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Abstract

Mixed-integer optimal control problems governed by PDEs (MIPDECO) are powerful modeling tools
but also very challenging in terms of theory and computation. We propose a highly efficient state
elimination approach for MIPDECOs that are governed by PDEs that have the structure of an abstract
ODE in function space. This allows us to avoid repeated calculations of the states for all time steps
and our approach is applied only once before starting the optimization. The presentation of theoretical
results are complemented by numerical experiments.

1 Introduction

The class of mixed-integer partial differential equation constrained optimization (MIPDECO) combines two
key classes of optimization, namely mixed-integer nonlinear optimization (MINLP) and partial differential
equation (PDE) constrained optimization. In MINLP the feasible set and the objective function are quantified
by nonlinear functions. In addition to real-valued decision variables, it includes integer variables leading to
combinatorial difficulties, see e.g. [1]. On the other hand, many applications in optimization involve complex
systems modeled by differential equations. PDE-constrained optimization poses different challenges since
discretizations lead to a large number of variables and numerical complexity, c.f. [13, 22], so both problem
classes are studded with big challenges by themselves.

Hence there is the need to develop new approaches to overcome the issues both of integer variables and
the number of variables. This is of high importance since MIPDECO has a broad range of applications, such
as topology optimization such as in [12], or PDEs on networks with discrete decisions, in particular traffic
flow with traffic lights [8], the operation transmission lines [6], and gas networks [9]. We adapt in this article
an actuator placement problem from [14].

Techniques for MIPDECOs are often derived from methods that have been proven efficient for mixed-
integer control of ODEs. Pioneering is the work on partial outer convexification that provides strong theoret-
ical results [19]. Extensions to problems governed by PDEs include [11] for parabolic and [10] for hyperbolic
PDEs. The usually strong regularity assumptions could be weakened in [17]. Also extentions of rounding
approaches to spatial distributed controls have been investigated, e.g. [16].

Combinatorical constraints coupling over time can be handled by combinatorial integer approximation
problem, e.g., in [20]. Extensions to this approach include reductions of unrealistic frequent switching, [21],
by constrained total variation of the control, [23], by minimum dwell time constraints. Implementations
include the open-source software package pycombina [2].

In applications, tailored branch-and-bound algorithms are applied [7]. Recently, in [5] a penalty method
has been proposed that relies on a combination of tailored basin hopping and interior-point method.
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In this paper, we reduce the complexity of the MIPDECO by exploiting the structure of the PDE using
semigroup theory that allows us to split the state solution in parts that are then combined with a smart
use of convolution. This yields an explicit control-to-state-map which is plugged into the objective and
additional constraints and replaces the PDE which does not appear anymore in the problem formulation.
Computationally this approach is performed before handing the problem to the optimization tool, that may
solve the problem with much less computational effort. We illustrate this approach by applying it to the
time-dependent 2D heat equation.

1.1 Problem Formulation

The MIPDECO studied here is formulated as a minimization of an objective functional J : Uad × Vad ×
Wad → R, where Uad ⊂ U is the state space , Vad ⊂ V is the space of admissible real valued controls, and
Wad ⊂ W is the space of admissible discrete controls for which we assume that they take values of a finite

set Ŵ = {ŵ1, . . . , ŵ|Ŵ |}.
It is constrained by a special type of PDE that may be formulated as an operator differential equation

where A : D(A)→ U is the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0 on U .
With that, we can write the MIPDECO as follows:

min
u,v,w

J(u, v, w) = φ(u(tf )) +

tf∫
0

ψ(u(t), v(t), w(t)) dt

s.t. u̇(t) = Au(t) + F (t, u(t), v(t), w(t)), t ∈ [0, tf ]

u(0) = u0 ∈ D(A)

u ∈ Uad, v ∈ Vad, w ∈ Wad,

(1)

where tf > 0 is the final time and with the sufficiently regular functions φ : U → R and ψ : U ×V ×W → R
specifying the objective and the source functional F : T × U × V ×W → U . Furthermore, we assume that
U , V, and W are normed linear spaces.

Theory of existence of solutions of the dynamic and of the control problem depend on the operator A
and associated spaces. Because we are considering mild solutions, we require that U , V, and W are Banach
spaces and that at least F ∈ L1(T × U × V ×W;U).

1.2 Outline

We begin with some preliminaries in Section 2, where we cover basic concepts of semigruop theory for
PDEs and define convolution. In Section 3, we propose a reduction method that eliminates the PDE in the
MIPDECO (1) for continuous and discrete time. Then, this theory is applied to a MIPDECO governed by
the heat equation, c.f. Sec. 4. Thereafter, we derive a discrete representation of the heat equation which
also illustrates the low compuational effort of the presented elimination scheme, c.f. Sec. 5. In Section 6, we
conclude with numerical experiments.

2 Preliminaries: Semigroups of Linear Operators and Convolution

We start by reviewing the required concepts from semigroup theory, which allow us to view the PDE as an
abstract ODE in function space. Thereafter, we provide definitions of convolution.

2.1 Uniformly Continuous Semigroups of Bounded Linear Operators

We begin with the definition of a semigroup and its generators as in [18, Chapter 1].

Definition 2.1 (Semigroup of bounded linear operators). Let U be a Banach space. A one parameter family
T (t), 0 ≤ t < ∞, of bounded linear operators from U into U is a semigroup of bounded linear operators on
U if
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(i) T (0) = I, (I is the identity operator on U).

(ii) T (t+ s) = T (t)T (s) for every t, s ≥ 0 (the semigroup property).

A semigroup of bounded linear operators, T (t), is uniformly continuous if:

lim
t→0
‖T (t)− I‖ = 0.

The linear operator A defined by:

D(A) =

{
u ∈ U

∣∣∣∣∣ lim
t→0

T (t)u− u
t

exists

}
,

and:

Au = lim
t→0

T (t)u− u
t

=
d+T (t)u

dt

∣∣∣∣∣
t=0

for u ∈ D(A),

is the infinitesimal generator of the semigroup T (t) and D(A) is the domain of A.
We are interested in PDEs which can be formulated as an abstract ODE in form of the following initial-

value problem:
u̇(t) = Au(t) + f(t), u(0) = u0. (2)

Like in classical PDE theory, there are multiple solution concepts in semigroup theory. Here, we consider
mild solutions only:

Definition 2.2 (Mild solution [18, Definition 2.3]). Assume that u0 ∈ D(A) and f ∈ L1([0, tf ];U). Then a
solution u(t) of (2) is given by:

u(t) = T (t)u0 +

t∫
0

T (t− s)f(s) ds, (3)

and u(t) is called a mild solution of (2).

Provided a continuous differentiable source term f , mild solutions to (2) exist for any initial value
u0 ∈ D(A), c.f. [18, Corollary 2.5].

We conclude this brief introduction by drawing the connection of mild solutions to solutions in the
classical sense, c.f. [18, Theorem 3.2].

Theorem 2.1 (Mild solutions are classical solutions). Let A be a infinitesimal generator of a semigroup
T (t). Let f ∈ L1([0, tf ];U) and assume that for every 0 < t < Tf there is a δt > 0 and a continuous
real-valued function Wt : R+ → R+ such that:

‖f(t)− f(s)‖ ≤Wt(|t− s|),

and
δt∫

0

Wt(τ)

τ
dτ <∞.

Then for every u0 ∈ U the mild solution of (2) is a classical solution.

Note, choosing Wt(τ) = cτ with c > 0 yields the theorem for Lipschitz continuous f .

Remark 2.1. Note, this theory of semigroups of bounded linear operators allows us to write solutions
explicitly in terms of T (t). However, since T (t) is not available explicitly in general, the theory does not
provide explicit solutions. Still, we make use of the structure of mild solutions (3) in Section 3.
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2.2 Convolution

Furthermore, we define the term convolution:

Definition 2.3. Let h1, h2 : R→ R be integreable functions. Then their convolution is given by:

(h1 ∗ h2)(t) =

∫
R

h1(s)h2(t− s) ds.

If the functions are defined on a subset of R the functions are extended by zero.

Continuous convolution can be transferred to discrete domains, therefore it is applicable for the discrete
counterparts emerging in the MINLP formulation of a MIPDECO.

Definition 2.4. Let h1, h2 : Z→ R be sequences, then their convolution is defined by:

(h1 ∗ h2)[n] =

∞∑
m=−∞

h1[m]h2[n−m].

If the sequences are defined on a subset of Z the sequences are extended with zero.

3 Elimination of the PDE

In this section, we present the derivation of the technique which allows us to reduce significantly the compu-
tational effort of the MIPDECO. Together with structural assumptions, the main result is stated and proved.
Subsequently, this result is transferred to the discretized in time problem.

3.1 Explicit Representation of the Solution Operator

Now we return to the model in (1). We assume that A is a linear operator. Furthermore, we assume that
the source term F (t, u(t), v(t), w(t)) depends linearly on the controls v and w only, i.e., there is no explicit
dependence on t nor on the state u:

F (t, u(t), v(t), w(t)) = F (v(t), w(t)).

Further, we assume that:

Ŵ =

{
w(t) ∈ {0, 1}L

∣∣∣∣∣
L∑
l=1

wl(t) = w̄

}
,

and that the other control v takes values of the same dimension, i.e., v : [0, tf ] → RL. Therefore, the
following representation of the source term exists:

F (v(t), w(t)) =

L∑
l=1

wl(t)vl(t)f̃l, (4)

where f̃l ∈ U is constant for l = 1, . . . , L and we can write (1) as:

min
u,v,α

J(u, v, w) = φ(u(tf )) +

tf∫
0

ψ(u(t), v(t), w(t)) dt

s.t. u̇(t) = Au(t) +

L∑
l=1

wl(t)vl(t)f̃l t ∈ [0, tf ]

u(0) = u0 ∈ D(A)

u ∈ Uad, v ∈ Vad, w ∈ Wad,

(5)

where Wad = {w ∈ L2([0, tf ];R)|w(t) ∈ Ŵ}.
Before exploiting the structure with the aid of semigroups in (5), we summarize the required assumptions:
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Assumption 3.1. We consider controlled dynamics which have representations as abstract ODEs of the
form:

u̇(t) = Au(t) +

L∑
l=1

wl(t)vl(t)f̃l, t ∈ [0, tf ], u(0) = u0, (6)

which fulfill the following properties:

• A : D(A)→ U linear, infinitesimal generator of a strongly continuous semigroup T (t)

• f̃l ∈ U constant for l = 1, . . . , L

• v, w ∈ L2([0, tf ];RL)

• u0 ∈ D(A)

Note, the assumption of f̃l being constant is in the sense of the space U , i.e., it is constant in time but
it may vary if spatial coordinates are considered in U . An example is given in Section 4.

Lemma 3.1 (Control-to-state map). Let Assumption 3.1 hold, then the solution of the dynamical system (6)
is given in terms of the controls (v(t), w(t)):

u(t) = T (t)u0 +

L∑
l=1

((T f̃l) ∗ (wlvl))(t). (7)

Proof. Since A is a linear operator, the solution u(t) to the dynamics can be split as follows:

u(t) = ūh(t) + ūinh(t).

with ūh(t) = T (t)u0 the homogeneous part and ūinh the inhomogeneous part of the solution. Therefore, the
function ūh(t) solves the initial value problem:

u̇(t) = Au(t), u(0) = u0. (8)

The inhomogeneous part of the solution is derived with the solution formula in (3):

ūinh(t) =

t∫
0

T (t− s)f(s) ds,

where the source term (4) is plugged in for f and we obtain by linearity:

ūinh(t) =

L∑
l=1

t∫
0

T (t− s)f̃l wl(s)vl(s) ds.

Define ūl(t) = T (t)f̃l, or in other words let ūl(t) solve the initial value problem:

u̇(t) = Au(t), u(0) = f̃l, (9)

for l = 1, . . . , L. Combining the ūl(t) solutions, we get:

ūinh(t) =

L∑
l=1

t∫
0

ūl(t− s) wl(s)vl(s) ds.

This may be written as convolution (Def. 2.3) as follows:

ūinh(t) =

L∑
l=1

(ūl ∗ (wlvl))(t).

Adding the homogeneous and the inhomogeneous parts of the solution completes the proof.
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This lemma provides an explicit solution of the PDE and permits us to formulate an optimal control
problem from which the dynamics have been eliminated:

Theorem 3.1 (PDE-free MIPDECO). The optimal control problem (5) is equivalent to:

min
u,v,w

J(u, v, w) = φ(u(tf )) +

tf∫
0

ψ(u(t), v(t), w(t)) dt

s.t. v ∈ Vad, w ∈ Wad,

(10)

where u(t) = u(t, v, w) = T (t)u0 +
L∑
l=1

((T f̃l) ∗ (wlvl))(t).

This reduced problem can save significantly effort for computations since PDE optimization problems
are typically discretized. The size of discrete representation grows with the size of the discretization mesh
and therefore the number of discretized state variables, i.e., O(n4) for three space dimensions and time and
n grid points in every dimension.

Remark 3.1 (Cost of Deriving (10)). With our approach, we eliminate the PDE once before starting the
optimization algorithm. Thus, the additional effort of computing the reduced problem is independent of the
iteration number of the optimization algorithm, which can grow exponentially with the discretization. Here,
the effort depends after all only linearly on L, since L+ 1 initial value problems are solved: once (8) and L
times (9).

Also note, that the existence of T (t) depends on the operator A, we refer to [18] for details.

3.2 Solution Operator in Discrete Time

Due to the presence of integer variables and the lack of suitable first-order optimality conditions, the first-
discretize-than-optimize approach is mostly used for MIPDECO. The discretization of the reduced problem
needs careful treatment, because the convolution cannot be discretized with standard quadrature rules, see
e.g., [15].

Therefore, we aim to extent the explicit representation of u(t) as in Theorem 3.1 for the discretized
state. We discretize time as follows: Let 0 = t0 < · · · < tTn

= tf be a time discretiziation and denote by
vk,l = vl(tk) and wk,l = wl(tk) the discrete values of the controls. Denote by:

v =

 v0,1 . . . v0,L

...
. . .

...
vTn,1 . . . vTn,L

 ,w =

 w0,1 . . . w0,L

...
. . .

...
wTn,1 . . . wTn,L

 ,
the matrices of the discretized controls. We use vk,: or wk,: to refer to the k-th column. The vector of the
discretized state is denoted by u, respectively.

Lemma 3.2 (Control-to-state map in discrete time). Let Assumption 3.1 hold. Then the discretized solution
of the dynamical system (6) is given in terms of the controls v,w and we have:

uk = ūh
k +

L∑
l=1

k∑
m=0

ūlk−mwm,lvm,l. (11)

where uk = u(tk) and homogeneous and inhomogeneous parts of the solution are ūh
k = ūh(tk) and ūlk = ūl(tk)

for k = 0, . . . , Tn.

Proof. The solution in (7) is expressed as (continuous) convolution that can directly be rewritten as a
discrete convolution of the sequence of the discrete inhomogenous solution part (ūlk)k with the sequence of
the product of the controls (vk,lwk,l)k:

uk = ūh
k +

L∑
l=1

(ūl· ∗ (w·,lv·,l))[k].
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With Def. 2.4 it follows immediately that:

uk = ūh
k +

L∑
l=1

k∑
m=0

ūlk−mwm,lvm,l.

With this explicit representation of the discretized solution, we state the accoring to Theorem 3.1 the
time discrete MIPDECO without PDE below.

Theorem 3.2 (PDE-free MIPDECO in discrete time). The optimal control problem in (10) can be rewritten
as:

min
u,v,w

J(u,v,w)

= φ(uTn
) +

Tn∑
k=0

akψ(uk,vk,:,wk,:)

s.t. v ∈ Vad,w ∈Wad,

(12)

where uk = ūh
k +

L∑
l=1

k∑
m=0

ūlk−mwm,lvm,l. In the discretized objective J, the integral is replaced by a suitable

quadrature with the weights ak for k = 0, . . . , Tn. Further, let Vad ⊆ RTn+1×L and Wad ⊆ ZTn+1×L denote
the discretization of the admissible control sets Vad and Wad.

Note, the representation in (12) is semi discrete, i.e., the spatial dimension is somewhat hidden in the
structrue of the state variable u.

However, this discretized representation allows us to quantify the computational effort needed to derive
the problem formulation (12) which is computed prior to the optimization.

Remark 3.2 (Computational Cost of Deriving (12)). In particular, we need to compute the discrete repre-
sentations of ūh and ūl for l = 1, . . . , L. Each of these objects is uniquely defined by a system of equations
that are due to the chosen spatial discretization. More precisely, in the case of linear systems, the coefficient
matrices of these systems are identical and only the right hand side of the equation varies. This makes it
relatively cheap since a once computed LU decomposition can be used for all systems. Of course the effort to
compute e.g., an LU decomposition depends on the chosen discretization and the mesh size but we want to
highlight that it is only needed once before the optimization.

These advantageous properties are explained in more detail for an example problem in Section 5.

4 Control of Heat Equation with Optimal Actuator Placement

In this section, a MIPDECO problem governed by the heat equation is introduced. The problem is adapted
from [14]. The goal is to place and operate a small and fixed number of actuators, e.g., one or two, over time
in a given domain. The possible locations are given as a finite set of coordinates in space, an example of a
possible actuator distribution is given in Figure 1. First, we present a problem with binary and real valued
controls also which model placement and intensity control.

4.1 Model

We consider a rectangle Ω = [0, 1]× [0, 2] and the time horizon [0, tf ]. The objective (13a) is quadratic, its
first term is of tracking type and captures the desired final state uf , the second term regularizes the state,
and the third term regularizes the real-valued control with the regularization parameters β, γ ∈ R+. The
constraints are a source budget (13f), which limits the quantity of placed actuators, and the two-dimensional
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Figure 1: Domain Ω with Actuator Locations

heat equation (13b) with some source term. Additionally, we assume Dirichlet boundary (13c) and initial
conditions (13d). This can be written as follows:

min
u,v,w

J(u, v) = ‖u(tf , x)− uf (x)‖22,Ω

+ β ‖u(t, x)‖22,[0,tf ]×Ω + γ

L∑
l=1

‖vl(t)‖22,[0,tf ]

(13a)

s.t.
∂u

∂t
(t, x)− κ∆u(t, x) =

L∑
l=1

vl(t)fl(x) in (0, tf ]× Ω (13b)

u(t, x) = 0 in [0, tf ]× ∂Ω (13c)

u(0, x) = u0(x) in Ω (13d)

−Mwl(t) ≤ vl(t) ≤Mwl(t)

for all l ∈ {1, . . . , L} in [0, tf ]
(13e)

L∑
l=1

wl(t) = w̄ in [0, tf ] (13f)

wl(t) ∈ {0, 1} for all l ∈ {1, . . . , L} in [0, tf ]. (13g)

The variables are the state u : [0, tf ] × Ω → R, the binary controls wl : [0, tf ] → {0, 1}, and the real
valued controls vl : [0, tf ]→ R for l = 1, . . . , L. The nonnegative integer w̄ denotes the quantity of actuators
and L the quantity of their possible locations. The thermal diffusivity κ can be either constant κ ∈ R+ or
vary in space κ = κ(x, y) ∈ R+ representing a certain material or a distribution of various materials. We
define the source term for all locations l ∈ {1, . . . , L} and a fixed parameter ε ∈ R+ as:

fl(x) =
1√
2πε

exp

(
−
∥∥xl − x∥∥2

2ε

)
, (14)

where xl is the coordinate of the mesh point of actuator location l.

Remark 4.1. Originally, the problem formulation in [14] included a nonconvex right hand side of the heat
equation:

∂u

∂t
(t, x)− κ∆u(t, x) =

L∑
l=1

v(t)wl(t)fl(x).

We overcome this potential issue by substitution of v(t)wl(t) by vl(t) in (13b). Furthermore, we introduce
a bound M � 1 on the real valued controls vl in (13e) and we limit the amount of actuators by the source
budget constraint (13f). This formulation is more general in the sense that we can allow more than one
actuator in the model.

We note, that we can easily generalize this problem, e.g., by using L1 regularization or other regulariza-
tions.
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4.2 Solution Space an Existence of Solutions

For wl ∈ L2(0, [0, tf ]), vl ∈ L2(0, [0, tf ]), fl ∈ L2(0, [0, tf ]), u0 ∈ L2(Ω), and constant κ, we would expect the

solution u in the weak sense to (13b-13d) to be in W 1,0
2 ([0, tf ]×Ω); the linear space of all u ∈ L2([0, tf ]×Ω)

having a weak first-order partial derivatives with respect to (x, y) in L2([0, tf ] × Ω), which is discussed in
more detail [22, Chapter 3]. In particular, with these assumptions the objective J is then well defined.

However, existence of optimal solutions is in general unclear because of the integrality constraints (13g).
If this integrality is relaxed, the constraints (13e) and (13f) become redundant and thus also the variables
wl for l = 1, . . . , L. The remaining PDE optimization problem (13a-13d) has a strictly convex objective and
linear constraints. Therefore it exists a unique optimal control for the relaxation.

4.3 Formulation as an Abstract ODE

The heat equation in the actuator placement and operation problem in (13) is a parabolic PDE that can be
formulated as an abstract ODE as in (1). So we can equivalently write instead of (13), the following:

min
u,v,w

J(u,w) = ‖u(tf )− uf‖22

+ β ‖u(t)‖22,[0,tf ] + γ

L∑
l=1

‖vl(t)‖22,[0,tf ]

(15a)

s.t. u̇(t) = Au(t) +

L∑
l=1

vl(t)fl in [0, tf ] (15b)

u(0) = u0 (15c)

u ∈ Uad (15d)

v ∈ Vad = {v| −Mwl(t) ≤ vl(t) ≤Mwl(t),

l = 1, . . . , L}
(15e)

w ∈ Wad = {w|
∑L
l=1 wl(t) = w̄}. (15f)

The linear infinitesimal generator of the strongly continous semigroup is here:

(Au)(x) = κ

2∑
n=1

∂2u

∂x2
n

,

where its domain is D(A) = H2(Ω)∩H1
0 (Ω) and strongly continuous semigroup of contractions is {T (t)}t≥0

on U . We choose the admissible sets Uad = C ([0, tf ];U), Vad = V = Cpw

(
[0, tf ];RL

)
, and Wad ⊂ W =

L∞
(
[0, tf ]; {0, 1}L

)
.

With the formulation of the problem (15) together with the choice of the appropriate spaces, the condi-
tions in Assumption 3.1 are satisfied and Theorem 3.2 is applicable.

In order to derive the ingredients of the control-to-state-map as in reduced problem in Theorem 3.1, it
is necessary to solve L+ 1 initial-boundary value problems, c.f. Remark 3.1. The homogeneous solution ūh

represents thermal diffusion of the initial state u0 without any control application, i.e., all controls are fixed
to zero:

∂u

∂t
(t, x)− κ∆u(t, x) = 0 in [0, tf ]× Ω

u(t, x) = 0 in [0, tf ]× ∂Ω

u(t, x) = u0(x) in Ω

The inhomogeneous parts of the solution ūl are the solutions of the heat equation with fl(x) as initial state,
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that can be interpreted as the control vl applied in time t = 0. Thus, we have for l = 1, . . . , L:

∂u

∂t
(t, x)− κ∆u(t, x) = 0 in [0, tf ]× Ω,

u(t, x) = 0 in [0, tf ]× ∂Ω,

u(0, x) = fl(x) in Ω.

Also the discrete version of the approach, Theorem 3.2, applies to a time discretization of (15). We
explain how the advantages of our approach become clear in the computation in the following section.

5 Spatial Discretization via Finite Differences

Now we explain in detail how the results in Section 3 reduce significantly the optimization of MIPDECO.
For this purpose we apply the method to the discretized version of the model in Section 4. We conclude
with the statement of the reduced MINLP.

5.1 Discretization of the Heat Equation

Note, since we are studying the interaction of MINLP and PDE constrained optimization, we use simple
discretization schemes only. However, our results can be generalized to other methods and meshes.

We consider the uniform step-size in space and time and define approximate values of the states and
controls for k = 0, . . . , Tn, i = 0, . . . , N , and j = 0, . . . ,M :

uk,i,j ≈ u(kht, (ihx1
, jhx1

)), vk,l ≈ vl(kht), wk,l ≈ wl(kht).

We discretize the PDE in (13) using a central-difference operator in space and backward-difference operator
in time, yielding the linear system:

GU = BV + d, (16)

where G ∈ RTnNM×TnNM and B ∈ RTnNM×TnL contain coefficients, d ∈ RTnNM contains initial and
boundary conditions, and U ∈ RTnNM and V ∈ RTnL are the unknown states and controls, written as
vectors:

U =

 vec(u1,·,·)
...

vec(uTn,·,·)

 , V =

 vec(v1,·)
...

vec(vTn,·)

 . (17)

The matrix G may be written as the sum of two Kronecker products:

G = C ⊗ INM + ITn
⊗ κK, (18)

where INM and ITn
denote identity matrices of dimension NM and Tn respectively. The matrix C ∈ RTn×Tn

is an implicit Euler matrix:

C =
1

ht


1
−1 1

. . .
. . .

−1 1

 ,
with ht =

tf
Tn

being the time step size, and K ∈ RNM×NM is the coefficient matrix of the five-point stencil
discretization of the Laplace operator:

K =
1

hx1
hx2


D −IN
−IN D −IN

. . .
. . .

. . .

−IN D −IN
−IN D

 ,
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where hx1 = 1
N and hx2 = 2

M denote the space step sizes discretizing in domain Ω = [0, 1] × [0, 2]. The
matrix IN is the identity of dimension N and D ∈ RN×N is a tridiagonal matrix:

D =


4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4

 .

The right hand side of the linear system (16) consists of the right hand side of the heat equation (13b)
written as:

B = ITn ⊗ F, (19)

with ITn the identity matrix of dimension Tn, the source term (14) F = [vec(f1), . . . , vec(fL)] ∈ RNM×L,
and the initial (13d) and boundary conditions (13c): d = [vec(u0,·,·)

T , 0, . . . , 0]T ∈ RNMTn .

5.2 Alternative Derivation of the Reduction Approach

To solve the linear system (16) we use a key property of V which we can write as a linear combination of
unit vectors of RTnL and reformulate (16):

GU = B

LTn∑
i=1

Viei + d, (20)

where {ei}TnL
i=1 denotes the standard basis of RTnL and Vi ∈ R corresponds to a vk,l, cf. (17). As G is regular,

we use linearity and get:

U =

LTn∑
i=1

Vi G−1Bei︸ ︷︷ ︸
inhomogeneous part

+ G−1d︸ ︷︷ ︸
homogeneous part

. (21)

In this discrete formulation, we need to solve for the initial values d and for every column of B, thus TnL+ 1
linear systems.

However, since B is the Kronecker product of an identity with the matrix F , c.f. (19), it is a block
diagonal matrix with identical blocks, namely F . In addition, the matrix G is also special regarding the
structure, being the finite difference discretization, see Equation (18).

Thanks to these structural properties, we need to solve only for i = 1, . . . , L in Equation (21) correspond-
ing to the L columns of F and get the subsolutions (ūlk)Tn

k=0. In this manner, we obtain the inhomogeneous
part of the solution yielding a total of L+ 1 linear systems to solve as it was stated in Remark 3.2.

Hence instead of solving the linear system for every time step and every location, it suffices to solve for
every location only once to obtain the inhomogeneous part of the solution. Then, the partial solutions are
shifted in time with the corresponding control in the convolution formula (11).

Note also, that the coefficient matrix G is the same for all L+1 linear equation systems. Thus, if a direct
solver is used, the LU composition of G can be used for all systems which makes computations cheap.

5.3 MINLP Formulation of the MIPDECO

Because the discretized PDE is a system of linear equations we can eliminate the PDE by solving a linear
system for every pair of control variables (vk,l, wk,l). This idea leads to a mixed-integer quadratic program
(MIQP) formulation of the problem with reduced size that is solvable within less computational time than
the original MIQP formulation.

11



Mesh size 8 16 32 64

Variables
real 1449 9681 71073 545601
binary 72 144 288 576
CPU (CPLEX) 7.3 5567.3 − −
State Elim.
CPU (Elim.) 0.004 0.228 3.604 −
CPU (CPLEX) 1.056 3.224 13.280 −

Table 1: Problem size and CPU time for the discretzation of the actuator placement problem in (13).

The reduced objective J in (23) of this problem, in combination with the bounds (22b) and source
budget (22c) form the reduced MIQP formulation of the problem:

min
v,w

J(v) (22a)

s.t. −Mwk,l ≤ vk,l ≤Mwk,l (22b)

L∑
l=1

wk,l = w̄ (22c)

wk,l ∈ {0, 1} (22d)

for l = 1, . . . , L and k = 1, . . . , Tn.

This problem consists of LTn binary and LTn continuous variables, while NMTn state variables are elimi-
nated.

6 Numerical Results

In this section, we present results of our numerical experiments for the actuator placement problem in (13).
The problem is discretized as in Section 5 and implemented in the modeling language AMPL [4]. The

resulting MIQP is high dimensional in terms of variables and constraints. The number of real and binary
variables are stated depending on the size of the number of grid points in space and time N = 0.5M = Tn =
Nc in context with the computational time in Table 1. Note, Nc is the number of discretization points of
the control that may coincide with Tn or be independent. The CPU time of CPLEX [3] is compared to the
CPU time of CLPEX with prior state elimination. A dash refers that no result could be obtained in within
the time limit. The presented state elimination approach reduces the number of real variables of instances
to the same as binary variables.

In the implementation, we used the following parameters. The domain is Ω = [0, 1] × [0, 2] with the
actuator locations as in Figure 1, i.e., L = 9. The final time is tf = 1. The desired final state is chosen
to be uf (x) = 0 and the initial condition is u0(x) = 100 sin(πx1) sin(πx2) for all x ∈ Ω. The regularization
parameters are β = 2 and γ = 2 · 10−3. The thermal diffusity is constant κ = 0.01 in the domain Ω and a
single actuator is considered, i.e., w̄ = 1. The parameter of the Gaussian source term is chosen ε = 0.01.

As implementation parameter, we set the bound to M = 2500 and chose the size of the mesh to be
N = 0.5M = Tn = 32 and vary the control grid Nc ∈ {4, 8, 16, 32}.

The graphs in Figure 2 show the location and the intensity of the placed actuator for the optimal control
v. The decrease of the intensity until t ≈ 0.5 is due to fact that the state is driven quickly close to the
desired state uf ≡ 0, c.f. Figure 3 and due to the regularization of the control in the objective.

In Figure 3, the optimal state u is shown for t ∈ {0, 0.125, 1} and compared to the state at t = 1 without
any control application. Due to the control application, the norm of the state can be brought to the same
order of magnitude as without control application in less than ∆t = 0.125. The effect of the control makes
the norm of the state at final time tf = 1 significantly smaller and more homogeneous than without control
in the bottom picture.
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Figure 2: Control: The control in the different actuator positions are plotted over time.
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Figure 3: The State: The intial state is plotted on the top, the final state of the optimal solution below, and
the final state of the heat equation without control application on the bottom.
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Figure 4: CPU Time: Comparison of the CPU time of the state elimination, to an approach without the
smart use of the convolution, and to a rounding approach. The discretization of the states is N = Tn = 32
and the discretization of the control varies. Note, the application of CPLEX without a state elimination
does not terminate with results in a one day time limit and is therefore not presented in this figure.

In Figure 4, we compare the state elimination method presented here in blue with a state elimination
method which does not apply the convolution in red. We also compare with Sum Up Rounding, c.f. [19],
that requires to solve to full integer relaxations of the problem and provides high quality approximations to
the optimal control. This illustrates the potential of the saved computational effort during the optimization
because our method outperforms also this relatively cheap rounding scheme. Note, the state elimination is
also beneficial combined with rounding because it simplifies the solution of the integer relaxations signifi-
cantly, c.f. yellow curve in Fig. 4. We can also observe that all curves rise relatively flat. This is because
we have fixed the space and time discretization of the states to N = Tn = 32 and only vary the number of
grid points of the controls Nc. This also illustrates in particular that the bottle neck is the high dimensional
state variable.

7 Conclusion

We introduced a class of mixed-integer PDE constrained optimal control problems whose computational
complexity can be reduced by elimination of the state variables. This elimination method is derived by semi
group theory and clever convolution of solutions parts for continuous and discrete time. The relevance of this
class of problems is illustrated by the actuator placement problem which is governed by the time-dependent
2D heat equation. For this example, we conclude with numerical results. Due to the efficent reduction of the
problem size, the proposed method outperforms simple rounding schemes in terms of computational time.
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Appendix

The reduced objective is discretized by trapezoidal rule:

J(v) =

hx1
hx2

N−1∑
i=1

M−1∑
j=1

(
ūh
Tn,i,j +

Tn∑
t=1

L∑
l=1

vt,l ū
l
Tn−t,i,j − uf,i,j

)2

+ β

(
1

2
hx1

hx2
ht

N−1∑
i=1

M−1∑
j=1

(
ūh

0,i,j

)2
+ hx1

hx2
ht

Tn−1∑
k=1

N−1∑
i=1

M−1∑
j=1

(
ūh
k,i,j +

k∑
t=1

L∑
l=1

vt,l ū
l
k−t,i,j

)2

+
1

2
hx1hx2ht

N−1∑
i=1

M−1∑
j=1

(
ūh
Tn,i,j +

Tn∑
t=1

L∑
l=1

vt,l ū
l
Tn−t,i,j

)2
)

+ γht

L∑
l=1

(
1

2
(v0,l)

2
+

Tn−1∑
t=1

(vt,l)
2

+
1

2
(vTn,l)

2

)
,

(23)

where uf,i,j = uf ((ihx1 , jhx2)).
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