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Abstract

The numerical solutions to nonlinear hyperbolic balance laws at (or
near) steady state may develop spurious oscillations due to the imbalance
between flux and source terms. In the present article, we study a high order
well-balanced discontinuous Galerkin (DG) scheme for balance law with
subsonic flow, which preserves equilibrium solutions of the flow exactly, and
also provides non-oscillatory solutions for flow near equilibrium. The key
technique is to reformulate the DG scheme in terms of global equilibrium
variables which remain constant in space and time, and are obtained by
rewriting the balance law in conservative form. We show that the proposed
scheme is well-balanced and validate the scheme for various flows given
by 2 × 2 hyperbolic balance law. We also extend the scheme to flows on
networks, particularly to include the coupling conditions at nodes of the
network.

Keywords: Well-balanced scheme, discontinuous Galerkin scheme, hyper-
bolic balance laws, flows on networks.

1 Introduction
Many flows in nature can be modeled by nonlinear hyperbolic balance laws for
e.g. gas flows given by Euler equations, shallow water equations, etc. The
numerical approximations of such flows at equilibrium may introduce spurious

∗E-mail: mantri@eddy.rwth-aachen.de
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oscillations due to the imbalance between flux and source terms. In order to
avoid this, it is necessary to design so-called well-balanced schemes which can
preserve steady state of the flow and can provide non-oscillatory solutions for
near-equilibrium flows. Several well-balanced schemes have been introduced in
the past, for example [1, 4, 24, 25] for shallow water equations or [7, 19] for Euler
equations with gravity.

A unified approach to achieve well-balancing for a general hyperbolic balance
law in 1D was introduced in [11,16]. The main idea of this approach is to rewrite
the balance law in conservative form and reconstruct the so-called equilibrium
variables obtained by combining the flux and source terms. The idea was then also
used in [8–10,21] for various applications in 1D and 2D using a 2nd order central
upwind schemes. In the following article, we extend the approach to design high
order well-balanced discontinuous Galerkin (DG) scheme for 2 × 2 hyperbolic
balance law.

We also study flows on networks where the flow in each edge is given by a
balance law along with coupling conditions at the nodes of the network. Modeling
of these coupling condition could further introduce errors resulting to spurious
oscillations. Several approaches to model the coupling conditions have been
studied in [3, 14, 21, 26]. High order extensions of these coupling conditions have
also been studied in [2, 5]. In the present article, we present a high order DG
scheme which is well-balanced also on networks.

Consider Cauchy problem for hyperbolic balance law given by,

Ut + F(U)x = S(U) (1)
U : R × R+ → Rm, F : Rm → Rm, S : Rm → Rm (2)

with initial conditions given by,

U(x,0) = U0(x). (3)

Here, we consider the example of isothermal Euler equations,

U =
[
ρ
q

]
, F(U) =

[
q

q2

ρ + p(ρ)

]
, S(U) =

[
0

s(ρ,q)

]
. (4)

where ρ is density, q is momentum and p(ρ) = κργ is pressure of gas. The
equations (4) can also be used to model shallow water equations, where ρ is height
of water channel, q is momentum and p(ρ) = g

2 ρ
2 where g is acceleration due to

gravity.
At first, we reformulate the balance law in conservative form as done in [11,16]

i.e. the balance law can be written as,

Ut + Vx = 0 (5)
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where V are the equilibrium variables given by,

V = F(U) + R(U, x) (6)

and R(U, x) is the non-local spatial integration of the source term given by,

R(U, x) = −
∫ x

x0

S(U(ξ))dξ. (7)

Note that at equilibrium, the equilibrium variables, V are constant in space and
time.

2 Discontinuous Galerkin scheme
DG schemes introduced by Cockburn and Shu [12, 13] have been popularly used
for high order approximations of hyperbolic balance and conservation laws. The
DG scheme approximates the weak form of (1),∫

Ωk

Utφdx −
∫
Ωk

F(U)φxdx + Fk+ 1
2
φk+ 1

2
− Fk− 1

2
φk− 1

2
=

∫
Ωk

S(U)φdx. (8)

by a polynomial solution for the conservative variables, U given by,

U(t, x) =
p∑

i=0
Ui,k(t)ψi(x) (9)

where φ ∈ Pp(Ωk) is a test function in space of polynomials of order p, ψi(x) is a
polynomial basis function, Fk+ 1

2
denotes the Riemann flux at cell boundary xk+ 1

2
and Ωk ∈ [xk−1/2, xk+1/2] refers to computational cell k ∀ k = 1, . . . ,N for total
number of cells N . For a polynomial of degree p, the DG scheme gives (p + 1)-th
order solution for the conservative variables.

2.1 DG scheme in terms of equilibrium variables
The exact solution written in conservative variables U need not be polynomial at
equilibrium. Hence the projection of the equilibrium solution onto the space of
piecewise polynomials introduces errors into the scheme. In addition, the flux
and source terms could be highly nonlinear functions and approximation of these
terms could result to an imbalance resulting to spurious oscillations in the solution
at equilibrium.
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Instead, we propose the approximation of equilibrium variables V by a piece-
wise polynomial function, i.e.,

V(t, x) =
p∑

i=0
Vi,k(t)ψi(x). (10)

Since V is constant in space and time, we can exactly represent the equilibrium
solution of any flow of form (1). We will see later, that the integral terms of the
DG scheme can also be evaluated exactly, thus resulting in preservation of the
equilibrium solution over time.

Weak form of (5) can be written as,∫
Ωk

Utφdx −
∫
Ωk

Vφxdx + Vk+ 1
2
φk+ 1

2
− Vk− 1

2
φk− 1

2
= 0 (11)

where φ ∈ C1(Ω) is a test function. Thus, using chain rule, Ut =
∂U
∂V Vt we get,∫

Ωk

∂U
∂V

Vtφdx −
∫
Ωk

Vφxdx + Vk+ 1
2
φk+ 1

2
− Vk− 1

2
φk− 1

2
= 0. (12)

Substituting the polynomial approximation (10) of the equilibrium variables, we
get,∫

Ωk

∂U
∂V

p∑
i=0
[Vi,k(t)]tψi(x)φdx −

∫
Ωk

Vφxdx + Vk+ 1
2
φk+ 1

2
− Vk− 1

2
φk− 1

2
= 0 (13)

or,

p∑
i=0

( ∫
Ωk

∂U
∂V

ψiφdx
)
[Vi,k(t)]t −

∫
Ωk

Vφxdx + Vk+ 1
2
φk+ 1

2
− Vk− 1

2
φk− 1

2
= 0. (14)

To find p + 1 unknowns, Vi,k , we need p + 1 basis functions Φ = φ j, j = 0, . . . , p,
which gives,

p∑
i=0

( ∫
Ωk

∂U
∂V

ψiφ j dx
)
[Vi,k(t)]t −

∫
Ωk

V(φ j)xdx + Vk+ 1
2
φk+ 1

2
− Vk− 1

2
φk− 1

2
= 0.

(15)

or in matrix vector form,

M(Vk)t −

∫
Ωk

VΦxdx + Vk+ 1
2
Φk+ 1

2
− Vk− 1

2
Φk− 1

2
= 0 (16)
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where

M = [Mi j]i,j=1,...,p+1 Mi j =

∫
Ωk

∂U
∂V

ψiφ j dx (17)

and

Vk = [Vi]i=0,...,p (18)
Φ = [φ j] j=0,...,p. (19)

The ODE forVk in equation (16) can be solved using SSP Runge-Kutta schemes
as given in [13]. The time evolution forVk using a third-order time discretization
is given by,

V (1)k = Vn
k + ∆tnL(Vn

k )

V (2)k =
3
4

Vn
k +

1
4

V (1)k +
1
4
∆tnL(V (1)k )

V
(n+1)
k =

1
3

Vn
k +

2
3

V (2)k +
2
3
∆tnL(V (2)k )

(20)

where L(Vk) = M(Vk)
−1 ( ∫

Ωk
VΦxdx − Vk+ 1

2
Φk+ 1

2
+ Vk− 1

2
Φk− 1

2

)
and ∆tn is the

numerical time-step calculated using cfl-condition.
Note, that since the equilibrium variables and the test function are polynomials,

the integral
∫
Ωk

VΦxdx can be computed exactly using Gaussian quadrature with
sufficient number of quadrature points. For a (p + 1)-th order DG scheme, we
require p quadrature points with Gauss-Legendre quadrature or p + 1 quadrature
points with Gauss-Lobatto quadrature.

Theorem 2.1. The semi-discrete discontinuous Galerkin (DG) scheme given in
(16) with fluxes on cell-boundaries given by a consistent approximate Riemann
solver, preserves equilibrium solution of flows given by (1).

Proof. To prove the theorem, we start by assuming that the flow is at equilibrium at
time-step, tn i.e. V(x, tn) = V∗ and prove that the scheme preserves the equilibrium
solution for time tn+1 i.e. V(x, tn+1) = V∗. Thus, we need to show that Vt = 0 or
from (16),

−

∫
Ωk

VΦxdx + Vk+ 1
2
Φk+ 1

2
− Vk− 1

2
Φk− 1

2
= 0. (21)

The equilibrium variables, V at cell interfaces can be calculated using a con-
sistent approximate Riemann solver, Vk+ 1

2
(V,V) = V , for example,

Vk+ 1
2
=

a+
k+ 1

2
V−

k+ 1
2
− a−

k+ 1
2
V+

k+ 1
2

a+
k+ 1

2
− a−

k+ 1
2

+

a+
k+ 1

2
a−

k+ 1
2

a+
k+ 1

2
− a−

k+ 1
2

(U(V+
k+ 1

2
,R+

k+ 1
2
) −U(V−

k+ 1
2
,R−

k+ 1
2
)).

(22)
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Note that the only difference compared to standard Riemann solvers is that, given
equilibrium variables on the cell boundaries, we calculate the conservative vari-
ables from the solution of equilibrium variables, instead of the contrary. When
the source term, s(U) is bounded, the integral over the cell boundaries is a zero

measure and hence we get
∫ x+

k+ 1
2

x−
k+ 1

2

s(U)dx = 0 or R+
k+ 1

2
= R−

k+ 1
2
= Rk+ 1

2
.

It has been shown in [21], that U : R2 × R → R2 has unique solution for
flux of the form in (4), when the flow is away from sonic point. Therefore as
V+

k+ 1
2
= V−

k+ 1
2
= V∗ at equilibrium and the integral of source term is continuous, we

get,
U(V+

k+ 1
2
,R+

k+ 1
2
) = U(V−

k+ 1
2
,R−

k+ 1
2
).

The computation ofU fromV for equations (4) is given in Remark 2.2. Hence, the
first term of (22) reduces to V∗ and the second term goes to zero at equilibrium,
giving Vk− 1

2
= Vk+ 1

2
= V∗.

Substituting the equilibrium solution for V in (21), we are left with divergence
theorem for the test function, −

∫
Ωk
Φxdx + Φk+ 1

2
− Φk− 1

2
= 0. Since the integral∫

Ωk
VΦxdx can be evaluated exactly using Gaussian quadrature, the divergence

theorem can be solved exactly and hence the scheme is well-balanced. �

Remark 2.2. For Euler equations (4), the density, ρ can be calculated from the
equilibrium variables,V = (q,K)T with pressure p(ρ) = κργ by solving a nonlinear
equation given by

κργ+1 − (K − R)ρ + q2 = 0.

The solution to these equations is unique when the flow is away from the sonic
point as has been shown in [21]. For γ = 1, the equation reduces to a quadratic
equation whose roots correspond to subsonic and supersonic flow. The solution
of the cubic polynomial for γ = 2 is calculated as given in [8] for the examples of
shallow water equations.

The global integral of the source term, R is computed point-wise between each
quadrature point. At first, we fix a starting point x̂ for the integration such that
R(x̂) = 0. The integral, Rk

j+1 at the quadrature point x j+1 in cell k can be then
computed recursively from the solution at point x j . Using Taylor series expansion
about point x j we can calculate Rk

j+1 as,

Rk
j+1 = Rk

j + (Rx)
k
j∆x j + (Rxx)

k
j

∆x2
j

2
+ . . .

Rk
j+1 = Rk

j − sk
j∆x j − (sx)

k
j

∆x2
j

2
− . . . , (23)
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since Rx = −s and where ∆x j = x j+1 − x j .
The source term and the first p spatial derivatives at point j can be computed

from the solution of equilibrium variable and the lower order derivatives of s.
Furthermore, as mentioned earlier R is assumed to be continuous at the cell
interfaces for continuous and bounded source terms, s(U).

2.2 Discussion on the well-balanced scheme

The application of chain rule in (12), helps obtain a linear system of equations
for the variables Vt . However, this does not guarantee the mass conservation
of the scheme numerically for flows away from equilibrium. From the numerical
experiments, we observed that though this error could indeed be observed for some
examples, it is smaller than the truncation error of the DG scheme. Moreover, we
have checked that the scheme computes shock speeds correctly.

The concept of change of variables was also used in a series of papers of
Hughes’ and collaborators [18], who transform the Euler equations into a sym-
metric hyperbolic system using the framework of Godunov [17] and Mock [22].
For this change of variables, U′(V) becomes the Hessian of an entropy function,
which is a positive definite matrix. This yields a space time DG scheme which
satisfies a discrete entropy inequality. It is instructive to have a look at DG schemes
formulated in entropy, equilibrium and the standard conservative variables. Each
of these schemes have their advantages but do not satisfy all the properties si-
multaneously: the standard scheme is conservative in all variables; the scheme of
Hughes et.al. guarantees an entropy inequality; and our scheme is well-balanced
by construction. Each scheme needs to be refined to obtain the other properties.

Besides using a different transformation U(V), there is another difference in
the time discretization. While we invert the mass matrix M(V) in (12) and use
the Runke-Kutta steps (20), Hughes and coauthors discretize (12) using a space-
time DG scheme. This leads to nonlinear equations for the coefficients of entropy
variables. It would be interesting to derive a space-time DG scheme based on
equilibrium variables and see if this reduces the mass error.

Remark 2.3. Compared to the standard DG scheme, the above scheme (16) is
computationally more expensive due to the inversion of the mass matrix, M . In
the standard DG scheme, ψ and φ can be chosen such that they are orthogonal to
each other i.e.,

∫
Ω
ψiφ j = δi j,where δi j is Kronecker delta; resulting to an identity

matrix as mass matrix. In general for the well balanced scheme, the test and basis
functions can be made orthogonal with respect to only some of the terms of the
mass matrix, for instance we can choose ψ and φ such that

∫
Ω

∂Uk

∂Vl
ψiφ j = δi j for

some choice of k, l = 1,2, but not for all k, l.

7



We also tried to obtain a test function which simplifies the mass matrix.
However this could affect thewell-balancing property of the scheme, since equation
(21) will not be satisfied numerically.

Remark 2.4. The DG scheme (16) can be simplified further for Euler equations
(4) to the form,

(U
(2)
k )t −

∫
Ωk

KΦxdx + Kk+ 1
2
Φk+ 1

2
− Kk− 1

2
Φk− 1

2
= 0 (24)

M (2)(Kk)t −

∫
Ωk

U2Φxdx + (U2)k+ 1
2
Φk+ 1

2
− (U2)k− 1

2
Φk− 1

2
− M (1)(U(2)k )t = 0

(25)

whereV = (U(2),K)T and,

M (1) =
[ ∫
Ωk

∂U1

∂U2
ψiφ j dx

]
i,j=1,...,p+1

, M (2) =
[ ∫
Ωk

∂U1

∂K
ψiφ j dx

]
i,j=1,...,p+1

,

so as to increase the computational efficiency of the scheme. The scheme now
requires inversion of a matrix M (2) of dimension p × p as compared to the matrix
M of dimensions 2p × 2p.

We observed that for the numerical experiments in Section 3 and Section 4,
the inversion of the mass matrices M (2) took about 25-30% of the total run-time
of our code.

3 Numerical Tests
In the following Section, we test the numerical scheme discussed in Section 2
for higher order convergence and well-balancing of shallow water equations and
isothermal Euler equations. The scheme is compared with the standard (non-
well-balanced) DG scheme proposed by Cockburn and Shu [13]. In the following
numerical tests, both the well-balanced and non-well-balanced DG scheme are
third order accurate. The computational domain for the tests is Ω = [0,1] and the
tests are run with cfl number = 0.2.

3.1 Shallow water equations
Consider shallow water equations of the form (4) with ρ,q denoting height and
momentum of water respectively, with source term given by,

s(ρ,q) = −gρbx − ν
q |q |
ρ7/3 (26)

where b(x) stands for bottom topography and ν is the friction coefficient.
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3.1.1 Convergence test

At first, we check the order of convergence of the well-balanced DG scheme for a
standard test problem for shallow water equations considered in [25]. The initial
conditions for height and momentum are given by,

ρ(x,0) = 5 + ecos(2πx),

q(x,0) = sin(cos(2πx))

and bottom topography,b(x) is given by,

b(x) = sin2(πx) (27)

and ν = 0. We compare the solution of the well-balanced DG scheme for number
of cells, N = 20,40,80,160 with a reference solution calculated with N = 1600.
The L1 errors for the equilibrium variable at T = 0.1 are as given in Table 1.

No. of cells | |q − q∗ | |L1 order | |K − K∗ | |L1 order
20 1.3677 × 10−2 1.4667 × 10−1

40 2.2571 × 10−3 2.60 1.8432 × 10−2 2.99
80 2.0125 × 10−4 3.48 1.6561 × 10−3 3.47
160 1.7087 × 10−5 3.55 1.4802 × 10−4 3.48

Table 1: L1 errors at time T = 0.1 with N = 20,40,80,160 computed by the
well-balanced DG scheme with bottom topography given by (27)

As can be observed fromTable 1, thewell-balancedDG scheme alongwith SSP
Runge Kutta method in time, preserves third order accuracy of the solution. The
errors and convergence rates of the non-well-balanced DG scheme are comparable
to those of the well-balanced DG scheme.

3.1.2 Steady state

We now test the well-balancing property of the scheme for steady state flow given
by constant equilibrium variables. Consider a moving water steady state where the
initial conditions are given by q(x, t = 0) = 0.1 andK(x, t = 0) = gρ2

2 +
∫
gρbxdx =

0.4 with bottom topography, b(x) = 0.1e−100(x−0.5)2 and friction factor, ν = 0.2.
The L1 errors for the well-balanced and non-well-balanced scheme at T = 1 are as
in Table 2.

We see from the results in Table 2, that the scheme preserves the steady state
exactly up to machine precision, which is not the case with the non-well-balanced
scheme.
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| |q − q∗ | |L1 | |K − K∗ | |L1

No. of cells WB NWB WB NWB
20 1.304 × 10−15 2.534 × 10−4 3.450 × 10−15 8.602 × 10−4

40 3.128 × 10−16 6.238 × 10−5 9.419 × 10−16 2.124 × 10−4

80 8.623 × 10−16 1.538 × 10−5 2.424 × 10−16 5.304 × 10−5

Table 2: Comparison of L1 errors between well-balanced (WB) and non-well-
balanced (NWB) scheme for moving water steady state at time T=1

3.1.3 Perturbation to steady state

We now test the behavior of the well-balanced and standard DG scheme for flows
which are near steady state. Consider initial conditions for height of water and
momentum given by q(x, t = 0) = 0.1 and ρ(x, t = 0) = ρ∗(x) + 0.01e−1000(x−0.4)2

with bottom topography b(x) = 0.1e−400(x−0.6)2 and where ρ∗(x) is the equilibrium
solution calculated with K∗ = 0.4 and q∗ = 0.1. The results for height of water at
T = 0.2 are as given in Figure 1.

Figure 1: Solution for surface level of water at time, T = 0.2 with bottom topog-
raphy for perturbation to equilibrium state

One can see from the results in Figure 1, that the solution with the standard DG
scheme does not capture the perturbation accurately with a coarse grid of N = 40.
On the other hand, the well-balanced scheme is able to capture the perturbations
accurately even with a coarse grid of N = 40 and the results are comparable to the
solution obtained by the standard DG scheme with N = 320. Also, we see that the
perturbed wave passes over the bump in bottom topography without distorting the
solution.
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(a) Zoomed view of the first traveling wave
in Figure 1

(b) Zoomed view of the second traveling
wave in Figure 1

Figure 2: Zoomed view of the perturbations in the water surface in Figure 1.

3.2 Gas flow in pipes
Next, we test the well-balanced scheme for gas flow in pipes given by isothermal
Euler equations (4), with source term,

s(ρ,q) = −
fg

2D
q |q |
ρ
, (28)

and pressure p(ρ) = a2ρ, where a is speed of sound, D is diameter of the pipe and
fg is the friction coefficient due to wall-friction within the pipes.

3.2.1 Steady state

At first, we test the well-balancing property of the scheme for the Euler equations
(4). The initial conditions for the equilibrium variables are given by q(x, t = 0) =
q∗ = 0.1 and K(x, t = 0) = K∗ = q2

ρ + a2ρ +
∫ fg

2D
q |q |
ρ dx = 0.4 with a = 1 and

fg
2D = 1. The L1 errors for the well-balanced and non-well-balanced DG schemes
at T = 1 are as given in 3.

| |q − q∗ | |L1 | |K − K∗ | |L1

No. of cells WB NWB WB NWB
20 2.925 × 10−16 1.312 × 10−8 8.593 × 10−16 8.476 × 10−9

40 1.526 × 10−17 1.639 × 10−9 9.946 × 10−18 1.072 × 10−9

80 1.584 × 10−17 2.503 × 10−10 7.748 × 10−18 1.344 × 10−10

Table 3: Comparison of L1 errors between well-balanced (WB) and non-well-
balanced (NWB) scheme for gas flow at steady state at time T=1
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Similar to the case of shallow water equations, the well-balanced DG scheme
is able to preserve steady state of the flow exactly up to machine precision unlike
the standard non-well-balanced scheme.

3.2.2 Perturbation to steady state & Convergence test

Now consider perturbation in momentum for the isothermal Euler equations. The
initial condition for equilibrium variables are q = q∗(1 + ηe−100(x−0.5)2), K =
K∗ where q∗,K∗ are same as previous example. We now check the order of
convergence of the scheme with N = 20,40,80,160 with a = 1, fg

2D = 1 and
η = 10−3. The solution is compared with reference solution generated with
N = 1600. The L1 errors for the equilibrium variables at T = 0.2 are as given in
Table 4.

No. of cells | |q − q∗ | |L1 order | |K − K∗ | |L1 order
20 2.648 × 10−8 2.331 × 10−8

40 3.169 × 10−9 3.06 2.756 × 10−9 3.08
80 4.002 × 10−10 2.99 3.489 × 10−10 2.98
160 4.973 × 10−11 3.01 4.344 × 10−11 3.01

Table 4: L1 errors at time T = 0.2 with N = 20,40,80,160 computed by the
well-balanced DG scheme

We can see from the results in Table 4, that the well-balanced DG scheme
provides accurate order of convergence, for the example of gas flow with friction
as well.

We now compare the solution of the well-balanced DG scheme with standard
DG scheme for perturbation, η = 10−7. Figure 3 shows the results for momentum
at time, T = 0.2 with the well-balanced and standard DG scheme.

As can be seen from the results in Figure 3, the solution of the well-balanced
DG scheme with N = 40 is almost the same as that of the non-well-balanced DG
scheme with N = 320. Whereas for non-well balanced scheme with N = 40 the
solution is distorted and does not capture the perturbation accurately.

4 Flows on networks
In the following section, we extend the DG scheme to flows on networks wherein
in addition to the balance law within each edge of the network, we need coupling
conditions at the node of a network. For literature on coupling conditions for
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Figure 3: Solution for momentum of water at T = 0.2 for initial condition given
by perturbation to steady state

flows in network, see [3, 6, 14, 23]. In [21], we have shown that the solution
of the coupling conditions computed from the equilibrium variables, results in
a well-balanced scheme at the node along with a second order central upwind
scheme along the edges. Solving the coupling conditions in the same manner at
each Runge-Kutta stage preserves the order of the DG scheme. In this section, we
summarize the method used in [21].

Consider a node connected to M pipes at a junction, O at x0. The gas flow
within pipe j ∀ j = 1, . . . M is given by,

(U j)t + (Vj)x = 0 (29)

with boundary conditions at the node given implicitly by the coupling conditions,

θ(U∗1(x0, t), . . . ,U∗N (x0, t)) = 0 t ≥ 0, θ : R2M → RM . (30)

The solutionU∗i at the node is connected to the interior solution within the pipe,U
0
i

through the incoming Lax curves at the node x0. The corresponding equilibrium
variables are denoted by V∗i and V0

i respectively. For construction of Lax curves,
see [15,20]. In this paper, we restrict ourselves to subsonic flow, i.e. λ1 < 0 < λ2.
This implies that the first family of Lax curves, denoted by L1(U0, σ), enters the
incoming pipe and the second family of Lax curves, L2(U0, σ) enters the outgoing
pipes at the node, as shown in Figure 4. Note that, we need to consider the forward
Lax curves for the incoming pipes and the backward Lax curves for the outgoing
pipes. Thus in order to compute the solution at the node, we need to find the
parameters σi within each pipe from the coupling conditions at the node.

θ(L1(U0
i , σi),L2(U0

j , σj)) = 0 ∀i ∈ I−, j ∈ I+. (31)
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Here I− refers to the set of incoming pipes and I+ refers to the set of outgoing
pipes.

x−0i ∈ I− x+0 j ∈ I+

U0
i U0

j

U∗i U∗j

Figure 4: 1-wave entering incoming pipe and 2-wave entering outgoing pipe for
subsonic flow

In order to obtain a well-balanced solution at the node, we reformulate the cou-
pling conditions in terms of the equilibrium variables Vi as has been done in [21].
The solution at the nodeV∗i = L1(V0

i ,R
0
i , σi)∀i ∈ I− orV∗j = L2(V0

j ,R
0
j , σj)∀ j ∈ I+

can be computed by solving the coupling conditions,

Θ(V∗i (σi),R∗i ) = 0 i ∈ I− ∪ I+, Θ : R2M × RM → RM . (32)

to find the parameter σi where R∗i = R0
i . The well-posedness of these coupling

conditions at the node has been shown in [21].
Alternatively, one could also use ADER type schemes for calculating the

solution in time within each edge of the network. In that case, we need to calculate
higher order coupling conditions to preserve the high order accuracy at the node.
Higher order coupling conditions have been studied in [2, 5]. Using the same
strategy in terms of the equilibrium variables, leads to well-balanced coupling
conditions.

Since the coupling conditions are satisfied at all times, we take ∂iΘ(Vi(σi),Ri)

∂ti =

0∀i = 0, . . . , p, fromwhichwe can evaluate ∂iV
∂ti . The equilibrium variables are then

approximated using a Taylor series expansion,V(tn+τ) = V(tn)+ ∂V
∂t τ+

∂2V
∂t2

τ2

2 +. . . .
It can easily be checked that the solution to higher order time derivatives of the
coupling condition results in ∂iV

∂ti = 0∀i = 0, . . . , p, when the flow is at equilibrium
i.e. V(x, t) = V∗ leading to well-balanced solution at the node.

4.1 Numerical examples
We now test the coupling conditions for flows on network of hyperbolic balance
laws. The coupling conditions at the nodes of the network are solved usingNewtons
iteration with initial conditions for Newtons iteration given by the old traces in
each pipe.
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4.1.1 Network of water channels

Consider network given in Figure 5, wherein flow in each edge is given by shallow
water equation with coupling condition, Θ(Vi,Ri) given by,

Θ(Vi(σi),Ri) =


∑

i∈I− wiρ(qi,Ki)qi −
∑

j∈I+ w j ρ(q j,K j)q j
ρ(q1,K1) − ρ(q2,K2)

...
ρ(qM−1,KM−1) − ρ(qM,KM)


(33)

where wi denotes the width of the water channel and Vi = (qi,Ki)
T . The first

coupling condition represents mass balance at the node and the other M − 1
coupling conditions stand for continuity of water surface at the node.

O1 1

2

3

O2

Figure 5: Test problem for network of network of water channels

Order of convergence At first we test the order of convergence of the scheme
on the network, with initial condition given by,

ρi(x,0) = 5 + ecos(2πx) ∀ i = 1,2,3,
q1(x,0) = sin(cos(2πx))
q2(x,0) = q3(x,0) = −0.5 sin(cos(2πx))

and the bottom topography given by,

bi(x) = sin2(πx).

The width of all the channels, w1 = w2 = w3 = 1. The L1 error for the equilibrium
variables at time T = 0.1 is as given in Table 5.

We can see from Table 5, that we obtain the expected order of convergence of
the DG scheme, and the order is not affected due to the solution of the coupling
conditions at the node.
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No. of cells | |q − q∗ | |L1 order | |K − K∗ | |L1 order
20 4.191 × 10−2 4.452 × 10−1

40 6.502 × 10−3 2.688 5.652 × 10−2 2.977
80 5.694 × 10−4 3.513 5.037 × 10−3 3.488
160 6.634 × 10−5 3.101 5.932 × 10−4 3.085

Table 5: L1 errors at time T = 0.1 with N = 20,40,80,160 computed by the
well-balanced DG scheme for a network of water channels given in Figure 5

Flow near steady state on a network We now test the scheme for a flow given
by perturbation to the lake at rest steady state on the network in Figure 5. We add
a perturbation to the height of water surface and track the perturbation over time.
The initial condition is given by,

ρ1(x, t = 0) = ρ(q∗1,K
∗
1 ) + 10−2e−100(x−0.5)2,

ρ2(x, t = 0) = ρ(q∗2,K
∗
2 ), ρ3(x, t = 0) = ρ(q∗3,K

∗
3 )

where equilibrium variables q∗i = 0 and K∗i = 1, ∀ i = 1, . . . ,N and bottom
topography,

b1(x) = 0, b2(x) = 0.1e−400(x−0.75)2, b3(x) = 0.1e−400(x−0.25)2 .

Figure 6 shows the solution for the height of water surface along the three edges
at time T = 0,0.3,0.5 with N = 40,

From Figure 6 at time T = 0.3, we see that the perturbed wave passes smoothly
through the junction and is partially reflected back without being distorted. We
also see that at time T = 0.5, the wave has also passed through the bump in bottom
topography in edges 2,3.

The small undulations in the solution of water surface where there is non-
zero bottom topography are due to the definition of the discrete steady state,
given by constant equilibrium variables, resulting in effect of the higher order
terms of the bottom topography on the water surface; and are not introduced
by the DG scheme over time. These errors due to the bottom topography can
be reduced by considering more quadrature points to calculate R using equation
(23). Comparison of the discrete steady state solution for edge 2 with additional
quadrature points is as shown in Figure 7.

4.1.2 Network of gas-pipelines

Consider a network of gas pipelines as given in Figure 8. The flowwithin each pipe
of the network is given by isothermal Euler equations (4) with p(ρ) = ρ and source
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(a) Channel 1 at T = 0 (b) Channel 2 at T = 0 (c) Channel 3 at T = 0

(d) Channel 1 at T = 0.3 (e) Channel 2 at T = 0.3 (f) Channel 3 at T = 0.3

(g) Channel 1 at T = 0.5 (h) Channel 2 at T = 0.5 (i) Channel 3 at T = 0.5

Figure 6: Solution of water surface (red) at time, T = 0,0.3,0.5 for a perturbed
equilibrium state for the network given in Figure 5.

Figure 7: Discrete steady state solution in edge 2 with 4 quadrature points (in red)
and 10 quadrature points (in black) in each cell to calculate R using (23).
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term given by friction in pipes as given in (28). At the node of the network we
use the coupling condition of mass-balance and continuity of pressure, described
in [3], and are given by,

Θ(Vi(σi),Ri) =


∑

i∈I− Aiqi −
∑

j∈I+ A jq j
P(q1,K1) − P(q2,K2)

...
P(qM−1,KM−1) − P(qM,KM)


(34)

where Ai is the cross-sectional area of pipe i at the node and P(q,K) denotes
pressure written in terms of the equilibrium variables.

x = 0 1 x = 1

2

3

x = 2 x = 34

Figure 8: Test problem for network of gas-pipeline

Perturbation to steady state In the following test, we add a perturbation to the
momentum at equilibrium in Pipe 2. The initial conditions for this flow are given
by,

q1 = q4 = 0.1, q3 = 0.05, q2 = 0.05(1 + 10−7e−100(x−1.5)2)

K1 = 0.4, K2 = K3 = 0.3502, K4 = 0.3652.

The initial conditions are selected in such a way the solution satisfies the coupling
conditions and hence no additional wave is generated from the node. The initial
condition and solution at T = 1 for momentum are as given in Figure 9.

We can see from the results in Figure 9 that the initial perturbation in Pipe 2
moves through the nodes at x = 1 and x = 2 to Pipe 1/Pipe 3 and Pipe 4/Pipe
3 respectively; and is partially reflected back to Pipe 2. Note that there are no
spurious oscillations that are introduced either due to the imbalance between flux
and source or due to the coupling conditions at the node, thus confirming the
well-balanced property of the scheme.

Conclusion
In this article, we have designed a well-balanced discontinuous Galerkin scheme
of high order accuracy which can preserve steady states exactly for subsonic
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(a) Pipe 1, T = 1 (b) Pipe 2, T = 1

(c) Pipe 3, T = 1 (d) Pipe 4, T = 1

Figure 9: Solution for momentum of gas at T = 1 for network in Figure 8

flow for a general hyperbolic balance law of form (1). In particular, we test the
scheme for shallow water equation and isothermal Euler equations. We also see
that the scheme can capture perturbations of steady states accurately and provide
solutions which are similar to that of standard DG scheme with a finer mesh.
The application of the scheme to flows on networks also shows that the scheme
can capture perturbations accurately across the node of the network, while also
providing high order accuracy of the DG scheme.
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