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MEAN-FIELD LIMIT OF A HYBRID SYSTEM FOR MULTI-LANE
MULTI-CLASS TRAFFIC∗

XIAOQIAN GONG† , BENEDETTO PICCOLI‡ , AND GIUSEPPE VISCONTI§

Abstract. This article aims to study coupled mean-field equation and ODEs with discrete events motivated
by vehicular traffic flow. Multi-lane traffic flow in presence of human-driven and autonomous vehicles is considered,
with the autonomous vehicles possibly influenced by external policy makers. First a finite-dimensional hybrid
system is developed based on the continuous Bando-Follow-the-Leader dynamics coupled with discrete events due
to lane changing. The mean-field limit of the finite-dimensional hybrid system is rigorously derived by letting the
number of human-driven vehicles go to infinity, and it consists of an infinite-dimensional hybrid system. The latter
is described by coupled Vlasov-type PDE, ODEs and discrete events. In particular, the microscopic lane changing
maneuver of the human-driven vehicles generates a source term to a Vlasov-type PDE.

Key words. Multi-lane traffic, autonomous vehicles, mean-field limit, hybrid systems, generalized Wasserstain
distance
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1. Introduction. Mathematical traffic models, depending on the scale at which they repre-
sent vehicular traffic, usually can be classified into different categories: microscopic, mesoscopic,
macroscopic, and cellular. We refer to the survey papers [1, 4, 37], and reference therein, for
general discussions about the models at various scales in the literature. In this paper, we focus on
microscopic models and mesoscopic descriptions.

Microscopic models are discrete models of traffic flow that study the behavior of individual
vehicles and predict their trajectories by means of ordinary differential equations (ODEs). One
such model is the combined Bando [3] and Follow-the-Leader [41, 42] model that concerns both
relaxation to an optimal velocity and interactions with the closest neighboring vehicle ahead.
Mean-field equations, and in general models based on partial differential equations (PDEs), treat
vehicular traffic as fluid flow, and aim to provide an aggregate and statistical viewpoint of traffic
by capturing and predicting the main phenomenology of the microscopic dynamics. Within this
context we would like to mention the most classical works [33, 39, 40] and recent developments,
e.g. [9, 13, 24, 30, 38]. Thus, this scale of representation is useful and accurate in the limit of the
dynamical system with infinitely many vehicles, and the link between the two descriptions can be
formally and also rigorously established in generalized Wasserstain distance [21]. We point-out
that this discussion is not restricted to traffic flow and of interest in many research areas, such as
in biology [10, 12] or social [11] and economic dynamics [47].

In the present work, we aim to develop and study qualitative properties of models for traffic
which are motivated by the idea of considering, simultaneously, two important aspects: lane
changing maneuvers and heterogeneous composition of the flow. The former is one of the most
common maneuvers and source of interaction among vehicles on motorways. Currently, multi-lane
traffic is modeled either by two-dimensional models [23, 45], in which lane changing rules are not
explicitly prescribed, or by treating lanes as discrete entities [25, 43]. The latter aspect, instead,
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is becoming more and more important with the increasingly interest in automated-driven vehicles
and their effects within the vehicular traffic flow [26, 44].

We start by defining the microscopic dynamics. In the following we consider two classes of
vehicles, one identified by human-driven vehicles and the other one by automated-driven vehicles.
We use a Bando-Follow-the-Leader model for both classes, but the dynamics of autonomous ve-
hicles differs from the dynamics of human-driven ones due to an additive control term which, in
applications, may be provided by a remote controller [44]. The Bando-Follow-the-Leader model is
reformulated by replacing the interaction with the closest vehicle ahead by a short-range interac-
tion kernel which allows to write the system of ODEs in a convolution framework. Along with the
continuous dynamics, we consider discrete dynamics generated by the lane changing rules, which
are designed following [29]. The presence of both continuous and discrete dynamics leads us to
a hybrid system, see [6, 19, 20, 35, 46]. Finally, we perform a mean-field limit for human-driven
vehicles only, since autonomous vehicles are supposed to be a small percentage of the total flow on
motorways. The trajectories of the hybrid system exhibit dicontinuities thus the limit procedure
requires a generalization of the classical Arzel-Ascoli Theorem. This leads to a Vlasov-type PDEs
with a source term [15, 22, 27], which is generated by the discrete lane changing rules. Such source
term induces the measure solutions to change mass in time, thus the limit is obtained using the
generalized Wasserstein distance [36]. Together with the continuous and discrete dynamics of the
autonomous vehicles, we obtain a hybrid system with mean-field limit involved, for which we prove
existence and uniqueness of solutions.

Our main result is thus a complete representation of multi-lane multi-class hybrid system
at microscopic and mesoscopic scales together connected by a rigorous limiting procedures. This
framework allows to study optimal control problems at multiple scales, in the same spirit as [5, 18].
We also notice that, even if our main example is vehicular traffic, the same framework may be
adapted to model any hybrid system with multi-population at microscopic and mesoscopic scale,
including social and crowd dynamics [17].

The paper is organized as follows. In Section 2, we briefly recall the basic models, notions,
notations and preliminaries used in this article. Section 3 devotes to the definition of lane changing
conditions and the study of well-posedness of the finite-dimensional hybrid system modeling multi-
lane traffic at the microscopic level. In Section 4, we define a hybrid system involving mean-
field limit of the finite-dimensional hybrid system involving human-driven vehicles and prove the
existence and uniqueness of the trajectories of the mean-field hybrid system. Finally, Section 5
ends the paper with conclusions and outlook.

2. Notations, Definitions and Preliminaries. In this section, we first recall some basic
notations and definitions about traffic flow models and the generalized Wasserstein distance we use
in this article. Then we list some well-known results about solutions to Carathéodory differential
equations and to partial differential equations of Vlasov-type with source term. At last, we give a
proof to a revised version of Arzel-Ascoli Theorem.

2.1. Traffic Flow Models. In order to setup the mathematical formulation, in the following
we consider a population of P cars on an open stretch road. To each vehicle, labeled by an index
i ∈ {1, . . . , P}, we associate a vector of indices ι(i) = (i, iL, iF ). Here iL ∈ {1, . . . , P} is the index
of the vehicle in front of vehicle i (the leader) and iF ∈ {1, . . . , P} is the index of the vehicle
flowing vehicle i (the follower). To fix notation, we assume that iL = 0 if vehicle i is the first and
iF = 0 if vehicle i is the last.

The Follow-the-Leader (FtL) model, which was introduced in [41, 42], assumes that the ac-
celeration of a vehicle is directly proportional to difference between the velocity of the vehicle in
front and its own velocity, and is inversely proportional to their distance. Let (xi, vi) be the vector
of position-velocity, with vi ≥ 0 and hi = xiL − xi be the headway of the i-th vehicle. The main
dynamics described by the FtL model is given by

(2.1)

{
ẋi = vi,

v̇i = βi
viL−vi
(hi)2

, i ∈ {1, . . . , P},
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where βi is a positive parameter with appropriate dimension. If vehicle i is the first vehicle, then
the dynamics of vehicle i is given by ẋi = vmax, where vmax is a given maximum velocity, perhaps
the speed limit. By system (2.1), one can see also a drawback of the FtL model: as long as the
relative velocity ∆vi = viL−vi is zero, the acceleration is zero. That is to say, even at high speeds,
an extremely small headway is allowed.

The Bando model, proposed by Bando et al. in [3], fixed the aforementioned problems by
associating each vehicle an optimal velocity function V which describes the desired velocity for
the headway. A driver controls the acceleration or deceleration based on the difference between
his/her own velocity and the optimal velocity. The optimal velocity is typically an increasing
function of the headway, namely it tends to zero for a small headway and to the maximum value
vmax for a large headway. The governing equation of the Bando model is as follows:

(2.2)

{
ẋi = vi,
v̇i = αi(V (hi)− vi), i ∈ {1, . . . , P},

where αi is a positive parameter denoting the speed of response. The equilibrium point for this
model is obtained when all vehicles travel at constant speed and have the same headway, see [31].

For the combined Bando-FtL model, which represents the basic model we consider in this
work, the dynamics of the i-th vehicle is defined as follows: If iL 6= 0, i.e., if vehicle i is not the
first, then

(2.3)

{
ẋi = vi,

v̇i = αi(V (hi)− vi) + βi
viL−vi
(hi)2

, i ∈ {1, . . . , P},

where the headway is hi = xiL − xi. For simplicity, we take αi = α, βi = β for all i ∈ {1, . . . , P}.
Now we will rewrite the Bando-FtL model, system (2.3), in convolutional form to justify the

fact that drivers adjust their acceleration or deceleration according to the velocities of their front
nearby vehicles, their own velocities and optimal velocities. For T > 0 fixed and i = 1, . . . , P ,
define a time dependent atomic probability measure on R× R+,

(2.4) µP (t) =
1

P

P∑
i=1

δ(xi(t),vi(t))

supported on an absolutely continuous trajectories t ∈ [0, T ] 7→ (xi(t), vi(t)) ∈ R×R+. Let ε0 > 0
be fixed. Define a convolution kernel H1 : R×R+ 7→ R as H1(x, v) = αh(x) (V (−x)− v)χ[−ε0,0](x),
where h : R 7→ R is a suitable smooth and compactly supported function on [−ε0, 0] and weights
the strength of the interaction depending on the distance between two vehicles. Then, formally,
the Bando-term in (2.3) can be rewritten as

H1 ∗1 µP (xi, vi) =
1

P

P∑
k=1

H1(xi − xk, vi) =
α

P

∑
k∈iε0

h(xi − xk) (V (xk − xi)− vi)

 ,

where ∗1 is the convolution with respect to the first variable, and iε0 = {k : 0 < xk − xi < ε0}.
Similarly, define a convolution kernel H2 : R× R 7→ R as H2(x, v) = βh(x)−vx2 . Then, we formally
rewrite the FtL-term of (2.3) as

H2 ∗ µP (xi, vi) =
1

P

P∑
k=1

H2(xi − xk, vi − vk) =
β

P

∑
k∈iε0

h(xi − xk)
vk − vi

(xi − xk)2

 ,

where ∗ is the (x, v)-convolution.
Formally, the Bando-FtL model (2.3) can be written using the convolutional kernels as follows

(2.5)

{
ẋi = vi,
v̇i = (H1 ∗1 µP +H2 ∗ µP )(xi, vi), i = 1, . . . , P.
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We observe again that the introduction of the range of interaction ε0 allows each vehicle to interact
with more than one vehicle ahead. Model (2.5) has thus a close link to bounded confidence models
for opinion formation, flocking and swarming behaviors [32].

Next, we will focus also on descriptions based on PDEs. In particular, system (2.5) formally
admits the following mean-field limit as P →∞:

(2.6) ∂tµ+ v∂xµ+ ∂v((H1 ∗1 µ+H2 ∗ µ)µ) = 0,

which gives a partial differential equation of Vlasov-type. Here µ represents the density distribution
of the vehicles in position-velocity variables in a single lane. Equation (2.6) describes the evolution
of the density distribution µ with respect to time in the mesoscopic level. This can be easily derived
in a formal way following classical computations, e.g. see [7], by considering a test function ϕ ∈
C1

0 (R2) and computing the time derivative d
dt 〈µP (t), ϕ〉. Mean-field limits can be also rigorously

derived [8].

2.2. The Generalized Wasserstein Distance. In this subsection, we recall the definitions
and some properties related to the Wasserstein distance and the generalized Wasserstein distance.
For a complete introduction to Wasserstein distance, see [48] and to generalized Wasserstein dis-
tance, see [36].

LetM be the space of Borel measures with finite mass, P be the space of probability measures
(the measures in M with unit mass) and Mp be the space of Borel measures with finite p-th
moment on Rd, where d is the dimension of the space. We also denote with Mac

0 the subspace
of M of measures that are with bounded support and absolutely continuous with respect to the
Lebesgue measure. Given a measure µ ∈M, we denote with |µ| : = µ(Rd) its mass. Given a Borel
map γ : Rd 7→ Rd, the push-forward of µ by γ, γ#µ, is defined as for every Borel set A ⊂ Rd,
γ#µ(A) : = µ(γ−1(A)). One can see that the mass of γ#µ is identical to the mass of µ, i.e.,
|µ| = |γ#µ|.

Given two probability measures µ, ν ∈ P, a probability measure π on the product space
Rd ×Rd is said to be an admissible transference plan from µ to ν if the following properties hold:

(2.7)

∫
y∈Rd

dπ(x, y) = dµ(x),

∫
x∈Rd

dπ(x, y) = dν(y).

We denote the set of admissible transference plans from µ to ν by Π(µ, ν). Note that the set Π(µ, ν)
is always nonempty, since the tensor product µ ⊗ ν ∈ Π(µ, ν). To each admissible transference
plan from µ to ν, π, one can define a cost as follows: J [π] : =

∫
Rd×Rd |x − y|

p dπ(x, y), where
| · | represents the Euclidean norm. A minimizer of J in Π(µ, ν) always exists. Furthermore, the
space of probability measures with finite p-th moment, P ∩Mp, is a natural space in which J is
finite. Thus for any two measures µ, ν ∈ P ∩Mp, one can define the following operator which

is called Wasserstein distance Wp(µ, ν) : =

(
min

π∈Π(µ,ν)
J [π]

) 1
p

. Note that if νm,1 = 1
m

m∑
k=1

δξ1k and

νm,2 = 1
m

m∑
k=1

δξ2k are two atomic measures with m ∈ Z+, ξ1
k, ξ

2
k ∈ Rd, then W1(νm,1, νm,2) ≤

1
m

m∑
k=1

|ξ1
k − ξ2

k|.

We additionally recall the following lemmas related to Wasserstein distance (see, e.g., Lemma
3.11, Lemma 3.13, Lemma 3.15, Lemma 4.7 in [8]).

Lemma 2.1. Let f1 and f2 : Rn 7→ Rn be two bounded Borel measurable functions. Then for
every µ ∈ P(Rn) ∩M1(Rn), one has

W1(f1#µ, f2#µ) ≤ ‖f1 − f2‖L∞(suppµ).

If in addition, f1 is locally Lipschitz continuous, and µ, ν ∈ P(Rn) ∩M1(Rn) are both compactly
supported on a ball B of Rn, then

W1(f1#µ, f1#ν) ≤ LW1(µ, ν),
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where L is the Lipschitz constant of f1 on B.

Now we state the following assumption on map H : R2d 7→ Rd:

(H1) H is locally Lipschitz;

(H2) H is of sub-linear growth, that is, there exists a constant C > 0 such that

|H(ξ)| ≤ C(1 + |ξ|), for all ξ ∈ R2d.

Lemma 2.2. Let H be a map satisfying condition (H1)-(H2). Let R > 0. Let µ, ν : [0, T ] 7→
P(R2d) ∩M1(R2d) be continuous maps with respect to the first order Wasserstein distance W1

both satisfying

suppµ(t) ⊂ B(0, R) and supp ν(t) ⊂ B(0, R),

for every t ∈ [0, T ]. Then for every ρ > 0, there exists a constant Lρ,R such that

‖H ∗ µ(t)−H ∗ ν(t)‖L∞(B(0,ρ)) ≤ Lρ,RW1(µ(t), ν(t)).

Next, we recall the definition of the generalized Wasserstein distance on, M, the space of Borel
measures with finite mass on Rd. For more detail, see [36].

Definition 2.3. Given a, b ∈ (0,∞) and p ≥ 1, the generalized Wasserstein distance between
two measures µ, ν ∈Mp is

(2.8) W a,b
p (µ, ν) : = inf

µ̃,ν̃∈Mp

|µ̃|=|ν̃|

(a (|µ− µ̃|+ |ν − ν̃|) + bWp(µ̃, ν̃)) .

Remark 2.4. The standard Wasserstein distance is defined only for probability measures.
Combing the standard Wasserstein distance and L1 distance, the generalized Wasserstein distance
can be applied to measures with different masses.

If µ1 is absolutely continuous with repsect to µ ∈M and for every Borel set A ⊂ Rd, µ1(A) ≤ µ(A),
then we write µ1 ≤ µ.

Remark 2.5. The infimum in equation (2.8) is always attained if one restrict the computation
in equation (2.8) to µ̃ ≤ µ, ν̃ ≤ ν.

We recall some simple properties of the generalized Wasserstein distance, W a,b
p . Compare the

following proposition with Proposition 2 in [36].

Proposition 2.6. Let µ, ν, µ1, µ2, ν1, ν2 be measures in Mp. The following properties of the
generalized Wasserstein distance W 1,1

1 hold:

W 1,1
1 (kµ, kν) ≤ kW 1,1

1 (µ, ν) for k ≥ 0;

W 1,1
1 (µ1 + µ2, ν1 + ν2) ≤W 1,1

1 (µ1, ν1) +W 1,1
1 (µ2, ν2).

Similar to LEMMAS 2.1, 2.2, we have the following lemmas for the generalized Wasserstein dis-
tance.

Lemma 2.7. Let f1, f2 : Rn 7→ Rn be bounded Borel measureable functions. Then for every
µ ∈M1(Rn), one has

W 1,1
1 (f1#µ, f2#µ) ≤ ‖f1 − f2‖L∞(suppµ).

If in addition f1 is locally Lipschitz continuous Borel measurable functions, Then for µ, ν ∈
M1(Rn) compactly supported on a ball B of Rn,

W 1,1
1 (f1#µ, f1#ν) ≤ max{L, 1}W 1,1

1 (µ, ν),

where L is the Lipschitz constant of f on B.
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Lemma 2.8. Let H be a map satisfying condition (H1)-(H2). Let R > 0 be fixed. Let
µ, ν : [0, T ] 7→ M1(R2d) be continuous maps with respect to the generalized Wasserstein distance
W 1,1

1 both satisfying
suppµ(t) ⊂ B(0, R) and supp ν(t) ⊂ B(0, R),

for every t ∈ [0, T ]. Then for every ρ > 0, there exists a constant Lρ,R such that

(2.9) ‖H ∗ µ(t)−H ∗ ν(t)‖L∞(B(0,ρ)) ≤ Lρ,RW 1,1
1 (µ(t), ν(t)).

One can prove LEMMA 2.7 and LEMMA 2.8 by combining LEMMA 2.1, LEMMA 2.2, and
the definition of generalized Wasserstein distance.

2.3. Carathéodory Differential Equations. In this section, we recall the following global
existence and uniqueness result (see Theorem 6.2 in [17]) for
Carathéodory differential equations. For further detailed discussions, see also [16].

Theorem 2.9. Let T > 0 and n ≥ 1 be fixed. Consider a Carathéodory function g : [0, T ] ×
Rn 7→ Rn. Assume that there exists a constant C > 0 such that for almost every t ∈ [0, T ]
and every y ∈ Rn, |g(t, y)| ≤ C(1 + |y|). Then given y0 ∈ Rn, there exists a solution y(t) of
ẏ(t) = g(t, y(t)) on the whole interval [0, T ] such that y(0) = y0. Any such solution satisfies for
every t ∈ [0, T ], |y(t)| ≤ (|y0|+ Ct) eCt.

If in addition, for every relatively compact open subset of Rn, |g(t, y1)− g(t, y2)| ≤ L|y1 − y2|
holds, then the solution is uniquely determined by the initial condition y0 on the whole interval
[0, T ].

2.4. Partial Differential Equations of Vlasov-type with Source Term. In this sub-
section, we consider partial differential equations of Vlasov-type.

Let H1, H2 be two maps satisfying condition (H1)-(H2). Let T > 0, R > 0 be fixed. Consider
a continuous map µ : [0, T ] 7→ P(R2d) ∩ M1(R2d) with respect to the first order Wasserstein
distance, W1, such that suppµ(t) ⊂ B(0, R) for all t ∈ [0, T ], and a time dependent atomic

measure ν(t)(y, w) = 1
M

M∑
k=1

δ(yk(t),wk(t)) supported on the absolutely continuous trajectories t 7→

(yk(t), wk(t)), k = 1, . . . ,Mj . Then given an initial datum P0 : = (x0, v0) ∈ R2d, there exists a
unique solution P (t) : = (x(t), v(t)) on the whole time interval [0, T ] to the following system of
ODEs on R2d {

ẋ(t) = v(t)
v̇(t) = (H1 ∗1 (µ+ ν) +H2 ∗ (µ+ ν)) (x(t), v(t)).

Therefore, one can consider a family of flow maps

(2.10) T µ,νt : P0 ∈ R2d 7→ P (t) ∈ R2d.

indexed by t ∈ [0, T ]. Furthermore, the flow map T µ,νt is Lipschitz continuous. In fact, let
µq : [0, T ] 7→ P(R2d)∩M1(R2d), q = 1, 2, be two continuous maps with respect to Wasserstein dis-
tance and be equi-compactly supported in B(0, R). Let ν1, ν2 be two atomic measures supported
on the respective absolutely continuous trajectories t 7→ (yqk(t), wqk(t)), q = 1, 2 and k = 1, . . . ,M .
Fix r > 0. Then there exist constants ρ, L > 0, such that whenever |P1| ≤ r,|P2| ≤ r,

(2.11)

|T µ
1,ν1

t (P1)− T µ
2,ν2

t (P2)| ≤

≤eLt|P1 − P2|+
∫ t

0

eL(s−t) ∥∥(H1 ∗1 (µ1 + ν1) +H2 ∗ (µ1 + ν1)
)

−
(
H1 ∗1 (µ2 + ν2) +H2 ∗ (µ2 + ν2)

)∥∥
L∞(B(0,ρ))

ds,

for every t ∈ [0, T ]. For more details, please see [17].
Given an initial condition µ0 ∈ P(R2d)∩M1(R2d) of bounded support, we say that a measure

µ(t) is a weak equi-compactly supported solution of the following Vlasov-type PDE with the initial
datum µ0,

(2.12) ∂tµ+ v · ∇xµ+∇v · [(H1 ∗1 (µ+ ν) +H2 ∗ (µ+ ν))µ] = 0,
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if (i) µ(0) = µ0;
(ii) suppµ(t) ⊂ B(0, R) for all t ∈ [0, T ], for some R > 0;
(iii) for every ϕ ∈ C∞c (R2d),

d

dt

∫
R2d

ϕ(x, v) dµ(t)(x, v) =

∫
R2d

∇ϕ(x, v) · ω̃H1,H2,µ,νj (t, x, v) dµ(t)(x, v)

where ω̃H1,H2,µ,ν(t, x, v) : [0, T ]× Rd × Rd 7→ R2d is defined as

(2.13) ω̃H1,H2,µ,ν(t, x, v) : = (v, (H1 ∗1 (µ+ ν) +H2 ∗ (µ+ ν))(x, v)).

Furthermore, following from Section 8.1 in [2], a measure µ(t) is a weak equi-compactly supported
solution of equation (2.12) if and only if it satisfies condition (ii) and the measure-theoretical fixed
point equation µ(t) = (T µ,νt ) #µ0 where the flow function T µ,νt is defined in equation (2.10).

Now we consider solutions to the following Vlasov-type PDE with initial datum µ0 ∈Mac
0 (R2d)∩

M1(R2d) and source term S

(2.14) ∂tµ+ v · ∇xµ+∇v · [(H1 ∗1 (µ+ ν) +H2 ∗ (µ+ ν))µ] = S(µ)

under the following hypotheses:

(S1) S(µ) has uniformly bounded mass and support, that is, there exist Q,R,

such that S(µ)(R2d) ≤ Q, and supp(S(µ)) ⊂ B(0, R);

(S2) S is Lipschitz, that is, there exists L, such that, for any µ, ν ∈M1(R2d),

W 1,1
1 (S(µ), S(ν)) ≤ LW 1,1

1 (µ, ν).

A measure µ(t) is a weak solution of equation (2.14) with a given initial datum µ0 ∈Mac
0 (R2d)∩

M1(R2d), if µ(0) = µ0 and if for every ϕ ∈ C∞c (R2d), it holds

d

dt

∫
R2d

ϕ(x, v) dµ(t)(x, v) =

=

∫
R2d

ϕ(x, v) dS(µ)(x, v) +

∫
R2d

∇ϕ(x, v) · ω̃H1,H2,µ,ν(t, x, v) dµ(t)(x, v),

where w̃H1,H2,µ,ν is as defined in (2.13).

Theorem 2.10. Given an initial datum µ0 ∈Mac
0 (R2d)∩M1(R2d), there exists a unique weak

solution µ(t) to equation (2.14) under the hypotheses (S1), (S2). Furthermore, µ(t) ∈Mac
0 (R2d)∩

M1(R2d).

One can construct a weak solution µ(t) to equation (2.14) based on a Lagrangian scheme by
sample-and-hold. Given a fixed k ∈ N+, define ∆t : = T

2k
and decompose the time interval [0, T ]

in [0,∆t], [∆t, 2∆t], . . . , [(2k − 1)∆t, 2k∆t]. We define
µk(0) : = µ0;

µk((n+ 1)∆t) : = T µk(n∆t),ν(n∆t)
∆t #µk(n∆t) + ∆tS(µk(n∆t));

µk(t) : = T µk(n∆t),ν(n∆t)
τ #µk(n∆t) + τS(µk(n∆t)),

where n is the maximum integer such that t−n∆t ≥ 0 and τ : = t−n∆t. Then µ(t) = lim
k→∞

µk(t)

is the unique weak solution to equation (2.14). For more detail, please see [36].

2.5. A Revised Version of ArzelAscoli Theorem. In this subsection, we will provide a
proof to a revised version of ArzelAscoli theorem.

Theorem 2.11. Let K be a compact subset of R and let D be a complete and totally bounded
metric space with metric d. Consider a sequence of functions {fn}∞n=1 in C(K;D). If there exists
L > 0, such that the following is true: for any ε > 0, there exists N > 0, such that, whenever
n ≥ N ,

d(fn(t), fn(s)) ≤ L|t− s|+ min{ε, |t− s|},∀s, t ∈ K
then the sequence {fn}∞n=1 has a uniformly convergent sub-sequence.
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Proof. First note that the subset S = K ∩Q of set K ⊂ R is countable and dense, that is, K
is separable. We list the countably many elements of S as {t1, t2, t3, . . . }.

We will find a sub-sequence of {fn} that converges point-wise on S by a standard diagonal
argument.

Since D is complete and totally bounded, D is sequentially compact. Thus the sequence
{fn(t1)}∞n=1 in D has a convergent sub-sequence, which we will write using double subscripts,
{f1,n(t1)}∞n=1. Similarly, the sequence {f1,n(t2)}∞n=1 also has a convergent sub-sequence {f2,n(t2)}∞n=1.
By proceeding in this way, we obtain a countable collection of sub-sequences of our original se-
quence {fn}∞n=1:

f1,1 f1,2 f1,3, . . .
f2,1 f2,2 f2,3, . . .
f3,1 f3,2 f3,3, . . .

...
...

... . . .

where the sequence in the n-th row converges at the points t1, t2, . . . , tn, and each row is a sub-
sequence of its previous row. Let {gn} be the diagonal sequence produced in the previous step,
i.e., gn = fn,n for each n ∈ N. Then the sequence {gn} is a sub-sequence of the original sequence
{fn} that converges at each point of S.

Next, we will show that the sub-sequence {gn} of {fn} is uniformly convergent. Let ε > 0 be
given and choose δ = min

{
ε

6L ,
ε
6

}
. Then there exists N1 > 0, such that for every n ≥ N1, and for

any s, t ∈ K with |s− t| < δ,

d(gn(t), gn(s)) ≤ L|t− s|+ min{ε
6
, |t− s|} ≤ Lδ +

ε

6
≤ ε

3
.

Since K is compact, for any positive integer M > 1
δ , there exists a finite set SM ⊂ S such that

K ⊂
⋃

s∈SM
B 1
M

(s). Since the sequence {gn} converges at each point of SM , there exists N2 > 0,

such that whenever n,m > N2,

d(gn(s), gm(s)) <
ε

3
, ∀s ∈ SM .

Let t ∈ K be arbitrary but fixed. Then there exists some s ∈ SM such that |s−t| < δ. In addition,
let N = max{N1, N2}. Then whenever n,m > N ,

d(gn(t), gm(t)) ≤ d(gn(t), gn(s)) + d(gn(s), gm(s)) + d(gm(s), gm(t)) < ε.

Hence the sub-sequence {gn} of the original sequence {fn} is uniformly Cauchy. Since the metric
space D is complete, C(K;D) is complete with respect to the uniform metric. Thus the sub-
sequence {gn} is uniformly convergent.

3. The Finite-Dimensional Hybrid System. In this section, we specify the Bando-FtL
model introduced in Section 2.1 to the case of lane changing maneuvers and multi-class vehicles.

In the case of multi-lane traffic, vehicles travel along multiple lanes with the possibility to
change lane paying a cost related to such maneuver. We consider m lanes and assume that
j ∈ J = {1, . . . ,m} is the index of lanes. Now, to each vehicle i, we associate a vector of indices
ι(i) = (i, j, iL, iF ), where j ∈ J is the lane index of vehicle i, iL and iF are defined as in Section 2.1.
Each individual vehicle has a continuous dynamic governed by system (2.5) before performing lane
changing. Discrete dynamics of the vehicles will be generated due to lane changing. The presence
of both continuous dynamics and discrete dynamics leads us to consider hybrid system, see [19, 35].

In particular, in the following we consider two classes of vehicles and split the population of
P vehicles into M autonomous vehicles and N human-driven vehicles on an open stretch of road
with m lanes. We let Mj and Nj be the number of autonomous vehicles and the number of human-

driven vehicles on lane j ∈ J = {1, . . . ,m}, respectively. Then
m∑
j=1

Mj = M and
m∑
j=1

Nj = N .
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First, we study the dynamics of the M +N vehicles from the microscopic point of view. As in
[17], we assume that we have a small amount M of autonomous vehicles that have a great influence
on the population and a large amount N of human-driven vehicles which have a small influence
on the population. Instead of controlling all vehicles, we just add controls on the M autonomous
vehicles.

Let (y, w) and (x, v) be the space-velocity variables of the autonomous vehicles and the human-
driven vehicles, respectively. That is, the space-velocity of autonomous vehicle k and of human-
driven vehicle i on j lane is (yjk, w

j
k) and (xji , v

j
i ), respectively. We consider the following atomic

measures in M+(R× R+) on each single lane

µNj (t) =
1

Nj

Nj∑
i=1

δ(xji (t),v
j
i (t))

, νj(t) =
1

Mj

Mj∑
k=1

δ(yjk(t),wjk(t)).(3.1)

From the microscopic point of view, the dynamics of vehicles on lane j ∈ J without lane changing
are

(3.2)

ẏjk = wjk;

ẇjk =
(
H1 ∗1 (µNj + νj) +H2 ∗ (µNj + νj)

)
(yjk, w

j
k) + ujk; k = 1, . . . ,Mj ;

ẋji = vji ;

v̇ji =
(
H1 ∗1 (µNj + νj) +H2 ∗ (µNj + νj)

)
(xji , v

j
i ); i = 1, . . . , Nj ,

where ujk : [0, T ] 7→ R are measurable controls for k = 1, . . . ,Mj and H1 : R×R+ 7→ R, H2 : R×R 7→
R are locally Lipschitz convolution kernels with sub-linear growth. Particularly, there exists a
constant C > 0 such that for all (x1, v1) ∈ R× R+ and (x2, v2) ∈ R× R,

(3.3) |H1(x1, v1)| ≤ C(1 + |(x1, v1)|) and |H2(x2, v2)| ≤ C(1 + |(x2, v2)|).

Let ∆ > 0 be fixed. Vehicle n on j ∈ J lane will perform lane changing to j′ = j+1 or j−1 ∈ J
lane at time t ∈ [0, T ] if the following conditions occur:

Safety: āj
′

n (t) ≥ −∆ and āj
′

l (t) ≥ −∆; Incentive: āj
′

n (t) ≥ ajn(t) + ∆.

In the case of āj+1
n (t) = āj−1

n (t) ≥ ajn(t) and āj
′

n (t), āj
′

l (t) ≥ −∆, for j′ = j−1, j+1 ∈ J , we assume
that vehicle n changes from j lane to j + 1 lane. Here l is the index of the first vehicle following
vehicle n on the new lane if vehicle n changes lane at time t, ajn(t) is the actual acceleration of

vehicle n at time t on j lane, āj
′

n (t) and āj
′

l (t) are the expected accelerations of vehicle n on the new
lane if vehicle n changes lane at time t, respectively. For instance, if vehicle n is an autonomous
vehicle and if vehicle l is a human-driven vehicle, then at time t ∈ [0, T ],

ajn(t) =
(
H1 ∗1 (µNj (t) + νj(t)) +H2 ∗ (µNj (t) + νj(t))

)
(yjn(t), wjn(t)) + ujn(t);

āj
′

n (t) =
(
H1 ∗1 (µNj′ (t) + νj

′
(t)) +H2 ∗ (µNj′ (t) + νj

′
(t))
)

(yj
′

n (t), wj
′

n (t)) + uj
′

n (t);

āj
′

l (t) =
(
H1 ∗1 (µNj′ (t) + ν̃j

′
(t)) +H2 ∗ (µNj′ (t) + ν̃j

′
(t))
)

(zj
′

l (t), ωj
′

l (t)),

where (zj
′

l (t), ωj
′

l (t)) represents the position-velocity of vehicle l at time t ∈ [0, T ] on j′ lane and

ν̃j
′

=
1

Mj′ + 1

Mj′∑
`=1

δ
(yj
′
` (t),wj

′
` (t))

+ δ(
yj
′
n (t),wj

′
n (t)

)
 .

We assume that there are no two vehicles changing lane at the same time. It has been
experimentally shown that lane changing are crucial for traffic safety, but lane changing are not
frequent [28]. We assign each vehicle a timer over the whole time interval [0, T ]. Let Nτ ∈ Z+ be
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large and fixed and let T1 = T
Nτ

. A vehicle would consider changing lane only when its timer reaches

to T1. Specifically, the timer τ1
k for autonomous vehicle k satisfies τ̇1

k = 1, τ1
k (0) = τ1

k,0 ∈ [0, T1)

and the timer τ2
i for human-driven vehicle i satisfies τ̇2

i = 1, τ2
i (0) = τ2

i,0 ∈ [0, T1). In addition,
the followings are true:

(3.4)

if k1 6= k2 ∈ {1, . . . ,M}, then τ1
k1,0 6= τ1

k2,0;

if i1 6= i2 ∈ {1, . . . , N}, then τ2
i1,0 6= τ2

i2,0;

τ1
k,0 6= τ2

i,0 for any k ∈ {1, . . . ,M} and i ∈ {1, . . . , N}.

Besides, we reset the timer for each vehicle to be zero when it reaches to T1. Here T1 is called
timer limit for all vehicles.

The presence of both continuous dynamics of vehicles governed by system (3.2) and discrete dy-
namics of vehicles caused by lane changing motivates us to consider the following finite-dimensional
hybrid system.

For the definition of a hybrid system, we need to introduce the following notation. For each
ι =

(
{ι1k}Mk=1, {ι2i }Ni=1

)
∈ RM+N ,

Aι =

{(
yk, wk, τ

1
k , xi, vi, τ

2
i

)
k=1,...,M
i=1,...,N

∈ (R× R+ × [0, T1))
2

:

∃k1 6= k2 ∈ {1, . . . ,M}, s.t. ι1k1 = ι1k2 ∧ yk1 = yk2
or ∃i1 6= i2 ∈ {1, . . . , N}, s.t. ι2i1 = ι2i2 ∧ xi1 = xi2
or ∃k ∈ {1, . . . ,M} ∧ i ∈ {1, . . . , N}, s.t. ι1k = ι2i ∧ yk = xi

}
.

Definition 3.1. A hybrid system is a 6-tuple Σ1 = (L,M, U,U , g, S) where:
H1 L =

{
ι = (ι11, ι

1
2, . . . , ι

1
M , ι

2
1, ι

2
2, . . . , ι

2
N ), ι1k, ι

2
i ∈ J, k = 1, . . . ,M, i = 1, . . . , N

}
is

the set of locations;

H2 M = {Mι}ι∈L, where Mι = (R× R+ × [0, T1))
M × (R× R+ × [0, T1))

N \ Aι, with Aι is the
set of states such that two cars are in same lane and position, see above.
H3 U = {Uι}ι∈L, Uι = IM , where I ⊂ [0, Umax] is compact with Umax > 0;

H4 U = {Uι}ι∈L, Uι =
{
u : [0, T ] 7→ Uι = IM

}
;

H5 g = {gι}ι∈L, gι : Mι × Uι 7→ (R3)M+N , gι = (wk, a
1
k, 1, vi, a

2
i , 1), where

a1
k =

(
H1 ∗1

(
µN

ι1
k

+ νι
1
k

)
+H2 ∗

(
µN

ι1
k

+ νι
1
k

))
(yk, wk) + uk, and

a2
i =

(
H1 ∗1

(
µN

ι2
i

+ νι
2
i

)
+H2 ∗

(
µN

ι2
i

+ νι
2
i

))
(xi, vi);

H6 S is a subset of LC(Σ1), where LC(Σ1) is the set of states for which a lane-changing can
occur, that is,

LC(Σ1) =

{(
ι, (yk, wk, τ

1
k , xi, vi, τ

2
i ), ι′, (y′k, w

′
k, τ

1
k
′
, x′i, v

′
i, τ

2
i
′
)
)
k=1,...,M
i=1,...,N

:

∃p1 ∈ {1, . . . ,M}, tp1 ∈ [0, T ], s.t. ∀k 6= p1,

(yk(tp1), wk(tp1), τ1
k (tp1), ι1k(tp1)) = (y′k(tp1), w′k(tp1), τ1

k
′
(tp1), ι1k

′
(tp1)),

and (yp1(tp1), wp1(tp1)) = (y′p1(tp1), w′p1(tp1)), τ1
p1

′
(tp1) = 0,

ι1p1
′
(tp1) = (ι1p1(tp1) + 1)(1− δm(ι1p1(tp1))) or (ι1p1(tp1)− 1)(1− δ1(ι1p1(tp1))),

(xi(tp1), vi(tp1), τ2
i (tp1), ι2i (tp1)) = (x′i(tp1), v′i(tp1), τ2

i
′
(tp1), ι2i

′
(tp1)),

or ∃p2 ∈ {1, . . . , N}, tp2 ∈ [0, T ], s.t. ∀i 6= p2,

(xi(tp2), vi(tp2), τ2
i (tp2), ι2i (tp2)) = (x′i(tp2), v′i(tp2), τ2

i
′
(tp2), ι2i

′
(tp2)),

and (xp2(tp2), vp2(tp2)) = (x′p2(tp2), v′p2(tp2)), τ2
p2

′
(tp2) = 0,

ι2p2
′
(tp2) = (ι2p2(tp2) + 1)(1− δm(ι2p2(tp2))) or (ι2p2(tp2)− 1)(1− δ1(ι2p2(tp2))),

(yk(tp2), wk(tp2), τ1
k (tp2), ι1k(tp2)) = (y′k(tp2), w′k(tp2), τ1

k
′
(tp2), ι1k

′
(tp2))

}
.

Before actually defining a trajectory of hybrid system Σ1, it is necessary to define its hybrid
state first.

Definition 3.2. A hybrid state of the hybrid system Σ1 is a 7-tuple
(ι, y, w, τ1, x, v, τ2), where ι ∈ L is the location, (y, w, τ1, x, v, τ2) ∈ Mι. We denote by HS1 the
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set of all hybrid states of the hybrid system Σ1.

Now we will define a trajectory of hybrid system Σ1.

Definition 3.3. Let (ι0, y0, w0, τ
1
0 , x0, v0, τ

2
0 ) ∈ JM+N × RM × (R+)

M × [0, δτ )M × RN ×
(R+)

N × [0, δτ )N be given initial condition to the above hybrid system Σ1. In addition, as-
sume that the initial conditions τ1

0 and τ2
0 satisfy condition (3.4). A trajectory of the hybrid

system Σ1 with initial condition (ι0, y0, w0, τ
1
0 , x0, v0, τ

2
0 ) is a map ξ : [0, T ] 7→ HS1, ξ(t) =

(ι(t), y(t), w(t), τ1(t), x(t), v(t), τ2(t)) such that for k = 1, . . . ,M, i = 1, . . . , N, and n = 1, . . . , Nτ−
1, the following holds:
1. τ1

k (0) = τ1
k,0, and τ2

i (0) = τ2
i,0;

2. (yk(0), wk(0)) = (yk,0, wk,0) ∈ R× R+ and (xi(0), vi(0)) = (xi,0, vi,0) ∈ R× R+;
3. ι1k(t) = ι1k,0 ∈ J on [0, δτ − τ1

k,0), ι2i (t) = ι2i,0 ∈ J on [0, δτ − τ2
i,0),

ι1k = ι1k,n on (nδτ − τ1
k,0, (n+ 1)δτ − τ1

k,0), ι2i = ι2i,n on (nδτ − τ2
i,0, (n+ 1)δτ − τ2

i,0) ;

ι1k = ι1k,Nτ ∈ J on (Nτδτ − τ1
k,0, T ], ι2i = ι2i,Nτ ∈ J on (Nτδτ − τ2

i,0, T ].

4. τ1
k (nδτ − τ1

k,0) = 0 and τ2
i (nδτ − τ2

i,0) = 0;

5. lim
t→(nδτ−τ1

k,0)−
yk(t) = yk(nδτ − τ1

k,0), and lim
t→(nδτ−τ2

i,0)−
xi(t) = xi(nδτ − τ2

i,0);

6. For almost every t ∈ [0, T ], with uk : [0, T ] 7→ I a measurable control,
d
dt (yk, wk, τ

1
k , xi, vi, τ

2
i ) = gι(t)(yk(t), wk(t), τ1

k (t), xi(t), vi(t), τ
2
i (t), uk(t)).

We shall derive the existence and uniqueness of the trajectory of hybrid system Σ1 in the
sense of DEFINITION 3.3. Let ξj = (yj , wj) be the space-velocity of the autonomous vehicles in
j lane. Recall that we denote by Mj and Nj the number of autonomous vehicles and the number
of human-driven vehicles in j lane, respectively. Compare with Lemma 2.1 in [17], we have the
following lemma.

Lemma 3.4. Given two locally Lipschitz convolution kernels with sub-linear

growth H1 : R × R+ 7→ R and H2 : R × R 7→ R, and given µn = 1
n

n∑
l=1

δ(xl,vl) an arbitrary atomic

measure for (xl, vl) ∈ R × R+, with n ∈ Z+, we have, there exists a constant C > 0 such that

|H1∗1µn(x, v)| ≤ C(1+|(x, v)|+ 1
n

n∑
l=1

|(xl, 0)|) and |H2∗µn(x, v)| ≤ C(1+|(x, v)|+ 1
n

n∑
l=1

|(xl, vl)|).

Proof. This is can be proved by the sub-linear growth of H1 and H2.

As in [17], motivated by 1-Wasserstein distance, we endow space R2n for any n ∈ Z+ with the

following norm: for any (x, v) ∈ R2n, ‖(x, v)‖ : = 1
n

n∑
l=1

(|xl|+ |vl|), and the metric induced by the

above norm ‖ · ‖.
Theorem 3.5. Let H1 : R×R+ 7→ R, H2 : R×R 7→ R be locally Lipschitz convolution kernels

with sub-linear growth. Then given an initial datum
ξ0 = (ι0, y0, w0, τ

1
0 , x0, v0, τ

2
0 ), there exists a unique trajectory

ξ(t) = (ι(t), y(t), w(t), τ1(t), x(t), v(t), τ2(t)) to the finite-dimensional hybrid system Σ1 over the
whole time interval [0, T ]. Furthermore, both trajectories of the autonomous vehicles and the
human-driven vehicles are Lipschitz continuous with respect to time over the time interval when
there is no lane changing.

Proof. Let t0 = min
k=1,...,M
i=1,...,N

{δτ − τ1
k,0, δτ − τ2

i,0}. Note that there is no vehicle changing lane over

the time interval [0, t0) in any lane. In particular, for t ∈ [0, t0), the dynamics of autonomous
vehicles on lane j ∈ J satisfy

(3.5)

ẏjk = wjk;

ẇjk =
(
H1 ∗1 (µNj + νj) +H2 ∗ (µNj + νj)

)
(yjk, w

j
k) + ujk;

yjk(0) = yjk,0;

wjk(0) = wjk,0; k = 1, . . . ,Mj ;
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For the sake of compact writing, we let ξj(t) = (yj(t), wj(t)) ∈ R2Mj represent the trajectory of
the autonomous vehicle on lane j over the time interval [0, t0) and re-write system (3.5) in the
following form

(3.6) ξ̇j(t) = gj(t, ξj(t)),

where the right hand side is

gj(t, ξj(t)) = (wj(t), [
(
H1 ∗1 (µNj + νj) +H2 ∗ (µNj + νj)

)
(yjk, w

j
k) + ujk]

Mj

k=1).

Since H1 and H2 are locally Lipschitz with sub-linear growth, by LEMMA 3.4, we obtain

‖gj(t, ξj(t))‖ ≤ C̄
(
1 + ‖ξj(t)‖

)
,

where C̄ > 0 is a constant depending on C > 0, Umax > 0, but not depending on M or N . Thus
the right hand side of equation (3.6) fulfills the sub-linear growth condition, by THEOREM 2.9,
there exists a solution of system (3.5) on the interval [0, t0) such that (yj(0), wj(0)) = (yj0, w

j
0).

Moreover, for any t ∈ [0, t0),

‖ξj(t)‖ ≤ (‖ξj0‖+ C̄t0)eC̄t0 .

In addition, the trajectory of the autonomous vehicles in j lane is Lipschitz continuous in time
over the interval [0, t0). That is, for any τ1, τ2 ∈ [0, t0),

‖ξj(τ1)− ξj(τ2)‖ ≤
∫ τ2

τ1

C̄(1 + ‖ξj(s)‖) ds ≤ C̄(1 + (‖ξj0‖+ C̄t0)eC̄t0)|τ1 − τ2|.

Now for n ≥ 1, let tn = min
k=1,...,M
i=1,...,N

{δτ − τ1
k (tn−1), δτ − τ2

i (tn−1)}. Then over the time interval

[tn−1, tn), n ≥ 1, there is no vehicle changing lane. Similarly, one can show that the trajectory
of the autonomous vehicles in j lane is unique and is Lipschitz continuous in time over the time
interval [tn−1, tn). Since the number of autonomous vehicle M is finite, one can repeat the above
procedure for finitely many times to show that the trajectory of the autonomous vehicles on lane
j is unique over the whole time interval [0, T ].

Furthermore, one can as well show that the trajectory of the human-driven vehicles on lane j
is unique over the whole time interval [0, T ] and is Lipschitz continuous with respect to time over
the time interval when there is no lane changing.

4. The Mean-Field Limit to the Finite-Dimensional Hybrid System. In this section,
we consider M autonomous vehicles and let the number of human-driven vehicles on each lane
go to infinity on an open stretch of road with m lanes. We again just add controls on the M
autonomous vehicles. It is possible to define a mean-flied limit of system (3.2) in the following
sense: on lane j ∈ J , the population of vehicles can be represented by the vector of positions-
velocities (yj , wj) of the autonomous vehicles coupled with the compactly supported non-negative
measure µj ∈M+(R×R+) of the human-driven vehicles in the position-velocity space. Then the
mean-field limit will result in a coupled system of ODEs for (yj , wj) with control and a PDE for
µj without control. Furthermore, the lane changing of the human-driven vehicles would lead to a
source term to the PDE for µj . More specifically, the limit dynamics of vehicles on lane j when
there is no autonomous vehicles changing lane is

(4.1)

ẏjk = wjk;

ẇjk =
(
H1 ∗1 (µj + νj) +H2 ∗ (µj + νj)

)
(yjk, w

j
k) + ujk; k = 1, . . . ,Mj ;

∂tµ
j + vj∂xµ

j + ∂v
((
H1 ∗1 (µj + νj) +H2 ∗ (µj + νj)

)
µj
)

= S(µj−1, µj , µj+1).

where ujk : [0, T ] 7→ R are measurable controls for k = 1, . . . ,Mj , H1 : R×R+ 7→ R and H2 : R×R 7→
R are locally Lipschitz convolution kernels with sub-linear growth satisfying equation (3.3), νj is
as defined in (3.1) and the source term S(µj−1, µj , µj−1) is defined as

(4.2)
S(µj−1, µj , µj+1) =

(
Sj−1,j(µj−1, µj)− Sj,j−1(µj−1, µj)

)
(1− δj,1)

+
(
Sj+1,j(µj , µj+1)− Sj,j+1(µj , µj+1)

)
(1− δj,m),
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with

(4.3) Sk,l(µk, µl) = p([Al −Ak −∆]+)µk, k, l ∈ {j − 1, j, j + 1} and k = l + 1 or k = l − 1.

Here p : R 7→ [0, 1] is increasing and is the probability of the large population of human-driven
vehicles performing lane changing from k lane to l lane. In addition, if a ≤ 0, then p(a) = 0. We
assume that the dimension of p to be 1

t . This modeling choice is similar to [27, 22]. In addition,
Al = H1 ∗1 (µl + νl) + H2 ∗ (µl + νl) is the average acceleration of vehicles on lane l. Equation
(4.3) can be interpreted as the following: Let ∆ > 0 be fixed. A large population of human-driven
vehicles on lane k will perform lane changing to lane l with probability p ∈ [0, 1] if the following
condition occur: Al > Ak + ∆.

Furthermore, system (4.1) implies that the acceleration of autonomous vehicle k on lane j is,

ajk =
(
H1 ∗1 (µj + νj) +H2 ∗ (µj + νj)

)
(yjk, w

j
k) + ujk.

The k-th autonomous vehicle on lane j will perform lane changing to j′ = (j − 1)(1 − δ1(j)) or
j′ = (j + 1)(1− δm(j)) lane if the following condition occur: Aj

′ ≥ ajk + ∆.
We again assign each autonomous vehicle a timer over the whole time interval [0, T ] such that

there are no two autonomous vehicles changing lane at the same time. We define the timer τ1
k for

autonomous vehicle k and the timer limit T1 as before.
The continuous dynamics of vehicles governed by system (4.1) and the discrete lane changing

dynamics of the autonomous vehicles lead us to consider the following hybrid system.

Definition 4.1. A hybrid ODE-PDE system is a 6-tuple Σ2 = (L,M, U,U , g, S) where
H1 L = {ι = (ιk)k=1,...,M , ιk ∈ J} = JM is the set of locations;

H2 M = {Mι}ι∈L, where Mι = (R× R+ × [0, δτ ))
M \Aι ×

(
M+(R2)

)m
,

Aι =
{(
yk, wk, τ

1
k

)
k=1,...,M

: yk ∈ R, wk ∈ R+, τ1
k ∈ [0, δτ )

and ∃k1 6= k2 ∈ {1, . . . ,M}, s.t. ιk1 = ιk2 and yk1 = yk2};
H3 U = {Uι}ι∈L , Uι = IM , where I ⊂ R is compact;

H4 U = {Uι}ι∈L ,Uι =
{
u : [0, T ] 7→ Uι = IM

}
;

H5 g = {gι}ι∈L,
gι : Mι × Uι 7→ (R3)M , gι((yk, wk, τ

1
k , uk, µ

ιk)k=1,...,M ) = (vk, ak, 1)k=1,...,M ,
where ak = (H1 ∗1 (µιk + νιk) +H2 ∗ (µιk + νιk)) (yk, wk) + uk;
H6 S is a subset of LC(Σ2), where

LC(Σ2) =

{(
ι, (yk, wk, τ

1
k , µ

ιk)k=1,...,M , ι
′,
(
y′k, w

′
k, (τ

1
k )′, µι

′
k

)
k=1,...,M

)
:

∃p ∈ {1, . . . ,M}, tp ∈ [0, T ], s.t. ∀k 6= p,
(yk(tp), wk(tp), τ

1
k (tp)) = (y′k(tp), w

′
k(tp), (τ

1
k )′(tp)), ι

′
k(tp) = ιk(tp),

and yp(tp) = y′p(tp), wp(tp) = w′p(tp), (τ
1
p )′(tp) = 0, ι′p(tp) = ιp(tp)± 1

}
.

Now we will define the hybrid state of the hybrid system Σ2.

Definition 4.2. A hybrid state of the hybrid system Σ2 is a 5-tuple (ι, y, w, τ1, µ), where ι
is the location, (y, w, τ1, µ) ∈ Mι. We denote by HS2 the set of all hybrid states of the hybrid
system Σ2.

Next we will give the definition of the trajectory of the hybrid system Σ2.

Definition 4.3. A trajectory of the hybrid system Σ2 with initial condition
(ι0, y0, w0, τ

1
0 , µ0) ∈ JM×RM×(R+)M×[0, δτ )M×

(
M+(R2)

)m
( if k1 6= k2 ∈ {1, . . . ,M}, then τ1

k1,0
6=

τ1
k2,0

) is a map ξ : [0, T ] 7→ HS2,

ξ(t) = (ι(t), y(t), w(t), τ1(t), µ(t)) such that for k = 1, . . . ,M and n = 1, . . . , Nτ − 1, the following
holds:
1. τ1

k (0) = τ1
k,0 ∈ [0, δτ );

2. (yk(0), wk(0)) = (yk,0, wk,0) ∈ R× R+;
3. For t ∈ [0, δτ − τ1

k,0), ιk(t) = ιk,0 ∈ J ,
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ιk(·) is constant in [nδτ − τk,0, (n+ 1)δτ − τk,0), and is equal to ιk,n ∈ J ;
4. τ1

k (nδτ − τ1
k,0) = 0;

5. lim
t→(nδτ−τ1

k,0)
−
yk(t) exists and is equal to yk(nδτ − τ1

k,0);

6. For every ϕ ∈ C∞c (R× R+), and for all t ∈ [0, T ], µιk(t) satisfies
suppµιk(t) ⊂ B(0, R) for some R > 0, and for almost every t ∈ [0, T ],
d
dt

∫
R×R+ ϕ(x, v) dµιk(t)(t)(x, v) =

∫
R×R+ ϕ(x, v) dS(µιk(t)−1, µιk(t), µιk(t)+1)(t)(x, v)

+
∫
R×R+

(
∇ϕ(x, v) · ωH1,H2,µ

ιk(t),xιk(t),vιk(t)(t, x, v)
)

dµιk(t)(t)(x, v),

where ωH1,H2,µ
ιk(t),xιk(t),vιk(t)(t, x, v) : =

=
(
v,
(
H1 ∗1 (µιk(t)(t) + νιk(t)(t)) +H2 ∗ (µιk(t)(t) + νιk(t)(t))

)
(x, v)

)
.

7. For almost every t ∈ [0, T ], with uk : [0, T ] 7→ I a measurable control
d
dt (yk(t), wk(t), τ1

k (t)) = gιk(t)(yk(t), wk(t), τ1
k (t), uk(t), µιk(t)(t)).

Before actually proving the existence of trajectories of the hybrid system Σ2 as in DEFINI-
TION 4.3, it will be convenient to address the stability of the hybrid system Σ2 with respect to
the initial data first.

Let t10 = min
k=1,...,M

{
T1 − τ1

k,0

}
. Then there is no autonomous vehicle changing lane over the

time interval [0, t10) on any lane. As in THEOREM 3.5, it is enough to show the stability of the
hybrid system Σ2 with respect to the initial data over the time interval [0, t10). In particular, for
t ∈ [0, t10), the dynamics of autonomous vehicles in j ∈ J lane satisfy

(4.4)

ẏjk = wjk;

ẇjk =
(
H1 ∗1 (µj + νj) +H2 ∗ (µj + νj)

)
(yjk, w

j
k) + ujk;

yjk(0) = yjk,0;

wjk(0) = wjk,0; k = 1, . . . ,Mj ;

and the dynamics of human-driven vehicles in j ∈ J lane satisfy

(4.5)
∂tµ

j + v∂xµ
j + ∂v

((
H1 ∗1 (µj + νj) +H2 ∗ (µj + νj)

)
µj
)

= S(µj−1, µj , µj+1),

µj(0) = µj0,

where the atomic measure νj is defined as in equation (3.1) and the source term S is defined as in
equation (4.2). Furthermore, we endow space Xn : R2n ×M+(R × R+) for any n ∈ Z+ with the
following metric : for any (y1, w1, µ1), (y2, w2, µ2) ∈ Xn,

‖(y1, w1, µ1)− (y2, w2, µ2)‖Xn : =
1

n

n∑
k=1

(|yk,1 − yk,2|+ |wk,1 − wk,2|) +W 1,1
1 (µ1, µ2),

where W 1,1
1 is the generalized Wasserstein distance in M+(R× R+).

Lemma 4.4. Let µj,q be two solutions to system (4.5) over the time interval [0, t10) with two
different initial data µj,q0 , q = 1, 2. Then there exists C̄ > 0 such that,

W 1,1
1 (µj,1(t), µj,2(t)) ≤ C̄

(
W 1,1

1 (µj,10 , µj,20 )+(4.6)

+

∫ t

0

‖(yj,1(s), wj,1(s), µj,1(s))− (yj,2(s), wj,2(s), µj,2(s))‖XMj ds

)
.

Proof. Let µj,q be two solutions to system (4.5) over the time interval [0, t10) with two different

initial data µj,q0 , q = 1, 2. Let t ∈ [0, t10) be fixed and let ∆t =
t10
2k

for a fixed k ∈ N+. Decompose the

time interval [0, t10) into [0,∆t], [∆t, 2∆t], . . . , [(2k − 1)∆t, 2k∆t). Let n be the maximum integer
such that t− n∆t ≥ 0, then t ∈ [n∆t, (n+ 1)∆t). By section 2.4, we have, µj,q(t) = lim

k→∞
µj,qk (t),
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where q = 1, 2 and µj,qk is defined as following:

µj,qk (0) = µj,q0 ,

µj,qk ((n+ 1)∆t) = T µ
j,q
k (n∆t),νj,q(n∆t)

∆t #µj,qk (n∆t) + ∆tS(µj,qk (n∆t)),

µj,qk (t) = T µ
j,q
k (n∆t),νj,q(n∆t)

τ #µj,qk (n∆t) + τS(µj,qk (n∆t)),

where τ = t− n∆t and νj,q(n∆t) = 1
Mj

Mj∑
k=1

δ(yj,qk (n∆t),wj,qk (n∆t)), with

(yj,qk (n∆t), wj,qk (n∆t)) being the vector of position-velocity of the k-th autonomous vehicle on lane

j at time n∆t when the initial data to system (4.5) is given by µj,q0 . Note that

W 1,1
1 (µj,1k (t), µj,2k (t)) ≤W 1,1

1

(
τS(µj,1k (n∆t)), τS(µj,2k (n∆t))

)
+W 1,1

1

(
T µ

j,1
k (n∆t),νj,1(n∆t)

τ #µj,1k (n∆t), T µ
j,1
k (n∆t),νj,1(n∆t)

τ #µj,2k (n∆t)

)
+W 1,1

1

(
T µ

j,1
k (n∆t),νj,1(n∆t)

τ #µj,2k (n∆t), T µ
j,2
k (n∆t),νj,2(n∆t)

τ #µj,2k (n∆t)

)
,

where the last inequality is due to PROPOSITION 2.6. By the properties of the source term S,
(S2), and of the generalized Wasserstein distance W 1,1

1 , PROPOSITION 2.6, there exists some
constant LS such that

W 1,1
1

(
τS(µj,1k (n∆t)), τS(µj,2k (n∆t))

)
≤ τLSW 1,1

1 (µj,1k (n∆t), µj,2k (n∆t)).

Since the flow map T µ
j,1
k (n∆t),νj,1(n∆t)

τ is Lipschitz, by LEMMA 2.7, there exists some constant
L1, such that,

W 1,1
1

(
T µ

j,1
k (n∆t),νj,1(n∆t)

τ #µj,1k (n∆t), T µ
j,1
k (n∆t),νj,1(n∆t)

τ #µj,2k (n∆t)

)
≤L1W

1,1
1 (µj,1k (n∆t), µj,2k (n∆t)).

Since the flow maps T µ
j,1
k (n∆t),νj,1(n∆t)

τ and T µ
j,2
k (n∆t),νj,2(n∆t)

τ are bounded and Borel measurable,
by LEMMA 2.7, equation (2.11) and LEMMA 2.8, there exist LT , ρ, L∗ > 0, such that

W 1,1
1

(
T µ

j,1
k (n∆t),νj,1(n∆t)

τ #µj,2k (n∆t), T µ
j,2
k (n∆t),νj,2(n∆t)

τ #µj,2k (n∆t)

)
≤
∥∥∥∥T µj,1k (n∆t),νj,1(n∆t)

τ − T µ
j,2
k (n∆t),νj,2(n∆t)

τ

∥∥∥∥
L∞(B(0,R))

≤L∗
∫ t

n∆t

eLT (s−t)

 1

Mj

Mj∑
k=1

(|yj,1k (s)− yj,2k (s)|+ |wj,1k (s)− wj,2k (s)|)


W 1,1

1 (µj,1k (s), µj,2k (s))
]

ds.

Therefore,

(4.7)

W 1,1
1 (µj,1k (t), µj,2k (t)) ≤ (τLS + L1)W 1,1

1 (µj,1k (n∆t), µj,2k (n∆t))

+ L∗

∫ t

n∆t

eLT (s−t)

 1

Mj

Mj∑
k=1

(
|yj,1k (s)− yj,2k (s)|+ |wj,1k (s)− wj,2k (s)|

)
+W 1,1

1 (µj,1k (s), µj,2k (s))
]

ds.
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Similarly, there exists L2 > 0, such that

W 1,1
1 (µj,1k (n∆t), µj,2k (n∆t))(4.8)

≤(L2 + ∆tLS)W 1,1
1 (µj,1k ((n− 1)∆t), µj,2k ((n− 1)∆t))

+ L∗

∫ n∆t

(n−1)∆t

eLT (s−t)

 1

Mj

Mj∑
k=1

(
|yj,1k (s)− yj,2k (s)|+ |wj,1k (s)− wj,2k (s)|

)
+W 1,1

1 (µj,1k (s)− µj,2k (s))
]

ds.

Combine with equations (4.7) and (4.8), and the definition of norm ‖ · ‖XMj , we obtain there

exists C0 such that

W 1,1
1 (µj,1k (t), µj,2k (t)) ≤ C0

(
W 1,1

1 (µj,10 , µj,20 )

+

∫ t

0

‖(yj,1(s), wj,1(s), µj,1k (s))− (yj,2(s), wj,2(s), µj,2k (s))‖XMj ds

)
.

Take k → ∞ and consider the definition of µj,p, p = 1, 2, we have, there exists C̄ such that
inequality (4.6) is true.

Theorem 4.5. Let (yj,i, wj,i) be two solutions of system (4.4) relative to given respective
initial data (yj,i0 , wj,i0 ) and let µj,i be two solutions of system (4.5) relative to given respective

initial data µj,i0 , i = 1, 2 over the time interval [0, t10). Then there exists a constant C > 0 such
that ∥∥(yj,1(t), wj,1(t), µj,1(t)

)
−
(
yj,2(t), wj,2(t), µj,2(t)

)∥∥
XMj

≤C
∥∥∥(yj,10 , wj,10 , µj,10

)
−
(
yj,20 , wj,20 , µj,20

)∥∥∥
XMj

.

Remark 4.6. THEOREM 4.5 implies that the trajectory of hybrid system Σ2, if exists, is
uniquely determined by the initial conditions.

Proof. By integration we have, for t ∈ [0, t10),

yj,ik (t) =

∫ t

0

wj,ik (s) ds+ yj,ik,0, i = 1, 2.

Thus

(4.9) |yj,1k (t)− yj,2k (t)| ≤ |yj,1k,0 − y
j,2
k,0|+

∫ t

0

|wj,1k (s)− wj,2k (s)|ds.

In addition, by LEMMA 2.8, there exists a constant LR, such that

(4.10)

|wj,1k (t)− wj,2k (t)| ≤ |wj,1k,0 − w
j,2
k,0|

+ LR

∫ t

0

 1

Mj

Mj∑
k=1

(
|yj,1k (s)− yj,2k (s)|+ |wj,1k (s)− wj,2k (s)|

)
+W 1,1

1 (µj,1(s), µj,2(s))
)

ds.

Combine with equations (4.6) (4.9), (4.10), and the definition of the norm ‖ · ‖XMj , we have, there
exists a constant C, s.t.,

‖(yj,1(t), wj,1(t), µj,1(t))− (yj,2(t), wj,2(t), µj,2(t))‖XMj
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≤C
(
‖(yj,10 , wj,10 , µj,10 )− (yj,20 , wj,20 , µj,20 ))‖XMj

+

∫ t

0

‖(yj,1(s), wj,1(s), µj,1(s))− (yj,2(s), wj,2(s), µj,2(s))‖XMj ds

)
.

One can conclude the stability estimate by applying Gronwall’s inequality.

We shall now derive the existence of the trajectory of the hybrid system Σ2. It is enough to
show that the trajectories of the vehicles exist over the time interval [0, t10).

Theorem 4.7. On lane j ∈ J , let (yjk,0, w
j
k,0) ∈ R × R+, k = 1, . . . ,Mj, µ

j
0 ∈ M+(R × R+)

and u∗ ∈ L1([0, T ],U) be given. In addition, assume that µj0 is of bounded support in B(0, R) for
R > 0. Then the trajectories of the vehicles exist on lane j over the time interval [0, t10).

Proof. We will first construct a sequence of atomic measures to approximate the measure µj0
in generalized Wasserstein distance. For every N ∈ N+, consider the atomic measure

(4.11) µj,N0 =

N∑
i=1

‖µj0‖
N

δ(xj,Ni,0 ,v
j,N
i,0 ),

such that lim
N→∞

W 1,1
1 (µj,N0 , µj0) = 0. Here we call

‖µj0‖
N the average mass of the human-driven

vehicle on lane j.
In addition, fix a weakly convergent sequence (uN )N∈N in L1([0, T ],U) of control functions such

that uN ⇀ u∗ in L1([0, T ],U). By THEOREM 3.5, for each initial datum ξj,N0 = (yj0, w
j
0, x

j,N
0 , vj,N0 )

depending on N , there exists a unique trajectory of the hybrid system Σ1 with control uN over
the time interval [0, t10).

Denote the trajectories of the vehicles on lane j over the time interval [0, t10] with ξjN (t) =

(yjN (t), wjN (t), µjN (t)) ∈ XMj . Here we identify (xjN (x), vjN (t)), the vector of position-velocity of the

human-driven vehicles with atomic measure µjN (t) by means of equation (4.11). By THEOREM
3.5, the trajectories of the vehicles are Lipschitz continuous with respect to time over the time
interval when there is no lane changing. Furthermore, note that the average mass of a human-

driven vehicle
‖µj0‖
N → 0 as N → ∞. Thus there exists L > 0, such that for any ε > 0, there

exists Ñ > 0, such that whenever N ≥ Ñ , ‖ξjN (t) − ξjN (s)‖XMj ≤ L|t − s| + min{ε, |s − t|}.
By THEOREM 2.11, there exists a sub-sequence, again denoted by ξjN (·) = (yjN (·), wjN (·), µjN (·))
converging uniformly to a limit ξj∗(·) = (yj∗(·), wj∗(·), µj∗(·)). We will first verify that (yj∗(·), wj∗(·))
is a solutions of system (4.4) for µj = µj∗ and uj = ujN .

Note that ξjN
→→ ξj∗ implies that

(yjN (t), wjN (t))→→ (yj∗(t), w
j
∗(t)) in [0, t10);

(ẏjN (t), ẇjN (t)) ⇀ (ẏj∗(t), ẇ
j
∗(t)) in L1([0, t10),R× R+);

lim
N→∞

W 1,1
1 (µjN (t), µj∗(t)) = 0.

In particular, ẏjk,∗(t) = wjk,∗(t), for all k = 1, . . . ,Mj . Furthermore, let us denote now

νjN =
1

Mj

Mj∑
k=1

δ(yjk,N (t),wjk,N (t)) and νj∗ =
1

Mj

Mj∑
k=1

δ(yjk,∗(t),w
j
k,∗(t))

.

By the uniform convergence of the trajectories and LEMMA 2.2, we have, asN → +∞, W1(νjN (t), νj∗(t))→
0. In addition, by the sublinear growth of H1 and H2, we have, as N →∞,

(H1 ∗1 (µjN + νjN ) +H2 ∗ (µjN + νjN ))(yjk,N (t), wjk,N (t))

→→(H1 ∗1 (µj∗ + νj∗) +H2 ∗ (µj∗ + νj∗))(y
j
k,∗(t), w

j
k,∗(t)).
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By the weak convergence of uN to u∗ and of ẇjN to ẇj∗, for every τ ∈ [0, t10],∫ τ
0
ẇjk,∗(t) dt =

∫ τ
0

(
(H1 ∗1 (µj∗ + νj∗) +H2 ∗ (µj∗ + νj∗))(y

j
k,∗(t), w

j
k,∗(t)) + ujk,∗(t)

)
dt.

Now we will verify that µj∗ is a solution to system (4.5) for νj = νj∗.
For any time t ∈ [0, t10], let N j

1 be the number of human-driven vehicles that still stay on lane j

and let (x
j,Nj1
i (t), v

j,Nj1
i (t)) be the location-velocity of the i-th human-driven vehicle that does not

perform lane changing on lane j. Then we can track the position of those human-driven vehicles
by an atomic measure

µjN,1(t) =
Nj1∑
i=1

‖µj0‖
N δ(

x
j,N

j
1

i (t),v
j,N

j
1

i (t)

).

For all ϕ ∈ C∞c (R× R+), consider the following differentiation

d

dt
〈ϕ, µjN,1(t)〉 =

d

dt

Nj1∑
i=1

‖µj0‖
N

ϕ(x
j,Nj1
i (t), v

j,Nj1
i (t))

=
‖µj0‖
N

Nj1∑
i=1

∂xϕ(x
j,Nj1
i (t), v

j,Nj1
i (t))v

j,Nj1
i (t) +

Nj1∑
i=1

∂vϕ(x
j,Nj1
i (t), v

j,Nj1
i (t))

(H1 ∗1 (µjN + νjN ) +H2 ∗ (µjN + νjN ))(x
j,Nj1
i (t), v

j,Nj1
i (t))

]
.

Thus for all s ∈ [0, t10), we have

〈ϕ, µjN,1(s)− µjN,1(0)〉 =

∫ s

0

[∫
R×R+

∂xϕ(x, v)v

+∂vϕ(x, v)(H1 ∗1 (µjN + νjN ) +H2 ∗ (µjN + νjN ))(x, v) dµjN,1(t)(x, v)
]

dt.

Furthermore,

(4.12) lim
N→∞

〈ϕ, µjN,1(s)− µjN,1(0)〉 = 〈ϕ, µj∗ − µ
j
0〉.

By dominate convergence theorem, we obtain the limit (possibly for a sub-sequence) that

(4.13)

lim
N→∞

∫ s

0

∫
R×R+

(∇xϕ(x, v) · v) dµjN,1(t)(x, v) dt =

=

∫ s

0

∫
R×R+

(∇xϕ(x, v) · v) dµj∗(t)(x, v) dt,

for all ϕ ∈ C∞c (R×R+). Furthermore, by LEMMA 2.2 and LEMMA 2.8, we have, for every ρ > 0,

lim
N→∞

∥∥∥(H1 ∗1 (µjN + νjN ) +H2 ∗ (µjN + νjN )
)
−

−
(
(H1 ∗1 (µj∗ + νj∗) +H2 ∗ (µj∗ + νj∗)

)∥∥
L∞(B(0,ρ))

= 0.

Now since ϕ ∈ C∞c (R× R+) has compact support, we obtain

lim
N→∞

∥∥∥∂vϕ((H1 ∗1 (µjN + νjN ) +H2 ∗ (µjN + νjN )
)

−
(

(H1 ∗1 (µj∗ + νj∗) +H2 ∗ (µj∗ + νj∗)
))∥∥∥

∞
= 0.

Thus,

(4.14)

lim
k→∞

∫ s

0

∫
R×R+

∂vϕ(x, v)(H1 ∗1 (µjN + νjN )+

+H2 ∗ (µjN + νjN ))(x, v) dµjN,1(t)(x, v) dt

=

∫ s

0

∫
R×R+

∂vϕ(x, v)(H1 ∗1 (µjN + νjN ) +H2 ∗ (µjN + νjN ))(x, v) dµjN,1(t)(x, v) dt.
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By the lane changing condition, we define

µjN,2(t) =

Nj−1∑
i=1

‖µj−1
0 ‖
N

δ(
x
j−1,Nj−1
i (t),v

j−1,Nj−1
i (t)

)p ([Aj −Aj−1 −∆]+
)

−
Nj∑
i=1

‖µj0‖
N

δ(
x
j,Nj
i (t),v

j,Nj
i (t)

)p ([Aj−1 −Aj −∆]+
)

+

Nj+1∑
i=1

‖µj+1
0 ‖
N

δ(
x
j+1,Nj+1
i (t),v

j+1,Nj+1
i (t)

)p ([Aj −Aj+1 −∆]+
)

−
Nj∑
i=1

‖µj0‖
N

δ(
x
j,Nj
i (t),v

j,Nj
i (t)

)p ([Aj+1 −Aj −∆]+
)

where

Aj−1 =
(
H1 ∗1 (µj−1

N (t) + νj−1
N (t)) +H2 ∗ (µj−1

N (t) + νj−1
N (t))

)
(x, v),

Aj =
(
H1 ∗1 (µjN (t) + νjN (t)) +H2 ∗ (µjN (t) + νjN (t))

)
(x, v),

Aj+1 =
(
H1 ∗1 (µj+1

N (t) + νj+1
N (t)) +H2 ∗ (µj+1

N (t) + νj+1
N (t))

)
(x, v).

Therefore, µjN (t) = µjN,1(t) + µjN,2(t), and in addition,

lim
N→∞

Nj−1∑
i=1

‖µj−1
0 ‖
N

δ(
x
j−1,Nj−1
i (t),v

j−1,Nj−1
i (t)

)p ([Aj −Aj−1 −∆]+
)

=µj−1
∗ p

([(
H1 ∗1 (µj∗ + νj∗) +H2 ∗ (µj∗ + νj∗)

)
−

−
(
H1 ∗1 (µj−1

∗ + νj−1
∗ ) +H2 ∗ (µj−1

∗ + νj−1
∗ )

)
−∆

]
+

)
= Sj−1,j(µj−1

∗ , µj∗).

Furthermore,

lim
N→∞

µjN,2(t) =
(
Sj−1,j(µj−1

∗ , µj∗)− Sj,j−1(µj−1
∗ , µj∗)

)
(1− δj,1)(4.15)

+
(
Sj+1,j(µj∗, µ

j+1
∗ )− Sj,j+1(µj , µj+1)(1− δj,m)

)
= S(µj−1

∗ , µj∗, µ
j+1
∗ ).

The statement follows by combining equations (4.12), (4.13), (4.14), and (4.15).

5. Conclusion. In this paper we have focused on a multi-lane multi-class description of
vehicular traffic flow, where simultaneous presence of human-driven and autonomous vehicles has
been considered.

The microscopic dynamics have been formulated by using a Bando-Follow-the-Leader type
model, in which the interaction with the closest vehicle ahead is replaced by a space-dependent
convolution kernel modeling interactions with the surrounding flow. Autonomous vehicles have
been distinguished by control dynamics. Lane changing description has led to discrete events
within the differential equations, and thus to a so-called hybrid system whose well-posedness has
been studied.

Inspired by the empirical fact that the penetration rate of the autonomous vehicles is nowadays
small, we have computed a mean-field limit for the dynamics of the human-driven vehicles only,
leading to a coupled system of a PDE and ODEs with discrete events. The discrete lane changing
descriptions for human-driven vehicles has been modeled by a source term of the corresponding
Vlasov-type equation. Existence and uniqueness study of the trajectories of this system has been
performed.

We point-out that the given application, based on traffic flow, inspiring this work is not
restrictive, and many others may lead to the mathematical frameworks developed and studied here.
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More precisely, we refer to all physical multi-agent systems that are intrinsically characterized by
heterogeneity and instantaneous jumps in one of their states. For instance, these include also
models for air traffic control [46], chemical process control [14] and manufacturing [34].

Acknowledgments. G. V. wishes to thank Benedetto Piccoli’s Lab for the hospitality at
Rutgers University and Michael Herty for supporting this research work.
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