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Abstract

The ensemble Kalman filter belongs to the class of iterative particle filtering methods
and can be used for solving control–to–observable inverse problems. In recent years
several continuous limits in the number of iteration and particles have been performed in
order to study properties of the method. In particular, a one–dimensional linear stability
analysis reveals a possible instability of the solution provided by the continuous–time
limit of the ensemble Kalman filter for inverse problems. In this work we address this
issue by introducing a stabilization of the dynamics which leads to a method with globally
asymptotically stable solutions. We illustrate the performance of the stabilized version
of the ensemble Kalman filter by using test inverse problems from the literature and
comparing it with the classical formulation of the method.

Mathematics Subject Classification (2010) 37N35 (Dynamical systems in control), 65N21
(Inverse problems), 93E11 (Filtering)

Keywords Dynamical systems, inverse problems, regularization, stabilization, nonlinear
filtering methods, moment equations
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1 Introduction

In this paper we investigate a particular numerical method for solving inverse problems,
namely, the Ensemble Kalman Filter (EnKF). While this method has already been introduced
more than ten years ago [10] as a discrete time method to estimate state variables and pa-
rameters of stochastic dynamical systems, it has also been successfully applied to inverse
problems [18]. In this context is also known as ensemble Kalman inversion. The EnKF is
applied in many research fields due to its derivative–free structure, in particular in oceanog-
raphy [11], reservoir modeling [1], weather forecasting [19], milling process [24], process
control [25], and also machine learning [15, 20].

In order to set up the mathematical formulation, we let G : X→ Y be the given (possible
nonlinear) forward operator between finite dimensional Hilbert spaces X = R

d , d ∈N, and
Y = R

K , K ∈N. We are concerned with the following abstract inverse problem or parameter
identification problem

(1) y = G(u) +η

aiming to recover unknown control u ∈ X from given observations y ∈ Y , where η is observa-
tional noise. Typically, η is not explicitly known but only information on its distribution is
available. We assume that η ∼N (0,Γ −1), i.e. the observational noise is normally distributed
with zero mean and given covariance matrix Γ −1 ∈RK×K .

The EnKF can be derived within the inverse problem framework by rewriting (1) as a
partially observed and artificial dynamical system based on state augmentation, e.g. cf. [3,
18]. The update formula for each ensemble member is computed by imposing first order
necessary optimality conditions to solve a regularized minimization problem, which aims
for a compromise between the background estimate of the dynamics model and additional
information provided by data model. A similar technique is used to derive the update formula
for constrained inverse problems [2, 17].

In order to understand how and why the EnKF works, a continuous–time limit [4, 5, 8, 22,
23] and a mean–field limit on the number of the ensemble members [7, 9, 12, 16] have been
developed. Recent theoretical progress [16, 22] using these limits is the starting point of the
current work. Specifically, it has been shown that, within these limits, the EnKF provides a
solution to the inverse problem (1) by minimizing the least–squares functional

(2) Φ(u,y) :=
1
2

∥∥∥∥Γ 1
2 (y−G(u))

∥∥∥∥2

Y
,

via a preconditioned gradient flow equation, where the preconditioner is given by the em-
pirical covariance of the ensemble. Note that, contrary to the fully discrete and classical
formulation of the EnKF, there is no regularization of the control u in the minimization of (2).
However, when the inverse problem is ill-posed, infimization of Φ is not a well–posed problem
and some form of regularization may be required. This has been recognized in [8, 28] where
modifications of the EnKF are proposed, leading to Tikhonov–Phillips–like regularizations
of (2).

Another source of problems is given by the preconditioned gradient flow structure. In [16]
a linear stability analysis of the moment equations revealed that the method has infinitely
many non–hyperbolic Bogdanov–Takens equilibria [13] that lie on the set where the precon-
ditioner collapse to zero. Not only are Bogdanov–Takens equilibria not asymptotically stable

2



they are structurally unstable and thus non robust and extremely sensitive to model perturba-
tions. If the collapse happens too fast, convergence to the solution of the minimization of (2),
cannot be reached anymore leading to convergence that depends on choosing a proper initial
ensemble.

In this work we address these issues by introducing a modification of the continuous
dynamics for the ensemble, in such a way the corresponding phase plane of the moment
equations is characterized by a globally asymptotically stable equilibrium, the one minimizing
the least–squares functional (2). The stabilization effect is obtained by artificially inflating
the preconditioner of the gradient flow equation and by adding a suitable regularization
term aiming to control the distance of each ensemble member to their mean. The usual
properties of the classical ensemble Kalman filter, such as decay of the ensemble spread, are
still satisfied by this stabilized version of the method. Its performance is investigated for a
two–dimensional inverse problem. We show that the new method is able to converge to the
solution faster and, more importantly, converges independently of the initial guess of the
ensemble.

The rest of the paper is organized as follows. In Section 2 we review the ensemble Kalman
filter formulation for inverse problems and the continuous formulations. In particular, the
linear stability analysis of the moment equations performed in [16] is recalled. In Section 3
we discuss the stabilization of the dynamics and analyze the properties of the regularized
method. In Section 4 we investigate the ability of the method to provide solution to an inverse
problem based on a two–dimensional elliptic PDE. Finally, we summarize the results in
Section 5.

2 Preliminaries on the Ensemble Kalman Filter for Inverse Prob-
lems

We briefly recall the original formulation of the Ensemble Kalman Filter (EnKF), cf. [10],
which is based on a sequential update of an ensemble to estimate the solution of control–to–
observable inverse problems. The derivation of the method is presented within optimization
theory. Focusing on recent continuous limit formulations which have allowed theoretical
analysis of the nature of the method, we review the one–dimensional linear stability analysis
of the moment equations performed in [16].

2.1 Ensemble Kalman Filter

We consider a number J of ensembles (realizations of the control) combined in U ={
uj

}J
j=1

. The EnKF is originally posed as a discrete iteration on U, derived by solving a

minimization problem that compromises between the background estimate of the given
model and additional information provided by data or measurements. For more details, we
refer e.g. to [18]. The iteration index is denoted by n and the collection of the ensembles by
uj,n ∈Rd , ∀ j = 1, . . . , J and n ≥ 0. The EnKF iterates each component of Un at iteration n+ 1 as

(3) uj,n+1 = uj,n + CG(Un)
(
DG(Un) +

1
∆t

Γ −1
)−1

(y−G(uj,n))
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for each j = 1, . . . , J where ∆t ∈R+ is a parameter. In general, each observation or measurement
can be perturbed by additive noise [18]. We focus on the case where the measurement data
y ∈RK is unperturbed.

The update of the ensemble (3) requires the knowledge of the operators CG(Un) and
DG(Un) which are the covariance matrices depending on the ensemble set Un at iteration n
and on G(Un), i.e. the image of Un at iteration n. More precisely, we have

(4)

CG(Un) =
1
J

J∑
k=1

(
uk,n −un

)
⊗
(
G(uk,n)−Gn

)
∈Rd×K

DG(Un) =
1
J

J∑
k=1

(
G(uk,n)−Gn

)
⊗
(
G(uk,n)−Gn

)
∈RK×K

where we define un and Gn as the mean of Un and G(Un), respectively:

un =
1
J

J∑
j=1

uj,n, Gn =
1
J

J∑
j=1

G(uj,n).

The EnKF satisfies the subspace property [18], i.e. the ensemble iterates stay in the subspace
spanned by the initial ensemble. As consequence, the natural estimator for the solution of
the inverse problem is provided by the mean of the ensemble.

2.2 Derivation of the Ensemble Kalman Filter from an Optimization Point–of–
View.

The EnKF method (3) for the solution of the inverse problem (1) can be derived by using an
optimization point–of–view. We introduce a new variable w = G(u) ∈RK and reformulate (1)
equivalently as

w = G(u)

y = w +η.

The problem is then reinterpreted as filtering problem by considering a discrete–time dynam-
ical system with state transitions and noisy observations:

(dynamics model)

un+1 = un

wn+1 = G(un)

(data model)
{
y = wn+1 +η.

By defining v = [u,w]T ∈ Rd+K and Ξ : v 7→ Ξ(v) = [u,G(u)]T ∈ Rd+K , the dynamical model
can be written as

vn+1 = Ξ(vn),

whereas the data model becomes
y = Hvn+1 +η,
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where H = [0K×d ,IK×K ] ∈ R
K×(d+K) is an observation matrix. Let us denote by {vj,n}Jj=1 a

collection of J ensemble members, also called particles, at time n. The method proceeds as
follows.

First, the state of all particles at time n+ 1 is predicted using the dynamical model to give
{v̂j,n+1}Jj=1, i.e. v̂j,n+1 = Ξ(vj,n). The resulting empirical covariance Cov ∈ R(d+K)×(d+K) of the
uncertainties in the predictions is computed. Exploiting the definition of Ξ it is easy to check
that

Cov =
1
J

J∑
k=1

(v̂k,n+1 − v̂
n+1

)⊗ (v̂k,n+1 − v̂
n+1

) =
[

C CG
CT
G DG

]
,

where CG and DG are as in (4), whereas

C =
1
J

J∑
k=1

(uk,n −un)⊗ (uk,n −un).

Then, the update vj,n+1 of each particle is determined by imposing first order necessary
optimality condition of the following minimization problem

vj,n+1 = argmin
v
J j,n(v),

which is solved sequentially, and where J j,n(v) is the objective function which encapsulates
the model–data compromise:

(5) J j,n(v) =
1
2

∥∥∥yn+1 −Hv
∥∥∥2
Γ −1 +

1
2

∥∥∥v− v̂j,n+1
∥∥∥2

Cov
.

Finally, the update (3) of uj,n+1, related to the unknown control state only, is obtained as
H⊥vj,n+1, with H⊥ = [Id×d ,0d×K ] ∈Rd×(d+K).

For further details and explicit computations we refer to e.g. [2].
This derivation of the ensemble Kalman filter from an optimization point–of–view leads

into the introduction and motivation of the stabilized formulation of the continuous limit. In
particular, we observe that the first term of the objective (5) corresponds to the least–squares
functional Φ given by (2). Therefore, minimization of (5) can be seen as minimization of Φ
subject to a regularization term involving the covariance of the ensemble.

Remark 1. The derivation of the EnKF motivated through the optimization approach assumes that
the empirical covariance Cov is positive definite ∀n ≥ 0. In general, it is not possible to guarantee
that. In [2] and in [5, 26], this issue is overcome by a constant or time dependent shifting of Cov.

2.3 Continuous Limits of the Ensemble Kalman Filter

2.3.1 Continuous–time

As in [22], we compute the continuous–time limit equation of the update (3). We consider
the parameter ∆t as an artificial time step for the discrete iteration, i.e. ∆t ∼ N−1

t with Nt
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being the maximum number of iterations and define Un ≈ U(n∆t) =
{
uj(n∆t)

}J
j=1

for n ≥ 0.

Computing the limit ∆t→ 0+ we obtain

(6)

d
dt

uj = CG(U)Γ
(
y−G(uj )

)
, j = 1, . . . , J

CG(U) =
1
J

J∑
k=1

(
uk −u

)
⊗
(
G(uk)−G

)
with initial condition U(0) = U0. Let us consider the case of G linear, i.e. G(u) = Gu, with G ∈
R
K×d . Then (6) is a gradient descent equation and we can write CG(U) = 1

J

∑J
k=1

(
uk −u

)(
uk −u

)T
GT .

Since the least–squares functional (2) yields

(7) ∇uΦ(u,y) = −GT Γ (y−Gu),

equation (6) can be stated in terms of the gradient of Φ as

(8)

d
dt

uj = −C(U)∇uΦ(uj ,y), j = 1, . . . , J

C(U) =
1
J

J∑
k=1

(uk −u)⊗ (uk −u).

Equation (8) describes a preconditioned gradient descent equation for each ensemble aiming
to minimize Φ . C(U) is positive semi–definite and hence

(9)
d
dt

Φ(u(t),y) =
d
dt

1
2

∥∥∥∥Γ 1
2 (y−Gu)

∥∥∥∥2 ≤ 0.

Although the forward operator is assumed to be linear, the gradient flow is nonlinear. For
further details and properties of the gradient descent equation (8) we refer to [22]. In
particular, the subspace property of the EnKF also holds for the continuous dynamics.

Note that, in the continuous–time limit a term originally present in the fully–discrete
EnKF method (3) is lost, cf. (5). This is due to the scaling assumption of the measurement
covariance by ∆t which makes the term of order ∆t2. This term is however not a Tikhonov
regularization–type term but may act as regularization term. We will come back to this point
in Section 3.2.

2.3.2 Mean–field

By definition, the EnKF method is a computational method and hence is calculated for a
finite ensemble size. The behavior of the method in the limit of infinitely many ensembles can
be studied via mean–field limit leading to a Vlasov–type kinetic equation for the compactly
supported on R

d probability density of u at time t, denoted by

(10) f = f (t,u) : R+ ×Rd →R
+.

First we show the limit equation for the case of a non–linear model and later specialize
it to a linear model G. We follow the classical formal derivation to formulate a mean–field
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equation of a particle system, see [6, 14, 21, 27]. We introduce the first moments m ∈ Rd ,
mG ∈RK and the second moments E ∈Rd×d , EG ∈Rd×K of f at time t, respectively, as

(11)
m(t) =

∫
R
d

uf (t,u)du, E(t) =
∫
R
d

u⊗uf (t,u)du,

mG(t) =
∫
R
d
G(u)f (t,u)du, EG(t) =

∫
R
d

u⊗G(u)f (t,u)du.

Since u ∈Rd , the corresponding discrete measure on the ensemble set U =
{
uj

}J
j=1

is given by

the empirical measure

(12) f (t,u) =
1
J

J∑
j=1

δ(uj −u).

Let us consider the interacting particle system (6). The empirical measure allows for a
mean–field limit of CG as

(CG)κ,` =
∫
R
d
uκG(u)`f (t,u)du−

∫
R
d
uκf (t,u)du

∫
R
d
G(u)`f (t,u)du, κ,` = 1, . . . ,d

and therefore CG can be written in terms of the moments (11) of f only as

(13) CG(f ) = EG(t)−m(t)⊗mG(t) ≥ 0.

We denote a sufficiently smooth test function by ϕ(u) ∈ C1
0 (Rd) and compute

d
dt
〈f ,ϕ〉 =

d
dt

∫
R
d

1
J

J∑
j=1

δ(u−uj )ϕ(u)du = −1
J

J∑
j=1

∇uϕ(uj ) ·CG(f )Γ (y−G(uj ))

= −
∫
R
d
∇uϕ(u) ·CG(f )Γ (y−G(u))f (t,u)du

which finally leads to the strong form of the mean-field kinetic equation corresponding to the
continuous–time limit (6):

(14) ∂tf (t,u)−∇u · (CG(f )Γ (y−G(u))f (t,u)) = 0.

In case of a linear model G(·) = G· the mean–field kinetic equation corresponding to the
gradient descent equation (8) becomes

(15) ∂tf (t,u)−∇u · (C(f )∇uΦ(u,y)f (t,u)) = 0.

where, similarly to CG(f ), the operator C(f ) can be also defined in terms of moments of the
empirical measure (12) as

(16) C(f ) = E(t)−m(t)⊗m(t) ≥ 0.

We observe that (15) is a nonlinear transport equation arising from non–linear gradient flow
interactions and the counterpart of (9) holds at the kinetic level. Defining

L(f ,y) =
∫
R
d
Φ(u,y)f (t,u)du

7



we compute

d
dt
L(f ,y) =

∫
R
d
Φ(u,y)∂tf (t,u)du = −

∫
R
d
(∇uΦ(u,y))TC(f )∇uΦ(u,y)du ≤ 0

since C(f ) is positive semi-definite. In particular, L(f ,y) is decreasing unless f is a Dirac
distribution. This consideration reveals again that a solution of minu∈Rd Φ(u,y) provides
a steady solution of the continuous–limit formulation, but the converse is not necessarily
true. In particular, the velocity of convergence to the correct Dirac distribution may be highly
influenced by the initial condition, i.e. by the distribution of the initial ensemble.

For the rigorous mean–field derivation and analysis of the EnKF we refer to [7, 9].

2.4 Stability of the Moment Equations

In [16], the linear stability analysis of the moment equations resulting from (15) has been
investigated for one–dimensional controls. We recall that the expected value of the ensemble
is selected as estimator for the solution, due to the subspace property satisfied by the EnKF.
For this reason the analysis of moments is of crucial importance. Here, we briefly review this
analysis, and therefore we restrict the attention to the case d = K = 1. From now on, we avoid
using bold font to emphasize when the involved quantities are one–dimensional.

The dynamical system for the first and second moment is computed from (15). Using the
linearity of the model we obtain

(17)

d
dt
m(t) = −C(m,E)GT Γ (y −Gm)

d
dt
E(t) = 2C(m,E)GT Γ (ym−GE),

where we observe that C(m,E) corresponds to the variance, in fact∫
R

(u −m(t))2f (t,u)du = E(t)−m(t)2.

System (17) is closed by the second moment equation.
We analyze steady–states and their stability with G = Γ = 1. Nullclines of (17) are

m = y, E =m2

E = ym, E =m2.

Equilibrium points arise by intersection of the nullclines and are given by

(18) Fk = (k,k2), k ∈R,
i.e. all equilibria are points on the set E = m2 for which C = 0. We note that they lie on
the boundary of the admissible region C ≥ 0. This means that all Dirac delta distributions
are steady–states of the mean–field equation, as shown for cases of arbitrary dimension
at the end of Section 2.3. As consequence we have a set of infinitely many steady–states.
The one minimizing the least square functional Φ is δ(u − y), corresponding to Fy = (y,y2).
Studying the linear stability of the equilibrium points it is simple to show that all the Fk’s have
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double–zero eigenvalues and are non–hyperbolic Bogdanov–Takens–type equilibria. This
has several undesirable consequences: Bogdanov–Takens equilibria are not asymptotically
stable, in fact their linearization is unstable. More importantly, they are non-hyperbolic
and thus structurally unstable, i.e. susceptible to qualitative changes under arbitrary small
perturbations of the underlying model.

3 Stabilization of the Dynamics

We will introduce a modified formulation of the continuous limit of the ensemble Kalman
filter such that the desired equilibrium Fy = (y,y2) is a globally asymptotically stable equilib-
rium of the system of moment equations. We are only interested in the equilibrium Fy since
the others are irrelevant for the optimization. The modification we propose is inspired by the
idea to restore the regularization effect of the classical EnKF which gets lost in the continuous
limit.

We propose to consider the following general discrete dynamics for each ensemble member
j = 1, . . . , J :

(19)

d
dt

uj = C̃G(U)Γ (y−G(uj )) +R(U),

R(U) = βC̃(U)(uj − ū),

C̃G(U) =
1
J

J∑
k=1

(
uk −κu

)
⊗
(
G(uk)−κG

)
,

C̃(U) =
1
J

J∑
k=1

(
uk −κu

)
⊗
(
uk −κu

)
,

with κ,β ∈ R. The choices κ = 1 and β = 0 yield continuous–time limit (6) for the original
ensemble Kalman filter.

Remark 2. We do not claim uniqueness for the modeling choice of the term R(U). For instance
R(U) = βuj would correspond to a Tikhonov–type regularization studied in [8]. Alternatively, [16]
modified the discrete dynamics with additive white Gaussian noise. This approach leads to a
Fokker–Planck–type equation, where Dirac delta distributions are no longer steady states and the
desired equilibrium, Fy , depends on the nonzero variance σ of the noise and becomes (y,y2 ±

√
2σ2).

3.1 Linear stability analysis of moment equations

The analysis of stability of the new dynamics (19) is performed in the case of a linear
model G(·) = G·. Then, (19) becomes

(20)

d
dt

uj = −C̃(U)∇uΦ(uj ,y) +R(U),

R(U) = βC̃(U)(uj − ū),

C̃(U) =
1
J

J∑
k=1

(
uk −κu

)
⊗
(
uk −κu

)
,
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with Φ being the least–squares functional (2).
The dynamical system (20) allows for a mean–field interpretation

(21) ∂tf (t,u)−∇u ·
(
C̃(f ) (∇uΦ(u,y)− β(u−m))f (t,u)

)
= 0,

where
C̃(f ) = E−αm⊗m

with α = κ(2−κ). Note that C̃(f ) ≡ E−m⊗m = C(f ) ≥ 0, if α = 1, see (16).
The stability of moments is again studied in the simplest setting of a one–dimensional

problem, i.e. d = K = 1. From (21) we compute

(22)

d
dt
m = C̃(m,E)GT Γ (y −Gm)

d
dt
E = 2C̃(m,E)

(
GT Γ (ym−GE) + βC(m,E)

)
C̃(m,E) = (E −αm2)

C(m,E) = (E −m2),

where we again avoid the use of bold fonts to highlight the one–dimensional quantities.
Initial conditions (m(0),E(0)) ∈ R ×R+ of (22) need to satisfy E(0) > m(0)2 and we say that
a solution is admissible or belongs to the feasible domain if t ∈ R+ 7→ (m(t),E(t)) ∈ R ×R+

satisfies E(t) ≥m(t)2.
Steady states are obtained as intersection of the nullclines of the system. We use G = Γ = 1

and get the following equilibrium points (m,E):

(23) Fy = (y,y2), Fk,α = (k,αk2), k ∈R.
Here, α plays the role of a bifurcation parameter. In fact, for α → 1 we recover the same
equilibria as in the classical ensemble Kalman filter, cf. (18). Therefore, compared to the
classical continuous–time formulation of the ensemble Kalman filter, the new ensemble
update (20) still has infinitely many equilibria on the set E = αm2, but, in addition, has Fy as
an isolated fixed point of the dynamics.

The Hartman–Grobman Theorem states that non–linear dynamical systems are locally
topologically conjugate to their linearized formulations near hyperbolic fixed point. Thus,
if Fy is hyperbolic and asymptotically stable, the local phase portrait of the non–linear
system (22) is equivalent to that of its linearization [ṁ, Ė]T = J(m,E)[m,E]T , where J(m,E) is
the Jacobian. The eigenvalues of the equilibrium point Fy are

λ
Fy
1 = y2(α − 1), λ

Fy
2 = −2y2(β − 1)(α − 1),(24)

and the eigenvalues of the equilibria Fk,α are

λ
Fk,α
1 = 0, λ

Fk,α
2 = −2k(y − kβ)(α − 1), ∀k ∈R.

Thus Fy is an asymptotically stable equilibrium if α < 1 and β < 1.
We notice that α < 1 automatically implies that, except for k = 0, all the other equilibria

Fk,α are not feasible, i.e. cannot be obtained via mean–field, since then C(m,E) < 0. In addition,
F0,α is still a Bogdanov–Takens–type equilibrium.

The above discussion is formally summarized in the following Proposition:
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Proposition 3.1. Let (m(0),E(0)) = (m0,E0) be an admissible initial condition of (22). Then, the
dynamical system has two feasible equilibrium points, Fy = (y,y2) and F0,α = (0,0), ∀α ∈ R. In
particular, F0,α is a non–hyperbolic Bogdanov–Takens–type equilibrium, and Fy is an asymptotically
stable equilibrium, namely ∃δ > 0 such that if ‖(m0,E0)− Fy‖ < δ then limt→∞(m(t),E(t)) = Fy ,
provided α < 1 and β < 1.

To prove global asymptotic stability for Fy we note that the relevant subset of the phase
space in R

2 is bounded by m = 0, E = 0 and E = m2. It is easy to see that the vector field
generated by (22) for α < 1 is always pointing inwards. In addition, for large enough E and
β < 1 solutions do not escape to infinity. Since the only equilibria in this region are on the
boundary and since Fy is the only locally stable equilibrium, hence by the Poincaré–Bendixson
Theorem we have the following Proposition:

Proposition 3.2. The point Fy = (y,y2) is a globally asymptotically stable equilibrium of the
dynamical system (22), namely limt→∞(m(t),E(t)) = Fy for any admissible initial condition
(m(0),E(0)), provided α < 1 and β < 1.

We notice that Fy is also a point of the phase space where C ≡ 0, as it happens for the
classical EnKF formulation. Below, we compare the decay of the variance C(t) = E −m2 at
equilibrium between the continuous–time limit of the classical EnKF formulation and the
stabilized dynamics (20).

From the classical EnKF dynamics (8) we compute

d
dt
C =

d
dt
E − 2m

d
dt
m = −2C2

and thus C is decreasing in time with rate O(t−1). In fact, the solution is

C(t) =
C(0)

1 + 2C(0)t
.

Instead, in the stabilized version of the EnKF (20) we have

d
dt
C =

d
dt
E − 2m

d
dt
m = −2(1− β)C̃C ≤ −2(1− β)C2

provided α < 1 so that 0 ≤ C < C̃. Applying Gronwall inequality we obtain

C(t) ≤ C(0)
1 + 2(1− β)C(0)t

which implies a rate of decay O((1− β)t−1) at least. In particular, we observe that the decay is
faster for β < 0. We conclude that, while α plays the role of a bifurcation parameter leading
to a change of the equilibria in the phase space, β plays the role of a regularization parameter
speeding–up the convergence to the equilibrium Fy .

Remark 3. We stress the fact that neither of the regularization approaches cited in Remark 2 has
the property of stabilizing the moment dynamics by preserving the equilibrium Fy , and turning it
into a globally asymptotically stable equilibrium.
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3.2 Analysis of the ensemble dynamics

It is possible to provide a gradient flow interpretation also for the stabilized dynamics (20).
In fact, we observe that each ensemble is solving a preconditioned gradient descent equation
of the type

d
dt

uj = −C̃(U)∇uΨ (uj ,y,u−j )

Ψ (uj ,y,u−j ) = Φ(uj ,y) +
Jβ

2(J − 1)
‖uj − ū‖2,

where we denote u−j = {uk}Jk=1
k,j

. Within this formulation we see that our modified dynamics

again adds a regularization term. Existence and uniqueness of solutions to (20) is straightfor-
ward since the right–hand side is locally Lipschitz in uj , thus local existence of a solution in
the space C([0,T )) holds for some T > 0. We need to prove global existence, namely that the
solution does not blow up in finite time, and this is guaranteed by Proposition 3.3 below.

We define for each j = 1, . . . , J

ej(t) = uj(t)− ū(t),(25)

rj(t) = uj(t)−u∗(26)

the ensemble spread and the residual to a value u∗, respectively. Proposition 3.3 gives
sufficient conditions for the existence of a monotonic decay for the ensemble spread.

Proposition 3.3. Let uj(0) ∈Rd , j = 1, . . . , J , be an admissible initial condition of the dynamical
system (20). The quantity

∥∥∥ej(t)
∥∥∥2

is decreasing in time, i.e.
∥∥∥ej(t)

∥∥∥2 ≤
∥∥∥ej(0)

∥∥∥2
, for each j =

1, . . . , J and t ≥ 0, provided that α < 1 and β < 0. In particular, if Γ is positive definite then
limt→∞

∥∥∥ej(t)
∥∥∥2

= 0.

Proof. To prove the statement, it is sufficient to study the behavior of the covariance operator
C in time. Let us denote Id ∈ R

d×d the identity matrix. The hypothesis α < 1 implies C̃
positive definite for all t ≥ 0, and in particular C < C̃. Using β < 0 and the entry–wise matrix
norm, we compute

d
dt
‖C‖ < −2‖〈C,C〉Pβ‖ ≤ 0

where Pβ = GT Γ G − βId . The last inequality is strict whenever Γ is positive definite. In
particular we have the following bound

C(t) =
(
2Pβt + C(0)−1

)−1
,

and the velocity of decay is determined by the minimum eigenvalue of Pβ .

The previous result establishes sufficient conditions for the ensemble collapse to the mean
ū in the long time behavior, and consequently each ensemble member solves at equilibrium
the same minimization problem that ū is solving. With this consideration we state and prove
the following result on the convergence of the residual in the control space.
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Proposition 3.4. Let uj(0) ∈Rd , j = 1, . . . , J , be an admissible initial condition of the dynamical
system (20). Assume that Γ is positive definite and let u∗ be a KKT point of the minimization
problem minu∈Rd Φ(u,y). Then limt→∞

∥∥∥rj(t)
∥∥∥2

= 0, for each j = 1, . . . , J , provided that α < 1 and
β < 0.

Proof. By assumption Γ is positive definite and thus we have a unique global minimizer u∗ of
the minimization problem minu∈Rd Φ(u,y), for a given y ∈RK . Moreover, for Proposition (3.3)
it is sufficient to show that ‖ū−u∗‖ → 0 as t→∞. The evolution equation of the ensemble
mean is given by

d
dt

ū = −C̃∇uΦ(ū,y).

Then, since C̃ is positive definite, at equilibrium the ensemble mean solves the equation
∇uΦ(ū,y) = 0.

Remark 4. Contrary to the analysis in Section 3.1, where the global asymptotic stability of the
dynamical system (22) is guaranteed by choosing β < 1, we observe that Proposition 3.3 and
Proposition 3.4 assume β < 0. However, we stress the fact that this is a sufficient condition to show
collapse of the ensemble and convergence to the residual. In order to strengthen this condition,
and consider also values of β ∈ [0,1), one would need to ensure that the operator Pβ is positive
(semi)–definite.

4 Numerical simulations

4.1 Simulation of the moment dynamics

We recall that the stabilization of the continuous–time limit of the ensemble Kalman filter
is motivated by a linear stability analysis of the moment equations, in the simplest case of a
one–dimensional control. For this reason, we aim to compare the moment dynamics provided
by the ensemble Kalman filter (6) and by the present stabilization of the method (19).

All simulations run with the same parameters used for the stability analysis in Section 3.1,
namely we consider G = Γ = 1. The stabilizing parameters are α = 0.1 and β = −1. Moreover,
we set y = 2 so that the target equilibrium is Fy = (2,4).

In Figure 1 we show the phase portraits with the velocity field of the moment equations.
The red lines are nullclines, and the gray–shaded area represents the unfeasible region where
E < m2. We observe that the stabilized version of the EnKF proposed in this work preserves
the target equilibrium Fy . In the classical EnKF, Figure 1a, the nullcline on the border of the
feasible region is a set of equilibrium points. The stabilization moves these equilibria on the
red nullcline in the unfeasible region, see Figure 1b.

To provide additional numerical insight, we study the effect of the stabilization on the
moment equations by looking at the time behavior of the covariance C(t) = E −m2 for two
different initial conditions in both systems, the classical EnKF and the stabilized EnKF.

The initial conditions of the first moments are m(0) = 1 and m(0) = 3. The initial energy
E(0) is chosen such that (m(0),E(0)) is in the feasible region C(0) ≥ 0. The systems of moments
are numerically solved with an explicit fourth–order Runge–Kutta method. In Figure 2, we
observe that both, the stabilized EnKF and the classical EnKF show a variance decay to zero,
i.e. collapse to a Dirac delta at mean–field level. However, noting the logarithmic scale in
Figure 2 we see that the stable method decays to the equilibrium state much faster.
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Figure 1: Phase planes of the moment systems. Red lines are nullclines, the gray–shaded area
represents the unfeasible region.
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Figure 2: Variance evolution computed by solving the moment systems for the classical
ensemble Kalman filter (17), and the stabilized ensemble Kalman filter (22), for two different
sets of initial conditions.

4.2 A two–dimensional inverse problem

We consider the inverse problem of finding the hydraulic conductivity function of a
non–linear elliptic equation in two spatial dimension assuming that noisy observation of the
solution to the problem are available.

The problem is described by the following PDE modeling groundwater flow in a two–
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dimensional confined aquifer:

(27)
−∇ ·

(
elogK∇p

)
= f in Ω = (−1,1)2

p = 0 on ∂Ω.

Here, K is the hydraulic conductivity, f is the force function and the flow is described in
terms of the piezometric head p. This problem has been intensively used in the literature on
the ensemble Kalman filter to study performance of the method. E.g. see [8, 18, 22].

We aim to find the log conductivity u = logK from 400 observations of the solution p
on a uniform grid in Ω. We choose f = 100. The mapping from u to these observations
is now non–linear, and thus we need to employ the ensemble dynamics for the non–linear
model (19).

Noise is assumed to be Gaussian distributed with covariance Γ−1 = γ2I, with γ = 4. The
prior is also Gaussian distributed with covariance (−∆)−2, whose discretization is again com-
puted by using homogeneous Dirichlet boundary conditions. We use a P

1 FEM approximation.
The ensemble size is chosen as J = 100. The ensemble dynamics (19) are numerically solved by
explicit Euler discretization with fixed and, to avoid stability issues, small time step ∆t = 10−3.
Final time for the simulations is T = 1.

In order to avoid over–fitting of the method, we employ the discrepancy principle as
stopping criterion. Thus, we check and stop the simulation when the condition ϑ ≤ ‖η‖2 is
satisfied, where η is the measurement noise and

(28) ϑ =
1
J

J∑
j=1

‖G(uj )−p−η‖2

is the misfit which allows to measure the quality of the solution at each iteration. Moreover, uj

and p are vectors containing the discrete values of the control for the j–th ensemble member
and of the true observations, respectively. In this example G is the P

1 FEM discretization of
the continuous operator defining the elliptic PDE (27).

The initial ensemble is drawn from a Gaussian distribution with given covariance ma-
trix δ(−∆)−2, and we consider δ = 1 and δ = 10−2. We compare results obtained with the
continuous–time limit of the classical EnKF, i.e. when α = 1 and β = 0, and with the stabilized
method, using α = 0.9 and β = −1.

In Figure 3 we show the time behavior of the misfit (28) (top row), of the residual (26)
(middle row) and of the spread to the mean (25) (bottom row) provided by the two methods.
The results in the left panel are obtained with δ = 1, so that the initial ensemble is sampled
from the same prior distribution of the exact control. The results in the right panel are
computed with δ = 10−2 which mimics the situation where the initial covariance is C(0) = 0,
and hence close to the border of the feasible region. We observe that, if the distribution of the
initial ensemble is properly chosen, i.e. when δ = 1, the two methods meet the discrepancy
principle, and the misfit, the residual and the ensemble spread decrease in time. The stabilized
method allows to save about the 25% of the computational cost.

The difference between the two methods can be appreciated when the initial guess of the
ensemble is not properly chosen, i.e. when δ = 10−2. This is relevant in applications, where
the distribution of the unknown control is not known, therefore the ensemble cannot be
suitably initialized leading to a possible change in the length of the transient. In fact, we
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Figure 3: Misfit (28), residual (26) and spread (25) behavior in time for the inverse problem of
determining the log conductivity u = logK for (27) using the classical ensemble Kalman filter
(EnKF) (6) and the stabilized ensemble Kalman filter (Stable EnKF) (19). Left column: both
methods converge for well chosen initial covariance (δ = 1); right column: only the stabilized
EnKF converges for a bad initial covariance (δ = 10−2).

16



0 100 200 300 400

−2

0

2

·10−2Control vs Reconstructed Control

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Observation

0

10

20

30

40

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Noisy Observation

0

10

20

30

40

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Reconstructed Observation

0

10

20

30

40

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Control

−2

0

2

·10−2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Reconstructed Control

−2

0

2

·10−2

Figure 4: Inverse problem of determining the log conductivity u = logK for the two–
dimensional groundwater equation (27) on a 20× 20 grid, and solved by the continuous–time
limit of the classical ensemble Kalman filter (6). From top right: discrete observations of the
true solution p; true observations perturbed by Gaussian noise; discrete true log conductivity
u; solution computed with the identified unknown; one–dimensional plot of the discrete true
and reconstructed log conductivity; discrete reconstructed log conductivity.

observe that the stabilized version of the method provides a fast transient of the misfit, of the
residual and of the ensemble spread in contrast to the classical EnKF which does not seem to
converge.

This effect can be also observed by comparing the results in Figure 4, referred to the
classical ensemble Kalman filter, and in Figure 5, for the stabilized version of the method.
We consider the case δ = 10−2 only. The top–row panels of both figures are the same. They
show, from left to right, the true solution p of (27) evaluated on a 20 × 20 uniform grid,
the perturbed solution by additive Gaussian noise, and the a–priori artificially assigned
true log conductivity u, i.e. the control in this example, which provides the solution p and
we aim to identify. The bottom–row panels, instead, show the solution obtained with the
reconstructed log conductivity, and the identified control itself using both a one–dimensional
and a two–dimensional visualization. In these figures we appreciate the importance of the
distribution of the initial ensemble in order to ensure that the classical method, i.e. when
covariance inflation and regularization terms are not considered, is able to provide a good
identification of the unknown control.

5 Conclusions

In this paper we have focused on the continuous limit formulations of the ensemble
Kalman filter, recently introduced in [16, 22] to solve constrained inverse problems. We
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Figure 5: Inverse problem of determining the log conductivity u = logK for the two–
dimensional groundwater equation (27) on a 20 × 20 grid, and solved by the stabilized
ensemble Kalman filter method (19) with α = 0.9 and β = −1. From top right: discrete obser-
vations of the true solution p; true observations perturbed by Gaussian noise; discrete true
log conductivity u; solution computed with the identified unknown; one–dimensional plot of
the discrete true and reconstructed log conductivity; discrete reconstructed log conductivity

have observed that these formulations provide a structurally unstable system of moment
equations characterized by infinitely many equilibrium solutions, lying on the boundary
of the feasible region and being unstable non–hyperbolic Bogdanov–Takens equilibria. We
modify the ensemble dynamics by inflating the covariance operator and by adding a suitable
regularization term leading to a system of moment equations which has a globally asymp-
totically stable equilibrium. The latter minimizes the least square functional. Properties
of the ensemble dynamics have been also studied. The numerical results illustrate that the
stabilized method is able to provide fast convergence to the solution, independently of the
choice of the distribution for the initial ensemble.
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