. 2.3. In Sec. 3, the derivation of effective boundary conditions is de-
scribed. Both the experimental and numerical setup as well as the numerical results of
all components leading to an effective computation are presented in Sec. 4. A summary
of the main results in Sec. 5 concludes the paper.

2. Mathematical modeling
To develop a macro-scale model that takes micro-scale effects at the interface into ac-

count we first summarize the established two-domain approach, see [9,10], for uniform
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injection in Sec. 2.1. Then we introduce a so-called micro-scale interface problem in
Sec. 2.2, where we pay special attention to the interface. This problem is derived using
the established two-domain approach for uniform injection. Finally, the micro-scale inter-
face problem is used to derive a so-called effective model in Sec. 2.3, where the effects
of the micro-scale at the interface are incorporated without resolving the micro-scale
pores.

2.1. Zeroth-order problem
The zeroth-order problem, developed in [9], is a two-domain approach with the domains
ΩHG and ΩPM for the hot gas flow and the porous medium, respectively, see Figure 1,
that does not account for micro-scale effects at the coupling interface. In the following,
we summarize the governing equations and boundary as well as coupling conditions for
these domains.

2.1.1. Hot gas domain ΩHG
The channel hot gas flow is modeled using Favre-averaged RANS-equations closed

by the Wilcox k-ω turbulence model [19]:

∇ · (ρ̄ṽ) = 0 , (2.1)

∇ · (ρ̄ṽ ⊗ ṽ + p̄I) = ∇ ·
(
τ̄ + ρ̄R̃

)
, (2.2)

∇ · (ṽ(ρ̄Ẽ + p̄)) = ∇ ·
((

τ̄ + ρ̄R̃
)
ṽ − q̄ + q̄t + v′′τ − 1

2
ρ (v′′)2 v”

)
, (2.3)

∇ · (ρ̄ṽk̃) = ρ̄
∑
i,j

R̃ij
∂ṽi
∂xj
− β∗ρ̄k̃ω̃ +∇ ·

((
µ+ σ∗

ρ̄k̃

ω̃

)
∇k̃
)
, (2.4)

∇ · (ρ̄ṽω̃) = α
ω̃

k̃
ρ̄
∑
i,j

R̃ij
∂ṽi
∂xj
− βρ̄ω̃2 + σd

ρ̄

ω̃
∇k̃∇ω̃ +∇ ·

((
µ+ σ

ρ̄k̃

ω̃

)
∇ω̃
)
. (2.5)

Here, (̃·) denotes the Favre-averaged and (̄·) the Reynolds-averaged values.
This system is solved for the conservative flow quantities

UHG =
(
ρ̄, ρ̄ṽ, ρ̄Ẽ, ρ̄k̃, ρ̄ω̃

)
, (2.6)

where ρ̄ is the density, ṽ the fluid velocity vector, k̃ the turbulent kinetic energy and
ω̃ the specific dissipation rate. The total energy Ẽ is given by Ẽ = ẽ + 1/2 ṽ2 with the
specific internal energy ẽ. While the components of the mean viscous stress tensor τ̄
are computed directly, the Reynolds stress tensor ρ̄R̃ is modeled via the Boussinesq
hypothesis [20]. The mean heat flux q̄ is computed applying Fourier’s law, i.e.,

q̄ = −cp
µ

Pr
∇T̄ , (2.7)

where cp is the specific heat capacity at constant pressure, µ the dynamic viscosity, Pr
the Prandtl number and T̄ the mean temperature. Accordingly, the mean turbulent heat
flux is modeled by

q̄t = −cp
µt
Prt
∇T̄ (2.8)

with the turbulent Prandtl number set to Prt = 0.9. The turbulent viscosity µt is modeled
by Wilcox’s turbulence model. The diffusion of the turbulent kinetic energy described by
∇·
(
v′′τ − 1

2 ρ (v′′)
2
v′′
)

in the energy equation (2.3) is neglected. For the closure of the
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FIGURE 1. Transpiration cooling setup for zeroth-order problem.

system, we use the equation of state for a thermally and calorically perfect gas

p̄ = ρ̄R T̃ . (2.9)

The specific gas constant R is determined by R = (γ − 1) cp/γ with the isentropic
exponent γ. We refer to [19] for detailed information on the turbulence model and the
choice of the coefficients β∗, σ∗, α, β, σd and σ. In the following, we omit the labeling of
averaged quantities ( (̄·) or (̃·) ).
The system (2.1) - (2.5) has to be complemented by suitable boundary conditions for
the configuration in Figure 1. Here, we discuss the conditions for a subsonic hot gas
flow. At the inflow boundary ΓI , the velocity and the temperature are prescribed by

v = v∞, T = T∞ on ΓI , (2.10)

where the subscript ∞ indicates the inflow conditions. The static pressure on ΓI is
extrapolated from the interior flow domain.
At the outflow boundary ΓO, only the pressure is prescribed by setting

p = p∞ on ΓO . (2.11)

For the walls ΓW,HG of the channel we use adiabatic walls to account for the changing
wall temperature due to the cooling.

2.1.2. Porous medium domain ΩPM

The porous medium flow is characterized by the porosity ϕ of the material, i.e., the
ratio of the void space to the total volume of the medium. We assume that the entire void
space is connected. Thus, we do not have to deal with isolated cavities. Furthermore,
the porosity is constant in the entire domain.
In [21] the relation v = ϕV between the intrinsic average velocity V and the Darcy ve-
locity v is introduced. The average velocity V is obtained by averaging the fluid velocity
over a volume that consists of fluid only. The Darcy velocity v, also known as seepage
or filtration velocity, is the average velocity over a volume that incorporates both, solid
and fluid material.
The flow through the porous material on ΩPM is described by:

∇ · (ρf v) = 0, (2.12)

ρfϕ
−2(v · ∇)v = −∇P − µ

KD
v − ρf

KF
‖v‖2v, (2.13)
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(ϕ− 1)∇ · (κs∇Ts) = hv (Tf − Ts), (2.14)
ρfcp,fv · ∇Tf − ϕ∇ · (κf ∇Tf ) = hv (Ts − Tf ). (2.15)

This system is solved for the variables

UPM = (ρf ,v, Ts, Tf ) (2.16)

which denote the fluid density, the Darcy velocity, the solid temperature and the fluid
temperature, respectively.
The continuity equation (2.12) implies mass conservation and describes the behavior
of the fluid density in the porous media. We consider the Darcy-Forchheimer equa-
tion (2.13) to incorporate the conservation of momentum and to model the pressure
gradient driven flow through the porous material. The temperature of the solid and the
fluid are assumed to be in non-equilibrium. Therefore we need two heat equations (2.14)
and (2.15). Here, µ denotes the dynamic viscosity of the fluid,KD the permeability coef-
ficient of the medium, KF the Forchheimer coefficient, cp,f the heat capacity of the fluid
and hv the heat transfer coefficient. The heat conduction tensor of the solid κs consists
of a component for the parallel flow direction κs,par and for normal flow direction κs,nor,
respectively:

κs =

[
κs,nor 0

0 κs,par

]
(2.17)

For the heat conduction coefficient of the fluid κf = cp,fµ/Pr the dynamic viscosity µ is
computed using Sutherland’s law.
Again to close the system we use the ideal gas equation for the pressure

P = ρf Tf R (2.18)

with R being the specific gas constant.
Assuming that the conditions in the reservoir are constant and homogeneous we can
derive the pressure and the temperatures on the reservoir boundary by measuring the
coolant temperature Tc and the pressure Pc. Furthermore let Tb be the temperature of
the solid on the backside of the porous material. Then the boundary conditions on the
reservoir boundary read

P = Pc, Ts = Tb, Tf = Tc on ΓR. (2.19)

Since the fluid density can be computed by the ideal gas law we get

ρR := ρ =
Pc
RTf

on ΓR. (2.20)

We assume the solid side walls at ΓW,PM to be adiabatic, i.e.,

∇Ts · n = 0, ∇Tf · n = 0 on ΓW,PM (2.21)

and the slip-conditions to hold, i.e.,

n · v = 0 on ΓW,PM , (2.22)

because viscous effects are neglected in Equations (2.12) and (2.13), i.e., the attached
flow is parallel to ΓW,PM . Thus, the normal velocity component must vanish, whereas
non-trivial tangential velocity components have to be permitted. Therefore Equations
(2.12) and (2.13) need characteristic boundary conditions on ΓW,PM . The nonlinear
term in (2.13) allows the velocity v to match to a physically correct tangential field at
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FIGURE 2. Micro-scale interface problem.

ΓW,PM . This also implies a characteristic boundary ΓW,PM for Equation (2.12), i.e., in
our case no boundary conditions for the density ρ have to be imposed.

2.1.3. Macro-scale coupling conditions at ΓInt

At the smooth interface ΓInt coupling conditions for the hot gas domain ΩHG consist
of

ρ =
p

RTf,PM
, v = vPM , E = cvTf,PM +

1

2
|vPM |2. (2.23)

The values for the pressure p and the density ρ in (2.23) and for the friction velocity
uτ and the dynamic viscosity µ in (2.24) below are determined by the hot gas flow.
The temperature Tf,PM and the velocity vPM of the fluid are provided by the porous
medium flow. The turbulent kinetic energy at the interface is set to zero. To account for
mass injection at the modeled porous surface the specific dissipation rate is set to

ω =
ρu2

τ

µ

25
v2,PM
uτ

(
1 + 5

v2,PM
uτ

) , (2.24)

where v2,PM denotes the velocity component normal to the interface and uτ =
√
τw/ρ

the friction velocity with the wall shear stress τw. For ΩPM the coupling conditions at the
interface ΓInt consist of

v2 =
ṁc

ρmixAc
with ρmix =

pHG
TfR

, (2.25)

where ṁc denotes the coolant mass flow rate and Ac the surface area of the porous
medium, and

(1− ϕ) (κs∇Ts) · n = cp,f ρf vy (Tf − THG) + κ∇THG · n. (2.26)

Here, information from the hot gas flow enter using the hot gas pressure pHG, the tem-
perature THG and the heat flux κ∇THG with the hot gas heat conduction coefficient κ.
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2.2. Micro-scale interface model
The zeroth-order problem does not account for micro-scale effects at the coupling in-
terface but a uniform mass flow rate ṁc is assumed in the coupling conditions (2.25).
To account for these effects we want to derive effective coupling conditions. For this
purpose we introduce a micro-scale interface model. The micro-scale is active only at
the injection interface, because the roughness of the porous material directly affects the
cooling film in the hot gas channel. Hence, the domain ΩHG is extended to ΩεHG, see
Figure 2.
The roughness is assumed to be periodic, i.e., the rough interface ΓεInt between ΩεHG
and ΩPM is composed of periodic roughness elements. Each element can be consid-
ered as an idealized pore consisting of an injection channel and the surrounding solid
structure, see Figure 3(right). Here, dS is the diameter of the solid wall separating two
channels, see Figure 3(left). Thus, one element of size ε consists of solid structure and
void space (injection channel). To ensure that the ratio of the injection channel volume
related to the whole volume of the element is still ϕ we choose

ε =
dS

(1− ϕ)
. (2.27)

Following [4], for a given porosity ϕ and permeability KD of a porous material, both
measured in experiments, the diameter of the small solid wall dS is here determined by
using the Ergun approach [22]:

KD =
ϕ3d2

S

150(1− ϕ)2
. (2.28)

Note that in the original Ergun equation dS denotes the particle diameter of the porous
bed. This should be kept in mind for application purposes.
Following the zeroth-order problem in Sec. 2.1, the flow in the hot gas channel is mod-
eled using RANS equations and the boundary conditions at ΓI , ΓO and ΓW,HG are
chosen as presented in Sec. 2.1.1. In contrast to the zeroth-order problem there is no
interface ΓInt, but the interface to the porous material ΓεInt = Γs,ε ∪ Γf,ε now consists
of solid walls Γs,ε and channel entries Γf,ε. We assume the solid walls to be isothermal,
i.e.,

T = Ts,PM on Γs,ε (2.29)
and the no-slip-conditions to hold, i.e.,

v = 0 on Γs,ε. (2.30)

For the inflow conditions at Γf,ε we need to adjust the coupling conditions of the zeroth-
order problem to ensure the conservation of momentum. The latter is not present in the
zeroth-order problem due to the averaged velocity over the entire interface. Because of
the split of the interface into solid walls and microscopic injection channels we have to
use the intrinsic average velocity V = v/ϕ at Γf,ε:

ρ =
p

RTf,PM
, V =

vPM
ϕ

, E = cvTf,PM +
1

2
|V|2.

The flow through microscopic injection channels is assumed to be laminar, because in
our setting the pore Reynolds number in the porous medium flow is small. Note that the
flow in the injection channels is not characterized by the Reynolds number of the hot
gas flow.
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FIGURE 3. Zoom into the micro-scale modeled interface(left), configuration depending on ε
(right).

For the micro-scale interface model it holds ΩεHG ⊃ ΩHG. With ε → 0 the roughness
elements become smaller but their number increases to infinity and the micro-scale
interface ΓεInt approaches the interface ΓInt of the zeroth-order problem. Thus, in the
limit we tend to a uniform injection along the entire porous sample that coincides with
the zeroth-order approach.

2.3. Effective macro-scale model
Micro-scale effects arising from the roughness are neglected in the two-domain ap-
proach in Sec. 2.1. On the other hand, solving the micro-scale interface problem in
Sec. 2.2 is very expensive and therefore not feasible. For instance, for the 3-D computa-
tions performed in [11] the grid would need to resolve over 40,000 microscopic injection
channels for a sample of "only" 48mm × 48mm. Hence, we develop a concept that im-
proves the zeroth-order model without resolving each microscopic pore channel at the
hot gas interface. The strategy is to derive so-called effective boundary conditions for
the hot gas flow using an upscaling technique.
Numerical investigations presented in [10] using the two-domain approach in Sec. 2.1
confirmed that there is a significant effect on the boundary layer in the hot gas flow near
the interface, but not far away from it. Therefore solving the zeroth-order model gives
a first approximation to simulate a transpiration cooled channel. The idea is to upscale
the flow field in the hot gas domain obtained by the two-domain approach using effec-
tive boundary conditions at the interface ΓInt. Note, that we do not couple the hot gas
domain with the porous medium domain, because we assume that the effective condi-
tions have almost no effect on the porous medium flow. Thus, the flow is modeled again
using RANS equations and the boundary conditions at ΓI , ΓO and ΓW,HG are chosen
as presented in Sec. 2.1.1. We replace the boundary conditions (2.23) at the interface
ΓInt with effective injection boundary conditions:

ρ =
p

RT eff
, v = veff , E = cvT

eff +
1

2
|veff |2.

The values for the temperature T eff and the velocity veff accounting for the effects
of the micro-scale interface model on ΩεHG are derived in Sec. 3.3. In particular, the
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(a) Cell problem on macro scale. (b) Cell problem on Y .

FIGURE 4. Cell problem on both scales.

effective boundary conditions have to ensure the correct mass flow rate entering the hot
gas channel flow.

3. Derivation of effective boundary conditions
In the original two-domain approach in Sec. 2.1 the cooling gas is uniformly injected

into the hot gas channel flow. The roughness of the porous material and the geometry of
the channel distribution do not directly enter this model. To derive boundary conditions
that capture the effects of the roughness on the hot gas channel flow as modeled in the
micro-scale interface problem in Sec. 2.2 we apply an upscaling approach. To do so we
need to establish a relation between the macro-scale and the micro-scale.
In the following, we denote the solution of the zeroth-order model in Sec. 2.1 as u0 =
(ρ0,v0, E0), the solution of the micro-scale interface problem in Sec. 2.2 as uε = (ρε,vε, Eε)
and the solution of the effective model in Sec. 2.3 as ueff = (ρeff ,veff , Eeff ).
Let x̄C ∈ ΓInt characterize the position of one injection channel in ΩεHG as introduced in
the micro-scale interface problem, see Figure 4(a). Then the roughness domain R(x̄C)
consists of the injection channel itself and the free flow on top of this channel, see Fig-
ure 4(a). We introduce the transformation Yx̄C : R(x̄C)→ Y that relates each roughness
element R(x̄C) on the macro-scale

Yx̄C (x) :=
x− x̄C

ε
, ∀x ∈ R(x̄C) (3.1)

to the cell domain Y := {y(x) = Yx̄C (x),x ∈ R(x̄C)} on the micro-scale as shown in
Figure 4(b).

3.1. Upscaling
To account for micro-scale effects at the interface ΓInt we use an upscaling strategy. For
this purpose we approximate the micro-scale interface solution uε with an asymptotic
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expansion in terms of powers of ε:

uε(x) = u0(x) + εu1(x,y(x)) +O(ε2), ∀x ∈ R(x̄C). (3.2)

Here, u0 is the non-dimensionalized solution of the zeroth-order problem, where the
roughness is not modeled. The goal of the term εu1 is therefore to address the rough-
ness. Following [14], we assume that the upscaling function u1 depends on the macro-
scale variable x and the micro-scale variable y by

u1(x,y(x)) := ζx̄C

(
x− x̄C

ε

)
, ∀x ∈ R(x̄C). (3.3)

Here, the so-called cell functions ζx̄C = (χ, φ, π) are assumed to be sufficiently smooth
functions in the cell domain Y .

3.2. Cell problem
To determine the upscaling function u1 we derive a problem on the cell domain Y . For
this purpose, we consider an arbitrary but fixed roughness element R(x̄C). Because of
the pore scale we assume the flow to be laminar. Thus, on R(x̄C) the flow within the
injection channel and the free flow above can be described using the dimensionless
Navier-Stokes equations:

(v · ∇)ρ+ ρ∇ · v = 0,

(v · ∇)v + 1
ρ∇p−

1
ρRe∇ · τ = 0,

(v · ∇)p+ γp(∇ · v)− γ−1
Re ((τ · ∇)v −∇ · q) = 0.

(3.4)

To analyze the subsonic and steady state flow we switch to primitive variables, i.e.,
u = (ρ,v, p). The stress tensor τ and the heat flux q are defined by

τ = −2

3
µ(∇ · u)I + µ(∇u + (∇u)T ), q = −cp

µ

Pr
∇T , (3.5)

with the identity matrix I, the Prandtl number Pr, the dynamic viscosity µ and the heat
capacity cp. The dimensionless ideal gas law p = ρT is used to close the system.
Plugging the asymptotic expansion (3.2) and the upscaling function (3.3) into (3.4) and
neglecting higher order terms, for details see [14], we obtain the following dimensionless
system of equations

(v0 · ∇y)φ(y) + ρ0∇y · χ(y) = 0,

ρ0(v0 · ∇y)χ(y) +∇yπ(y) = µ
εRe

(
∆yχ(y) + 1

3∇y(∇y · χ(y))
)
,

(v0 · ∇y)π(y) + γp0∇y · χ(y) = γ
εRe

cpµ
Pr

(
1
ρ0 ∆yπ(y)− p0

(ρ0)2 ∆yφ(y)
)
,

(3.6)

for y ∈ Y , where χ, φ, π are the upscaling functions corresponding to velocity v, density
ρ and pressure p, respectively. We emphasize that the zeroth-order solution u0 enters
the system (3.6). It depends on the macro-scale, i.e., u0(x(y)) = u0

(
Y−1
x̄C (y)

)
= u0(x̄C+

εy). For y2 ≥ 0 the solution u0 is determined from ΩHG and for y2 < 0 from the Darcy-
based porous medium model on ΩPM , see Fig. 1. For each fixed x̄C , the macro-scale
solution is assumed to be constant in y1 direction, but it varies in y2. The roughness is
assumed to be periodic, i.e.,

χ, φ, π periodic on Γp. (3.7)

Note that on ΓW the boundary condition is chosen to ensure no-slip conditions for the
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micro-scale interface problem

vε = v0 + εv1 ≡ v0 + εχ = v0 + ε(−v0

ε
) = 0. (3.8)

Furthermore, with the assumption of constant pressure pε = p0, we ensure isothermal
walls T ε = T 0

s for ΓW , because

ρε = ρ0 + εφ =
p0

T 0
f

+ ε

(
(T 0
f − T 0

s )p0

εT 0
s T

0
f

)
=
p0

T 0
s

. (3.9)

On ΓInj , corresponding to Γf,ε, the injection of a Darcy-modeled velocity needs to be
adjusted to the now resolved structures, i.e.,

vε = Vε = v0 + εχ = v0 + ε

(
v0

ε
(

1

ϕ
− 1)

)
=

v0

ϕ
. (3.10)

The system (3.6) is closed by the following boundary conditions

χ = −v0

ε
, φ =

(T 0
f − T 0

s )p0

εT 0
s T

0
f

, on ΓW , (3.11)

χ =
v0

ε
(

1

ϕ
− 1), φ = 0, on ΓInj , (3.12)( µ

ε Re
∇yχ− πI

)
ny = 0, ∇yφ · ny = 0, on Γup . (3.13)

The boundary conditions for Γup arise from the weak formulation of the cell problem.
The solution of the dimensionless system (3.6) with the boundary conditions (3.7), (3.11), (3.12)
and (3.13) is used to determine effective constants by:

〈χ1〉 :=
1

|ΓInt|

∫
ΓInt

χ1 dy, 〈χ2〉 :=
1

|ΓInt|

∫
ΓInt

χ2 dy,

〈φ〉 :=
1

|ΓInt|

∫
ΓInt

φdy, 〈π〉 :=
1

|ΓInt|

∫
ΓInt

π dy. (3.14)

3.3. Effective boundary conditions
In Sec. 2.3 effective boundary conditions are used at the interface ΓInt. These bound-
ary conditions are determined using the effective constants (3.14) that are derived in
Sec. 3.2 solving the cell problem. Applying the upscaling strategy presented in Sec. 3.1
the effective velocity is computed as follows

veff = v0 + ε〈χ〉. (3.15)

Note that now all quantities derived from solving the dimensionless cell problem are
multiplied with non- dimensionalized reference quantities. To ensure the correct cooling
gas mass flow rate we only consider the injection velocity v2. Since on top of the inter-
face, i.e., x2 > 0, the flow is dominated by the inflow of the cooling gas in wall normal
direction, we neglect the influence of the streamwise velocity on the hot gas flow to de-
termine the cooling gas inflow rate. For the cooling gas mass flow rate to be consistent
in the zeroth-order problem as well as in the effective problem, we need

v0
2ρ

0 =
ṁc

Ac
= veff2 ρeff =

(
v0

2 + ε〈χ2〉
) pHG
RT eff
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or, equivalently,

T eff =
(
v0

2 + ε〈χ2〉
) pHGAc
Rṁc

= v0
2

pHG
Rv0

2 ρ
0

+ ε〈χ2〉
pHGAc
Rṁc

.

Here, the pressure pHG corresponds to the pressure of the attached hot gas flow field
at the interface. Since this pressure is not significantly affected by the coupling, i.e., it
remains constant with pHG = p0, the effective temperature is determined by

T eff = T 0 + ε〈χ2〉
pHGAc
Rṁc

. (3.16)

Note that T eff tends to T 0 for ε→ 0, i.e., the effective boundary condition is consistent
with the boundary conditions of the zeroth-order problem.

4. Numerical results
In this section, we analyze numerical results of transpiration cooling simulations using

effective boundary conditions. These are compared to coupled simulations using the
two-domain approach (zeroth-order problem) partly presented in [23]. For this purpose,
the experimental setup for the investigation of the turbulent channel flow and the char-
acteristics of the porous material, respectively, are briefly described in Sec. 4.1, followed
by the numerical setup in Sec. 4.2. Then we first discuss the numerical results for the
zeroth-order problem, see Sec. 4.3. From these simulations we extract data that enter
the cell problem. The results of the latter are discussed in Sec. 4.4. In Sec. 4.5 we per-
form computations with effective boundary conditions and compare these results with
uniform and non-uniform transpiration cooling results.

4.1. Experimental setup
For our coupled simulation, we use a setup corresponding to the experiments described
in [24, 25]. Here, a porous carbon composite sample is mounted into the sidewall of a
subsonic wind tunnel. On the backside of the porous material, a coolant reservoir is
attached. This experimental setup is shown in Fig. 5. The test section is 1.32m long
with the porous material beginning 0.58m downstream of the entrance, the height is
90mm and the width 60mm. The porous wall sample measures 61mm × 61mm and
is 15mm thick. The flow conditions in the hot gas channel (air) and for the cooling gas
(air) for this configuration are listed in Tab. 1. Parameters of the porous material are
recorded in Tab. 2. Note that the heat transfer coefficient hv can only be estimated and
not measured.

4.2. Numerical setup
For first investigations we do not consider the three-dimensional experimental setup but
perform 2D computations in the cross-section of the 3D configuration along the center-
line in streamwise direction of the hot gas flow. Following [23], we first run a coupled sim-
ulation of the zeroth-order problem with uniform injection, where we perform alternately
computations with a flow solver in the hot gas domain ΩHG = [0; 1.32] × [0; 0.06] and a
porous medium solver in the porous medium domain ΩPM = [0.58; 0.641]× [−0.015; 0].
At the interface data are exchanged according to the coupling conditions (2.23)-(2.26).
The flow solver Quadflow [26] solves the RANS equations (2.1)-(2.5) iteratively by us-
ing a fully adaptive cell-centered finite volume method on locally refined grids. For the
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FIGURE 5. Experimental setup for turbulent hot gas channel flow by Langener et al. [24].

Mach number M∞ 0.3
density ρ∞ 0.78 kg/m3

temperature T∞ 425K
pressure p∞ 95, 200Pa
turbulence intensity Tu∞ 0.5%
viscosity ratio (µt/µ)∞ 0.001
isentropic exponent γ 1.4
Prandtl number Pr 0.72
blowing ratio F 0.24%
coolant mass flow rate ṁc 0.875 g/s
reservoir pressure pR 334, 000Pa
coolant reservoir temp. Tc 304.2K
backside temperature Tb 321.9K

TABLE 1. Flow parameters.

through flow direction parallel
porosity ϕ 0.111
heat conductivity (par) κs,par 15.1856W/(mK)
heat conductivity (nor) κs,nor 1.5748W/(mK)
permeability KD 3.57 · 10−13m2

Forchheimer coefficient KF 5.17 · 10−8m
heat transfer coefficient hv 106W/(m3K)

TABLE 2. Porous medium parameters.

porous medium flow a finite element solver has been implemented using the deal.II li-
brary [27].
The hot gas flow solver on ΩHG is initialized on a coarse grid that comprises 108, 000
grid cells. The grid lines are concentrated towards the walls using a stretching function.
The final adaptive grid after 14 coupling iterations and, hence, adaptations consists of
about 770, 000 grid cells. The porous material ΩPM is discretized by a uniform grid with
306× 65 grid cells. No adaptation is used in the porous medium domain. The grid lines
are concentrated towards the hot gas interface.
For a first investigation, nine positions in the hot gas and the porous medium domain



14 V. König & S. Müller

(a) Density and pressure distribution. (b) Streamwise and wall normal velocity
components.

FIGURE 6. Zeroth-order problem: porous medium and hot gas information near the interface in
wall normal direction.

FIGURE 7. Zeroth-order problem: temperature and injection velocity along the interface.

are chosen at which the zeroth-order solution is used as input parameter for the com-
putation of nine corresponding cell problems that are solved by a finite element method
again using the deal.II library [27]. The grid for the cell problem consists of 8, 400 grid
cells. By using the permeability constant KD from Tab. 2 and the Ergun approach (2.28)
we get a solid wall diameter dS = 1.759×10−4 m and therefore one micro-scale element
of the size ε = 1.979 × 10−4 m. The effective coefficients derived from the solutions of
the cell problems are interpolated linearly to cover the entire interface.
Subsequently, the flow solver Quadflow [26] is used to solve the effective problem on
ΩHG. Here, the coarse grid for the flow solver starts with 522, 000 grid cells. Since the
boundary conditions (3.15) and (3.16) depend on the zeroth-order solution along the
interface, we resolve the grid at the interface to the level of the zeroth-order computation
to ensure matching cell interfaces.

4.3. Zeroth-order problem
Simulations solving the zeroth-order problem (uniform injection) are performed. From
these computations we extract data that enter the cell problem and the effective problem.
Data extracted in wall normal direction at the interface ΓInt are shown in Fig. 6(a) and
6(b). These enter the cell problem (3.6). Since these data depend on the position x̄C,1 in



Effective boundary conditions for transpiration cooling 15

FIGURE 8. Cell problem: 〈χ2〉 interpolated to cover the entire interface ΓInt.

streamwise direction, we exemplarily present the extracted data for two positions x̄C,1 =
0.581m and x̄C,1 = 0.64m at the leading and trailing edge of the interface ΓInt. We
note a significant influence of the position on the density and the velocity components,
especially in the hot gas flow.
The zeroth-order model does not impose pressure continuity across the interface from
the surface of the porous medium to the hot gas channel. Solving the porous medium
model without the two temperature equations, i.e. assuming a constant temperature
through the medium, leads to pressure continuity and the correct mass flow rate. This
indicates the correct solving of the transport system for the density and the velocity.
For our model the correct mass flow rate entering the hot gas is ensured. Additionally,
pressure continuity at the hot gas interface could be imposed by parameter fitting, e.g.
the heat transfer coefficient, in the porous medium.
In Figure 7 we present the temperature as well as the injection velocity in the hot gas flow
at the interface ΓInt. These data are used in the effective boundary conditions (3.16)
and (3.15) of the effective problem.

4.4. Cell problem results
Using the zeroth-order solution presented in Sec. 4.3, the data perpendicular to the hot
gas flow direction are extracted at nine equidistant positions x̄C,1 along the interface,
see dots in Fig. 8. With this information (ρ0,u0, p0) for each of the points x̄C,1, one cell
problem is solved. Exemplarily, in Fig. 9 the cell function solutions are presented for
x̄C,1 = 0.6105.
From the cell function solutions effective constants at ΓInt according to (3.14) are de-
rived for the nine reference points x̄C,1. Exemplarily, the interpolation of 〈χ2〉 is presented
in Fig. 8, because it enters the effective boundary conditions in (3.15) and (3.16). The
decreasing behavior of this effective constant can be explained by the increase of the
boundary layer thickness along the interface in the zeroth-order solution.
Justified by the low Reynolds number in the pore, the flow in the cell problem is assumed
to be laminar. On the other hand, the zeroth-order solution for y > 0 is derived from a
turbulent flow boundary layer. The derivation of effective constants of a turbulent cell
problem could be feasible, see e.g. [28].
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FIGURE 9. Cell problem: solution of the cell problem at x̄C,1 = 0.6105 for φ, χ2 and π.

4.5. Effective problem results

For the computation of the effective problem presented in Sec. 2.3 we need to determine
the effective boundary conditions (3.15) and (3.16). Here, u0 and T 0 are determined by
the solution of the zeroth-order problem presented in Fig. 7 at the interface. By linear
interpolation we compute effective constants for the entire interface ΓInt.
In Figure 10 the temperature and the wall-normal velocity distribution along the inter-
face ΓInt for the effective computation are presented. Note that there is no coupling with
the porous medium. Similarly to the zeroth-order solution in Sec. 4.3 we observe the
development of a cooling film and the thickening of the boundary layer resulting in a sig-
nificant temperature drop along the interface ΓInt. In particular, in the effective case the
temperature drops to only 348 K instead of 340 K in the zeroth-order problem. Thus, the
inhomogeneous injection caused by the micro-scale pores at the surface of the porous
medium affects the cooling, i.e., the cooling process is less efficient than predicted by
the zeroth-order solution.
To evaluate the effective model, the effective results have to be compared with the re-
sults obtained by a simulation of the micro-scale interface model. For the given 2D con-
figuration we obtain ε = 1.979× 10−4 m by (2.27) and (2.28). Thus, the interface would
consist of approximately 300 microscopic injection channels for the micro-scale inter-
face problem presented in Sec. 2.2. Since resolving these would lead to an extremely
fine grid, the computation of the micro-scale interface problem is too costly. Instead,
we perform a coupled simulation with non-uniform injection realized by applying a sine
function (with 300 periods) to a uniform velocity distribution, where the averaged value
corresponds to the mass flow rate ṁc. Thus, there exist local regions with high inflow
rates and regions with no inflow.
In Fig. 11 the temperature distribution at the interface for the uniform (representing the

zeroth-order problem), the non-uniform (representing a micro-scale problem) and the ef-
fective case are compared. We observe that the cooling effect along the interface ΓInt is
strongest for the uniform injection and smallest for the non-uniform injection. Obviously,
the effective injection clearly shows a better agreement with the non-uniform injection
in comparison with the uniform injection. This is also reflected in the averaged temper-
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FIGURE 10. Effective problem: temperature (red) and wall-normal velocity (black) along the
interface.

FIGURE 11. Temperature at the interface ΓInt for the uniform(black), the non-uniform(red) and
the effective (blue) case.

atures along the interface ΓInt: T̄ 0
Int = 342K for the uniform injection, T̄ sinInt = 352K for

the non-uniform case and T̄ effInt = 350K for the effective simulation.
This trend can also be seen in the cooling efficiency η that can be determined by relating
the averaged temperature T̄Int along the interface ΓInt to the inflow hot gas temperature
THG and the reservoir cooling gas temperature TC as follows

η =
T̄Int − THG
TC − THG

.

The cooling efficiency along the porous material interface is summarized in Tab. 3 for
the uniform, non-uniform and effective simulation. The lower cooling efficiency for non-
uniform injection is caused by the larger wall temperature gradients. For this purpose we
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uniform non-uniform effective
η 0.687 0.604 0.621

TABLE 3. Cooling efficiency.

FIGURE 12. Temperature distribution in the boundary layer at positions x1 = 0.5804 m and
x1 = 0.6406m.

present in Fig. 12 the temperature in the boundary layer for position x1 = 0.5804 m and
x1 = 0.6406 m for the uniform, the non-uniform and the effective computation. Close to
the wall, i.e., x2 = 0, the temperature gradient increases for uniform, effective and non-
uniform injection. Again, the effective result better catches the trend of the non-uniform
result than the uniform one. This holds true for both positions, the leading edge and the
trailing edge of the interface ΓInt.

5. Conclusions
We present an effective model that simulates transpiration cooling taking micro-scale

effects into account without resolving micro-scale pores. For this purpose we use an
upscaling strategy consisting of three steps:

(i) we solve a coupled zeroth-order problem of the hot gas flow and the porous
medium flow with uniform mass injection at the interface;

(ii) motivated by an asymptotic expansion a cell problem is derived on the micro-scale
that depends on the data of the coupled computation;

(iii) an effective problem is solved in the hot gas channel with effective boundary
conditions at the interface using averaged data from the cell problems and extracted
data from the coupled problem (uniform injection).
Numerical computations show that the cooling efficiency is reduced when using a non-
uniform injection in comparison to a uniform injection. This effect is reflected in the
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effective computation. Thus, the effective model provides a better approximation than
the coupled problem with uniform injection.
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