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Higher–dimensional deterministic formulation of hyperbolic
conservation laws with uncertain initial data

M. Herty · A. Kolb · S. Müller

Abstract We discuss random hyperbolic conservation laws and introduce a formulation interpreting
the stochastic variables as additional spatial dimensions with zero flux. The approach is compared
with established non–intrusive approaches to random conservation laws. In the scalar case, an entropy
solution is proven to exist if and only if a random entropy solution for the original problem exists.
Furthermore, existence and numerical convergence of stochastic moments is established. Along with
this, the boundedness of the L1-error of the stochastic moments by the L1-error of the approximation is
proven. For the numerical approximation a Runge–Kutta discontinuous Galerkin method is employed
and a multi–element stochastic collocation is used for the approximation of the stochastic moments. By
means of grid adaptation the computational effort is reduced in the spatial as well as in the stochastic
directions, simultaneously. Results on Burgers’ and Euler equation are validated by several numerical
examples and compared to Monte Carlo simulations.

Keywords Hyperbolic conservation laws · uncertainty quantification · discontinuous Galerkin
methods · stochastic collocation · multiresolution analysis
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1 Introduction

In the past decades accurate and stable schemes for hyperbolic systems of conservation laws have been
subject to intensive research and there has been tremendous progress towards reliable and efficient
schemes leading in turn to a number of applications even outside classical gas dynamics. However, in
practical applications measurement errors usually have to be taken into account and hence, the deter-
ministic nature of the formulation changes. Those errors might be modeled as stochastic uncertainties
in the input and are usually treated within a probabilistic framework. Moreover, epistemic uncertain-
ties arise, when the considered mathematical models do not exactly describe the true physical reality.
When the underlying model is not known exactly, but is given by a probability law or by statistical
moments, the deterministic case is extended to the stochastic case.
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Several approaches have been proposed in the past to deal with the stochastic case both from an
analytical and numerical perspective. A broad classification distinguishes non–intrusive and intrusive
methods. Among the non–intrusive methods, the Monte Carlo method and its variants, apply a de-
terministic concept to each realization. Such sampling–based methods in the context of hyperbolic
equations are used e.g. in [20,19,1]. An intrusive approach on the contrary uses the representation of
stochastic perturbations by a series of orthogonal functions, known as generalized polynomial chaos
(or -Loève) expansions [3,34]. Those expansions are substituted in the governing hyperbolic equations
and projected on a (finite dimensional) subspace. This leads to deterministic evolution equations for
the coefficients of the series expansion. In particular, in the context of partial differential equations
this has been applied successfully for a large class of problems and we refer to e.g. [9,3,12,14,25,35]
and references therein for some examples. In the context of hyperbolic problems there have been many
recent contributions in particular based on the observation that the projected deterministic system
might encounter a loss of hyperbolicity.

Besides the theoretical obstacles of the intrusive or non–intrusive approaches, several contributions
towards numerical schemes and their convergence analysis have been proposed and we refer to [20,19,
10,24,22,6] for further reference.

In stochastic problems the main interest is in some averaged quantities such as expectation and
variance. However, the computation of stochastic quantities for instance using Monte Carlo methods is
very time–consuming due to low convergence rates requiring a large number of samples. In the context
of conservation laws known to exhibit discontinuities in space the convergence behavior is even worse
because discontinuities may also be present in the stochastic variables. Thus, to improve efficiency we
suggest a new strategy for the computations of the stochastic moments that allows for local refinement
in the spatial domain as well as in the stochastic domain. For this purpose, we introduce the stochastic
variables as additional “spatial” variables. This will make the resulting problem higher–dimensional
but deterministic. This idea of parameterizing the stochastic variables has already been studied in [26,
30], where a path–wise solution of the probabilistic shock profile was used. There the equivalence of
the stochastic solution and the parameterized solution is not proven. We generalize these results and
describe a numerical approach that takes into account the local stochastic structure. The additional
effort of the higher dimensional problem is compensated for by local grid adaptation and multi–element
stochastic collocation methods allowing for a more efficient computation of stochastic quantities.

The outline of the paper is as follows: First of all, we introduce the stochastic Cauchy problem
and summarize well-known results for the entropy solution from [20], see Section 2. In Section 3 we
propose a method based on embedding the stochastic problem in a higher–dimensional space resulting
in a deterministic problem in the spatial and stochastic variables. We verify that the entropy solutions
of the stochastic Cauchy problem and the deterministic Cauchy problem coincide. This holds true for
a class of absolutely continuous random variables. Existence of statistical moments of the solution is
obtained by modifications of classical results. In Section 4 we outline the numerical discretization and
convergence of the discrete statistical moments. Finally, numerical comparisons with non–intrusive
methods are presented in Section 5 for Burgers’ equation as well as the Euler equations with a single
random variable.

2 The scalar stochastic Cauchy problem

In this section we introduce scalar conservation laws with uncertain initial data. For this purpose,
we follow [20] and briefly summarize well–posedness of a random entropy solution and its stochastic
moments. In contrast to [20], we will confine ourselves to absolutely continuous random variables.

Starting point is the probability space (Ω,F ,P) with Ω a non–empty set, F a σ-algebra over
Ω and P a probability measure on F . Let be ξ : Ω → Ωξ a random variable on (Ω,F ,P) and let be
Fξ := B(Ωξ) the Borel σ-algebra over Ωξ := Rm. For B ∈ B(Rm) we define the probability distribution
of ξ by Pξ(B) ≡ P(ξ−1(B)) := P({ω ∈ Ω : ξ(ω) ∈ B}) on (Rm,B(Rm)).

We assume that the probability distribution of ξ is an absolutely continuous random variable with
respect to the Lebesgue measure. Then [2, Theorem 17.10] yields existence of an essentially bounded
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density pξ : Rm → [0,∞) such that Pξ(B) =
∫
B
pξ(ξ) dξ for all B ∈ B(Rm) and

∫
Rm pξ(ξ) dξ = 1.

Furthermore, we introduce stochastic quantities such as the expectation for a function u ∈ L1(Rm) as

E[u(ξ)] :=
∫
Ω

u(ξ(ω)) dP(ω) =
∫
Rm

u(ξ) pξ(ξ)dξ (1)

and its k-th centralized moments

Mk
c [u(ξ)] := E

[
(u(ξ)− E [u(ξ)])k

]
, k ∈ N. (2)

In particular, for k = 2 we obtain the variance

Var [u(ξ)] := M2
c [u(ξ)] = E

[
(u(ξ)− E [u(ξ)])2

]
. (3)

The random variable ξ is used in the stochastic Cauchy problem for scalar conservation laws

ūt(t, x;ωξ) +

d∑
j=1

∂

∂xj
fj(ū(t, x;ωξ)) = 0, x ∈ Rd, ωξ ∈ Ωξ, t ∈ (0, T ) (4a)

ū(0, x;ωξ) = u0(x;ωξ), x ∈ Rd, ωξ ∈ Ωξ. (4b)

Here, ū(t, x;ωξ) ∈ R is the conserved variable, f ∈ C1(R,Rd) is the flux field and T ∈ (0,∞) is
the final time. Uncertainty enters the problem explicitly in the initial condition (4b). As in [20], we
assume that the initial condition (4b) is given by an L1(Rd)-valued random variable.

In analogy to the deterministic case [11], we define the entropy solution to the stochastic problem
(4).

Definition 1 ([20], Definition 3.2) A random field ū : Ωξ → C([0, T ];L1(Rd)) is said to be a
random entropy solution if it satisfies the following two conditions:

(i) Weak solution: For Pξ-a.s. ωξ ∈ Ωξ, ū(·, ·;ωξ) satisfies the weak formulation

∫ ∞

0

∫
Rd

ū(t, x;ωξ)φ̄t(t, x) +

d∑
j=1

fj(ū(t, x;ωξ))
∂

∂xj
φ̄(t, x)

 dx dt

+

∫
Rd

u0(x;ωξ)φ̄(0, x) dx = 0

(5)

for all test functions φ̄ ∈ C1
0 ([0, T ]× Rd).

(ii) Entropy condition: Let (η,Q) be an entropy–entropy flux pair, i.e., η : R → R is a convex function
and Q : R → Rd with Q′

j(ū) = η′(ū)f ′
j(ū), j = 1, . . . , d for Pξ-a.s. ωξ ∈ Ωξ. Then, ū satisfies the

inequality

∫ ∞

0

∫
Rd

η(ū(t, x;ωξ))φ̄t(t, x) +

d∑
j=1

Qj(ū(t, x;ωξ))
∂

∂xj
φ̄(t, x)

 dxdt

+

∫
Rd

η(ū0(x;ωξ))φ̄(0, x) dx ≥ 0

(6)

for all test functions φ̄ ∈ C1
0 ([0, T ]× Rd) with φ̄ ≥ 0.

In [20] it is proven that there exists a unique random entropy solution for a general probability space
(Ω,F ,P), if the entropy solution exists for P-a.s. ω ∈ Ω. Here, we restrict this results to the induced
probability measure Pξ:
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Theorem 1 ([20], Theorem 3.3) Consider the stochastic Cauchy problem (4a) with random initial
data (4b) given by an L1(Rd)-valued random variable ū0 satisfying

u0(·;ωξ) ∈ (L∞ ∩BV )(Rd) for Pξ-a.s. ωξ ∈ Ωξ. (7)

Furthermore, we assume ∥ū0∥Lk(Ωξ;L1(Rd)) < ∞ for some k ∈ N. Then, there exists a unique random

entropy solution ū : Ωξ → C([0, T ];L1(Rd)) such that for all 0 ≤ t ≤ T and all k ∈ N:

∥ū∥
Lk(Ωξ;C([0,T ];L1(Rd)))

≤ ∥ū0∥Lk(Ωξ;L1(Rd))

and

∥ū(t, ·;ωξ)∥(L1∩L∞)(Rd) ≤ ∥u0(·;ωξ)∥(L1∩L∞)(Rd)

for Pξ-a.s. ωξ ∈ Ωξ.

This theorem ensures well–posedness of a random entropy solution. Furthermore, if the k-th stochastic
moment of the initial condition (4b) exists for some k ∈ N, we obtain existence of the k-th moment of
the random entropy solution. The definition can be extended to the system case.

3 Deterministic approach

Motivated by [26,30] we introduce a deterministic approach to treat the stochastic parameter ωξ in
a stochastic Cauchy problem. According to Section 2, there exists a random entropy solution, if the
solution is a weak solution (5) and fulfills the entropy condition (6) for Pξ-a.s. ωξ ∈ Ωξ. This motivates
to introduce the stochastic variables ωξ as additional (spatial) variables resulting in a deterministic
problem in higher dimensions.

3.1 Formulation of the deterministic approach

In the sequel, we impose the following additional assumption on ξ : Ω → Ωξ.

Hypothesis 1 Let be V ⊂ Rm an open bounded set with positive measure. Furthermore, let be pξ :
Rm → [0,∞) the density of ξ and pU : V → [0,∞) the density to the uniform distribution U(V ). Then,
there exists a diffeomorphism Ψ : V → Rm such that

pξ(ξ) = pU (Ψ
−1(ξ))|det(DξΨ

−1)(ξ)| = χV (Ψ
−1(ξ))

|V |
|det(DξΨ

−1)(ξ)| ≠ 0. (8)

Hypothesis 1 guarantees the existence of a transformation of the random variable ξ into a uniform
random variable U . Further information on such a transformation can be found, for example, in [15].

For x ∈ Rd and ξ ∈ Rm we introduce the new variable y := (x, ξ) ∈ Rd+m. Furthermore, we define
a new flux f ∈ C1(R,Rd+m) with zero flux in the (stochastic) directions, i.e.,

fd+j ≡ 0, j = 1, . . . ,m. (9)

This leads to the following deterministic formulation

ut(t, y) +

d+m∑
j=1

∂

∂yj
fj(u(t, y)) = 0, y ∈ Rd+m, t ∈ (0, T ) (10a)

u(0, y) = u0(y), y ∈ Rd+m, (10b)

with the new conserved variable u(t, y) ≡ u(t, (x, ξ)). Following the classical theory of deterministic
scalar conservation laws, cf. [11], the entropy solution is then defined as follows:
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Definition 2 A solution u to the deterministic Cauchy problem (10) is an entropy solution if it satisfies
the following:

(i) Weak solution: u satisfies the weak formulation

∫ ∞

0

∫
Rd+m

u(t, y)φt(t, y) +

d+m∑
j=1

fj(u(t, y))
∂

∂yj
φ(t, y)

dy dt

+

∫
Rd+m

u0(y)φ(0, y) dy = 0

(11)

for all test functions φ ∈ C1
0 ([0, T ]× Rd+m).

(ii) Entropy condition:Let (η,Q) be an entropy–entropy flux pair, i.e., η : R → R is a convex function
and Q : R → Rd+m with Q′

j(u) = η′(u)f ′
j(u), j = 1, . . . , d+m. Then, u satisfies

∫ ∞

0

∫
Rd+m

η(u(t, y))φt(t, y) +

d+m∑
j=1

Qj(u(t, y))
∂

∂yj
φ(t, y)

 dy dt

+

∫
Rd+m

η(u0(y))φ(0, y) dy ≥ 0

(12)

for all test functions φ ∈ C1
0 ([0, T ]× Rd+m) with φ ≥ 0.

Some remarks are in order. Since there is zero flux in the stochastic directions we conclude from
the compatibility condition for the entropy fluxes in the stochastic directions

Q′
d+j = 0, i.e., Qd+j = cd+j , j = 1, . . . ,m (13)

with cd+j ∈ R for j = 1, . . . ,m. According to [11, Chapter 2, Theorem 5.1, Theorem 5.2] the deter-
ministic Cauchy problem (10) has a unique entropy solution u(t, ·) ∈ (L1 ∩ L∞)(Rd+m) satisfying the
maximum principle

∥u(t, ·)∥L1(Rd+m) ≤ ∥u0∥L1(Rd+m) , ∥u(t, ·)∥L∞(Rd+m) ≤ ∥u0∥L∞(Rd+m) (14)

for all t ∈ [0, T ] provided u0 ∈ (L1 ∩ L∞)(Rd+m).

To justify our approach, we verify that the entropy solution of (10) coincides with the entropy
solution in the sense of Definition 1.

Theorem 2 Assume (8) holds. Let ū0 be a L1(Rd)-valued random variable fulfilling (7) and let u0 ∈
(L1 ∩ L∞)(Rd+m) be the initial data of the deterministic problem (10) such that

u0((x, ωξ)) = ū0(x;ωξ) for Pξ-a.s. ωξ ∈ Ωξ and for a.e. x ∈ Rd. (15)

Furthermore, we assume that the flux fulfills (9). Then the stochastic Cauchy problem (4) has a unique
entropy solution ū in the sense of Definition 1 if and only if there exists an entropy solution u in the
sense of Definition 2. Furthermore it holds

u(t, (x, ωξ)) = ū(t, x;ωξ) for Pξ-a.s. ωξ ∈ Ωξ and for a.e. x ∈ Rd. (16)

Proof Let ū be according to Theorem 1. Let φ ∈ C1
0 ([0, T ]×Rd+m) be a test function. Then for ωξ ∈ Ωξ

fixed the restriction

φ̄(t, x;ωξ) := φ(t, (x, ωξ))χV (Ψ
−1(ωξ))|V |/|det(DξΨ

−1)(ωξ)| (17)
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is a test function in C1
0 ([0, T ]×Rd) and the weak formulation (5) holds for Pξ-a.s. ωξ ∈ Ωξ. Integration

of (5) over the induced probability space leads to

∫
Ωξ

(∫ ∞

0

∫
Rd

ū(t, x;ωξ)φ̄t(t, x;ωξ) +

d∑
j=1

fj(ū(t, x;ωξ))
∂

∂xj
φ̄(t, x;ωξ) dxdt

+

∫
Rd

u0(x;ωξ)φ̄(0, x;ωξ) dx

)
dPξ(ωξ) = 0.

(18)

Let us define u(t, x, ωξ) := ū(t, x;ωξ) for Pξ-a.s. ωξ ∈ Ωξ and for a.e. x ∈ Rd. We will show that this is
a weak solution for the formulation (11). Using (15), (17) and (9) this is equivalent to

∫
Rm

∫ ∞

0

∫
Rd

u(t, x, ξ)φt(t, x, ξ) +

d+m∑
j=1

fj(u(t, x, ξ))
∂

∂xj
φ(t, x, ξ) dx dt

+

∫
Rd

u0(x, ξ)φ(0, x, ξ) dx

)
pξ(ξ)χV (Ψ

−1(ξ))|V |/|det(DξΨ
−1)(ξ))|dξ = 0.

Using Fubini’s theorem and (8) we finally obtain the weak formulation (11). Similarly, we can verify
that the entropy condition (6) for ū implies the entropy condition (12) for u where we use (13). Note
that because of (17) the test function φ is non–negative if and only if φ is non–negative.

Conversely, we assume that u is the entropy solution of the deterministic Cauchy problem (10)
and define ū(t, x;ωξ) := u(t, (x, ωξ)) for Pξ-a.s. ωξ ∈ Ωξ and for a.e. x ∈ Rd. We now verify that
the weak formulation (11) implies the stochastic weak formulation (5). For this purpose, let be φ̄ ∈
C1

0 ([0, T ] × Rd) an arbitrary test function. Furthermore, for ε > 0 let be Jε : Rm → R the rescaled
mollifier Jε(ξ) :=

1
εm J(ξ/ε) with

J(ξ) :=

{
cm exp

(
1

|ξ|2−1

)
, |ξ| < 1

0 , |ξ| ≥ 1

and cm > 0 chosen such that
∫
Rm J(ξ) dξ = 1. By means of the rescaled mollifier we define for fixed

ξ̄ ∈ V and ε > 0 chosen such that Bε(ξ̄) ⊂ V the smooth function

φ(t, x, ξ) := φ̄(t, x)Jε(ξ̄ − ξ)
χV (Ψ

−1(ξ))

|V |
|det(DξΨ

−1)(ξ)|, ξ ∈ Rm, (19)

where Bε(ξ̄) is an open ball with radius ε > 0 and center ξ̄ ∈ V . Note that the support of φ is
bounded because supp Jε(ξ̄ − ·) = Bε(ξ̄) and suppφ ⊂ supp φ̄ × Bε(ξ̄) ⊂ supp φ̄ × V . Therefore, it
holds φ ∈ C1

0 ([0, T ]× Rd+m). Then we rewrite (11) applying Fubini’s theorem and (9)

0 =

∫
Rm

(∫ ∞

0

∫
Rd

u(t, x, ξ)φt(t, x, ξ) +

d∑
j=1

fj(u(t, x, ξ))
∂

∂xj
φ(t, x, ξ) dx dt

+

∫
Rd

u0(x, ξ)φ(0, x, ξ) dx

)
dξ

=

∫
Rm

(∫ ∞

0

∫
Rd

u(t, x, ξ)φ̄t(t, x) +

d∑
j=1

fj(u(t, x, ξ))
∂

∂xj
φ̄(t, x) dxdt

+

∫
Rd

u0(x, ξ)φ̄(0, x) dx

)
Jε(ξ̄ − ξ)pξ(ξ) dξ.
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Since φ has compact support we introduce the weighted residual

R(ξ) :=


pξ(ξ)

∫ ∞

0

∫
Rd

u(t, x, ξ)φ̄t(t, x) +

d∑
j=1

fj(u(t, x, ξ))
∂

∂xj
φ̄(t, x) dxdt

+

∫
Rd

u0(x, ξ)φ̄(0, x) dx

, ξ ∈ V

0 , ξ ∈ Rm \ V.

(20)

With the convolution Rε(ξ̄) := (Jε ∗ R)(ξ̄) it holds Rε(ξ̄) → R(ξ̄), ε → 0, for a.e. ξ̄ ∈ V leading to
R(ξ̄) = 0 for a.e. ξ̄ ∈ V and therefore R(ξ) = 0 for all ξ ∈ Rm. Integrating the absolute value of the
weighted residual over Rm we obtain for ξ = ωξ:∫

Ωξ

∣∣∣∣∫ ∞

0

∫
Rd

u(t, x, ωξ)φ̄t(t, x) +

d∑
j=1

fj(u(t, x, ωξ))
∂

∂xj
φ̄(t, x) dx dt

+

∫
Rd

u0(x, ωξ)φ̄(0, x) dx

∣∣∣∣dPξ(ωξ) = 0.

(21)

This concludes the stochastic weak formulation (5). To verify that the entropy condition (12) implies
the stochastic entropy condition (6), we may proceed analogously.

□

We emphasize that in [26,30] it is not verified that the entropy solutions of the stochastic Cauchy
problem and the deterministic Cauchy problem coincide.

3.2 Existence of the stochastic moments

In general, we are not interested in results of individual realizations of a stochastic problem but in
stochastic moments of the solution. The existence of these moments for the stochastic Cauchy problem
(4) is proven in [20] assuming higher integrability on the initial conditions. In this section we prove
that for the deterministic problem (10) the stochastic moments exist. Since an entropy solution u in
the sense of Definition 2 is in (L1 ∩ L∞)(Rd+m) we have that u ∈ Lk(Rd+m) for all k ∈ N by Hölder’s
inequality.

Theorem 3 Let ξ be an absolutely continuous random variable on (Ωξ,Fξ,Pξ) with density pξ : Rm →
[0,∞). Let u be the entropy solution of (10). Then, for all t ∈ [0, T ] and for all k ∈ N:

(i)
∥∥E[uk(t, ·, ·)]

∥∥
L1(Rd)

≤ ∥u0∥kLk(Rd+m) ∥pξ∥L∞(Rm)

(ii)
∥∥E[uk(t, ·, ·)]

∥∥
L∞(Rd)

≤ ∥u0∥kL∞(Rd+m).

Proof (i) Let u be the entropy solution of (10). Since ξ is an absolutely continuous random variable,
pξ is bounded for a.e. ξ ∈ Rm and therefore pξ ∈ L∞(Rm). Since u0 ∈ (L1 ∩ L∞)(Rd+m) and u
is the entropy solution of (10) with u(t, ·, ·) ∈ (L1 ∩ L∞)(Rd+m) for all t ∈ [0, T ], then it holds
u0, u(t, ·, ·) ∈ Lk(Rd+m) for all t ∈ [0, T ] and for all k ∈ N. Thus,∥∥E[uk(t, ·, ·)]

∥∥
L1(Rd)

≤ E
[∥∥uk(t, ·, ·)

∥∥
L1(Rd)

]
=

∫
Rm

∥u(t, ·, ξ)∥kLk(Rd) pξ(ξ) dξ

≤ ∥u(t, ·, ·)∥kLk(Rd+m) ∥pξ∥L∞(Rm)

≤ ∥u0∥kLk(Rd+m) ∥pξ∥L∞(Rm) .

(ii) The proof is similar and hence omitted.
□
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If u0 ∈ (L1 ∩ L∞)(Rd+m), Theorem 3 ensures existence of the stochastic moments. Hence, the expec-
tation exists and it holds

E[∥u(t, ·, ·)∥L1(Rd)] ≤ ∥u0∥L1(Rd+m) ∥pξ∥L∞(Rm) ,

E[∥u(t, ·, ·)∥L∞(Rd)] ≤ ∥u0∥L∞(Rd+m)

(22)

for all t ∈ [0, T ].

4 Approximation of stochastic moments

We are mainly concerned with the approximation of stochastic moments. In the following these mo-
ments will be approximated by applying discretization to equation (10). Having a deterministic multi–
dimensional hyperbolic (system) conservation law at hand allows to now discretize using modern (adap-
tive) finite volume or discontinuous Galerkin schemes to equation (10).

To fix the notation, we use the following discretization of the space Rd+m for the variable y =
(x, ξ) ∈ Rd+m. Let I := {(i1, . . . , id+m) : i1, . . . , id+m ∈ Z} be a multiindex set and let ∆ :=
{(i1∆y1, . . . , id+m∆yd+m) : i ∈ I} be the corresponding grid with some fixed grid size ∆y :=

(∆y1, . . . ,∆yd+m). A cell C∆,i of the grid ∆ is given by C∆,i :=
∏d+m

j=1 [(ij − 1
2 )∆yj , (ij + 1

2 )∆yj)
for i ∈ I. For the temporal discretization of [0, T ] we use a uniform discretization tn = n∆t with
timestep size ∆t > 0 fulfilling the CFL condition.

Then for any u ∈ L1([0, T ]× Rd+m) we define the corresponding grid function u∆ = u∆(t, y) :=∑
i∈I un

i χC∆,i
(y)χ[tn,tn+1)(t), where un

i := 1
|C∆,i|

∫
C∆,i

u(tn, y) dy is the cell average of u on cell C∆,i.

We assume that the approximation converges to the exact entropy solution u under grid refinement,
i.e., for ∆t → 0

sup
t∈[0,T ]

∥u∆(t, ·, ·)− u(t, ·, ·)∥L1(Rd+m) → 0. (23)

Furthermore, the approximation is assumed to satisfy a maximum principle

sup
t∈[0,T ]

∥u∆(t, ·, ·)∥L∞(Rd+m) ≤ ∥u0∥L∞(Rd+m) . (24)

For instance, using a monotone finite volume scheme properties, (23), (24) hold [5, Theorem 1].
By means of this approximation we determine an approximation for the expectation and the central-

ized moments. We will show that the approximate moments converge to the exact stochastic moments
provided the underlying scheme is converging to the entropy solution of (10). The convergence rate of
the stochastic moments depends on the convergence rate of the approximation of the entropy solution.

Theorem 4 Let u∆ be a converging approximation of the entropy solution u of (10), i.e., (23) holds,
with approximate initial data u0

∆. Then for all t ∈ [0, T ] the expectation is bounded by

∥E [u(t, ·, ·)]− E [u∆(t, ·, ·)]∥L1(Rd) ≤ ∥pξ∥L∞(Rm) ∥u(t, ·, ·)− u∆(t, ·, ·)∥L1(Rd+m) . (25)

In addition if we assume that the maximum principle (24) holds for the initial data u0
∆, then for all

k ∈ N and for all t ∈ [0, T ] the centralized moments fulfill∥∥Mk
c [u(t, ·, ·)]−Mk

c [u∆(t, ·, ·)]
∥∥
L1(Rd)

≤ ck ∥u(t, ·, ·)− u∆(t, ·, ·)∥L1(Rd+m) , (26)

with

ck := ∥pξ∥L∞(Rm)

k∑
j=0

(
k

j

)(
(k − j) ∥u0∥2(k−j)−1

L∞(Rd+m)
+ k ∥u0∥2k−1

L∞(Rd+m)

)
. (27)
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Proof Using linearity of the expectation and an estimate similar to the inequality in the proof of
Theorem 3 (i) yields the error bound (25) for the expectation.

To verify the error bound (26) for the k-th centralized moment (2), k ∈ N, we rewrite these moments
using the binomial formula and linearity of the expectation

Mk
c [u(ξ)] = E

 k∑
j=0

(
k

j

)
uk−j(ξ) (−E [u(ξ)])

k

 =

k∑
j=0

(−1)k
(
k

j

)
E
[
uk−j(ξ)

]
Ek [u(ξ)] , (28)

for some u ∈ L1(Rm). To increase the readability of the proof we drop the arguments of the analytical
solution as well as of the grid solutions. Then the left–hand side of (26) can be estimated by∥∥Mk

c [u]−Mk
c [u∆]

∥∥
L1(Rd)

≤
k∑

j=0

(
k

j

)∥∥∥E[uk−j ]Ek[u]− E[uk−j
∆ ]Ek[u∆]

∥∥∥
L1(Rd)

≤
k∑

j=0

(
k

j

)[∥∥Ek[u]
∥∥
L∞(Rd)

∥∥∥E[uk−j ]− E[uk−j
∆ ]

∥∥∥
L1(Rd)

+
∥∥∥E[uk−j

∆ ]
∥∥∥
L∞(Rd)

∥∥Ek[u]− Ek[u∆]
∥∥
L1(Rd)

]
.

To estimate the differences on the right–hand side, note that for all k ∈ N and j = 0, . . . , k − 1 the
following inequalities hold∥∥∥E[uk−j ]− E[uk−j

∆ ]
∥∥∥
L1(Rd)

≤ c̄k ∥pξ∥L∞(Rm) ∥u− u∆∥L1(Rd+m) , (29)∥∥Ek[u]− Ek[u∆]
∥∥
L1(Rd)

≤ c̃k ∥pξ∥L∞(Rm) ∥u− u∆∥L1(Rd+m) (30)

with c̄k := (k − j) ∥u0∥k−j−1
L∞(Rd+m) and c̃k := k ∥u0∥k−1

L∞(Rd+m). To prove these estimates we note that

|αn − βn| ≤ nmax {|α| , |β|}n−1 |α− β| (31)

for α, β ∈ R and n ∈ N. Since both the exact solution u as well as the approximated solution u∆ satisfy
the maximum principle (14) and (24), respectively, it holds

∥max{|u| , |u∆|}∥L∞(Rd+m) ≤ ∥u0∥L∞(Rd+m) . (32)

Thus, for all k ∈ N and all j = 0, . . . , k − 1 we can estimate (29) by∥∥∥E[uk−j ]− E[uk−j
∆ ]

∥∥∥
L1(Rd)

≤ ∥pξ∥L∞(Rm)

∥∥∥uk−j − uk−j
∆

∥∥∥
L1(Rd+m)

≤ c̄k ∥pξ∥L∞(Rm) ∥u− u∆∥L1(Rd+m)

where we use Theorem 3 (i), Eqns. (31), (32) and Hölder’s inequality. Analogously, we verify (30) for
all k ∈ N ∥∥Ek[u]− Ek[u∆]

∥∥
L1(Rd)

≤ c̃k ∥pξ∥L∞(Rm) ∥u− u∆∥L1(Rd+m) .

Inserting (29) and (30) in (26) yields∥∥Mk
c [u]−Mk

c [u∆]
∥∥
L1(Rd)

(33)

≤ ∥pξ∥L∞(Rm) ∥u− u∆∥L1(Rd+m)

×
k∑

j=0

(
k

j

)[
c̄k

∥∥∥E[uk−j
∆ ]

∥∥∥
L∞(Rd)

+ c̃k
∥∥Ek[u]

∥∥
L∞(Rd)

]
.
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Applying Jensen’s inequality, (22) and Theorem 3 (ii) we estimate the expectation by the initial data
and its approximation∥∥Ek[u]

∥∥
L∞(Rd)

≤ ∥u0∥kL∞(Rd+m) ,
∥∥Ek−j [u∆]

∥∥
L∞(Rd)

≤
∥∥u0

∆

∥∥k−j

L∞(Rd+m)
.

Then the right–hand side in (33) can be further estimated by∥∥Mk
c [u]−Mk

c [u∆]
∥∥
L1(Rd)

≤ ∥pξ∥L∞(Rm) ∥u− u∆∥L1(Rd+m)

k∑
j=0

(
k

j

)[
c̄k

∥∥u0
∆

∥∥k−j

L∞(Rd+m)
+ c̃k ∥u0∥kL∞(Rd+m)

]
≤ ck ∥u− u∆∥L1(Rd+m) ,

with ck defined by (27).
□

We emphasize that Theorem 4 provides convergence of the moments for the deterministic approach
based on the Cauchy problem (10). In contrast to Monte Carlo methods and stochastic Galerkin
methods (gPC), the deterministic approach does not depend on the number of samples [20,19,1] and the
number of terms in the polynomial expansion [33], respectively. Instead, the convergence solely depends
on the spatial discretization of the problem (10) which can be seen as collocation points. Therefore,
this number can be related to the number of gPC nodes. However, contrary to gPC approaches we
do not have spectral convergence. On the other hand there is no requirement to solve for an extended
(and possibly) non–hyperbolic system.

Formally, the previous stated approach can be applied also to systems of hyperbolic conservation
laws. We will present numerical results for scalar hyperbolic conservation laws as well as for systems
of hyperbolic conservation laws in the following section.

5 Numerical results

To investigate the performance of the deterministic approach in comparison to Monte Carlo meth-
ods and to verify the theoretical findings in Theorem 4 we perform computations for the different
approaches. Here we briefly summarize the methods we are using.

Deterministic solver. For the approximation of a deterministic Cauchy problem we apply a
Runge–Kutta discontinuous Galerkin method [4] using polynomial elements of degree p = 2 and
an explicit third–order SSP–Runge–Kutta method with three stages for the time–discretization. As
numerical flux we choose the local Lax–Friedrichs flux with minmod limiter [4]. The performance is
enhanced by local multi–resolution based grid adaptation using multiwavelets, see [13]. Details on
the adaptive solver can be found in [8,7]. This solver is applied to approximate both the deterministic
Cauchy problem (10) on the higher–dimensional space–stochastic domain as well as to the deterministic
Cauchy problem corresponding to the stochastic Cauchy problem (4) for one event when performing
Monte Carlo sampling.

Monte Carlo methods. The Monte Carlo (MC) method [33,16,20] is a non–intrusive approach
to approximate the stochastic moments of a stochastic problem numerically. For this purpose, N ∈ N
independent, identically distributed realizations of a random variable have to be drawn and for each
realization the respective deterministic problem has to be solved numerically. Taking the mean over
all those numerical solutions yields an approximation of the expectation (1) of the stochastic Cauchy
problem (4). The simple implementation of a MC simulation has a low convergence rate ofO(N−1/2) for
N → ∞ [20] and more advanced variations of MC like quasi Monte Carlo (QMC) [29,21] or randomized
quasi Monte Carlo (RQMC) [17] methods have been applied. According to [20], an approximation of
the expectation on different levels of resolution of the spatial grid simultaneously leads to the multi–
level Monte Carlo (MLMC) method. Thereby, the major part of the realizations can be performed on
a coarse grid and just a small number of realizations have to be computed on a fine grid. We use MC,
QMC, RQMC and MLMC for comparison in the subsequent section.
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Stochastic collocation. To determine the moments in the deterministic problem, we combine
multiscale decomposition based on multiwavelets with stochastic collocation [23,28]. To avoid Gibb’s
phenomenon we use multi–element stochastic collocation [32,10] which performs stochastic collocation
separately for each cell of the adaptive grid. In contrast to Monte Carlo simulations or gPC, multires-
olution analysis accounts for the local structure of the stochastic by resolving regions with large local
changes, such as discontinuities, higher than smooth regions. This leads to an efficient and accurate
approximation of the stochastic moments, taking into account the stochasticity of the solution. The
number of collocation points on each cell is chosen such that the degree of the resulting polynomial in
stochastic collocation corresponds to the degree of the polynomials used in the discontinuous Galerkin
scheme.

5.1 Burgers’ equation with uncertain initial values

In this example we investigate the one–dimensional Burgers’ equation with uncertain initial data.
Furthermore, we compare the numerical solutions of our approach with different types of Monte Carlo
methods and show the computational effort.

Let ξ ∼ U(0, 1) be a uniform random variable. We consider the one–dimensional stochastic Burgers’
equation

∂tū(t, x;ωξ) + ∂x

(
ū2(t, x;ωξ)

2

)
= 0, x ∈ [−1, 3], t > 0 (34)

with different uncertain initial data ūr, ūs, respectively,

a) ūr(0, x;ωξ) =

{
eωξ , x < 0

e , x > 0
, b) ūs(0, x;ωξ) =

{
e , x < 0

eωξ , x > 0
. (35)

The initial value problem (34), (35) is a Riemann problem with a convex flux function exhibiting an
analytical solution for both initial conditions for all realizations ωξ of the random variable ξ [18, p.
28ff]. Furthermore, an analytical solution of the expectation and the variance is determined and shown
in Figure 1 for time t = 1.0. In addition, we present the corresponding 1.0-confidence region of the
problems. In the rarefaction case the stochasticity affects the solution up to x ≈ 3. For the shock
case on the other hand, the stochasticity does not affect the solution below x ≈ 2. To compare the
different approaches we measure the L1-errors to the analytical solutions of the expectations and of
the variance, respectively.

1 0 1 2 3
x

1.0

1.5

2.0

2.5

3.0

u

[u]
[u] ± Var[u]

Confidence region

1 0 1 2 3
x

1.0

1.5

2.0

2.5

3.0

u

[u]
[u] ± Var[u]

Confidence region

Figure 1: Analytical moments of the one–dimensional Burgers’ equation (34) with uncertain initial
data (35), corresponding to a rarefaction wave (left) and a shock wave (right) and its 1.0-confidence
region.
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The deterministic approach (10) corresponding to (34), (35) reads as follows

∂tu(t, x, ξ) + ∂x

(
u2(t, x, ξ)

2

)
= 0, (x, ξ) ∈ [−1, 3]× [0, 1], t > 0 (36)

with initial condition

a) ur(0, x, ξ) =

{
eξ , x < 0

e , x > 0
, b) us(0, x, ξ) =

{
e , x < 0

eξ , x > 0
. (37)

Due to the change of the variable we have to consider the space of all possible values of the random
variable leading to ξ ∈ [0, 1]. We emphasize that in contrast to the stochastic formulation (4) this for-
mulation treats the stochastic variable as an additional space dimension resulting in a two–dimensional
problem. The solution of (36), (37) for the two initial data ur and us are presented in Figure 2. Each

Figure 2: Rarefaction wave (left) and shock wave (right) of the two–dimensional deterministic approach
(36), (37) of the Burgers’ equation (top row) at time t = 1.0 with its adaptive grid (bottom row).

horizontal line represents a realization of a uniform random variable of the original problem (34), (35).
Thus, different realizations do not affect each other. For initial data (37a) we obtain for each ξ ∈ [0, 1]
a rarefaction wave, whereby the characteristic speed of the leading and the trailing edge of the rarefac-
tion wave are determined by the value of ξ in the initial condition (37a). On the other hand, for initial
data (37b) we observe a shock speed depending on ξ and that the shock travels faster for increasing ξ.
In contrast to the rarefaction case, the shock case also has discontinuities in the stochastic direction
ξ. Furthermore, we observe that the stochastic influence of our approach is reflected in the confidence
regions of the analytical solutions in Figure 1.

On the bottom row of Figure 2 the corresponding adaptive grids via multi–resolution analysis are
shown. Obviously, the grids are only refined in locations where the respective solution changes locally,
for instance, at the kinks of the rarefaction wave or at the shock. On the other hand, constant regions
like the left part of the shock are not refined, allowing to perform the numerical simulations on grids
with less cells.

For the numerical simulations we use grids with different refinement levels. For this purpose, let
L ∈ N be the maximum number of refinement levels, i.e., for each level ℓ = 0, . . . , L we have Mℓ,x =
2ℓM0,x cells in x-direction and Mℓ,ξ = 2ℓM0,ξ in ξ-direction, where M0,x,M0,ξ are the number of cells
in the initial grid in x-direction or ξ-direction, respectively. In the simulations we have chosen the
maximum number of refinement levels L = 6 and the number of cells of the initial grid M0,x = 8 and
M0,ξ = 4. We use the same number of cells in x-direction in the simulation of the one–dimensional
problem (34) and the two–dimensional approach (36). This ensures to study the stochastic effects on
the discretizations of the different methods. To compare the deterministic approach (36), (37) with
different Monte Carlo methods, we measure the L1-error of the expectation and the L1-error of the
variance, respectively. For readability, we denote the problems (34) and (36) with initial data (35a)
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(a) L1-error of expectation of the rarefaction case (b) L1-error of variance of the rarefaction case

(c) L1-error of expectation of the shock case (d) L1-error of variance of the shock case

Figure 3: L1-error of the moments of the uncertain Burgers’ equation at time t = 1.0 with N = 16000
samples for different Monte Carlo methods and the deterministic approach on an adaptive grid (top
row: rarefaction case; bottom row: shock case).

and (37a), respectively, as the rarefaction case and (35b) and (37b) as the shock case, respectively.
Figure 3 shows the L1-error of the rarefaction case and the shock case using MC, QMC, RQMC and
the deterministic approach (DET) on an adaptive grid with different refinement levels. For all Monte
Carlo methods we use N = 16000 samples on each level. In the rarefaction case MC has a worse
convergence rate in comparison to all other approaches. In particular, the error in expectation in the
shock case as well as the error in variance using MC is significantly worse than the other approaches.
However, the L1-error of MC of the variance in the shock case is comparable to all other methods. The
methods QMC and RQMC have for all simulations nearly the same convergence rate. On the other
hand, our approach has the same behavior as QMC and RQMC and has a slightly better L1-error
for all simulations. We emphasize that grid adaptation in the deterministic approach also affects the
stochastic direction (cf. Figure 2), leading to a coarser resolution of the stochastic space, whereby no
refinement strategy in the stochastic can be used in MC, QMC and RQMC methods. We would like
to emphasize that our approach benefits from the interplay between the stochastic collocation and
multiresolution analysis, which adequately treats the stochasticity of the solution, where Monte Carlo
methods are unable to capture high local changes, such as discontinuities, and treat them the same as
regions without any stochastic effects.

Since the approach has an additional spatial dimension in the stochastic we investigate the com-
putational effort. To study the performance of the different approaches, we consider the total number
of degrees of freedom (DoF) in the approximations and compare those with the related error of the
stochastic moments. In contrast to classical comparisons of computational time, for a fair comparison
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(a) Expectation of the rarefaction case (b) Variance of the rarefaction case

(c) Expectation of the shock case (d) Variance of the shock case

Figure 4: L1-error of the moments with respect to the total number of degrees of freedom of the
uncertain Burgers’ equation at time t = 1.0 (top row: rarefaction case, bottom row: shock case).

we investigate the total amount of all computations corresponding to the consumed energy over the
entire simulation. We note that all Monte Carlo methods are faster than our approach in real time
when a large amount of CPU–cores are available due to their perfect scalability capability. Although
our higher–dimensional deterministic solver runs in parallel there is some overhead due to load bal-
ancing. In contrast to the computational time, the number of the required degrees of freedom of the
simulations is proportional to the computation of all simulations on a single core. The number of de-
grees of freedom is obtained by summing up all required degrees of freedom of all cells in the adaptive
grid over all time steps. In contrast to DET, where we need to evaluate the degrees of freedom on a
two–dimensional grid, the one–dimensional adaptive grids of the Monte Carlo simulations are different
for each realization and therefore need to be considered separately.

In Figure 4 the L1-error is shown and the total number of degrees of freedom used in the different
algorithms for the rarefaction wave and the shock case, respectively. As before, all calculations are
performed on an adaptive grid.

For MC, QMC and RQMC we calculate every experiment on a grid with refinement level L = 6
but with different number of samples up to N = 16000. To compare the adaptive approaches we
also show MLMC. Both, the deterministic approach as well as MLMC are performed on an adaptive
grid with different refinement levels up to a maximum refinement level L = 6. For MLMC, we use
up to N = 21840 samples. In the rarefaction case, our approach needs significantly less degrees of
freedom to achieve a specific error compared to all Monte Carlo simulations. This is also observed
in the error of the expectation in the shock case. Therefore, our approach is more efficient than all
other presented methods. Also in the shock case, our approach is able to treat discontinuities in the
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stochastic dimension. As before the classical Monte Carlo approach provides the worst result. On the
other hand, our approach has no computational advantage over QMC or RQMC in the case of the
variance of the shock.

5.2 Burgers’ equation with non–uniform uncertain initial values

In this section, we consider the one–dimensional Burgers’ equation with uncertain initial data. In
contrast to Section 5.1, we consider smooth initial conditions. In addition, we investigate non–uniform
random variables. As before, we compare the numerical solutions of our approach with the Monte
Carlo method.

To formulate the problem, we first consider ξ to be an absolutely continuous random variable. The
stochastic Cauchy problem reads as follows:

∂tū(t, x;ωξ) + ∂x

(
ū2(t, x;ωξ)

2

)
= 0, x ∈ [0, 1], t > 0 (38)

with uncertain initial condition

ū(0, x;ωξ) = sin(2πx) sin(2πωξ), x ∈ [0, 1] (39)

for all realizations ωξ of the random variable ξ. In addition, we assume periodic boundary conditions
in the spatial direction. In this section, we consider the following random variables:

ξ1 ∼ U(0, 1), ξ2 ∼ N (0.5, 0.15), ξ3 ∼ B(2, 5), ξ4 ∼ B(5, 2), (40)

where N (µ, σ2) is the normal distribution with mean µ ∈ R and variance σ2 > 0 and B(α, β) is the
beta distribution for α, β > −1.

To reformulate the stochastic Cauchy problem (38), (39) in our deterministic formulation we have to
define the space of all possible outcomes of the random variables (40). Since the density of the uniform
random variable ξ1 and the densities of the beta distributed random variables ξ3, ξ4 have compact
support in [0, 1], we choose ξ ∈ [0, 1]. Since the density of the normal distribution ξ2 has non–compact
support, we have to cutoff the domain for the numerical simulations. In this case, choosing ξ ∈ [0, 1]
guarantees that more than 99.9% of all realizations are taken into account. Thus, the deterministic
approach of problem (38), (39) for the random variables ξ1, . . . , ξ4 reads

∂tu(t, x, ξ) + ∂x

(
u2(t, x, ξ)

2

)
= 0, (x, ξ) ∈ [0, 1]× [0, 1], t > 0 (41)

with uncertain initial condition

u(0, x, ξ) = sin(2πx) sin(2πξ), (x, ξ) ∈ [0, 1]× [0, 1] (42)

and periodic boundary conditions in the spatial direction of x. The numerical solution of (41), (42) is
presented in Figure 5.

As before, we interpret each horizontal line as a realization of the corresponding random variable.
For ξ < 0.5 a stationary shock is located at x = 0.5, whereby for ξ > 0.5 there is a rarefaction wave.
Due to the periodic boundary conditions, the roles are reversed at the boundaries x = 0 and x = 1.
Thus, for ξ < 0.5 a rarefaction wave develops at the boundaries whereby for ξ > 0.5 a stationary
shock occurs. In addition, we apply grid adaptation via multi–resolution analysis. The corresponding
adaptive grid is also shown in Figure 5. Obviously, the grid is more refined in regions with large local
changes and less refined in regions with smooth data.

To evaluate the stochastic moments, we apply multi–element stochastic collocation. We emphasize
that we have to calculate the numerical solution of (41), (42) only once for all random variables
ξ1, . . . , ξ4 in (40). The stochastic moments of these problems are then computed in a post–processing
step where we have to adjust the evaluation of the solution for each random variable. We refer to [32,
10] for more details.
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Figure 5: Solution for the Burgers’ equation (41) with uncertain initial data (42). Left: Initial data at
time t = 0; Middle: Numerical solution at time t = 0.35; Right: Corresponding adaptive grid for the
numerical solution at time t = 0.35.

(a) Uniform distribution U(0, 1) (b) Normal distribution N (0.5, 15)

(c) Beta distribution B(2, 5) (d) Beta distribution B(5, 2)

Figure 6: Stochastic moments of the problem (41), (42) for the different random variables (40) at time
t = 0.35.
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The stochastic moments obtained by our deterministic approach (41), (42) for all random variables
(40) are shown in Figure 6. The uniform distributed random variable ξ1 and the normal distributed
random variable ξ2 behave similar due to the symmetry of the corresponding densities at ξ = 0.5.
Since the mass of the normal distributed random variable ξ2 is more concentrated around ξ = 0.5
than the mass of the uniform distribution, the variance of the normal distributed random variable ξ2
is slightly smaller than the variance of the uniform random variable ξ1. In contrast to this, the mass
of the beta distributed random variables ξ3 and ξ4 is more concentrated in the regions ξ < 0.5 and
ξ > 0.5, respectively. For example, for the random variable ξ3, where the region ξ < 0.5 is preferred,
the effects of the stationary shock at x = 0.5 dominate the stochastic moments. On the other hand, for
the random variable ξ4, where most drawn realizations are in the region ξ > 0.5, the rarefaction wave
at x = 0.5 dominates the stochastic moments, with small influence of the stationary shock. Due to
the periodic boundary conditions, these effects are reversed at the boundary, respectively. In addition,
in Figure 6 we show the confidence interval of our approach to illustrate the affected regions of the
different random variables.

Next, we verify that the numerical approximation of the stochastic moments using our approach
is comparable to Monte Carlo simulations. In particular, we show that our approach has a better
performance in terms of the total number of degrees of freedom used during the simulations. As
described in Section 5.1 we use an adaptive grid with increasing refinement levels. In the simulations
we choose the maximum number of refinement level L = 6 and we set the number of cells in the initial
grid to M0,x = 8 in the spatial direction and M0,ξ = 16 in the stochastic direction for the deterministic
approach. As before, we fix the number of cells M0,x in the initial grid for all Monte Carlo simulations.
In Figure 7, we compare the L1–error of the expectation and the variance of the different approaches
with the corresponding stochastic moments of a reference solution with respect to the total number of
degrees of freedom. Here the reference solution is computed on a uniform mesh with L = 11 refinement
levels. As before, we refer to Section 5.1 for more information. For the deterministic approach we use
an adaptive grid with maximum refinement level L = 3, . . . , 6, as described above, whereby all Monte
Carlo simulations are performed on an adaptive grid with refinement level L = 6 and with varying
number of samples up to N = 16000.

In Figures 7 (a), (b) we see that for the uniform random variable ξ1 our method is much more
efficient than the Monte Carlo method, especially in approximating the expectation. For the normal
distributed random variable ξ2, our approach is still more efficient than the Monte Carlo simulation,
although our approach is no longer as efficient as in the uniform case, see Figures 7 (c), (d). The same
behavior is also observed for the beta distributed random variable ξ3 in Figures 7 (e), (f). Nevertheless,
our approach has a higher performance in approximating the stochastic moments but does not reach
the efficiency of the uniform case. Because of the periodic boundary conditions and because of the
symmetry of ξ4 with respect to ξ3 at ξ = 0.5, the L1-error of the beta distribution ξ4 behaves almost
the same as the L1–error of ξ3 and is therefore omitted in Figure 7.

The worse efficiency of the approximation of non–uniform random variables can be justified by the
fact that the adaptive grid of the numerical solutions of (41), (42) is the same for all random variable
(40). Thus, the grid adaptation treats all regions equally regardless of the local stochastic behavior.
Although, this adaptation strategy provides a good efficient approximation of the moments, it is not
optimal for non–uniform random variables. The investigation of an adaptation strategy with respect
to the stochastic behavior will be part of future work.

5.3 Euler equations with uncertain initial conditions

Here, we consider the one–dimensional Euler equations for a perfect gas with uncertain initial data.
Especially, we investigate Sod’s shock tube problem [27] and assume uncertain initial pressure on the
left. For this purpose, let be ξ ∼ U(0.2, 1.0) a random variable. We define for a realization ωξ the
conserved variable ū(t, x;ωξ) := (ρ̄, ρ̄v̄, ρ̄Ē)T describing the conservation of mass, momentum and
energy. Here, ρ̄ ≡ ρ̄(t, x;ωξ), v̄ ≡ v̄(t, x;ωξ) and Ē ≡ Ē(t, x;ωξ) denote density, momentum and total
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(a) Expectation with U(0, 1) (b) Variance with U(0, 1)

(c) Expectation with N (0.5, 0.15) (d) Variance with N (0.5, 0.15)

(e) Expectation with B(2, 5) (f) Variance with B(2, 5)

Figure 7: L1–error of the moments with respect to the total number of degrees of freedom of the Cauchy
problem with uncertain initial data at time t = 0.35.

energy, respectively, with

Ē =
1

2
v̄2 + ē, (43)

where ē ≡ ē(t, x;ωξ) is the internal energy of the system. We consider a perfect gas

ē =
p̄

(γ − 1)ρ̄
(44)
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with γ = 1.4 [31]. We investigate the behavior of the system with uncertain initial pressure on the left

p̄(0, x;ωξ) =

{
ωξ, x ≤ 0.5

0.1, x > 0.5
. (45)

The Euler equations are then

∂tρ̄+ ∂x(ρ̄v̄) = 0, (46a)

∂t(ρ̄v̄) + ∂x(ρ̄v̄
2 + p̄) = 0, x ∈ R, t > 0, (46b)

∂t(ρ̄Ē) + ∂x(v̄(ρ̄Ē + p̄)) = 0. (46c)

and the corresponding uncertain initial data is

ū(0, x;ωξ) =

{
(1.0, 0.0, 2.5ωξ)

T , x ≤ 0.5

(0.125, 0.0, 0.2)T , x > 0.5
. (47)

The initial value (47) is constructed such that for all realizations ωξ the pressure on the left side is
always higher than the pressure on the right side. This allows us to investigate the behavior of the
Sod’s shock tube.

We replace the stochastic parameter ωξ at the expense of an additional space dimension. Therefore,
the conserved variable becomes u(t, x, ξ) := (ρ, ρv, ρE)T for (x, ξ) ∈ R× [0.2, 1.0], where ρ ≡ ρ(t, x, ξ),
v ≡ v(t, x, ξ), E ≡ E(t, x, ξ) and p ≡ p(t, x, ξ). The initial condition of the pressure is given by

p(0, x, ξ) =

{
ξ, x ≤ 0.5

0.1, x > 0.5
. (48)

Thus, the deterministic approach of the system (46) reads

∂tρ+ ∂x(ρv) = 0, (49a)

∂t(ρv) + ∂x(ρv
2 + p) = 0, (x, ξ) ∈ R× [0.2, 1.0], t > 0, (49b)

∂t(ρE) + ∂x(v(ρE + p)) = 0, (49c)

with initial condition

u(0, x, ξ) =

{
(1.0, 0.0, 2.5ξ)T , x ≤ 0.5

(0.125, 0.0, 0.2)T , x > 0.5
. (50)

The solution to (49), (50) for the final time t = 0.2 is presented in Figure 8. Each horizontal cut
represents the solution of a single realization of the problem (49), (50). We observe that for higher
initial pressure the shock wave, the contact wave and the rarefaction wave propagate faster. This leads
to discontinuities in the new (stochastic) direction for the leading shock wave. On the other hand, we
only observe discontinuities for the conserved variables (ρ, ρv, ρE)T in the new direction across the
contact discontinuity with no discontinuities for velocity v and pressure p. Thus, the solution only
exhibits discontinuities in the new direction when there are discontinuities in the spatial direction, too.
Furthermore, we perform a multiresolution analysis which triggers finer grid resolution in non–smooth
areas and smooth regions are resolved on a coarser grid. The resulting adaptive grid is shown in Figure
8.

To verify our approach, we compare the stochastic moments of our approach with the stochastic
moments obtained by Monte Carlo simulation of the one–dimensional problem (46), (47). For both
approaches the initial grid has M0,x = 4 cells in x-direction. Additionally, we set the number of cells in
ξ-direction to M0,ξ = 4. The maximum number of refinement levels is set to L = 6 for both simulations.
For the Monte Carlo simulations we fix the number of samples to N = 32000. The comparison is
presented in Figure 9 at the final time t = 0.2. The expectations of both methods nearly coincide,
whereby the variance differs slightly. To investigate the total range of all possible realizations we show
the corresponding 1.0-confidence region of the our approach containing P-almost all realizations of the
problem. The confidence regions are also reflected in Figure 8 describing the stochastic influence on
each component.
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Figure 8: Solution for the uncertain Euler equations at time t = 0.2. Top row (from left to right):
density ρ; momentum ρv; density of energy ρE. Bottom row (from left to right): pressure p; velocity
v; adaptive grid.
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Figure 9: Comparison of stochastic moments between our approach and a Monte Carlo simulation to-
gether with its 1.0-confidence region at time t = 0.2. Top row (from left to right): density ρ; momentum
ρv; density of energy ρE. Bottom row (from left to right): pressure p; velocity v.

6 Conclusion

A deterministic approach to determine stochastic moments for scalar problems and systems of hy-
perbolic conservation laws with uncertain initial data has been presented. The idea is to interpret
stochastic variables of the original problem as additional spatial dimensions with zero flux. For this
approach we have proven that the entropy solution of our approach coincides with the random entropy
solution [20]. Furthermore, we have shown the existence of stochastic moments as well as numerical
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convergence of approximate stochastic moments. Our theoretical results have been verified numerically
with two experiments for Burgers’ equation and the Euler equations for both uniform and non–uniform
random variables.

It turned out that applying an adaptive discretization in space and stochastic simultaneously
improves the efficient computation of the stochastic moments in comparison to Monte–Carlo–type
methods. In particular, the efficiency improves if the uncertain solution exhibits discontinuities in the
stochastic variable. Compared to gPC approaches the proposed method does not require to deal with
possibly non–hyperbolic formulations. The presented approach allows us to study the interplay between
the spatial scales and the stochastic scales of the solution. On this basis, an improved adaptation strat-
egy can be considered which is subject of ongoing research.
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