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ON DERIVATIONS OF EVOLVING SURFACE NAVIER-STOKES
EQUATIONS

PHILIP BRANDNER∗, ARNOLD REUSKEN† , AND PAUL SCHWERING‡

Abstract. In recent literature several derivations of incompressible Navier-Stokes type equations
that model the dynamics of an evolving fluidic surface have been presented. These derivations differ
in the physical principles used in the modeling approach and in the coordinate systems in which
the resulting equations are represented. This paper has overview character in the sense that we put
five different derivations of surface Navier-Stokes equations into one framework. This then allows
a systematic comparison of the resulting surface Navier-Stokes equations and shows that some, but
not all, of the resulting models are the same. Furthermore, based on a natural splitting approach in
tangential and normal components of the velocity we show that all five derivations that we consider
yield the same tangential surface Navier-Stokes equations.

1. Introduction. Navier–Stokes type equations posed on manifolds is a classi-
cal topic in analysis, e.g. [7, 27, 26, 1, 14]. In recent years there has been a strongly
growing interest in surface Navier-Stokes equations, in particular concerning physi-
cal principles related to these equations and to tailor-made numerical discretization
methods [11, 12, 10, 15, 17, 19, 25, 8, 17, 9, 3, 20, 13]. One reason for this recent grow-
ing interest lies in the fact that these equations are used in the modeling of biological
interfaces, cf. the overview paper [28] and the references therein.

In this paper we focus on derivations of surface Navier-Stokes equations for evolv-
ing surfaces. In the past few years several derivations have been presented in the
literature [11, 12, 10, 15, 17], which differ in the physical principles used in the mod-
eling approach and in the coordinate systems in which the resulting equations are
represented. In [11, 10] mass and momentum conservation laws for material surfaces
are used as basic physical principles, whereas in [15, 17] similar conservation laws of
mass and momentum for a material volume are used and combined with a thin film
technique. In [12] the derivation is based on energy minimization principles. Besides
these differences in physical principles, there is also a difference in the representation
of the resulting flow equations. In some papers, e.g. [10, 2, 17, 18], local coordinate
systems (curvilinear coordinates) are used, whereas in other literature [11, 12, 15]
the standard Euclidean basis of R3, in which the evolving surface is embedded, is
used. Such different coordinate systems lead to different representations of surface
differential operators such as a covariant derivative or a surface divergence, and one
has to be careful when comparing equations formulated in such different coordinate
systems. Both the local curvilinear and the global Cartesian coordinate system have
attractive properties. The local coordinate system can be very useful for modeling of
more complex fluid properties, e.g. in certain classes of fluid membranes [10, 28] or in
flows of liquid crystals [17, 18]. The representation in global Cartesian coordinates is
very convenient for the development of numerical simulation methods for these flow
equations.

∗Institut für Geometrie und Praktische Mathematik, RWTH-Aachen University, D-52056 Aachen,
Germany (brandner@igpm.rwth-aachen.de).
†Institut für Geometrie und Praktische Mathematik, RWTH-Aachen University, D-52056 Aachen,

Germany (reusken@igpm.rwth-aachen.de).
‡Institut für Geometrie und Praktische Mathematik, RWTH-Aachen University, D-52056 Aachen,

Germany (schwering@igpm.rwth-aachen.de).

1



This paper has overview character in the sense that we put the different derivations of
surface Navier-Stokes equations presented in [11, 12, 10, 15, 17] into one framework.
Besides the unified survey of derivations we also present the following (new) results:

• Precise relations of certain relevant differential operators, such as covariant
derivatives and surface divergence operators, in different coordinate systems
are given. Most of these can be found or are (implicitly) used at different
places in the literature. Here we put this into one framework and derive
precise relations, e.g. as in Theorem 3.6 and Lemma 3.9.

• The presentation in a unified framework allows a systematic comparison of
the resulting surface Navier-Stokes equations. We will conclude that some of
these are identical but also some are different.

• A splitting approach in tangential and normal components of the velocity is
presented, which shows that all five derivations that we consider yield the
same tangential surface Navier-Stokes equations.

Since the (incompressible) surface Navier-Stokes equations play a fundamental role
in the modeling of interfaces or surfaces with fluidic behaviour, we consider a good
understanding of several known surface Navier-Stokes systems to be of major impor-
tance.

The remainder of this paper is organized as follows. In Section 2 we define evolving
material surfaces. In Section 3 surface differential operators in different coordinate
systems are defined and compared. Five derivations of surface Navier-Stokes equa-
tions, known from the literature, that differ in the underlying physical principles and
in the coordinate systems used, are treated in Section 4. In Section 5 we discuss and
compare these equations. In particular a splitting of these equations in the tangential
and the normal components is derived and it is shown that all five derivations result
in the same tangential surface Navier-Stokes system.

2. Evolving material surfaces. We outline how evolving material surfaces are
defined. A more precise formal description of the notion “material” is given in e.g.
[16]. Let Γ = Γ(0) be a smooth (at least C2) connected surface embedded in R3. A
material point z ∈ Γ(0) moves in time along a trajectory with coordinates x(z, t) ∈ R3

and a smooth velocity field v(x(z, t), t) ∈ R3. For all z ∈ Γ(0), the solutions of the
initial value problems {

x(z, 0) = z,
d
dtx(z, t) = v(x(z, t), t)

(2.1)

define the evolving surface

Γ(t) = {y ∈ R3 | y = x(z, t), z ∈ Γ(0)}. (2.2)

The flow map Φt : Γ(0) → Γ(t), 0 ≤ t ≤ T is defined by Φt(z) = x(z, t). Let
ΦU : R2 ⊃ U → Γ(0) be a local parametrization. We assume that the mapping ΦU :
U → ΦU (U) is a diffeomorphism. The coordinates in U are denoted by ξ = (ξ1, ξ2).
Composition of ΦU and Φt yields the mapping

R(ξ, t) := Φt(ΦU (ξ)), (2.3)

which gives the position of the material point y = ΦU (ξ) ∈ Γ(t) ⊂ R3 at time t.
Below in Section 3.1 we use ξ → R(ξ, t) as a (local) parametrization of Γ(t). Note
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that if the flow field v is not identically zero, this parametrization is non-constant as
a function of t, even if Γ(t) = Γ(0) for all t.

The outward pointing normal vector on Γ(t) is denoted by n = n(y, t), and P =
P(y, t) = I − nnT is the projection on the tangential plane at y ∈ Γ(t). Below we
often delete the argument (y, t) in the notation. For a vector field u on Γ(t) we shall
use throughout this paper the notation uT = Pu for the tangential component and
uN = u · n for the coordinate in normal direction, so that

u = uT + uNn on Γ(t). (2.4)

If in the particle velocity v(·, t) = vT (·, t)+vN (·, t)n(·, t) we have vN (·, t) = 0 on Γ(t),
there is no normal velocity of the surface which means that the geometry of Γ(t) is
stationary and there is only a tangential particle flow field.

We assume that on Γ(t) there is a continuous strictly positive particle density distri-
bution denoted by ρ(y, t), y ∈ Γ(t).

In Section 4, based on certain physical principles we derive Navier-Stokes type equa-
tions that determine the particle velocity field v and the density distribution ρ. As
discussed in the introduction we will compare derivations in different coordinate sys-
tems. Therefore, in the next section we collect results concerning representations of
surface differential operators in different coordinate systems, which will be used in
Section 4.

3. Coordinate systems and surface differential operators. In this section
we introduce surface differential operators in two different coordinate systems.

3.1. Coordinate systems. We treat representations of vector fields u : Γ→ R3

and of operator valued mappings T : Γ → L(R3,R3), where L(R3,R3) denotes the
space of linear mappings R3 → R3, in two different coordinate systems. The first
one is the Cartesian coordinate system corresponding to the standard Euclidean basis
in R3, denoted by {ê1, ê2, ê3}. The second one is a curvilinear coordinate system,
that we introduce below. Most of the results presented in this section are standard
material that can be found in many textbooks, e.g. [5, 24]. We use tensor notation
and the Einstein summation convention in the following way: using Latin indices
(i,j,k,. . . ) we sum over 1, 2, 3, using Greek indices (α, β, γ, . . . ) we sum up over 1, 2.
Partial derivatives w.r.t. the Cartesian coordinates ξα in the standard basis of R2 are
denoted by ∂α = ∂

∂ξα
.

In the remainder of this section we take a fixed t. The local parametrization of
Γ = Γ(t) is given by R(ξ) = R(ξ, t), ξ ∈ U . Hence, R(U) ⊂ Γ(t). We assume that
this parametrization is an immersion, hence the matrix

(
∂1R(ξ) ∂2R(ξ)

)
∈ R3×2

has rank two for each ξ ∈ U . Each point y ∈ R(U) can be unambiguously written
by y = R(ξ) with ξ ∈ U . The two coordinates ξα of ξ are called curvilinear or local
coordinates of y = R(ξ). We introduce the covariant basis of the tangent space at
y = R(ξ) ∈ Γ given by gα = gα(ξ) := ∂αR(ξ) ∈ R3. The components of the metric
tensor (or first fundamental form) are defined by

gαβ(ξ) := gα(ξ) · gβ(ξ). (3.1)

The metric tensor is symmetric positive definite. The contravariant basis of the tan-
gent plane gβ is defined by gα ·gβ = δβα. Here, δβα denotes the Kronecker symbol. The
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contravariant components of the metric tensor are defined by gαβ(ξ) := gα(ξ) ·gβ(ξ).
The following relations hold:

gα = gαβgβ , gα = gαβgβ , gαγgγβ = δαβ .

In order to have a basis of R3 we add to the covariant and contravariant basis a third
vector, namely the normal vector (at y = R(ξ)):

g3 = g3 := n =
g1 × g2

‖g1 × g2‖
=

g1 × g2

‖g1 × g2‖
.

Note that, given the first fundamental form, this determines the choice of the orien-
tation of the normal vector n. The vectors gi and gi for i = 1, 2, 3, each form a basis
of R3. We can (locally) interpret the basis functions gi and gi as functions defined on
the surface: gi(y) := gi(R(ξ)), ξ ∈ U . For presentation purposes it is convenient to
identify the (contravariant) Euclidean basis in R3 with its covariant one, i.e. êi := êi,
i = 1, 2, 3.

For a vector field u : Γ→ R3 we introduce the representations

u = uigi = uig
i = ûiê

i.

Note that ui = u · gi, ui = u · gi and ûi = u · êi hold. The ui (ui) are called covari-
ant (contravariant) components or also local coordinates. The ûi are the Cartesian
coordinates.

For representation of an operator valued mapping T : Γ → L(R3,R3) we use the
tensor calculus format (cf. [5, Section 8.4]):

T = Tij(g
i ⊗ gj) = T ij(gi ⊗ gj) = T̂ij(êi ⊗ êj),

with the outer product given by (u ⊗ v)w = (v · w)u for all u,v,w ∈ R3. These
representations define corresponding matrices that are representations of the same
linear operator in different bases. The matrix entries satisfy Tij = gi · (Tgj), T

ij =

gi · (Tgj), T̂ij = êi · (Têj) and are called covariant, contravariant and Cartesian
components, respectively. We define the transposed linear operator TT by the relation
Tu · w = u · TTw according to the Euclidean scalar product in R3. Tensors can
also be represented using mixed components (cf. [5, Section 8.4]). For a symmetric
linear operator T, i.e. T = TT , we introduce the mixed (between covariant and
contravariant) matrix representation by

T = T ij (gi ⊗ gj) = T ij (g
j ⊗ gi).

The relations T ij = gi · (Tgj) = gj · (Tgi) hold.

For a symmetric linear operator T the sum of its eigenvalues is denoted by tr(T). Since
eigenvalues are invariant under basis transformations, we have tr(T) = Tii = T̂ii = T ii .

The projection operator P = I− nnT is defined in local coordinates by P(cigi) :=
cαgα. In local coordinates the splitting as in (2.4) takes the form uT := Pu = uαgα
and uN = u · n = u3 = u3.

We recall the second fundamental form B = B(y), y ∈ Γ, also called Weingarten
mapping or shape operator, which is a symmetric linear operator for which B = PBP
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holds. From the latter property it follows that B = bij(g
i⊗gj) = bαβ(gα⊗gβ) holds.

For the covariant components we have [5, Theorem 8.13-1, Theorem 8.14-1]

bαβ = g3 · ∂αgβ = −∂αg3 · gβ = bβα. (3.2)

For the mixed components of the second fundamental form the relation bβα = gβσbσα
holds. Let κ1, κ2 and 0 be the eigenvalues of B. We introduce the (doubled) mean
curvature κ = tr(B) = κ1 + κ2 and the Gaussian curvature K = κ1κ2. The mean
curvature can be represented in mixed components by κ = bαα.

3.2. Surface differential operators. In this section we recall several surface
differential operators. For a given t, let φ : Γ = Γ(t) → R be a be a scalar function,
u : Γ → R3 be a (not necessarily tangential) vector field and T : Γ → L(R3,R3) an
operator valued mapping. All are assumed to be at least C1-smooth. We will study
partial derivatives and gradients of φ, u and T and divergence operators for u and T.
Representations in different bases of u = u(y) and T = T(y), y ∈ Γ are considered.
First in Section 3.2.1 we recall standard definitions and results for derivatives in local
coordinates representation. Note that in this case the basis used in R3 depends on the
(base) point y. In Section 3.2.2 we list (standard) definitions for analogous gradient
and divergence operators in case of representation in Cartesian coordinates in R3.
In Section 3.2.3 we then derive relations between the corresponding operators in the
different representations. In the last part of this section we introduce the material
derivative in a direction along the moving surface, which can also be formulated both
in curvilinear and Cartesian coordinates.

3.2.1. Surface differential operators in curvilinear coordinates. We re-
call some basic differential geometry concepts, e.g. [5, Chapter 8]. Note that we
have the following representations in curvilinear coordinates: u = uigi = uig

i and
T = T ij(gi ⊗ gj) = Tij(g

i ⊗ gj). All component functions are differentiable be-
cause the basis vectors gi and gi are smooth. Since R is an immersion, there are
uniquely defined functions φ̄ : U → R, ū : U → R3 and T̄ : U → L(R3,R3) such that
φ̄(ξ) = φ(R(ξ)), ū(ξ) = u(R(ξ)) and T̄(ξ) = T(R(ξ)).

Definition 3.1. The partial derivatives ∂α of the scalar function φ, the vector field
u and the linear operator T are defined in terms of the corresponding functions φ̄, ū
and T̄ by

∂αφ(y) := ∂αφ̄(ξ), ∂αu(y) := ∂αū(ξ), ∂αT(y) := ∂αT̄(ξ) with y = R(ξ).

We now derive representations of these partial derivatives in terms of a curvilinear
coordinate system, which are used at several places in the remainder of this paper.
For this we use the Christoffel symbols (cf. [5, Theorem 8.13-1])

Γσαβ := gσ · ∂αgβ = Γσβα.

These symbols can also be formulated in terms of the metric tensor (cf. [5, Theorem
8.13-1,Theorem 8.14-1]):

Γσαβ =
1

2
gστ (∂βgατ + ∂αgβτ − ∂τgαβ).

Representations of partial derivatives of vector fields in terms of a curvilinear coordi-
nate system are given in the following theorem from [5, Theorem 8.13-1]. We extend
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this theorem with an analogous result (3.4) for partial derivatives of operator-valued
functions T : Γ→ L(R3, TΓ), where TΓ denotes the tangent bundle of Γ. A proof of
the result (3.4) is given in the appendix.

Theorem 3.2. For a vector field u, the partial derivatives have the following repre-
sentations:

∂αu = ∂α(uig
i) = (∂αuβ − Γγαβuγ − bαβu3)gβ + (∂αu3 + bβαuβ)g3

= (uβ|α − bαβu3)gβ + (u3|α + bβαuβ)g3

= ∂α(uigi) = (∂αu
β + Γβαγu

γ − bβαu3)gβ + (∂αu
3 + bαβu

β)g3

= (uβ|α − b
β
αu

3)gβ + (u3
|α + bβαu

β)g3,

(3.3)

where we use the abbreviations

uβ|α := ∂αuβ − Γγαβuγ , uβ|α := ∂αu
β + Γβγαu

γ , u3|α = u3
|α := ∂αu3.

Let T = Tαβ(gα ⊗ gβ) = Tαβ(gα ⊗ gβ) be a function with values in L(R3, TΓ). For
the partial derivatives we have the representations:

∂γT = Tαβ|γ (gα ⊗ gβ) + Tαβbγα(g3 ⊗ gβ) + Tαβbγβ(gα ⊗ g3)

= Tαβ|γ(gα ⊗ gβ) + Tαβb
α
γ (g3 ⊗ gβ) + Tαβb

β
γ (gα ⊗ g3),

(3.4)

where we use the abbreviations

Tαβ|γ := ∂γT
αβ + ΓαµγT

µβ + ΓβµγT
αµ, Tαβ|γ := ∂γTαβ − ΓµαγTµβ − ΓµβγTαµ.

The relation P∂αu = uβ|αgβ for tangential vector fields u motivates the notation
uβ|α.
We recall standard definitions of surface differential operators in curvilinear coordi-
nates [24, 23].

Definition 3.3. For a scalar function φ ∈ C1(Γ,R) the surface gradient is defined
by

∇Γφ := ∂αφgα.

For a vector field u ∈ C1(Γ,R3) we define the α-th partial covariant derivative ∇αu
and the covariant derivative ∇Γu by

∇αu := P∂αu, ∇Γu := ∇αu⊗ gα.

The surface divergence of u ∈ C1(Γ,R3) and T ∈ C1(Γ, L(R3,R3)) are defined by

divΓu := ∂αu · gα, divΓT := (∂αT)Tgα. (3.5)

Note that there is a transpose in the definition of divΓT. The definitions of the
surface gradient, covariant derivative and surface divergence operators above do not
depend on the choice of the parametrization, cf. [24].

Remark 3.1. Another surface differential operator for a vector field u ∈ C1(Γ,R3)
that plays a natural role in this setting is the surface gradient of u, defined by ∇Su :=
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gα ⊗ ∂αu, cf. [24]. Note that it maps into the tangent bundle. It is related to the
covariant derivative via ∇Γu = P∇TSu (we use the notation ∇TSu = (∇Su)T ). We
use this surface gradient only in the proof of Theorem 3.6.

Remark 3.2. In [23, 24], the covariant derivative of tangential vector functions u
is defined by ∇Γu := ∇αu ⊗ gα. In Definition 3.3 we extended this to general (not
necessary tangential) vector fields.

Using results from Theorem 3.2 one obtains representations of the α-th partial covari-
ant derivative in the covariant basis gα in terms of (derivatives of) the contravariant
components ui in u = uigi:

∇αu = P∂αu = (∂αu
β + Γβαγu

γ − bβαu3)gβ = (uβ|α − b
β
αu

3)gβ . (3.6)

This result shows that the notation uβ|α introduced in Theorem 3.2 is natural, in the

sense that for tangential u we have ∇αu = uβ|αgβ .

If u is tangential, the relation

∇Γu = uα|β(gα ⊗ gβ) (3.7)

holds, i.e., the covariant components of ∇Γu are given by uα|β . This induces an
equivalent alternative definition of the covariant derivative, that is sometimes used in
the literature. An alternative definition of surface divergence of a vector field can be
based on the relation

divΓu = uα|α. (3.8)

In the following lemma, we present an analogous representation result for the diver-
gence of an operator-valued function. A proof is given in the appendix.

Lemma 3.4. For T = Tαβ(gα ⊗ gβ) the following holds:

divΓT = Tαβ|αgβ + Tαβbαβg3.

3.2.2. Surface differential operators in Cartesian coordinates. We recall
definitions of surface differential operators in terms of representations in Cartesian
coordinates as in [11]. The partial derivatives w.r.t. the standard basis ê1, ê2, ê3 in

R3, i.e., y = yiêi. are denoted by ∂̂k := ∂
∂yk

. The gradient of a scalar function f

w.r.t. the Cartesian coordinates is given by the vector ∇̂f := (∂̂if)êi. The gradient

(Jacobian) of a vector-valued function u is given by ∇̂u := ∂̂ku ⊗ êk, or in matrix

notation (∇̂u)ij = ∂̂jui. Note the structural analogy between ∇̂u = ∂̂ku ⊗ êk and
the definition of the covariant derivative ∇Γ = P∂αu⊗ gα (cf. Definition 3.3).

To define Cartesian surface differential operators based on Cartesian representations,
we extend functions defined on the surface to a small open neighborhood Gδ(Γ) :=
Gδ := {x ∈ R3 | dist(x,Γ) < δ} with some sufficiently small δ > 0. For a given
scalar function φ on Γ a smooth extension to a function defined on Gδ is denoted by
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φe. Similarly for vector fields and operator-valued functions on Γ. The specific choice
of the extension is not essential; one may use a constant extension along normals.
We now introduce surface differential operators based on the “Cartesian gradient” ∇̂,
applied to the extended quantities.

Definition 3.5. For a scalar function φ ∈ C1(Γ,R) the surface gradient is defined
by

∇̂Γφ := P∇̂φe.

For a vector field u ∈ C1(Γ,R3) we define the covariant derivative ∇̂Γu by

∇̂Γu := P∇̂ueP.

The surface divergence of u ∈ C1(Γ,R3) and T ∈ C1(Γ, L(R3,R3)) are defined by

d̂ivΓu := tr(P∇̂ueP), d̂ivΓT := d̂ivΓ

(
TT êi

)
êi.

These definitions of the surface differential operators in Cartesian coordinates are
independent of the choice of the extension and only depend on the function values on
the surface. Note that the definition of the surface divergence of the operator valued
function T in Cartesian coordinates is based on the surface divergence of the vector
field TT êi. In matrix notation this means that we take the surface divergence of T
row-wise, which agrees with the usual definition in the literature (cf. [11, 8, 3]).

3.2.3. Relations between the surface differential operators in different
coordinate systems. In this section we derive relations between surface differential
operators given in the Definitions 3.3 and 3.5. The results are as expected and have
been used (implicitly) at several places in the literature. We did not find, however,
proofs of all these basic results in the literature. Therefore we include elementary
proofs here.

Theorem 3.6. Let φ ∈ C1(Γ,R), u ∈ C1(Γ,R3) and T ∈ C1(Γ, L(R3,R3)). For
the surface gradients, covariant derivatives and surface divergence operators defined
in Definitions 3.3 and 3.5 the following relations hold on Γ:

∇Γφ = ∇̂Γφ, ∇Γu = ∇̂Γu, divΓu = d̂ivΓu, divΓT = d̂ivΓ(TT ). (3.9)

Proof. A proof of the first equality can be found e.g. in [24, 6]. For completeness we
include an elementary proof. Using the chain rule we get, with y = R(ξ) ∈ Γ,

∂αφ(y) = ∂α(φ ◦R)(ξ) = ∂α(φe ◦R)(ξ) = ∂̂kφ
e(R(ξ)) (∂αR(ξ) · êk)

= ∂̂kφ
e(y) (gα · êk).

Thus we get

∇Γφ(y) = ∂αφ(y)gα =
[
∂̂kφ

e(y) (gα · êk)
]
gα = ∂̂kφ

e(y)
[

(gα · êk)gα︸ ︷︷ ︸
Pêk

]
= ∂̂kφ

e(y)Pêk = P
[
∂̂kφ

e(y)êk
]

= P∇̂φe(y).
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For vector fields the transposed Jacobian is given by

∇̂Tue = êk ⊗ ∂̂kue. (3.10)

Using the chain rule we get, with y = R(ξ) ∈ Γ,

∂αu(y) · êi = ∂α(u ◦R)(ξ) · êi =
[
∂̂ku

e(R(ξ)) · êi
][
∂αR(ξ) · êk

]
=
[
∂̂ku

e(y) · êi
][

gα · êk
]
.

Combing this with (3.10) and using the surface gradient ∇Su = gα ⊗ ∂αu (cf. Re-
mark 3.1) we obtain

∇Su êi = (gα ⊗ ∂αu)êi = gα(∂αu · êi) = gα
[
(∂̂ku

e · êi)(gα · êk)
]

=
(
∂̂ku

e · êi
)
Pêk = P

(
êk ⊗ ∂̂kue

)
êi = P∇̂Tueêi.

(3.11)

Using ∇Γu = P∇TSu completes the proof of the relation for the covariant derivative
of u. For the surface divergence of a vector function we get

divΓu = ∂αu · gα = δαγ (∂αu · gγ) = (gα · gγ)(∂αu · gγ) = [(gα ⊗ ∂αu)gγ ] · gγ

= (∇Su gγ) · gγ
(3.11)

= (P∇̂Tuegγ) · gγ = (P∇̂TuePgi) · gi = tr(P∇̂ueP)

= d̂ivΓu.

For the surface divergence of an operator-valued function T we have

divΓT · êi = ((∂αT)Tgα) · êi = δαβ êi · ((∂αT)Tgβ) = (gα · gβ)(∂αTêi) · gβ

= ((gα ⊗ ∂αTêi)g
β) · gβ = ((gα ⊗ ∂αTêi)Pgi) ·Pgi

= tr
[
P(gα ⊗ ∂αTêi)P

]
= tr

[
P∇S(Têi)P

] (3.11)
= tr

[
P∇̂T (Teêi)P

]
= tr

[
P∇̂(Teêi)P

]
= d̂ivΓ(Têi) = d̂ivΓ(TT ) · êi.

Note that in the relation for the surface divergence of T in (3.9) a transpose is needed.
This would vanish if either in Definition 3.3 or in Definition 3.5 one deletes the trans-
pose in the definition of the surface divergence of T. The results in Theorem 3.6
confirm that the operators defined in Definition 3.3 indeed do not depend on the
parametrization.

The shape operator, given in curvilinear coordinates in (3.2), can be represented in

the Cartesian coordinate system as B = −∇̂Γne (proof in the appendix).

3.2.4. The material derivative. We introduce a derivative in which the time
dependence of the parametrization R(ξ, t), ξ ∈ U , is used. Let I = (0, T ) be a time
interval with T > 0 sufficiently small such that for all z ∈ ΦU (U) ⊂ Γ(0) the ordinary
differential equation (2.1) has a unique solution for t ∈ I. We define the (local)
evolving surface ΓU (t) = {y ∈ R3 | y = R(ξ, t), ξ ∈ U }, t ∈ I. The corresponding
space-time manifold is given by

S = S(U, I) :=
⋃
t∈I

ΓU (t)× {t} ⊂ R4.

9



Note that S is parametrized by R : U × I → S, R(ξ, t) = (R(ξ, t), t). Given the
velocity v(y, t), y ∈ ΓU (t) from (2.1) we define v̄(ξ, t) := v(R(ξ, t), t), (ξ, t) ∈ U × I.
Thus we have the relation

v̄(ξ, t) =
∂

∂t
R(ξ, t) on U × I. (3.12)

Definition 3.7. Let f ∈ C1(S) be a scalar- or vector function and f̄ ∈ C1(U×I) the
function defined by f̄(ξ, t) = f(R(ξ, t), t) for (ξ, t) ∈ U × I. The material derivative
of f on S is defined by

•
f(y, t) := ∂tf̄(ξ, t), y = R(ξ, t).

Clearly this is a definition in terms of the local coordinates ξ of the surface Γ(0).

To obtain a Cartesian representation of the material derivative, we use the same
approach as in the previous section and extend the functions defined on the space-time
manifold S to an open neighborhood Gδ = Gδ(S), given by Gδ =

⋃
t∈I Gδ(ΓU (t))×{t}.

The neighborhood Gδ(ΓU (t)) of ΓU (t) is as defined in the previous section. The
following lemma yields a representation of the material derivative defined above in
terms of derivatives w.r.t. Cartesian coordinates in R3 ×R. The result is well-known
and easy to prove, based on application of the chain rule. For completeness we include
an elementary proof.

Lemma 3.8. Let φ ∈ C1(S,R) and u ∈ C1(S,R3) with smooth extensions φe ∈
C1(Gδ,R) and ue ∈ C1(Gδ,R3). For the material derivatives of φ and u the following
holds:
•
φ(y, t) = ∂tφ

e(y, t) + ∇̂φe(y, t) · v(y, t),
•
u(y, t) = ∂tu

e(y, t) + ∇̂ue(y, t)v(y, t).

Proof. For (y, t) ∈ S we write y = R(ξ, t). We use the chain rule for the function
φe(R(ξ, t), t) = (φe ◦ F )(t) with the auxiliary function F : I → R4, t 7→ (R(ξ, t), t)
and get

•
φ(y, t) = ∂tφ̄(ξ, t) =

d

dt
φ(R(ξ, t), t)

=

3∑
k=1

∂̂kφ
e(R(ξ, t), t)

(
∂

∂t
R(ξ, t) · êk

)
+ ∂tφ

e(R(ξ, t), t) · 1

= ∂tφ
e(R(ξ, t), t) + ∇̂φe(R(ξ, t), t) · ∂

∂t
R(ξ, t). (3.13)

Using y = R(ξ, t) and relation (3.12), we obtain

•
φ(y, t) = ∂tφ

e(y, t) + ∇̂φe(y, t) · v̂(y, t).

The same arguments can be used to derive the relation for u.

The material derivative is used, for example, in the Leibniz rule or transport theorem
for an arbitrary material subdomain γ(t) ⊂ ΓU (t):

d

dt

∫
γ(t)

f ds =

∫
γ(t)

•
f + f divΓv ds, (3.14)

for f ∈ C1(S,R).
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3.3. Time derivative of first fundamental form. In this section we consider
a time derivative of the first fundamental form, which will be used in the remainder.
The local coordinate system introduced in Section 3.1 depends on the time variable
t, cf. (2.3) and Section 3. In particular for the covariant basis gα = ∂αR we have
gα = gα(ξ, t), ξ ∈ U , t ∈ I. Hence the first fundamental form, cf. (3.1), depends not
only on ξ but also on the time variable, gαβ = gαβ(ξ, t). The change (as function of
time) of the metric tensor is determined by the velocity field v, which determines the
time dependence of the parametrization R = R(ξ, t) = Φt(ΦU (ξ)) via the flow map
Φt. Using Theorem 3.2, the following relation for the time derivative of the metric
tensor is derived (recall v = vig

i = vigi):

∂

∂t
gαβ = ∂tgα · gβ + gα · ∂tgβ = ∂t∂αR · gβ + gα · ∂t∂βR = ∂αv · gβ + ∂βv · gα

=
(
(vγ|α − bαγv3)gγ + (v3|α + bγαvγ)g3

)
· gβ

+
(

(vγ|β − bβγv3)gγ + (v3|β + bγβvγ)g3
)
· gα

= vβ|α + vα|β − 2v3bαβ . (3.15)

For this time derivative of the metric tensor, scaled with a factor 1
2 , we introduce the

notation

Eαβ :=
1

2

∂

∂t
gαβ . (3.16)

For a given (ξ, t) ∈ S a corresponding linear operator E = E(ξ, t) : R3 → R3 is given
by E := Eαβ(gα⊗gβ) = Eαβ(gα⊗gβ). This operator can also be expressed in terms
of the covariant derivatives introduced in the Definitions 3.3 and 3.5 as shown in the
following lemma. A proof of this lemma is given in the Appendix.

Lemma 3.9. The following relations hold:

E =
1

2
(∇Γv +∇TΓv) =

1

2
(∇̂Γv + ∇̂TΓv). (3.17)

4. Derivations of surface Navier-Stokes equations. In this section we out-
line five different derivations of surface Navier-Stokes equations known from the lit-
erature [10, 11, 12, 15, 17], which use both different physical principles and represen-
tations in different coordinate systems. In the five subsections below we present, in a
unified framework, the following derivations:

(1) In [10] as physical principles the conservation laws of surface mass and mo-
mentum quantities are used. Surface Navier-Stokes equations in curvilinear
coordinates are derived.

(2) In [11] the same conservation laws of surface mass and momentum quan-
tities as in [10] are used and surface Navier-Stokes equations in Cartesian
coordinates in R3 are derived.

(3) In [12] the same surface mass conservation law as in [10, 11] is used. Instead
of a surface momentum conservation principle a variational energy principle
is used. The equations are derived in Cartesian coordinates in R3.

(4) In [15] as physical principles the conservation laws of volume mass and mo-
mentum quantities are used in a thin tubular neighborhood of the (evolving)
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surface. Combined with a thin film limit procedure, surface Navier-Stokes
equations are derived in Cartesian coordinates.

(5) In [17] the same physical principles of volume mass and momentum conserva-
tion in a thin tubular neighborhood as in [15] are used. The resulting volume
Navier-Stokes equations are represented in a thin film curvilinear local co-
ordinate system. A thin film limit procedure is applied to derive tangential
surface Navier-Stokes equations in curvilinear coordinates.

In the approaches (1), (2), (4), (5) one uses an ansatz for the viscous stress tensor,
namely the standard Newtonian tensor in (4) and (5) and the Boussinesq-Scriven
tensor in (1) and (2). In (3) an ansatz for the viscous surface dissipation energy
is used. Below we outline only the key ideas of the derivations and refer to the
corresponding papers for more details.

4.1. Surface mass and momentum conservation in curvilinear coordi-
nates. In this section, a derivation of surface Navier-Stokes equations along the same
lines as in [10] is presented. In that paper the resulting surface Navier-Stokes equa-
tions are formulated in tensor calculus without using surface differential operators like
∇Γ and divΓ. To be able to compare the resulting equations with those obtained in
the other approaches, we rewrite these using the differential operators introduced in
Section 3.2.1 and results derived in Section 3.3.

The derivation is based on conservation laws of mass and momentum. We assume
the surface to be inextensible, i.e. d

dt

∫
γ(t)

1 ds = 0 holds for an arbitrary material

subdomain γ(t) ⊂ Γ(t). The Leibniz rule (3.14) and the arbitrariness of γ(t) yield

divΓv = 0. (4.1)

Let ρ denote the surface mass density. Conservation of mass, the Leibniz rule and
divΓv = 0 lead to

0 =
d

dt

∫
γ(t)

ρ ds =

∫
γ(t)

•
ρ ds.

Arbitrariness of γ(t) and a smoothness assumption on ρ imply
•
ρ = 0. Hence, if ρ is

constant on Γ(0), which we assume here, it follows that the surface mass density ρ is
constant on the evolving surface Γ(t).

As ansatz for surface momentum conservation the equation

d

dt

∫
γ(t)

ρv ds = F(γ(t)) (4.2)

is used, with a force F decomposed into external area forces acting on γ(t) and internal
forces acting on the boundary ∂γ(t).

Remark 4.1. The (surface) integral of a vector valued function
∫
γ(t)

u ds, cf. (4.2),

is defined in the usual way. We chose a fixed (not necessarily orthogonal) basis of R3,
say w1,w2,w3. For u(s) = ui(s)wi, we then define

∫
γ(t)

u(s) ds = wi

∫
γ(t)

ui(s) ds.

The results derived below are independent of the choice of w1,w2,w3.

We collect the external forces, consisting of normal and shear stresses, in the force
term f = fαgα + fNn. For the internal forces the Cauchy ansatz is made, i.e., these
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forces are of the form Tν with a stress tensor T and ν the in-plane unit normal on
∂γ(t). Using Tν = Tαβναgβ the total net force on γ(t) can be written as

F(γ(t)) =

∫
γ(t)

f ds+

∫
∂γ(t)

Tαβναgβ ds. (4.3)

As in [10], we apply the Leibniz rule on the left-hand side of (4.2) and Greens formula
on the boundary integral of the right-hand side of (4.3). Using divΓv = 0, this yields∫

γ(t)

ρ
•
v ds =

∫
γ(t)

f + T βα|β gα + Tαβbαβn ds.

Due to the arbitrariness of γ(t), we obtain the following system of surface partial
differential equations (cf. [10, equation (31)]):

ρ(
•
v · gα) = fα + T βα|β , ρ(

•
v · n) = fN + Tαβbαβ , (4.4)

which consists of two equations for tangential velocity change
•
v ·gα and one equation

for velocity change in normal direction
•
v · n. As ansatz for the stress tensor T the

Boussinesq-Scriven form (in curvilinear coordinates)

Tαβ = −pgαβ + 2µ0E
αβ (4.5)

is used, which involves the surface pressure p, the viscosity coefficient µ0 and the time
derivative of the metric tensor Eαβ , cf. (3.16). The equations (4.1), (4.4) and (4.5)
form the surface Navier-Stokes system derived in [10].

To be able to compare this surface Navier-Stokes system, which is formulated in terms
of curvilinear coordinates, to equations derived in the sections below, we rewrite these
equations using surface differential operators, cf. Definition 3.3. From Lemma 3.9 we
obtain for the rate of strain tensor E = Eαβ(gα ⊗ gβ) the representation

E = E(v) =
1

2
(∇Γv +∇TΓv),

and thus the operator representation

T = −pP + 2µ0E (4.6)

for the stress tensor. From Lemma 3.4 we get that the equations (4.4) can be rewritten
as

ρ
•
v = f + divΓ(T).

Using this and the identity divΓ(pP) = ∇Γp + pκn, we obtain the following repre-
sentation of the surface Navier-Stokes system (4.1), (4.4)-(4.5) in terms of the surface
differential operators as in Definition 3.3:{

ρ
•
v = f −∇Γp− pκn + 2µ0 divΓE(v),

divΓv = 0.
(4.7)
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4.2. Surface mass and momentum conservation in Cartesian coordi-
nates. We recall the model derived in [11]. It is based on the same fundamental laws
of surface continuum mechanics as in the previous section. The formulation of the
equations, however, is in Cartesian coordinates in R3. Hence, the surface differential

operators (∇̂Γ and d̂ivΓ) used are as in Definition 3.5. The material derivative
•
v is

defined in Cartesian coordinates as formulated in Lemma 3.8. Using the Leibniz rule,
the inextensibility condition d

dt

∫
γ(t)

1 ds = 0 yields

d̂ivΓv = 0. (4.8)

From mass conservation d
dt

∫
γ(t)

ρ ds = 0 we obtain, with the same arguments as in

the previous section, that ρ remains constant on Γ(t) if it is constant on Γ(0). We
now consider the conservation of surface momentum, expressed by the equation

d

dt

∫
γ(t)

ρv ds =

∫
γ(t)

f ds+

∫
∂γ(t)

fν ds, (4.9)

with a contact force term fν on ∂γ(t) and an area force term f . The integrals are
defined as in Remark 4.1. As in the previous section, for the contact force term a
Cauchy ansatz and Boussinesq-Scriven ansatz are used:

fν = Tν, T = −pP + 2µ0E(v), E(v) =
1

2
(∇̂Γv + ∇̂TΓv). (4.10)

Lemma 3.9 shows that the definition of the rate of strain tensor E equals the one

from [10], cf. equation (4.6). From the Stokes theorem and the identity d̂ivΓ(pP) =

∇̂Γp+ pκn, we obtain the momentum balance for γ(t):

d

dt

∫
γ(t)

ρv ds =

∫
γ(t)

f − ∇̂Γp− pκn + 2µ0d̂ivΓE(v) ds.

Using the Leibniz rule and combining the result with (4.8), we obtain the following
surface Navier-Stokes system:{

ρ
•
v = f − ∇̂Γp− pκn + 2µ0d̂ivΓE(v),

d̂ivΓv = 0.
(4.11)

Based on Theorem 3.6 we conclude that this PDE system is exactly the same as
in (4.7). This is not surprising, since the derivations of the two systems start from
exactly the same physical principles.

4.3. Energetic variational principle in Cartesian coordinates. In this sec-
tion, we summarize the variational approach presented in [12] to derive a surface
Navier-Stokes system. This derivation is performed in Cartesian coordinates in R3.
It is assumed that Γ(t) is a closed surface. First, in exactly the same way as in the sec-
tions above, inextensibility and mass conservation lead to the equation (in Cartesian
coordinates)

d̂ivΓv = 0, (4.12)

and that ρ is constant on S. Instead of a momentum conservation ansatz as in [10, 11]
(cf. equation (4.9)) and an energetic variational approach based on the so-called Least
Action and Minimum Dissipation Principles is used. We outline the key steps.
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The so-called action integral (“kinetic energy”) is defined by

A(x) :=

∫ T

0

∫
Γ(t)

1

2
ρ|v(x, t)|2 dx dt.

Recall that x = x(z, t) ∈ Γ(t), z ∈ Γ(0), are the particle trajectories and v(x, t) the
corresponding velocity fields, cf. (2.1). Note that Γ(t) and v are uniquely determined
by the trajectories x(z, t). The variation of the action integral with respect to x(z, t)
can be formally written as

DxA(x)(w) =

∫ T

0

∫
Γ(t)

Fcons ·w ds dt =: 〈Fcons,w〉

for a ”suitable” class of admissible velocities w. This relation defines a conserva-
tive force Fcons, cf. [29]. In [12, Theorem 1.5] it is shown that under reasonable
assumptions

Fcons = −ρ•v (4.13)

holds. Another force, the so-called dissipation force, is derived from variation of
”surface viscosity” energy, which is modeled by the functional

Ediss(v) = −
∫ T

0

∫
Γ(t)

µ0|E(v)|2 ds dt, (4.14)

with viscosity coefficient µ0 and a strain tensor E as in (4.10), cf. [12]. Variation with
respect to the velocity field v leads to the dissipation force

DvEdiss(v)(w) = 〈Fdiss,w〉,

for a ”suitable” class of admissible velocities w, cf. [29]. In [12, Theorem 1.6] the
relation

Fdiss = 2µ0d̂ivΓE(v) (4.15)

is derived. The Onsager principle (cf. [29, 21, 22]) states that the dynamics of a system
is determined by a competition between internal energy (here the kinetic energy) and
dissipation. In our setting the corresponding equation is formally given by

DxA = −DvEdiss, (4.16)

cf. [12, p. 385]. This implies 〈Fcons +Fdiss,w〉 = 0 for all admissible velocity fields w.
Due to the fact that we consider incompressible surface flows we restrict to velocity

fields w with d̂ivΓw = 0. The following corollary is based on [12, Lemma 2.7].

Corollary 4.1. Let g ∈ C(S)3 be such that 〈g,w〉 = 0 for all w ∈ C∞(S) with

d̂ivΓw = 0. Then there exists p ∈ C1(S) such that

g = ∇̂Γp+ pκn.

Applying this corollary, we obtain Fcons +Fdiss = ∇̂Γp+pκn for a suitable (pressure)
function p. Combining this with (4.12), (4.13) and (4.15) one obtains the following
surface Navier-Stokes equations:{

ρ
•
v − 2µ0d̂ivΓE(v) = −∇̂Γp− pκn,

d̂ivΓv = 0.
(4.17)

Note that this system is exactly the same as in (4.11), if in the latter we restrict to
the case without (outer) area forces, i.e. f = 0.
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4.4. Thin film approach in Cartesian coordinates. A different approach
for deriving surface Navier-Stokes equations, based on a thin film limit procedure,
is introduced in [15]. It is assumed that Γ(t) is a smoothly evolving closed surface.
Around this surface a thin film domain Ωε(t) := {x ∈ R3 | dist(x,Γ(t)) < ε} with
a sufficiently small ε > 0 is defined, in which the incompressible three-dimensional
Navier-Stokes equations with appropriate boundary conditions on ∂Ωε(t) are given.
These equations describe mass and momentum conservation in the volume domain
Ωε(t). One then studies the limit of the thickness going to zero and the resulting
surface equations. In [15] these limit equations are derived using formal asymptotic
expansions (in the parameter ε). We outline a few key steps in the derivation and
refer to [15] for further explanations.

The signed distance function to Γ(t) is denoted by d(·, t). For ε sufficiently small the
closest point projection of x ∈ Ωε(t) is given by π(x, t) = x−d(x, t)n(x, t). We define
the space-time domain Qε,I and its boundary ∂Qε,I by

Qε,I :=
⋃
t∈I

Ωε(t)× {t}, ∂Qε,I :=
⋃
t∈I
∂Ωε(t)× {t}. (4.18)

The unit outward normal vector nε(x, t) and outward normal velocity Vε(x, t) on ∂Ωε
are given by

nε(x, t) =

{
n(π, t), if d(x, t) = ε,

−n(π, t), if d(x, t) = −ε,
Vε(x, t) =

{
VΓ(π, t), if d(x, t) = ε,

−VΓ(π, t), if d(x, t) = −ε,

with π = π(x, t) and VΓ the normal velocity of the surface Γ(t).

We consider an incompressible Navier-Stokes system in Qε,I with (perfect slip) Navier
boundary conditions:

∂tvε + (vε · ∇̂)vε + ∇̂pε = µ0d̂iv
(
∇̂vε

)
in Qε,I ,

d̂iv vε = 0 in Qε,I ,

vε · nε = Vε on ∂Qε,I ,

[E3(vε)nε]tan = 0 on ∂Qε,I ,

(4.19)

where [a]tan denotes the tangential component to ∂Ωε(t) of a vector a ∈ R3 and

E3(v) := 1
2 (∇̂v+∇̂Tv) the strain tensor. We use the notation E3(·) to distinguish this

three-dimensional strain tensor from the surface strain tensor E(·) used in the previous

sections. The differential operators d̂iv , ∇̂, cf. Section 3.2.2, are the usual ones in
R3 and ∂t is the usual time derivative. Note that here (following the presentation in
[15]) the density is scaled to ρ = 1, but this is not essential.

The system defines the velocity vε and pressure pε of a fluid in Qε,I . To derive
equations defining the velocity of the fluid on Γ(t) only, consistent with (4.19) and
depending only on values of functions on Γ(t), formal asymptotic expansions are
assumed. More precisely, it is assumed that for the solution pair (vε, pε) there exist
vector fields v, v1, v2 and scalar functions p, p1 such that

vε(x, t) = v(π, t) + d(x, t)v1(π, t) + d(x, t)2v2(π, t) + r(d3), (4.20a)

pε(x, t) = p(π, t) + d(x, t)p1(π, t) + r(d2). (4.20b)
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Here, r(dk) = r(d(x, t)k) denotes a higher order term, cf. [15]. The analysis in [15]
is not rigorous in the sense that it is not clear whether or under which assumptions
such expansions exist.

A key ingredient to obtain surface Navier-Stokes equations from the Navier-Stokes
system in the thin film domain Qε,I is the following lemma (cf. [15, Lemma 2.7]).

Lemma 4.2. Let φ be a scalar and u a vector-valued function on S. The derivatives
of the composite functions φ(π(x, t), t) and u(π(x, t), t) with respect to x and t are of
the form

∇̂φ(π, t) = (∇̂Γφ)(π, t) + d(x, t)[B∇̂Γφ](π, t) + r(d(x, t)2),

∂tφ(π, t) =
d

dt
φ(π(x, t), t) + d(x, t)(∇̂ΓVΓ · ∇̂Γφ)(π, t) + r(d(x, t)2),

and

∇̂u(π, t) = (∇̂uP)(π, t) + d(x, t)[∇̂uB](π, t) + r(d(x, t)2),

∂tu(π, t) =
d

dt
u(π(x, t), t) + d(x, t)[∇̂u∇̂ΓVΓ](π, t) + r(d(x, t)2),

for (x, t) ∈ Qε,I and with π = π(x, t).

Substituting the expansions (4.20) in the Navier-Stokes equations, collecting zero and
first order (in ε) terms and using Lemma 4.2, the following result is derived in [15,
Section 4].

Theorem 4.3. Let vε and pε satisfy the Navier-Stokes equations (4.19) in the moving
domain Ωε(t) with given normal velocity VΓ. Then, the zeroth order velocity field v
and the zeroth and first order terms p and p1 satisfy the following equations on Γ(t):

v · n = VΓ,
•
v = −∇̂Γp− p1n + 2µ0d̂ivΓE(v),

d̂ivΓv = 0.

(4.21)

Here the surface strain tensor E is as in (4.10).

We briefly discuss the result of Theorem 4.3. From the expansion (4.20) we obtain
v = vε|Γ and p = pε|Γ and thus the velocity field v and pressure p in (4.21) coincide
with the bulk velocity and pressure (vε and pε) evaluated on the surface. We indicate
why in (4.21) the first order term p1 arises. From differentiation of the expansion
(4.20b) we get for a fixed t ∈ I:

∇̂pε(x, t) = ∇̂[p(π, t)] + ∇̂[d(x, t)p1(π, t)] + r(d)

= ∇̂Γp
e + ∇̂d(x, t) p1(π, t) + d(x, t)∇̂[p1(π, t)] + r(d)

= ∇̂Γp
e + n(x, t)p1(π, t) + r(d),

(4.22)

with π = π(x, t) and d = d(x, t). For ε→ 0 we obtain the relation ∇̂pε = ∇̂Γp+ p1n.

Hence, we expect ∇̂Γp + p1n, and not only ∇̂Γp, to occur in (4.21). Analogously to

(4.22) we get, for ε→ 0, expressions for ∇̂vε and d̂iv
(
∇̂vε

)
that contain v1 and v2.

The functions v1 and v2, however, do not occur in the surface Navier-Stokes system
(4.21). This is based on the relations (cf. [15, Remark 4.5])

v1 = −(∇Γv)n, v2 = −1

2

(
B∇Γv +∇Γv1

)
n = 0.
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Therefore, the resulting system of equations (4.21) has (only) the unknowns v, p and
p1. Comparing (4.21) with (4.11) we see that instead of −pκn in (4.11) we now have
p1n and an additional equation v · n = VΓ, with a given VΓ. This additional scalar
equation makes (4.21) a closed system for the unknowns v, p, p1. Further comparison
of the systems in (4.21) and (4.11) is discussed in Section 5.

4.5. Thin film approach in curvilinear coordinates. Similar to the model-
ing approach outlined in the previous subsection, the authors of [17] derive tangential
surface Navier-Stokes equations based on a thin-film limit procedure. Instead of using
Cartesian coordinates a three-dimensional curvilinear thin film coordinate system is
used. In the subsections below we outline this approach and the resulting surface
Navier-Stokes equations.

4.5.1. Thin film curvilinear coordinate system. We consider an evolving
surface as in Section 2. The evolution of the surface geometry is determined by the
normal velocity field only. Therefore a surface parametrization can also be obtained
by using the normal velocity field [4]. More precisely, we consider the initial value
problems (2.1) with the velocity field v replaced by vNn = (v·n)n and a corresponding
flow map (cf. Section 2) denoted by Φnt . Instead of the parametrization in (2.3) we
use Rn(ξ, t) := Φnt (ΦU (ξ)). For a fixed t ∈ I we consider a thin film neighborhood
Ωε(t) as defined in the previous section. A natural parametrization of this domain is
given by

R̃n(ξ, ζ) = R̃n(ξ, ζ, t) := Rn(ξ, t) + ζn(ξ, t), (4.23)

with ξ ∈ U , ζ ∈ (−ε, ε). Based on this thin film parametrization we introduce,
analogous to Section 3, curvilinear coordinates and representations of differential op-
erators in these coordinates. Note that in Section 3 we used a two-dimensional surface
parametrization with first fundamental form denoted by gαβ , whereas in this section
we have a three-dimensional parametrization of the tubular domain Ωε(t). Similar
as in the previous sections, we use Greek letters to sum over 1, 2 and Latin letters
to sum over 1, 2, 3. Partial derivatives are denoted by ∂i, i.e., ∂i = ∂

∂ξi
, i = 1, 2,

∂3 = ∂
∂ζ . We introduce the covariant basis Gi = ∂iR̃n, the corresponding con-

travariant basis Gi, the metric tensor Gij := Gi · Gj and the Christoffel symbols

Γkij := 1
2G

kl(∂iGjl + ∂jGil − ∂lGij). Derivatives in curvilinear coordinates (ξ, ζ) can
be defined completely analogous to Section 3.2.1. For a scalar function φ we define
the gradient ∇φ := ∂iφGi, for a vector field u we define the (covariant) derivative
∇u = ∂iu⊗Gi, the divergence divu := ∂iu ·Gi and for an operator valued function T
the divergence divT = (∂iT)TGi. Using the fact that these operators do not depend
on the choice of the parametrization, cf. [5], one obtains the following relations with
differential operators in Euclidean three-dimensional space, for which we used the ̂
notation, cf. Section 3.2.2:

∇φ = ∇̂φ, ∇u = ∇̂u, div u = d̂iv u, div T = d̂iv
(
TT
)
, (4.24)

with d̂iv T := d̂iv
(
TT êi

)
êi the usual row-wise divergence of a tensor. Below we use

the notation without .̂ Analogous to Theorem 3.2, cf. also equations (3.6)-(3.8), one
can represent these operators in terms of local components, e.g.:

(∇u)ij = ui|j
(
Gi ⊗Gj

)
, div u = ui|i, div T = T j

i |jG
i,
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with

ui|j := ∂jui − Γkijuk, uj|i := ∂iu
j + Γjkiu

k, T j
i |k := GjlTil|k,

T ij|k := ∂kT
ij + T ljΓilk + T ilΓjlk, Tij|k := ∂kTij − TljΓlik − TilΓ

l
jk.

For deriving a limit equation in Section 4.5.3 below it is convenient to relate the three-
dimensional metric tensor Gij to a suitable surface metric on Γ(t). For the latter we
use the one induced by the parametrization Rn. With a slight abuse of notation, we
use the same symbols as in Section 3.1, e.g. gαβ for the metric tensor induced by Rn.
One can derive the following useful results for these metric tensors [17]:

Gαβ = gαβ − 2ζbαβ + ζ2bαγb
γ
β , Gζζ = 1, Gζα = Gαζ = 0,

Gαβ = gαβ +O(ζ), Gζζ = 1, Gζα = Gαζ = 0, Γγαβ = Γγαβ +O(ζ),

Γζαβ = bαβ +O(ζ), Γβαζ = Γβζα = −bβα +O(ζ), Γζiζ = Γζζi = Γjζζ = 0.

(4.25)

The material derivative is defined as in Section 3.2.4 but now with respect to the
parametrization R̃n(ξ, ζ, t):

•
f(y, t) := ∂tf̄(ξ, ζ, t) = ∂tf(R̃n(ξ, ζ, t), t), y = R̃n(ξ, ζ, t) ∈ Ωε(t). (4.26)

For the velocity field corresponding to the parametrization R̃n we use the notation

wR(y, t) :=
∂

∂t
R̃n(ξ, ζ, t), y = R̃n(ξ, ζ, t) ∈ Ωε(t). (4.27)

Using ∂
∂tRn(ξ, t) = (vNn)(Rn(ξ, t), t) it follows that wR = vNn + O(ζ) holds. The

material derivative can be reformulated in Cartesian coordinates as

•
f(y, t) = ∂tf(y, t) +∇f(y, t) ·wR(y, t), y ∈ Ωε(t). (4.28)

4.5.2. Navier-Stokes equation in thin film. In [17] the authors derive a sur-
face Ericksen-Leslie model, starting from a simplified local three-dimensional Ericksen-
Leslie model (cf. [17, equations (B1)-(B3)]). We simplify these equations by taking
λ = 0 in equation (B1). The resulting Navier-Stokes equations are similar to the ones
in Section 4.4. Note, however, that in that section we used Cartesian coordinates
whereas in this section curvilinear thin film coordinates are used. To simplify the
notation we write v instead of vε. The space-time domain is as defined in (4.18). The
thin film Navier-Stokes system from [17] is given by

∂tv̄ +∇uv = −∇pε + µ0∆v in Qε,I ,

div v = 0 in Qε,I ,

wR · nε = ±VΓ on ∂Qε,I ,

[E3(v)nε]tan = 0 on ∂Qε,I ,

(4.29)

with VΓ the given normal velocity of Γ(t), the Laplace operator ∆v := div∇v+∇divv,
[·]tan the tangential component to ∂Ωε(t) as in (4.19) and E3(v) := 1

2 (∇v + ∇Tv)
the strain tensor. In [17] this strain tensor is denoted by the Lie derivative of the
metric tensor, LvG = ∇v +∇Tv. The time derivative ∂tv̄ is defined in curvilinear
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coordinates as in (4.26). The direction u used in the directional derivative ∇uv =
∇v u is the relative fluid velocity defined by u := v−wR, with wR as in (4.27). Using
(4.28) and (4.24) we obtain

∂tv̄ +∇uv = ∂tv +∇v wR +∇v(v −wR) = ∂tv +∇v v,

an thus this is the usual material derivative in Cartesian coordinates, in particular
the same as in (4.19). In [17] the authors assume the thin film to evolve with constant
thickness such that the surface is located in the middle of the outer domain all the
time. Hence, wR|∂Ωε = vnnε and the resulting relative velocity u is tangential to
∂Ωε. Therefore, the third equations of (4.29) and (4.19) coincide. We conclude that
the two volume Navier-Stokes systems (4.29) and (4.19) are equal.

4.5.3. Tangential surface Navier-Stokes system. Using the curvilinear co-
ordinate system, a tangential limit system (ε ↓ 0) of (4.29) is derived in [17]. We
sketch the key ingredients of the derivation.

The covariant components of the strain tensor are given by 1
2

(
vj|i + vi|j

)
. The ho-

mogeneous Navier boundary condition can be rewritten as

vα|ζ + vζ|α = 0 on ∂Ωε(t). (4.30)

Using this, Taylor expansions and the results in (4.25), the following relations can be
derived (cf. [17, equations (B9)-(B11), (B13)]):

vζ|ζ |Γ = O(ε2), (E3(v))αζ |Γ = O(ε2),

∂ζ(E3(v))αζ |Γ = O(ε2), (E3(v))αζ|ζ |Γ = O(ε2).
(4.31)

On Γ we denote the tangential component of the velocity by vT , i.e.

vT = (vT )αgα = (vαgα)|Γ = Pv|Γ ∈ T 1Γ.

The following identity holds (cf. [17, equation (B18)]):

vα|β |Γ = (vT )α|β − vNbαβ . (4.32)

We aim to derive equations for vT and p = pε|Γ on the surface. We first consider
the second equation of (4.29). Using (4.31) and (4.32), the following relation can be
derived (cf. [17, equation (B22)]):

0 = (div v)|Γ = divΓvT − vNκ+O(ε2). (4.33)

We now treat the projection of the material derivative in the first equation of (4.29).
Using u|Γ = Pv|Γ, (4.32) and (vT )β(vT )α|βgα = (∇ΓvT )vT =: ∇vT

Γ vT we obtain for
the tangential part of the directional derivative ∇uv:

[∇uv]α|Γ = uivα|i|Γ = vβvα|β |Γ
= (vT )β

(
(vT )α|β − vNbαβ

)
= [∇vT

Γ vT − vNBvT ]α. (4.34)

Using ∂tR̃n|Γ = vNn and the splitting v = vα∂αR̃n + vζnε, the following relation
for the tangential component of the time derivative can be derived (cf. [17, equation
(B24)]):

[∂tv̄]α|Γ = gαβ∂t(v̄T )β − vN (bαβ(vT )β + ∂αvN ). (4.35)
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From (4.34) and (4.35), we obtain (cf. [17, equation (B26)]):

P (∂tv̄ +∇uv)|Γ = (∂t(v̄T )α)gα +∇vT
Γ vT − vN (2BvT +∇ΓvN ). (4.36)

For the pressure term p = pε|Γ in (4.29), we get:

P(∇pε)|Γ = ∇Γp. (4.37)

Finally we consider the projection of the Laplacian in the first equation in (4.29). For
a solenoidal vector field we have

P (∆v) |Γ = ((∆v)α gα) |Γ = 2 ((div E3(v))α gα) |Γ.

Using (4.31), the following relation can be derived (cf. [17, equation (B17)]):

(div E3(v))α |Γ = gβγ
((

(E3(v))αγ |Γ
)
|β
− bαβ (E3(v))ζγ |Γ

)
+O(ε2)

= gβγ
(

(E3(v))αγ |Γ
)
|β

+O(ε2).

Using (E(vT ))αγ = 1
2

(
(vT )α|γ + (vT )γ|α

)
, we get

(E3(v))αγ |Γ =
1

2

(
vα|γ + vγ|α

)
|Γ =

1

2

(
(vT )α|γ + (vT )γ|α

)
− vNbαγ

= (E(vT )− vNB)αγ .

Combining these results we obtain

P (∆v) |Γ = 2 ((div E3(v))α gα) |Γ

= 2gβγ
(

(E3(v))αγ |Γ
)
|β

gα +O(ε2)

= 2gβγ (E(vT )− vNB)αγ|β gα +O(ε2)

= 2 (E(vT )− vNB)
βµ
|β gαµgα +O(ε2)

= 2 (E(vT )− vNB)
βµ
|β gµ +O(ε2)

= 2P divΓ(E(vT )− vNB) +O(ε2). (4.38)

Here, we used Lemma 3.4 in the last equation.

Remark 4.2. Note that (4.38) seems to differ from the first equation of (B21) from
[17]. However, different definitions of the surface divergence operators for operator-

valued functions are involved. Let d̃ivΓ be the surface divergence operator used in
[17]. For an operator-valued function T the relation

d̃ivΓT = P divΓT.

holds. Using this and 2E(vT ) = ∇ΓvT + ∇TΓvT it follows that the first identity in
[17, equation (B21)] and equation (4.38) coincide.

Combining the results (4.36), (4.37), (4.38), (4.33) and considering the thin film limit
ε → 0, we obtain the tangential Navier-Stokes equations on the surface in local
coordinates (cf. [17, equation (B27)-(B28)]):

(∂t(v̄T )α)gα +∇vT
Γ vT − vN (2BvT +∇ΓvN ) = −∇Γp+ 2µ0P divΓ(E(vT )− vNB),

divΓvT = vNκ.
(4.39)
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Using ∂tv̄T = (∂t(v̄T )α)∂αRn+(vT )α∂α∂tRn, we obtain for the tangential part of the
time derivative

(∂tv̄T )α = ∂tv̄T · ∂αRn = gαβ∂t(v̄T )β − vNbαβ(vT )β .

Hence, the tangential surface Navier-Stokes equations (4.39) can be rewritten as (cf.
[17, equation (B30)-(B31)]):{

P∂tv̄T +∇vT
Γ vT − vN (BvT +∇ΓvN ) = −∇Γp+ 2µ0P divΓ(E(vT )− vNB),

divΓvT = vNκ.

(4.40)

5. Discussion of surface Navier-Stokes equations. In this section we com-
pare the different equations and discuss a directional splitting in tangential and normal
components. For the surface differential operators we use the ones without ̂, but this
is irrelevant, cf. Theorem 3.6. As already mentioned above, the approaches (1), (2)
and (3), cf. Section 4, result in the same system of surface Navier-Stokes equations,
except that in (3) no source term f is considered. We recall the resulting equations,
cf. (4.7), (4.11) and (4.17), where for convenience we put ρ = 1:{•

v = f −∇Γp− pκn + 2µ0 divΓE(v),

divΓv = 0.
(5.1)

The system resulting from ansatz (4) is different, cf. (4.21):
v · n = VΓ,
•
v = −∇Γp− p1n + 2µ0 divΓE(v),

divΓv = 0.

(5.2)

In this system an additional unknown scalar function p1 appears. In the approach (5)
(only) a tangential surface Navier-Stokes system is derived, given in (4.40), which we
repeat here:{

P∂tv̄T +∇ΓvTvT = −∇Γp+ 2µ0P divΓ(E(vT )− vNB) + vN (BvT +∇ΓvN ),

divΓvT = vNκ.

(5.3)
In the following, for (5.1) and (5.2) we consider a splitting of the equations for v =
vT + vNn and p in coupled equations for vT , p (“tangential surface Navier-Stokes”)
and for vN (normal velocity). In [11] the relations (cf. [11, Lemma 2.1, equation (3.9)]

P
•
v =

•
vT + (

•
n · vT )n + vN

•
n,

•
v · n =

•
vN − vT ·

•
n,

n · divΓE(v) = tr(B∇ΓvT )− vN tr(B2),
(5.4)

are derived. Using these we obtain the following splitting of the surface Navier-Stokes
equations (5.1) into (coupled) equations

•
vT = fT −∇Γp+ 2µ0P divΓE(v)−

(
(
•
n · vT

)
n + vN

•
n),

divΓvT = vNκ,
(5.5)
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for the surface pressure p and tangential velocity vT and

•
vN = fN + 2µ0n · divΓE(v)− pκ+

•
n · vT

= fN + 2µ0

(
tr(B∇ΓvT )− vN tr(B2)

)
− pκ+

•
n · vT ,

(5.6)

for the normal velocity vN . We used the splitting f = fT +fNn. Note that
•

vT denotes

the material derivative (along v) of vT and not (
•
v)T ; similarly for

•
vN . We call the

system (5.5) tangential surface Navier-Stokes equations. Note that in these equations
the normal velocity vN occurs.

Remark 5.1. The variational principle used in [12] to derive system (5.1) (with
f = 0) also directly leads to a tangential surface Navier-Stokes system if the class
of ”admissible” velocities w in the defining relations for the force terms Fcons and
Fdiss is restricted to tangential ones, i.e. Pw = w. This yields tangential force terms

Fcons = −ρP•v and Fdiss = 2µ0P divΓE(v) and a tangential momentum equation that
is the same as the first equation in (5.5) with fT = 0.

From the relation

•
n = −BvT −∇ΓvN (5.7)

(cf. [11, Lemma 2.2]) it follows that no ∂
∂t is involved in

•
n, which indicates that

the equation (5.6) determines the time dynamics of the normal velocity vN (·, t), and
thus of the surface Γ(t), whereas the tangential surface Navier-Stokes equations (5.5)
determine the time dynamics of the tangential velocity vT (·, t).

We now consider the splitting of the Navier-Stokes system (5.2). Applying the pro-
jection P to the second equation in (5.2) the term p1Pn vanishes and the remaining
terms are the same as in the projected version of the first equation in (5.1). This
implies that (5.2) results in the same tangential surface Navier-Stokes equations as in
(5.5) (with fT = 0). Taking the scalar product of the second equation in (5.2) with n
and using the results (5.4) one obtains

•
vN = 2µ0(tr(B∇ΓvT )− vN tr(B2))− p1 +

•
n · vT , (5.8)

i.e., similar to the normal velocity equation (5.6), but with pκ replaced by the first-
order unknown pressure function p1 (and with fN = 0). From the first equation in
(5.2), with given VΓ, one obtains the normal velocity vN , which can be substituted
in the tangential surface Navier-Stokes equations, which then determine vT and p.
Given vN and vT the unknown p1 is determined by (5.8).

Finally we compare the tangential Navier-Stokes equations (5.5) with the tangential
equations (5.3) that result from ansatz (5). Both systems contain the same equation
divΓvT = vNκ, which results from the inextensibility condition. We now show that
the two tangential momentum equations in (5.5) and (5.3) are also the same if fT = 0.

This can be done as follows. First note that the material derivative
•

vT in (5.5) is in

general not tangential. Its normal component is balanced by the term (
•
n · vT )n on

the right-hand side in (5.5). This normal component can be eliminated by using the

relations n · •vT = −•n · vT , which follows from n · vT = 0, and

•
vT = P

•
vT + (n · •vT )n = P

•
vT − (

•
n · vT )n.
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Using this, (5.7) and E(v) = E(vT ) − vNB, the tangential momentum equation in
(5.5), with fT = 0, can be rewritten as

P
•

vT = −∇Γp+ 2µ0P divΓE(v)− vN
•
n

= −∇Γp+ 2µ0P divΓ (E(vT )− vNB) + vN (BvT +∇ΓvN ) .
(5.9)

The right-hand side of this equation is the same as the right-hand side in (5.3). We
now compare the material derivatives on the left-hand sides. Applying Lemma 3.8,
the left-hand side of (5.9) yields

P
•

vT = P(∂tv
e
T +∇veTv). (5.10)

For the left-hand side in (5.3) we obtain, using (4.26) and (4.28),

P∂tv̄T +∇ΓvTvT = P(∂tv̄T +∇veTvT )

= P(∂tv
e
T + vN∇veTn +∇veTvT )

= P(∂tv
e
T +∇veTv),

and comparing this with (5.10) we observe that the material derivatives also coincide.
Hence, we conclude that the two tangential momentum equations in (5.5) and (5.3)
are the same (for fT = 0).

In summary, we have shown that all five derivations (1)–(5) lead to the same tangential
surface Navier-Stokes equations (5.5). The derivations (1)–(3) result in the same
equation for the normal velocity, namely the one in (5.6).
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6. Appendix. We give a proof of the second equality in (3.4). The first equality
can be derived in the same way.

Proof. [of (3.4)] The product rule, (3.3) and the symmetry of the Christoffel symbols
yield

∂γT = ∂γTαβ(gα ⊗ gβ) + Tαβ
(
(∂γg

α ⊗ gβ) + (gα ⊗ ∂γgβ)
)

= ∂γTαβ(gα ⊗ gβ) + Tαβ
(
(−Γαγµgµ + bαγg3)⊗ gβ + gα ⊗ (−Γβγµgµ + bβγg3)

)
=
(
∂γTαβ − ΓµγαTµβ − ΓµγβTαµ

)
(gα ⊗ gβ) + Tαβb

α
γ (g3 ⊗ gβ) + Tαβb

β
γ (gα ⊗ g3)

= Tαβ|γ(gα ⊗ gβ) + Tαβb
α
γ (g3 ⊗ gβ) + Tαβb

β
γ (gα ⊗ g3).

We give a proof of Lemma 3.4.

Proof. [of Lemma 3.4] We represent T in local coordinates as T = Tαβ(gα ⊗ gβ).
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From the definition of the divergence and Theorem 3.2, we get

divΓT = (∂αT)Tgα =
(
T γβ|α(gγ ⊗ gβ) + T γβbαγ(g3 ⊗ gβ) + T γβbαβ(gγ ⊗ g3)

)T
gα

=
(
T γβ|α(gβ ⊗ gγ) + T γβbαγ(gβ ⊗ g3) + T γβbαβ(g3 ⊗ gγ)

)
gα

= T γβ|αgβ(gγ · gα︸ ︷︷ ︸
δαγ

) + T γβbαγgβ(g3 · gα︸ ︷︷ ︸
=0

) + T γβbαβg3(gγ · gα︸ ︷︷ ︸
=δαγ

)

= Tαβ|αgβ + Tαβbαβg3.

Lemma 6.1. The shape operator can be represented in Cartesian coordinates by B =
−∇̂Γne.

Proof. We use Theorem 3.6, Theorem 3.2 and the symmetry of bαβ to derive

−∇̂Γne = −∇Γn = −∇αn⊗ gα = −(P∂αn)⊗ gα = (Pbαβgβ)⊗ gα = B.

We give a proof of Lemma 3.9

Proof. [of Lemma 3.9] The second equality follows from the equality of the covariant
gradients, cf. Theorem 3.6. We prove the first equality. Using (3.7) and (3.3), we get

∇ΓvT +∇TΓvT = (∂αvβ − Γταβvτ )(gβ ⊗ gα) + (∂αvβ − Γταβvτ )(gα ⊗ gβ).

A direct calculation, using (3.3), yields

1

2
(∇Γ(vNn) +∇TΓ (vNn)) =

1

2
(gα ⊗P∂α(vNn) + P∂α(vNn)⊗ gα)

=
1

2

(
−vNbαβ(gα ⊗ gβ)− vNbαβ(gβ ⊗ gα)

)
= −vNbαβ(gα ⊗ gβ).

Using these results and (3.15) we obtain

E(v) = Eαβ(gα ⊗ gβ) =

(
1

2
(vα|β + vβ|α)− vNbαβ

)
(gα ⊗ gβ)

=

(
1

2
(∂βvα − Γταβvτ + ∂αvβ − Γταβvτ )− vNbαβ

)
(gα ⊗ gβ)

=
1

2
(∂αvβ − Γταβvτ )(gβ ⊗ gα) +

1

2
(∂αvβ − Γταβvτ )(gα ⊗ gβ)− vNbαβ(gα ⊗ gβ)

=
1

2
(∇ΓvT +∇TΓvT ) +

1

2
(∇Γ(vNn) +∇TΓ (vNn)) =

1

2
(∇Γv +∇TΓv),

which completes the proof.
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