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AN ACCURATE AND ROBUST EULERIAN FINITE ELEMENT
METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS ON

EVOLVING SURFACES

HAUKE SASS∗ AND ARNOLD REUSKEN†

Abstract. In this paper we present a new Eulerian finite element method for the discretization
of scalar partial differential equations on evolving surfaces. In this method we use the restriction
of standard space-time finite element spaces on a fixed bulk mesh to the space-time surface. The
structure of the method is such that it naturally fits to a level set representation of the evolving sur-
face. The higher order version of the method is based on a space-time variant of a mesh deformation
that has been developed in the literature for stationary surfaces. The discretization method that we
present is of (optimal) higher order accuracy for smoothly varying surfaces with sufficiently smooth
solutions. Without any modifications the method can be used for the discretization of problems with
topological singularities. A numerical study demonstrates both the higher order accuracy for smooth
cases and the robustness with respect to toplogical singularities.

Key words. surface partial differential equation, trace finite element method, space-time finite
element method, unfitted finite element method

1. Introduction. Motivated by applications in, for example, multiphase flow
and computational biology, in the past decade there has been a strongly growing in-
terest in the development and analysis of numerical methods for partial differential
equations (PDEs) on (evolving) surfaces. For an overview of recent developments in
this research field we refer to [6, 2]. The main focus of these two review papers is on
numerical methods for scalar PDEs on smooth stationary surfaces. There are, how-
ever, also many papers in which discretization methods for scalar PDEs on evolving
surfaces are introduced or analyzed. The present paper contributes to this field of
finite element methods for scalar PDEs on evolving surfaces.

In this research field several interesting methods have already been treated. The
probably most prominent method is the evolving surface finite element method (ES-
FEM) [6, 7, 19]. This elegant method is very popular and a complete error analysis
has been developed. A key feature of this method is that it is based on a Lagrangian
approach in which a triangulation of the initial surface and a corresponding finite ele-
ment space are transported along the flow lines of a (given) velocity field. This makes
the method very attractive for problems with smoothly and slowly varying surfaces.
On the other hand, it is well-known that such Lagrangian techniques have drawbacks
if the geometry of the surface is strongly varying on the relevant time scales or if there
are topological singularities, e.g., merging or splitting phenomena. We are not aware
of any paper in which the ESFEM is applied to a surface PDE with a topological
singularity. Another class of finite element methods is based on an Eulerian approach
and has been introduced in [24, 23]. These so-called trace (or cut) finite element
methods (TraceFEM or CutFEM) are based on restriction of standard space-time
finite element spaces on a fixed bulk mesh to the space-time surface. The structure
of TraceFEM is such that it naturally fits to a level set representation of the evolving
surface. Such level set representations are known to be very attractive for problems
with strongly varying surface geometries or with topological singularities. Hybrid ver-
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sions of this Eulerian approach have been introduced in [15, 22]. The method treated
in [15] is based on a characteristic-Galerkin, i.e., Lagrangian, formulation combined
with a piecewise linear CutFEM in space. The fully Eulerian method introduced in
[22] is based on a combination of TraceFEM in space and finite differences for the time
discretization. In the numerical experiments presented in these papers the methods
are applied to problems with smoothly and slowly varying surfaces. In [22] not only
linear finite elements but also higher order ones are considered.

In the present paper we return to the Eulerian space-time technique introduced
in [24, 23]. We extend the method treated in those papers in the following two
directions. Firstly, we will introduce a higher order space-time TraceFEM. In [24,
23] only piecewise linears (in space and time) are used and the issue of geometry
approximation is not considered, The development of the higher order technique is
based on the parametric TraceFEM introduced for stationary surfaces in [20] and
analyzed in [12]. The unfitted space-time finite element technique that we propose in
this paper is based on very similar ideas as used for scalar PDEs on a moving domain in
[17]. Secondly, in the method presented in this paper we include a space-time variant
of the so-called normal derivative volume stabilization that has been developed for
TraceFEM applied to PDEs on stationary surfaces, cf. [3, 12]. This stabilization is
important, in particular for higher order finite elements, to control the conditioning
of the stiffness matrix.

Using these extensions results in a method with the following features. The
method is of Eulerian type, using a fixed bulk triangulation and corresponding stan-
dard space-time (tensor product) finite element spaces. As input for the method one
needs (only) a level set representation of the evolving surface. If the level set func-
tion approximation is sufficiently accurate (made precise further on in the paper) and
higher order bulk space-time finite element spaces are used, the resulting surface PDE
discretization method is also of (optimal) higher order accuracy for smoothly varying
surfaces with sufficiently smooth solutions. Without any modifications the method
can be used for the discretization of problems with topological singularities. We are
not aware of any paper in which this combination of properties, i.e., higher order for
smooth cases and robustness w.r.t. topological singularities, is demonstrated for a
discretization method for surface PDEs.

In this paper we introduce the method, discuss important properties of the method
and present an extensive numerical study that demonstrates the features mentioned
above. We do not include a stability or error analysis. An error analysis for the
lowest order case (piecewise planar surface approximation and P1 finite elements) is
presented in [27] and will be further treated in a forthcoming paper. Implementation
of the method is not straightforward due to the use of a space-time framework and
a particular space-time mesh transformation (for the higher order case). An imple-
mentation, however, is available in the open source software ngsxfem [21], an add-on
package to the finite element library NGSolve\Netgen, see [28, 29].

The remainder of the paper is organized as follows. In Section 2 we explain the
parabolic model problem that we consider and a well-posed space-time variational
formulation of this problem. The space-time TraceFEM is explained in Section 3.
Several aspects of the method are treated. We start with the level set representation
of the evolving surface, needed as input for the discretization method. We then
outline the space-time mesh deformation that we use for the higher order variant of
our discretization method. Several implementation aspects such as, for example, the
efficient quadrature applied to the space-time integrals are addressed. In Section 4 we
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present results of numerical experiments, both for examples with smoothly evolving
surfaces and surfaces with topological singularities. These results illustrate the higher
order convergence for the smooth case and the robustness of the method with respect
to topological singularities.

2. The model problem. Let Ω ⊂ R3, T > 0 and w : Ω × [0, T ] → R3 a given
smooth velocity field. We consider a closed, connected and orientable C2-hypersurface
Γ(t) ⊂ Ω, t ∈ [0, T ], that is is advected w. By n we denote the outward pointing unit
outer normal on Γ(t). The smooth space-time manifold is denoted by

S :=
⋃

t∈[0,T ]

(
Γ(t)× {t}

)
⊂ R4.

We recall standard surface differential operators. For a smooth scalar function g on
Γ(t), with t fixed, a smooth extension to a tubular neighborhood of Γ(t) is denoted by
ge. Its spatial and space-time gradients are denoted by∇ and∇(x,t), respectively. The
tangential gradient is defined as ∇Γg := (I − nn⊺)∇ge. For a vector valued function
g we define the surface divergence divΓ g := tr

(
(I −nn⊺)∇ge

)
. The surface Laplace-

Beltrami operator is ∆Γ := divΓ ∇Γ. We consider a basic model for convection and
molecular diffusion of a surface species. The conservation of mass principle combined
with Fick’s law for the diffusive flux leads to the parabolic surface partial differential
equation

u̇+ udivΓ w − µd∆Γu = f on Γ(t), t ∈ (0, T ],

u(·, 0) = 0 on Γ(0),
(2.1)

for the scalar unknown function u = u(x, t). Here µd > 0 denotes the constant
diffusion coefficient and u̇ the material derivative along the velocity field w, which
can be expressed as u̇ = ∂ue

∂t + w · ∇ue. The right-hand side f must satisfy the
consistency condition

∫
Γ(t)

f ds = 0, t ∈ [0, T ]. In the remainder we assume that this

condition is satisfied. For details on the derivation of (2.1) we refer to [18, 6, 14].
We outline a weak variational space-time formulation of (2.1), introduced in [24],

which is the basis for the finite element method treated in Section 3. For this we first
define suitable Hilbert spaces that can be used for a discontinuous in time Galerkin
method. For N ∈ N, let the time interval [0, T ] be partitioned into smaller time
intervals In := [tn−1, tn], n ∈ {1, . . . , N}, where 0 = t0 < t1 < · · · < tN = T . The
corresponding space-time surface is denoted by Sn :=

⋃
t∈In

(Γ(t) × {t}). We define
the Hilbert spaces

H :=
{
v ∈ L2(S) :∥∇Γv∥L2(S) <∞

}
, ∥v∥2H :=

∫ T

0

∥v∥2H1(Γ(t)) dt

Hn :=
{
v ∈ L2(Sn) :∥∇Γv∥L2(Sn) <∞

}
, ∥v∥2Hn

:=

∫ tn

tn−1

∥v∥2H1(Γ(t)) dt, 1 ≤ n ≤ N.

The weak material derivative is based on the linear functional

⟨u̇, ψ⟩n := −
∫ tn

tn−1

∫
Γ(t)

uψ̇ + vψ divΓ w dsdt for all ψ ∈ C1
0 (S

n). (2.2)

All functions u ∈ Hn whose weak material derivative u̇ define a bounded linear func-
tional on Hn form the subspace Wn ⊂ Hn, i.e.

Wn :=
{
u ∈ Hn : u̇ ∈ H ′

n

}
, ∥u∥2Wn

:=∥v∥2Hn
+∥u̇∥2H′

n
.
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For v ∈ H we define vn ∈ Hn as vn := v|Sn
, n = 1, . . . , N . The space that we use for

the space-time variational formulation is

W b :=
{
v ∈ H : v|Sn

∈Wn, n = 1, . . . , N
}
, ∥v∥2W b :=

N∑
n=1

∥vn∥2Wn
. (2.3)

This space is a Hilbert space. For further properties of these spaces we refer to [24].
For the discontinuous Galerkin method we need the usual jump operator to relate
values between subsequent time slabs. For v ∈W b we define

vn+ := v+(·, tn) = lim
η↘0

v(·, tn + η) ∈ L2(Γ(tn)), n = 0, . . . , N − 1,

vn− := v−(·, tn) = lim
η↘0

v(·, tn − η) ∈ L2(Γ(tn)), n = 1, . . . , N, v0− := 0,

[v]n := vn+ − vn− ∈ L2(Γ(tn)), n = 0, . . . , N − 1.

Note that [v]0 = v0+ since we have by definition v0− = 0. On Γ(t), t ∈ [0, T ], the L2

scalar product is denoted by (·, ·)Γ(t). Space-time integrals and the surface integral
on S are related by∫ T

0

∫
Γ(t)

g dsdt =

∫
S

g

α
dσ, α :=

√
1 + (w · n)2. (2.4)

With these preparations we can introduce a space-time variational problem consistent
with (2.1): For a given f ∈ L2(S) determine u ∈W b such that

N∑
n=1

Bn(u, v) :=

N∑
n=1

[
⟨u̇n, vn⟩n +

∫
Sn

1

α

(
uv divΓ w + µd∇Γu · ∇Γv

)
dσ

+
(
[u]n−1, vn−1

+

)
Γ(tn−1)

]
=

∫
S

1

α
fv dsdt for all v ∈W b.

(2.5)

Well-posedness of this problem is shown in [24, Theorem 5.3]. In the formulation (2.5)
the material derivative is applied to the trial function un. By partial integration this
derivative can be shifted to the test function vn. As is well-known from the literature
on DG methods this then leads do a different discretization. We will also address
this issue for the space-time finite element method that we propose. Hence, besides
the formulation in (2.5) we also introduce two other natural formulations, namely one
with the material derivative on the test function and an antisymmetric variant. For
deriving these we use the partial integration rule∫

Sn

1

α
u̇v dσ

= −
∫
Sn

1

α
(uv̇ + uv divΓ w) dσ +

(
un−, v

n
−
)
Γ(tn)

−
(
un−1
+ , vn−1

+

)
Γ(tn−1)

,

(2.6)

for u, v ∈ C1(Sn), which directly follows from the Leibniz rule and (2.4). Note that for
u, v ∈ H1(Sn) the weak material derivative can be expressed as ⟨u̇, v⟩n =

∫
Sn

1
α u̇v dσ.

For arbitrary β ∈ R and u, v ∈ H1(Sn) the following holds:

Bn(u, v) =

∫
Sn

1

α

(
(1− β)u̇v − βuv̇ + (1− β)uv divΓ w + µd∇Γu · ∇Γv

)
dσ

+ β
(
un−, v

n
−
)
Γ(tn)

+ (1− β)
(
un−1
+ , vn−1

+

)
Γ(tn−1)

−
(
un−1
− , vn−1

+

)
Γ(tn−1)

.
(2.7)
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This follows from (2.6) using the following argument. For fixed u, v ∈ H1(Sn) we take
the derivative of the right-hand side (2.7) with respect to β, which yields

−
∫
Sn

1

α
(u̇v + uv̇ + uv divΓ w) dσ +

(
un−, v

n
−
)
Γ(tn)

−
(
un−1
+ , vn−1

+

)
Γ(tn−1)

, (2.8)

which equals zero due to (2.6). Hence the right-hand side in (2.7) does not depend on
β. For β = 0 formula (2.7) is correct, which follows by comparing with the definition
in (2.5). Particularly interesting, in view of finite element discretization methods, are
the choices β = 0, β = 1

2 and β = 1. When one replaces the smooth surface Sn by
an approximate Lipschitz surface, as we will do in our finite element discretization
below, the resulting three formulations are no longer equivalent. The reason for this
is that the identities (2.4) and (2.6) do not hold on Lipschitz surfaces.

3. Space-time TraceFEM. In this section we explain the space-time finite
element method that we use for discretization of (2.5). Key ingredients of the method
are a level set representation of the evolving surface and a parametric mapping based
on the level set function (approximation) that is used to approximate the surface and
to define the (higher order) space-time finite element spaces. In this approach it is
essential that the evolving surface Γ(t) is represented as the zero level of an evolving
level set function, denoted by ϕ(x, t). This level set function is approximated by a
(higher order) finite element function, denoted by ϕh, on a fixed tetrahedral mesh,
cf. Section 3.1. Evaluating integrals on the zero level of a higher order polynomial
is computationally (very) expensive. To avoid this, we use an approach similar to
the classical parametric finite element technique. First a spatial mesh deformation,
that is based on ϕh(·, t) for fixed t, is constructed, cf. Section 3.2. Using a tensor
product approach this then results in a mapping that deforms of the space-time mesh,
cf. Section 3.3. This space-time mesh deformation mapping, that can be efficiently
evaluated, has a twofold purpose. It is used to construct a parametrization of a higher
order accurate space-time surface approximation that can be efficiently evaluated.
This allows efficient quadrature for integrals over higher order space-time surface
approximations, cf. Section 3.7. The mapping is also used for constructing parametric
finite element spaces that have higher order approximation accuracy, cf. Section 3.6.

3.1. Level set representation. We assume that the evolving surface Γ(t) is
represented as the zero level of a smooth level set function ϕ : Ω× [0, T ] → R, i.e.

Γ(t) =
{
x ∈ Ω : ϕ(x, t) = 0

}
, t ∈ [0, T ].

We assume standard properties of a level set function, i.e. for all (x, t) in a neighbor-
hood U of S, ∥∥∇ϕ(x, t)∥∥ ∼ 1,

∥∥∥D2ϕ(x, t)
∥∥∥ ≲ 1 (3.1)

hold. We define the space-time cylinders

Q := Ω× [0, T ] ⊂ R4, Qn := Ω× In, n = 1, . . . , N.

Let T be an element of a family {Th}h>0 of shape regular tetrahedral triangulations of
Ω, The triangulation Qh,n := T ×In divides the time slab Qn into space-time prismatic

elements. The space-time triangulation of Q is denoted by Qh :=
⋃N

n=1Qh,n. Let V
m
h ,
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m ∈ N, be the standard H1(Ω)-conforming finite element space on the triangulation
T . For ms,mq ∈ N a space-time finite element product space is given by

V
ms,mq

h :=
{
v : Q→ R : v(x, t) =

mq∑
i=0

tivi(x), vi ∈ V ms

h , (x, t) ∈ Qn, n = 1, . . . , N
}
.

(3.2)
Note that functions from V

ms,mq

h are continuous is space but may be discontinuous
in time at the time interval boundaries tn. For the geometry approximation we use
a function from this space that is continuous both in space and time and has degree

kg,s in x and kg,q in t. More specifically, we assume an approximation ϕh ∈ V
kg,s,kg,q

h

of the level set function ϕ with ϕh(x, ·) ∈ C0([0, T ]), x ∈ Ω that satisfies

max
K∈T

n∈{1,...,N}

|ϕh − ϕ|Wm,∞((K×In)∩U) ≲ hkg+1−m, 0 ≤ m ≤ kg + 1, (3.3)

with kg := min{kg,s, kg,q}. Such a ϕh can be obtained by interpolation of ϕ, if the
latter is available. In applications, ϕ may be determined implicitly by a level set
equation. To satisfy (3.3) one has to solve this equation sufficiently accurate. The
continuity in time of ϕh later ensures that the piecewise planar reference space-time
surface is a connected Lipschitz manifold.

3.2. Spatial mesh deformation. We briefly explain the main idea of the para-
metric mapping introduced in [20] to construct higher order unfitted finite element
approximations. It is used to define a corresponding space-time mapping in the next
section. By Im we denote the spatial nodal Pm-interpolation operator

Im : C0(Ω) → V m
h , m ∈ N. (3.4)

Let the spatially piecewise linear nodal interpolation ϕ̂h ∈ V
1,kg,t

h be defined by

ϕ̂h(·, t) := I1ϕh(·, t) ∈ V 1
h for all t ∈ [0, T ], (3.5)

and its corresponding piecewise planar zero level at time t, which is easy to compute:

Γlin(t) :=
{
x ∈ Ω : ϕ̂h(x, t) = 0

}
.

By construction, Γlin(t) is only a second order approximation to Γ(t). We consider all
elements that are cut by the piecewise linear surface at any point in time within one
time slab, i.e.,

T Γ
n :=

{
K ∈ T : meas2((K × In) ∩ Γlin(t)) > 0 for any t ∈ In

}
, n ∈ {1, . . . , N}.

The corresponding domain is denoted by ΩΓ
n := {x ∈ K : K ∈ T Γ

n }. On this domain a

mapping Θn
h,t ∈

(
V

kg,s

h )3 is defined that depends (only) on ϕh and deforms all elements

of the triangulation T Γ
n . The image of this mapping restricted to Γlin(t) defines a

higher order approximation of Γ(t) such that dist3(Γ(t),Θ
n
h,t(Γlin(t))) ≲ hkg,s+1 for

all n = 1, . . . , N , t ∈ In. We refer to [20, 12] for precise definitions and an analysis
of approximation properties of this mapping. In these papers this mapping only
deforms elements that are cut by Γlin(t), which, however, is not essential for the
general construction. In [17, 26] the extended deformation, i.e., the one applied to all
tetrahedra in T Γ

n is explained.
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3.3. Space-time mesh deformation. We explain the space-time mesh defor-
mation on an arbitrary time slab Qn, n = 1, . . . , N , also used in [17, 26]. Let τnm ∈ In
be discrete points and Xτn

m
∈ Pkg,q , m = 0, . . . , kg,q, the corresponding finite element

(e.g. nodal) basis functions. On the time slab Qn the finite space-time finite element

function ϕh ∈ V
kg,s,kg,q

h can be represented as

ϕh(x, t) =

kg,q∑
m=0

Xτn
m
(t)ϕm(x), ϕm ∈ V

kg,s

h ,

We define the triangulation of space-time prisms that are intersected by Γlin(t) at
any point in time t ∈ In as QS

h,n := T Γ
n × In, n = 1, . . . , N , and QS

h := ∪N
n=1Q

S
h,n.

The subdomains formed by these triangulations are denoted by QS
n and QS . The

space-time mesh transformation Θn
h ∈ (V

kg,s,kg,q

h |QS
h,n

)4 is defined by

Θn
h(x, t) :=

( kg,q∑
m=0

Xτn
m
(t)Θn

h,τn
m
(x), t

)
=:

(
Θn

h,s(x, t), t
)
, (x, t) ∈ QS

n . (3.6)

The mapping Θn
h,s denotes the spatial part of Θn

h. For n ∈ {1, . . . , N} we define the
discrete space-time manifolds

Sn
lin :=

{
(x, t) ∈ Qn : ϕ̂h(x, t) = 0

}
, Slin :=

N⋃
n=1

Sn
lin, (3.7)

Sn
h :=

{
(x, t) ∈ Qn : (x, t) ∈ Θn

h(S
n
lin)

}
, Sh :=

N⋃
n=1

Sn
h (3.8)

and the corresponding time slices of Sn
h are denoted by

Γn
h(t) :=

{
x ∈ R3 : (x, t) ∈ Sn

h

}
, t ∈ In, n = 1, . . . , N. (3.9)

We introduce notation for the curved space-time surface triangulation. Let the space-

tn−1

tn

Γlin(tn−1)

Γlin(tn)

Sn
lin

QS
n

Θn
h

Γn
h(tn−1)

Γn
h(tn)

Sn
h

QS
Θ,n

Fig. 3.1: The mapping Θn
h, defined on QS

h,n, deforms the surface Slin. Note that Slin

can be higher order in time.

time surface triangulation TSn
h
be the set of smooth three-dimensional manifolds that
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Sn
h consists of, i.e.

TSn
h
:= {Θn

h(P ) ∩ Sn
h : P ∈ Qh,n}.

Then, we have Sn
h =

⋃
KS∈TSn

h

KS . Let TSh
:=

⋃N
n=1 TSn

h
. Note that KS ∈ TSh

is

a three-dimensional curved polytope that can be partitioned into curved tetrahedra.
This deformed triangulation TSh

is not necessarily shape regular, in the sense that in-
ternal angles can be very large and the size of neighboring elements may vary strongly.
This is due to the fact that Slin can have arbitrary cuts with the background bulk mesh
Qh. An illustration of the two-dimensional analogon of TSn

h
is given in Figure 3.1.

Remark 1. In general we have ΩΓ
n ̸= ΩΓ

n+1, and therefore Θn
h ̸= Θn+1

h . Take a
fixed t = tn and let K ∈ T be a tetrahedron that is cut by Γlin(tn). By construction
we then have K ∈ T Γ

n ∩ T Γ
n+1. The sets of neighboring tetrahedra of K in T Γ

n and
in T Γ

n+1, however, are not necessarily the same. Due to an averaging at the finite
element nodes used in the construction of Θn

h,t, cf. [20, 12], the mappings Θn
h,tn

and

Θn+1
h,tn

are in general not the same on K. Thus in general we have that for certain

x ∈ ΩΓ
n ∩ ΩΓ

n+1

Θn+1
h (x, tn) = Θn+1

h,tn
(x) ̸= Θn

h,tn(x) = Θn
h(x, tn),

which in particular implies Γn+1
h (tn) ̸= Γn(tn), cf. Figure 3.2 for an illustration. Due

to the time stepping procedure in the finite element method, we weakly pass the
discrete solution at the end point of a time interval In, i.e. on Γn(tn), to the next
time interval, i.e. to Γn+1

h (tn). As these surfaces are not equal we need a suitable
projection when defining the corresponding discrete bilinear form below.

Slin Sh

tn−1

tn

tn+1

ΩΓ
n

ΩΓ
n+1

Θn
h

Θn+1
h

QS
n

QS
n+1

K1 K2

F

Fig. 3.2: Sketches of the discrete manifolds Slin and Sh. Other than Slin, the surface
Sh is not necessarily continuous. In the calculation of Θn

h(K1 × In) the degrees of
freedom on the face F only depend on K1. In the calculation of Θn+1

h (K1 × In+1) the
same degrees of freedoms depend on K2 ∈ T Γ

n+1 as well.

Below we will define and compute surface differential operators using discrete
normal vectors on Slin and Sh, both in the spatial and in the space-time sense. For a
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given n and almost every (x, t) ∈ QS
n we define (with DΘ the spatial Jacobian of Θ)

nlin(x, t) :=
∇ϕ̂h(x, t)∥∥∥∇ϕ̂h(x, t)∥∥∥ , nh(Θ

n
h(x, t)) :=

D−⊺Θn
h,s(x, t)nlin(x, t)∥∥∥D−⊺Θn
h,s(x, t)nlin(x, t)

∥∥∥ , (3.10)

with ϕ̂h as defined in (3.5) and Θn
h,s as in (3.6). Restricted to (x, t) with x ∈ Γlin(t)

these vectors are indeed the unit (spatial) normal vectors to these surface approxima-
tions. We also introduce space-time variants, for almost every (x, t) ∈ QS

n :

nSlin
(x, t) :=

∇(x,t)ϕ̂h(x, t)∥∥∥∇(x,t)ϕ̂h(x, t)
∥∥∥ (3.11)

nSh
(Θn

h(x, t)) :=
D−⊺

(x,t)Θ
n
h(x, t)nSlin

(x, t)∥∥∥D−⊺
(x,t)Θ

n
h(x, t)nSlin

(x, t)
∥∥∥ . (3.12)

For (x, t) restricted to Sn
lin these normals are the unit space-time normals to the

respective space-time surfaces, cf. [27, Subsection 4.2.4] for more discussion.

3.4. Discrete surface differential operators. We consider the prisms that
are cut by Slin, i.e. prisms in QS

h , and apply the mesh deformation to obtain the sets:

QS
Θ,n := Θn

h(Q
S
n), n = 1, . . . , N, QS

Θ :=

N⋃
n=1

QS
Θ,n.

Almost everywhere on the domain QS
Θ we define the projections Ph := I− nhn

⊺
h and

PSh
:= I − nSh

n⊺
Sh

. For a fixed t and smooth extension ue (ue) of u (u) defined on
Γh(t) we define

∇Γh
u := Ph∇ue, divΓh

u := tr (Ph∇ue) .

Similarly, for sufficiently smooth u (u) defined on KS ∈ TSh
we define

∇Sh
u := PSh

∇(x,t)u
e, divSh

u := tr
(
PSh

∇(x,t)u
e
)
.

It is convenient to introduce broken spaces of “sufficiently smooth” functions on Sh

(similar to (2.3)) and QS
Θ:

Wh,b :=

{
v ∈ L2(Sh) : v|Sn

h

∈ H1(Sn
h ), n = 1, . . . , N

}
,

Vreg,h :=

{
v ∈ L2(QS

Θ) : v|QS
Θ,n

∈ H1(QS
Θ,n), n = 1, . . . , N, v|Sh

∈Wh,b

}
.

For more information concerning Sobolev spaces on Lipschitz manifolds we refer to
the literature, e.g. [8]

3.5. Integration over Lipschitz space-time surfaces. The approximate sur-
face Sn

h defined in (3.8) in general has only Lipschitz smoothness. This loss of smooth-
ness, compared to the smooth space-time surface S, has consequences for (partial)
integration formulas, which play a key role in the derivation and analysis of the
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discretization method. In this section, we introduce discrete variants of the transfor-
mation formula (2.4) and the partial integration identity (2.6). These will be used
in the derivation of the discretization method in Section 3.6 and in the discussion of
implementation aspects in Section 3.7. Almost everywhere on Sn

h , n ∈ {1, . . . , N}, we
define

Vh :=
−∂

(
ϕ̂h ◦ (Θn

h)
−1

)
∂t

∥∥∥∥∇(
ϕ̂h ◦ (Θn

h)
−1

)∥∥∥∥−1

. (3.13)

Remark 2. Note that the discrete space-time surface Sn
h is defined via the surface

Sn
lin, which is the zero level of ϕ̂h, and the parametric mapping Θn

h, cf. (3.8). The
function Vh is a discrete analogue to the normal velocity w · n on S in the following
sense. In the continuous setting we use the level set equation ∂ϕ

∂t +w · ∇ϕ = 0 to see
that on S we have the relations

w · n = w · ∇ϕ
∥∇ϕ∥

=
−1

∥∇ϕ∥
∂ϕ

∂t
. (3.14)

The function Vh is a discrete approximation of the function on the right-hand side in
(3.14).

We introduce a discrete version of the integral transformation (2.4).
Theorem 3.1. For gh ∈ L2(Sn

h ) we have∫ tn

tn−1

∫
Γn
h(t)

gh dsh dt =

∫
Sn
h

gh√
1 + V 2

h

dσh, n ∈ {1, . . . , N}, (3.15)

where Vh, S
n
h and Γn

h(t) are defined in (3.13), (3.8) and (3.9), respectively.
A proof is given in [27, Theorem 4.27]. Below, in Theorem 3.2, we derive an

integration by parts identity on the discrete space-time manifold Sn
h . For this we

need further definitions. First we define a discrete version of the material derivative
in (2.2). Let w⊺

S := (w⊺, 1). For v ∈ H1(Sn
h ), n ∈ {1, . . . , N}, we define the discrete

material derivative as

v̊ := wS · ∇Sh
v = (PSh

wS) · ∇Sh
v. (3.16)

This derivative is tangential to the corresponding discrete space-time surface. For
n = 1, . . . , N, let Fn

I := {∂K1
S ∩ ∂K2

S : K1
S ,K

2
S ∈ TSn

h
,K1

S ̸= K2
S} be the set of in-

terior boundary faces of the elements in TSn
h
and Fn

T := {∂KS ∩ Γn
h(tn) : KS ∈ TSn

h
}

the set of element boundaries of TSn
h
that lie on the top time slab boundary. Sim-

ilarly, the bottom time slab boundary Fn
B := {∂KS ∩ Γn

h(tn−1) : KS ∈ TSn
h
}. Hence,

∂Sn
h = Fn

T ∪ Fn
B . Almost everywhere on ∂Sn

h the vector

ν∂ :=
1√

1 + V 2
h

(
Vhnh

1

)
(3.17)

is the unit normal of ∂Sn
h in positive t-direction. Hence, ν∂ is the unit outer normal

of the top boundary of Sn
h and −ν∂ is the unit outer normal of the bottom boundary

of Sn
h . Note that ν∂ jumps between time slabs. For KS ∈ TSh

the conormals are
denoted by νh|KS

, i.e., the unit outer normal on the faces of KS that is tangential to

KS . For KS ∈ TSn
h
with KS ∩ Γn

h(tn) ̸= ∅ the unit normal ν∂ is the conormal vector
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of KS at the top boundary of Sn
h . Analogously, if KS ∩ Γn

h(tn−1) ̸= ∅, the vector
−ν∂ is the conormal vector of KS at the bottom boundary of Sn

h , cf. Figure 3.3
for an illustration. Consider an interior boundary face F ∈ Fn

I with F = K1
S ∩K2

S ,
K1

S ,K
2
S ∈ TSn

h
. For a function v defined on K1

S ∪ K2
S we define the (vector valued)

conormal jump on F :

[v]ν |F :=
(
v|K1

S

νh|K1
S

+ v|K2
S

νh|K2
S

)
|F . (3.18)

Note that in general for the Lipschitz surface Sn
h we do not have C1 smoothness across

F and thus νh|K1
S

̸= −νh|K2
S

on F . If the function v is continuous across F we have

[v]ν |F = v|F [1]ν |F . For one-sided values we use the standard notation

tn−1

tn

Γn
h(tn−1)

Γn
h(tn)

Sn
h

K1
S

K2
S

F

−ν∂

νh

νh

ν∂

QS
Θ,n

Fig. 3.3: Illustration of the conormals. At the time slab boundaries, the conormals
coincide with ±ν∂ . Due to the non-smoothness of Sh, (νh|K1

S

)|F ̸= −(νh|K2
S

)|F at a

common face F is possible.

un+ := u+(·, tn) = lim
η↘0

u(·, tn + η), un− := u−(·, tn) = lim
η↘0

u(·, tn − η).

Below we use a generic approximation of (the extension of) α =
√

1 + (w · n) on
the discrete surface space-time surface Sh, denoted by αh. One specific possibility is
αh =

√
1 + V 2

h . However, as we will see below, other choices may be better.

Theorem 3.2. On Sh, let R := 1
αh

wS · ν∂ . For u, v ∈ H1(Sn
h ), n = 1, . . . , N ,

11



the following identity holds:∫
Sn
h

1

αh
ův dσh = −

∫
Sn
h

1

αh
ův dσh +

∫
Γn
h(tn)

un−v
n
−R

n
− dsh

−
∫
Γn
h(tn−1)

un−1
+ vn−1

+ Rn−1
+ dsh +

∑
F∈Fn

I

∫
F

uvwS ·
[
1

αh

]
ν

dF

−
∑

KS∈TSn
h

∫
KS

uv divSh

(
1

αh
PSh

wS

)
dσh.

(3.19)

A proof is given in Appendix A. The partial integration (3.19) identity contains
several geometric perturbation terms that do not arise for the smooth surface S.
These terms play a role in the definition and error analysis of the space time finite
element method, cf. the next section. The proof of Theorem 3.2 relies on the surface
triangulation of Sn

h . Using (3.15) the surface integrals
∫
Sn
h
· dσh can be reformulated

as product space-time integrals
∫ tn
tn−1

∫
Γn
h(t)

· dsh dt. However, a reformulation of the

integrals
∫
F
· dF and

∫
KS

· dσh in Theorem 3.2 as product space-time integrals is not
natural.

3.6. Space-time trace finite element discretization. In this section we in-
troduce a fully discrete higher order space-time discretization of (2.5). This method
essentially uses the same approach as in [24, 23], but there are important differences,
as explained in the Introduction, cf. Section 1. The method is a space-time Eulerian
method that uses standard tensor product finite element spaces, combined with a
parametric mapping to obtain a feasible method with higher order accuracy. More

precisely, for ks, kq ∈ N we consider the same product space V
ks,kq

h , cf. (3.2), as
used for the level set approximation and combine it with the space-time parametric
mapping (3.6), which depends on the (higher order accurate) level set approximation
ϕh. We define the parametric finite element space

V
ks,kq

h,Θ :=

{
vh : QS

Θ → R : (x, t) 7→ vh(Θ
n
h(x, t)) ∈ V

ks,kq

h |QS
n

, n = 1, . . . , N

}
. (3.20)

Note that V
ks,kq

h,Θ ⊂ Vreg,h. For β ∈ [0, 1] and u, v ∈ Vreg,h the following discrete

bilinear form on one time slab is defined (with u0− := 0)

Bβ
h,n(u, v) :=

∫
Sn
h

1

αh

(
(1− β)̊uv − βův + (1− β)uv divΓh

w + µd∇Γh
u · ∇Γh

v
)
dσh

+ β
(
Rn

−u
n
−, v

n
−
)
Γn
h(tn)

+ (1− β)
(
Rn−1

+ un−1
+ , vn−1

+

)
Γn
h(tn−1)

−
(
Rn−1

+ un−1
− ◦Θn−1

h ◦ (Θn
h)

−1, vn−1
+

)
Γn
h(tn−1)

,

(3.21)

which is the discrete analogon of (2.7) , and its sum

Bβ
h (u, v) :=

N∑
n=1

Bβ
h,n(u, v). (3.22)
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Remark 3. Opposite to the bilinear form (2.7) the one in (3.21) is in general
not independent of β. If for fixed arguments (u, v) we take the derivative with respect
to β and use (3.19) we obtain

∂

∂β
Bβ

h,n(u, v) = −
∫
Sn
h

1

αh

(
ův + ův + uv divΓh

w
)
dσh

+
(
Rn

−u
n
−, v

n
−
)
Γn
h(tn)

−
(
Rn−1

+ un−1
+ , vn−1

+

)
Γn
h(tn−1)

(3.23)

=

∫
Sn
h

1

αh
uv divΓh

w dσh −
∑

KS∈TSn
h

∫
KS

uhvh divSh

(
1

αh
PSh

wS

)
dσh (3.24)

+
∑

F∈Fn
I

∫
F

uhvhwS ·
[
1

αh

]
ν

dF. (3.25)

Opposite to (2.8) this expression is in general not zero. Note that in (3.24)-(3.25)
there are no integral terms (·, ·)Γn

h(tn)
. This is due to the fact that in the definition

of the method (3.21) we use an appropriate weighting with R such that in the partial
integration step, cf. (3.19), these terms vanish. The perturbation terms (3.24)-(3.25)
are due to geometric errors and can be controlled by the accuracy of the discrete
space-time surface approximation Sn

h .
In our space-time discretization we use a variant of volume normal derivative

stabilization [12, 4], namely:

s(u, v) := ξ

∫
QS

Θ

(nh · ∇u)(nh · ∇v) d(x, t) . (3.26)

Based on the literature we take the parameter range

h ≲ ξ ≲ h−1. (3.27)

We add this stabilization to the bilinear form:

Bβ,stab
h (u, v) := Bβ

h (u, v) + s(u, v). (3.28)

Before defining the fully discrete problem we need a suitable approximation of the
right hand side f . For t ∈ In we denote by µh = µh(t) the quotient of the surface
measures of Γ(t) and Γn

h(t), i.e. µh dsh = ds. We assume fh ∈ L2(Sh) to be an
approximation of the exact data f satisfying

∥fh − µhf
e∥L2(Sh)

≲ hk+1, (3.29)

where k := min{ks, kq, kg,s, kg,q}. From the literature it is known how such a data
approximation can be determined, see e.g. [27, Remark 4.43] or [12, Remark 5] in
similar settings. We now define the space-time discrete variational problem: Given a

right-hand side fh ∈ L2(Sh) that satisfies (3.29), determine uh ∈ V
ks,kq

h,Θ such that

Bβ,stab
h (uh, vh) =

∫
Sh

fhvh√
1 + V 2

h

dσh for all vh ∈ V
ks,kq

h,Θ . (3.30)

We are particularly interested in the case β = 0 (material derivative on u), β = 1
(material derivative on v) and β = 1

2 (antisymmetric form). Implementation aspects
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of this method are discussed in Section 3.7 below. In this paper we do not address
rigorous discretization error analysis. This topic will be treated in a forthcoming pa-
per. Rigorous error bounds for the case of bi-linear finite element approximations are
presented in [27]. In the remarks below we discuss a few aspects of this discretization
method that we consider to be relevant for a better understanding of the method.

Remark 4. We comment on the role of the volume normal derivative stabi-
lization s(·, ·). In the setting of a space-time Eulerian method that is based on a
trace technique it is very natural to use the standard nodal basis of the outer space

V
ks,kq

h,Θ . It is easy to see that in general (in particular for higher order discretizations)
the traces of these outer nodal basis functions on the (space-time) surface become
linearly dependent and thus do not form a basis of the trace space. Without the sta-
bilization term s(·, ·) the bilinear form (3.28) only contains surface integrals on Sh. In
the stabilization term we have an integral over the volumetric domain QS

Θ, consisting
of all (deformed) space-time prisms that are cut by the piecewise linear in space sur-
face approximation Slin. By adding the volumetric normal derivative we get control of
the variation of the discrete solution in normal direction. This has several advantages,
the most important one being that the stiffness matrix (w.r.t. the outer nodal basis)
is nonsingular and there is no blow up of the condition number of this matrix. It is
well-known that without stabilization, very small cuts of Slin with the outer triangula-
tion can lead to a very large condition number of the discretization matrix. A further
relevant property is that the stabilization is consistent in the following sense. If one
neglects geometric errors then the stabilization term vanishes if we insert u = ue,
i.e., the continuous solution constantly extended in spatial direction. This property is
important for optimal order discretization accuracy of the method with stabilization.
A detailed analysis of these conditioning and discretization accuracy propertes for the
case of a stationary surface Γ is given in [22]. In the present paper we do not address
the conditioning of the discretization matrix. In experiments (not presented here) we
observe that there is no blow up of condition numbers and that these have a similar
behaviour as for the space-time finite element method applied to a parabolic PDE in
the volumetric domain Ω × I. Results that illustrate the discretization accuracy of
the method are given in Section 4.

Remark 5. In the discrete bilinear form (3.21) we use a generic function αh,
which is a discrete analogon of the function α appearing in the continuous bilinear
form in (2.5). The formula (3.15) suggests that αh =

√
1 + V 2

h may be a good choice.
In numerical experiments in Section 4 we observe that this choice leads to suboptimal
results in certain cases. In [27, Subsection 5.2.2] a theoretical analysis is given that
explains these suboptimal results for the case kg,s = kg,q = 1. It is better to use an
αh that is a more accurate approximation of α than the one suggested above. One

feasible possibility is the following. Let ϕ̃h ∈ V
kg,s+1,kg,q+1
h be a one order higher

order approximation of the level set function ϕ that satisfies∣∣ϕ̃h − ϕ
∣∣
Wm,∞(QS)

≲ hkg+2−m, 0 ≤ m ≤ kg + 1, (3.31)

with kg := min{kg,s, kg,q}, cf. (3.3). As an (improved) alternative to (3.13) we define

Ṽh := −∂ϕ̃h
∂t

∥∥∥∇ϕ̃h∥∥∥−1

. (3.32)

The function Ṽh is an approximation of order kg +1 of the normal velocity w ·n that

does not use a mesh deformation. Thus we get the candidate αh =
√

1 + Ṽ 2
h , which
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is smooth on the space-time cylinders in QS
h but in general discontinuous across the

faces of these cylinders. We therefore apply a straightforward Oswald type projection
as follows. Let C(T Γ

n ) and C(QS
h,n) be the space of piecewise continuous functions

on the triangulation T Γ
n and QS

h,n, respectively. By Ph,n : C(T Γ
n ) → V

kg,s

h |ΩΓ
n

we

denote an Oswald-type averaging operator [25, 20]. We introduce the corresponding

space-time projection P̂h,n : C(QS
h,n) → V

kg,s,kg,q

h , n = 1, . . . , N :

P̂h,nv(x, t) :=

kg,q∑
m=0

X nod
τn
m

(t)Ph,nv(x, τ
n
m),

where X nod
τn
m

denote the nodal basis functions of Pkg,q with respect to the discrete

points τnm ∈ In. The choice αh = P̂h,n(
√
1 + Ṽ 2

h ), n = 1, . . . , N , is a finite element

function that is a better approximation of αe than
√

1 + V 2
h . This choice is used in

the numerical experiments in Section 4.1.
Remark 6. We comment on the function R used in the boundary terms in (3.21),

which serves as a weighting of the time slab boundary integrals. These weights can
be included without significant additional computational costs. The difference |R−1|
is controlled by geometric errors. In case of an exact surface we have R = 1. Adding
the R-weighting leads to a more consistent formulation in a sense as discussed in
Remark 3. If we include these weights the boundary terms (3.23) vanish in the
partial integration on the discrete surface. In the error analysis in [27, Chapter 5] this
cancellation plays a key role in the derivation of optimal discretization error bounds.
The analysis does not yield optimal bounds if we replace R by 1. On the other hand,
in numerical experiments (not presented here) we obtain optimal order convergence
also if we replace R by 1. Below in Section 4 we use the method with the R-weighting
in the boundary terms.

Remark 7. As mentioned above, cf. Remark 3, the discretization method de-
pends on β. Natural choices are β = 0, β = 1, β = 1

2 . The form with β = 0 is “closest”
to the original strong formulation (2.1). In the error analysis, cf. [27, Chapter 5], this
leads to a relatively simple consistency error analysis. The method for β = 1

2 is an-
tisymmetric with respect to the material derivative, which almost immediately leads
to a stable method, without using partial integration. The method for β = 1 and
with R replaced by 1 is exactly mass conserving for kg,s = 1 on the discrete level cf.
Remark 10 below. We will consider different β values in the numerical experiments
in Section 4.1 below.

Remark 8. We explain the factor Θn−1
h ◦ (Θn

h)
−1 that appears in the last term

in (3.21). This term is included to (weakly) transfer the solution from the previous
time step to an initial condition in the current one. As explained in Remark 1, the
space-time manifold Sh is not necessarily continuous between time slabs. To evaluate
un−1
− on the triangulation deformed by Θn

h, the points on Γn
h(tn−1) are mapped to

Γlin(tn−1) using (Θn
h)

−1. Then, using Θn−1
h , these points are mapped to Γn−1

h (tn−1)
where un−1

− is defined on.
Remark 9. In [23] another stabilization, namely of the form

s1(u, v) := ξ1

N∑
n=1

∫ tn

tn−1

∫
Γn
h(t)

udsh

∫
Γn
h(t)

v dsh dt, ξ1 ≥ 0, (3.33)

is used. This stabilization is needed in the stability analysis presented in that paper.
Based on numerical experiments it seems that this term is not essential for stability
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of the method. In this paper, in particular also in the numerical experiments below,
we do not include this stabilization term.

3.7. Implementation aspects. We discuss several implementation aspects of
the discrete problem (3.30). We first note that all components needed for the im-
plementation of this discretization are available in the open source package [21], an
add-on to the finite element library NGSolve\Netgen [28, 29]. The test functions in

(3.30) are in the temporal discontinuous finite element space V
ks,kq

h,Θ , which allows
us to implement the method as a time stepping algorithm, solving (3.30) time slab
after time slab. The solution of the (n− 1)-th time slab is weakly transferred to n-th
time slab by the term (Rn−1

+ un−1
− ◦Θn−1

h ◦ (Θn
h)

−1, vn−1
+ )Γn

h(tn−1), n ∈ {1, . . . , N}, see
Remark 8. We consider the bilinear form in one fixed time slab n. By Nn we denote
the number of degrees of freedom in that time slab, i.e. the dimension of the finite

element space V
ks,kq

h,Θ |QS
Θ,n

. Let the corresponding basis functions be denoted by φn
i ,

i = 1, . . . , Nn. The implementation of the higher order spatial and space-time surface
integrals in the discrete bilinear form (3.21) is done using quadrature on Γlin(τ) at
appropriate temporal quadrature points τ ∈ [0, T ]. We illustrate this for the term∫

Sn
h

1

αh
φ̊n
i φ

n
j dσh =

∫
Sn
h

1

αh

(
wS · ∇Sh

φn
i

)
φn
j dσh. (3.34)

Other integrals in (3.30) can be treated in a similar way. The quadrature of the volume
integral in the stabilization bilinear form (3.26) is simpler because it involves integrals
over (deformed) prisms. We use the integrals transformation (3.15) and the chain rule
to transform (3.34) to an integral over the tensor product surface Γlin(t)× In.∫

Sn
h

1

αh

(
wS · ∇Sh

φn
i

)
φn
j dσh =

∫ tn

tn−1

∫
Γn
h(t)

√
1 + V 2

h

αh

(
wS · ∇Sh

φn
i

)
φn
j dsh dt

=

∫ tn

tn−1

∫
Γlin(t)

Jα

((
PSh

wS

)
◦Θn

h · ∇(x,t)(φ
n
i ) ◦Θn

h

)
(φn

j ◦Θn
h) dslin dt

=

∫ tn

tn−1

∫
Γlin(t)

Jα

((
PSh

wS

)
◦Θn

h ·D−⊺
(x,t)Θ

n
h∇(x,t)(φ

n
i ◦Θn

h)
)
(φn

j ◦Θh) dslin dt

=:

∫ tn

tn−1

∫
Γlin(t)

g dslin dt, (3.35)

where

Jα :=

∣∣∣det(DΘn
h,s)

∣∣∣∥∥∥D−⊺Θn
h,snlin

∥∥∥√1 +
(
Vh ◦Θn

h

)2
αh ◦Θn

h

on Sn
lin.

We briefly comment on computational aspects of the functions appearing in (3.35).
We need the basis functions φn

i , φ
n
j composed with the mesh deformation Θn

h. These
compositions are finite element functions on the undeformed mesh, as seen in the

definition of the parametric finite element space V
ks,kq

h,Θ in (3.20). This means that

φn
i ◦ Θn

h ∈ V
ks,kq

h |QS
n

. Hence, we only need basis functions of V
ks,kq

h , cf. (3.2), to

calculate the discretization matrix. The projection PSh
depends on the normal nSh

.
Formula for this normal and for Vh ◦Θn

h are given (3.12) and (3.13) and are suitable
for an efficient implementation. The functions Jα and D−⊺

(x,t)Θ
n
h are defined on Γlin(t)

16



as well. The sufficiently smooth given functions αh and w are evaluated using Θn
h

explicitly. For an efficient and easy implementation of Θn
h it is important that this is

a finite element vector function. We refer to [26, Chapter 5], where implementation

aspects of the parametric mapping Θn
h ∈ (V

ks,kq

h,Θ |QS
Θ,n

)4 are discussed. Hence, for a

given t ∈ In, all functions in the integrand of (3.35) can be efficiently computed on
Γlin(t). We outline how space-time quadrature for the double integral in (3.35) can
be implemented. We write∫ tn

tn−1

∫
Γlin(t)

g dslin dt =
∑

K∈T Γ
n

∫ tn

tn−1

∫
K∩Γlin(t)

g dslin dt. (3.36)

Similar to [17, Section 5] and [26, Chapter 5] we split the temporal integral into parts,
where the cut topology does not change. Let KV the set of vertices of any K ∈ T .
We define the set of temporal nodes where the surface cuts a vertex of a tetrahedron
K, enriched with the initial and final times tn−1 and tn, i.e.

ΣK :=
{
t ∈ [tn−1, tn] : ϕ̂h(xV , t) = 0,xV ∈ KV

}
∪ {tn−1, tn}.

The roots of the one-dimensional polynomial t 7→ ϕ̂h(xV , t) can be found by using
e.g. the bisection method. We sort the temporal nodes in ΣK . Let |ΣK | denote the
cardinality of ΣK . We define t∗j ∈ ΣK , j ∈ {0, . . . ,|ΣK | − 1}, such that

tn−1 = t∗0 ≤ · · · ≤ t∗|ΣK |−1 = tn.

Within [t∗j , t
∗
j+1] the cut topology does not change, i.e. the surface Γlin(t) cuts

the same edges and faces of K. As a consequence, the integrand g is smooth on
K ∩ Γlin(t)× [t∗j , t

∗
j+1]. We refer to Figure 3.4 for an illustration. Hence, the mapping

t 7→
∫
K∩Γlin(t)

g(x, t) dslin, t ∈ [t∗j , t
∗
j+1] (3.37)

is smooth. If we do not take care of the cut topology, the mapping (3.37) is in general
not smooth, which may lead to a significantly larger quadrature error. Such a simpler
approach in which topology changes are ignored is used in [16, 31]. In [17, Section 6]
numerical investigations with these two approaches are presented in a moving domain
setting, showing that the naive quadrature approach performs significantly worse.
Motivated by these results we take the cut topology into account here. We write
(3.36) as ∫ tn

tn−1

∫
Γlin(t)

g dslin dt =
∑

K∈T Γ
n

|ΣK |−2∑
j=0

∫ t∗j+1

t∗j

∫
K∩Γlin(t)

g dslin dt.

Depending on kq and kg,q we take quadrature nodes tl ∈ [t∗j , t
∗
j+1], l = 0, . . . , L − 1,

L ∈ N, with corresponding weights ωl. The number L is chosen sufficiently large, such
that the numerical integration does not influence the order of optimal discretization
errors. The choice of L is not straightforward, see [27, Subsection 6.3.1.1]. We thus
get a quadrature rule for the time integral of the following form∫ tn

tn−1

∫
Γlin(t)

g dslin dt ≈
∑

K∈T Γ
n

|ΣK |−2∑
j=0

L∑
l=0

ωl

∫
K∩Γlin(tl)

g dslin. (3.38)
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t∗0 = tn−1

t∗3 = tn

t∗1

t∗2

tl

Slin

K × In

K ∩ Γlin(tl)

Fig. 3.4: We calculate integrals on Sh by using quadrature rules on sufficient spatial
planar intersections K ∩ Γlin(tl).

For a detailed discussion on the implementation of the spatial parametric map-
pings Θn

h,τn
m

we refer to [20]. The domain of integration of the remaining spatial

integral is the zero level of the piecewise linear level set function ϕ̂h(·, tl). The whole
space-time integral is broken down to spatial integrals with respect to the low or-
der geometry Γlin(tl). Every set K ∩ Γlin(tl) is either a quadrilateral or a triangle.
Quadrilaterals are divided into triangles before we use a quadrature rule of sufficient
exactness degree (≈ 2ks) on each triangle to approximate integrals on K∩Γlin(tl). For
more details concerning the quadrature method outlined above we refer to [17, 27].

4. Numerical experiments. In this section we present and discuss several nu-
merical experiments. All methods are implemented in ngsxfem [21], an add-on pack-
age to the finite element library NGSolve\Netgen, see [28, 29]. To solve the arising
linear systems, we use the direct solver Pardiso which is part of the Intel MKL library
[30]. To visualize our results we use the software ParaView, see [1]. In Section 4.1
we illustrate the influence of the factor αh on convergence results by considering a
piecewise linear and piecewise higher order variant. In Section 4.2 we present results
for two different smoothly evolving surfaces. We then show results of numerical ex-
periments for an evolving surface with topological singularities in Section 4.3. Both
spatially two- and three-dimensional settings are considered.

We explain general settings used in the experiments. We solve the discrete prob-
lem (3.30), and set the diffusion coefficient to µd = 1. We consider β ∈ {0, 12 , 1} and
the stabilization parameter is taken as ξ ∈ {h, h−1}. All test cases employ velocity
fields that are not divergence-free, i.e. divΓ w ̸= 0. As input for the mesh deformation

we use the nodal space-time interpolation ϕh = Ih(ϕ) ∈ V
kg,s,kg,q

h of a given level set
function ϕ, resulting in the discrete space-time manifold Sh, cf. (3.8). In Section 4.2
we prescribe a smooth solution u in the neighborhood U and calculate the correspond-
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ing right hand side f . Different from (2.5) we allow a non-zero initial condition u0. In
Section 4.3 we are not able to compute a right-hand side to a prescribed solution u,
since there are geometric singularities. Instead, we take a nonzero initial solution u0
on Γ(0) and a source term f = 0. As initial condition for the discrete problem (3.30)
we take the parametric interpolation

(uh)
0
−(x) := Iks(u(Θh,0(·), 0))(Θ−1

h,0(x)), x ∈ Γh(0).

The initial condition is weakly enforced via the integral over the deformed Γh(0)
contained in the bilinear form defined in (3.21). The right-hand side is taken as
fh = f on Sh, which can be shown to be sufficiently accurate, see e.g. [27, Remark
4.43] or [10, Remark 5] in similar settings. We now explain the error measures that
we use. For this we introduce the jump brackets on the discrete time slab boundaries

[v]nh := vn+ − vn− ◦Θn
h ◦ (Θn+1

h )−1 ∈ L2(Γn+1
h (tn)), n ∈ {0, . . . , N − 1}, (4.1)

and define the energy norm

|||v|||2h := max
n∈{1,...,N}

∥∥vn−∥∥2L2(Γn
h(tn))

+

N∑
n=1

∥∥∥[v]n−1
h

∥∥∥2
L2(Γn

h(tn−1))
+∥v∥2L2(Sh)

+
∥∥∇Γh

v
∥∥2
L2(Sh)

+ ξ∥nh · ∇v∥2L2(QS
Θ) .

(4.2)

For measuring the discretization accuracy we will use the energy norm error |||ue−uh|||h.
For this measure to be useful it is important that ue is chosen as the constant extension
of u in spatial normal direction. Otherwise the bulk error ξ

1
2

∥∥nh · ∇(ue − uh)
∥∥
L2(QS

Θ)

does not necessarily converge with optimal order. In Sections 4.1 and 4.2 such a
constant extension is algebraically computable and ue is chosen accordingly. In Sec-
tion 4.2.2 we consider a more complicated geometry for which this constant normal
extension is not readily available. In that case we consider the modified energy norm

|||ue − uh|||2h,∗ := |||ue − uh|||2h − ξ
∥∥nh · ∇(ue − uh)

∥∥2
L2(QS

Θ)
(4.3)

which requires ue values only on Sh. In this case it is not necessery to use a constant
u extension in normal direction. Instead we use a natural, smooth extension ue. We
also measure the error in a discrete L∞L2-norm

∥ue − uh∥L∞L2 := max
n∈{1,...,N}

∥ue − uh∥L2(Γn
h(tn))

.

We use the following simple spatial mesh refinement strategy. We start with a coarse
unstructured triangular/tetrahedral quasi-uniform triangulation of Ω, with an initial
mesh size denoted by hinit. We refine the mesh uniformly to obtain the spatial refine-
ment levels ls ∈ {0, . . . , 8}, such that h = hinit2

−ls . Using a marked-edge bisection
method, we only refine simplices that are intersected by the surface. Taking an initial
uniform time step size ∆tinit, we halve this value for each temporal refinement level
lq ∈ {0, . . . , 7}, i.e. ∆t = ∆tinit2

−lq . To assess the order of convergence in space,
time and space-time, we calculate the spatial, temporal and space-time experimental
order of convergence, which we denote as eocs, eocq and eocqs respectively. To do so
we take two errors el and el+1, l ∈ {lq, ls}, of subsequent refinement levels l and l+1

and calculate eoc = 1
log(2) log

(
el

el+1

)
. For the calculation of eocqs we consider one

refinement in both space and time as subsequent refinement. To compute eocs and
eocq we consider the errors of the finest temporal and the finest spatial discretizations
used in the specific experiment, respectively.
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4.1. On the factor αh in the discrete bilinear form. We consider a shrinking
circle that is moving through the background mesh with a time- and space-dependent
velocity field. The center of the circle moves along a semicircle in the mesh. As outer
domain we take Ω = (−1, 1)2 and as time interval we choose [0, 1]. On Q = Ω× [0, 1]
the evolution of the surface Γ(t) is described by the zero level of

ϕ(x, t) =

√(
x− cos(πt)

2

)2

+

(
y − sin(πt)

2

)2

− 9e−
t
4

20
, (x, t) = (x, y, t) ∈ Q.

On Q we construct a normal velocity field that transports Γ(t) by

wn = −∂ϕ
∂t

∇ϕ.

Note that
∥∥∇ϕ(x, t)∥∥ = 1 for all (x, t) ∈ Q, since ϕ(·, t) is a signed distance function to

Γ(t). We do not want to restrict to the special case of a problem with a strictly normal
velocity field w. Therefore we add a tangential part wtang = 1

2

(
(∇ϕ)2,−(∇ϕ)1

)⊺
to

wn, where (∇ϕ)i denotes the ith component of ∇ϕ. Since wn · ∇ϕ = −∂ϕ
∂t and

wtang · ∇ϕ = 0 we conclude that w = wn + wtang satisfies the level set equation
∂ϕ
∂t +w · ∇ϕ = 0. We use this w for the experiments and prescribe the exact solution
as

u(x, t) = y(x2 + 1)e−t, (x, t) ∈ S.

We take an initial mesh size of hinit = 2−3 and an initial time step size as ∆tinit = 2−3.
In Figure 4.1 we illustrate the space-time manifold Sh in the space-time prismatic
background mesh for relatively coarse discretization parameters. In Figure 4.2a we
present numerical results for k = 1. Note that for k = 1 the mesh-transformation
reduces to the identity: Θn

h = id. A seemingly natural choice is the approximation

αh =
√

1 + V 2
h , where Vh is a piecewise bi-linear approximation of the normal velocity

field w · n, cf. (3.13). It is natural in the sense that
√

1 + V 2
h is the transformation

factor between an integral over Sn
h , i.e.

∫
Sn
h
·dσh, and the corresponding iterated

integral
∫ tn
tn−1

∫
Γh(t)

·dsh dt, cf. Theorem 3.1. In the continuous setting this factor is

α, which we approximate by αh. In Figure 4.2b results for the piecewise bi-quadratic

variant αh = P̂h,n(
√
1 + Ṽ 2

h ), cf. Remark 5, are shown. In Figure 4.3 we present

corresponding results for k = 3. In Figures 4.2a and 4.3a we observe optimal order
convergence for the methods with β = 0 and one order less for the methods with
β ∈ { 1

2 , 1}. A heuristic explanation for this difference in order of convergence is as
follows. Note that the methods with β ∈ { 1

2 , 1} contain a time derivative of the test
function and due to this one needs partial integration in the consistency error analysis.
Hence, jumps of αh occur in the consistency error, see Theorem 3.2. In the method
with β = 0 partial integration is not needed in the consistency error analysis (only
in the stability analysis). The relatively poor αe approximation

√
1 + V 2

h , which is
discontinuous across surface element faces, causes large jumps of αh that lead to a
suboptimal order term in the consistency error. This does not happen for the case

β = 0. For the more accurate approximation αh = P̂h,n(
√

1 + Ṽ 2
h ) the jump terms

on interior boundary faces of surface elements, i.e. on Fn
I , vanish. Furthermore,

corresponding jumps between time slabs are sufficiently small to allow an optimal
order consistency error.

If not stated differently, we restrict to β = 0, ξ = h and αh =
√

1 + V 2
h in the

experiments below.
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Fig. 4.1: Moving circle: a sketch of the space-time manifold Sh in the space-time
prismatic triangulation with N = 4 time slabs. Here, we have h = 2−2 and kgs =
kg,q = 1. We see the discrete solution uh on a circle moving through the triangular
background mesh.
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Fig. 4.2: Moving circle: convergence results varying αh, β and ξ in the bilinear forms
for k = 1.

4.2. Smoothly evolving surfaces. In this section we consider spatially two-
and three-dimensional examples, both with smooth geometries.
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Fig. 4.3: Moving circle: convergence results varying αh, β and ξ in the bilinear forms
for k = 3.

4.2.1. Moving circle. We take the same Ω, ϕ, w, T and u as in Section 4.1.
We choose the initial mesh size hinit = 2−2 and the initial time step size ∆tinit = 2−2.
In Figure 4.4 and Tables 4.1 and 4.2 we depict numerical results in the energy norm
and in the L∞L2-norm for 7 levels of refinement. For k ∈ {1, 2, 3, 4, 5} we observe in
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Fig. 4.4: Moving circle: convergence results in different norms.

Figure 4.4 optimal order convergence for both the energy norm error and the L∞L2-
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lq ↓ \ls → 0 1 2 3 4 5 6 7 eocq

0 2.20E-1 6.48E-2 2.45E-2 1.37E-2 1.24E-2 1.12E-2 5.97E-3 6.79E-3 -
1 2.72E-1 5.05E-3 4.33E-4 2.73E-4 1.98E-4 1.52E-4 1.25E-4 1.10E-4 5.95
2 1.20E+0 1.40E-3 1.03E-4 3.24E-5 2.07E-5 1.43E-5 1.07E-5 8.67E-6 3.67
3 1.54E+0 1.19E-3 7.53E-5 9.09E-6 2.69E-6 1.64E-6 1.09E-6 7.88E-7 3.46
4 1.12E+0 1.11E-3 6.52E-5 6.32E-6 9.42E-7 2.35E-7 1.31E-7 8.73E-8 3.17
5 8.10E-1 1.09E-3 6.18E-5 4.98E-6 6.23E-7 1.06E-7 2.20E-8 1.08E-8 3.01
6 1.66E+0 1.08E-3 6.06E-5 4.37E-6 4.30E-7 6.95E-8 1.26E-8 2.28E-9 2.24
7 2.06E+2 1.07E-3 6.02E-5 4.15E-6 3.38E-7 4.37E-8 8.24E-9 1.53E-9 0.576

eocs - 17.6 4.15 3.86 3.62 2.95 2.41 2.43
eocqs - 5.45 5.62 3.5 3.27 3.15 3.07 3.04

Table 4.1: Moving circle: the errors |||ue − uh|||h for k = 3.

lq ↓ \ls → 0 1 2 3 4 5 6 7 eocq

0 2.57E-2 5.93E-3 5.81E-4 4.28E-4 3.68E-4 3.53E-4 3.46E-4 3.42E-4 -
1 3.20E-2 1.83E-4 2.30E-5 1.62E-5 1.44E-5 1.38E-5 1.37E-5 1.37E-5 4.64
2 2.95E-1 1.64E-4 4.56E-6 1.01E-6 6.43E-7 5.88E-7 5.84E-7 5.86E-7 4.55
3 2.27E-1 1.62E-4 4.46E-6 3.08E-7 5.89E-8 3.38E-8 2.28E-8 2.12E-8 4.79
4 7.46E-1 1.62E-4 4.45E-6 3.12E-7 1.92E-8 3.65E-9 2.25E-9 1.16E-9 4.19
5 4.77E-1 1.62E-4 4.45E-6 3.11E-7 1.92E-8 1.15E-9 2.12E-10 1.44E-10 3.01
6 1.04E+0 1.62E-4 4.45E-6 3.16E-7 1.93E-8 1.15E-9 6.68E-11 1.23E-11 3.55
7 9.49E+1 1.62E-4 4.45E-6 3.16E-7 1.93E-8 1.16E-9 6.67E-11 4.13E-12 1.57

eocs - 19.2 5.19 3.82 4.03 4.06 4.12 4.01
eocqs - 7.13 5.33 3.89 4.0 4.06 4.11 4.02

Table 4.2: Moving circle: the errors ∥ue − uh∥L∞L2 for k = 3.

error until error values small than 10−10 are reached. For k = 4, the error in the L∞L2-
norm shows a suboptimal rate of convergence with order approximately 4 (instead of
the optimal order 5). In further experiments (results not shown here) we observed that
an optimal order convergence can be obtained by increasing the order of the geometry
approximation, i.e. taking kg,s = kg,t = 5. Taking only a higher order approximation
of the geometric quantity αh is not sufficient here, cf. Section 4.1. To further study
the higher order methods, we present more detailed space-time convergence results
for the case k = 3 in Tables 4.1 and 4.2. We observe optimal order convergence on the
space-time diagonal. In these tables the first column gives somewhat unstable results.
This is caused by the mesh deformation. When deforming a too coarse mesh, the
distance between an undeformed and the corresponding deformed tetrahedron might
become so large that undesirable effects occur. For example, faces of the deformed
tetrahedra might touch each other. To avoid such effects, one uses a strategy in
which certain tetrahedra are not allowed to deform, leading to an only piecewise
linear approximation of the surface for the under-resolved case.

4.2.2. Twisting torus. We consider a torus, formed with the y-axis as axis of
rotation. The torus is twisted over time. We take the background domain Ω = (−1, 1)3

and the time interval [0, T ], T ∈ { 5
2 , 5}. On Q = Ω× [0, 5] the evolution of the surface
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Γ(t) is described by the zero level of

ϕ(x, t) =

(
ω2
1(x, t) + ω2

2(x, t) + ω2
3(x, t) +

9

50

)2

− 121

100

(
ω2
1(x, t) + ω2

3(x, t)
)
,

(x, t) = (x, y, z, t) ∈ Q,

where ω1, ω2, ω2 : Q→ R are defined asω1

ω2

ω3

 (x, t) :=

cos(ty) 0 − sin(ty)
sin(ty) 0 cos(ty)

0 1 0

xy
z

 .

On Q we use a normal velocity field that transports Γ(t) by

w = −∂ϕ
∂t

∇ϕ
∥∇ϕ∥2

.

We prescribe the exact solution as

u(x, t) = ue(x, t) = x sin

(
πt

2

)
, (x, t) = (x, y, z, t) ∈ Q.

We take the initial mesh size as hinit = 2−1 and the initial time step size as ∆tinit =
2−3. In Figure 4.5 we give a sketch of the geometry and the discrete solution on
the torus. In Figures 4.6 and 4.7 we present errors in the surface norm ||| · |||h,∗
and in the L2L∞-norm. In Figure 4.6 we observe optimal order convergence for
k ∈ {1, 2, 3} and T = 5

2 , while for k = 4 we see faster convergence as expected. This is
probably because, for runtime reasons, we have not refined further than h = 2−5 (level
l = 4) and the asymptotic range of the space-time convergence order has not been
reached, yet. In Figure 4.7 we chose a larger temporal end point T = 5 which leads
to much larger curvatures, cf. Figure 4.5. For k ∈ {1, 2} the results show optimal
convergence behavior, with in some cases even larger orders. This may caused by
the fact that we use a larger geometry order here (kg = k + 1) and due to the very
large curvatures the geometric error still dominates on the levels considered. The
experiments above indicate that the higher order methods perform well also in the
spatially three-dimensional case.

Remark 10. We comment on a difference with respect to mass conservation
between the methods with β = 1 and β ̸= 1. The method for β = 1 and with R
replaced by 1 is exactly mass conserving for kg,s = 1 in the following sense. Let uh be
the solution of (3.30) with R = 1 and fh = 0, and define inmass :=

∫
Γlin(tn)

unh,−, n =

0, . . . , N . Using a piecewise (in time) constant finite element test function vh = 1 for
t ≤ tn and vh = 0 for t > tn one easily checks that inmass = i0mass for n = 0, . . . , N . Note
that we consider kg,s = 1 which implies Θn

h = id and Γn
h(tn) = Γn−1

h (tn) = Γlin(tn). In
Figure 4.8, for the twisting torus problem with initial condition u0(x, y, z) = 5 + xyz
and fh = 0 we show results for emass := maxn=0,...,N |inmass − i0mass|. These confirm
the exact mass conservation property. The results also show that the method with
β = 1 leads to significantly better results than the method with β = 0, also for the
R ̸= 1 case used in (3.21). We present results only for k = 1. For the higher order
case with β = 1 we observe that the discretization errors in the L∞L2 norm are of
optimal order for k = 3 but suboptimal for k = 2. The reason for this (unexpected)
behaviour is unclear and has to be investigated further.
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Fig. 4.5: A sketch of the evolution of the twisted torus for k = 1. The discrete solution
uh at times t = iT

8 , i = 0, . . . , 8, is depicted in the images from top left to bottom
right. Here, we have ∆t = 5 · 2−5, h = 2−5 and T = 5. The green arrows represent
the velocity field w. A full animation can be found here.

4.3. Space-time surfaces with topological singularities. A unique feature
of the technique presented in this paper is that it is also applicable to problems in
which evolving surfaces with topological singularities occur. In the two examples
below we illustrate this robustness property. Due to the singularities, higher order
convergence can not be expected and therefore we restrict to k = 1.

4.3.1. Merging spheres. We consider two spheres that merge, similar to [13].
We take the background domain Ω = (−3, 3)3 and the time interval [0, 1]. On
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Fig. 4.6: Twisting torus: convergence results for T = 5
2 in different norms.
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Fig. 4.7: Twisting torus: convergence results for T = 5 in different norms. We use a
higher order geometry: kg,s = kg,q = ks + 1 = kq + 1 = k + 1.

Q = Ω× [0, 1] the evolution of the surface Γ(t) is described by the zero level of

ϕ(x, t) = 1− 1∥∥x− c+(t)
∥∥3 − 1∥∥x− c−(t)

∥∥3 , (x, t) ∈ Q,
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Fig. 4.8: Mass conservation results; k = 1.

where c± = ± 3
2 (t−1, 0, 0)⊺. On Q we construct a normal velocity field that transports

Γ(t) by

w = −∂ϕ
∂t

∇ϕ
∥∇ϕ∥2

.

We consider the initial condition

u0(x, t) = yz + x+ 15, (x, t) = (x, y, z, t) ∈ Q

and f = 0 for the right-hand side. We take the initial mesh size as hinit = 2−1 and the
initial time step size as ∆tinit = 2−3. In Figure 4.9 we illustrate the discrete solution
at different points in time.

To evaluate the robustness of the method, we measure the mass evolution over
time. We run numerical experiments to assess if and how accurate the discrete solution
satisfies a mass conservation property. To illustrate the change of total mass and area
over time, we measure these quantities at the discrete points tn, i.e.

inmass :=

∫
Γn
h(tn)

unh,− dsh, insurf :=

∫
Γn
h(t)

1 dsh, n = 0, . . . , N.

In the figures below these quantities are linearly interpolated in each time interval,
resulting in the continuous time dependent functions imass and isurf . We measure the
maximum numerical mass change using the quantity

emass := max
n=0,...,N

∣∣∣inmass − i0mass

∣∣∣ . (4.4)

In Figure 4.10 we illustrate the change of mass and surface area over time. Recall that
lq and ls denote the refinement level in time and space, respectively. In Figure 4.11
we depict the maximal mass error quantity emass.

Since the velocity fieldw is not divergence free, the surface area changes over time.
The surface area increases until the spheres collide at t = 1− 2

32
1
3 ≈ 0.16. After this
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Fig. 4.9: A sketch of the evolution of the smooth sphere for k = 1. The discrete
solution uh at times t ∈ {0, 20

128 ,
21
128 ,

34
128 ,

71
128 , 1}, is depicted in the images from top

left to bottom right. Here, we have ∆t = 2−7 and h = 2−5. The full animation can
be found here.

collision the surface evolves to a sphere and the surface area decreases as a function
of time, cf. Figure 4.10b. We find that the topological singularity at t ≈ 0.16 has
no significant influence on the approximate mass conservation. Under space and time
mesh refinement the discrete mass imass(t) converges towards a constant function, cf.
Figure 4.10a. The maximum mass error emass decreases with (optimal) second order,
see Figure 4.11.

4.3.2. Disintegrating sphere. We consider a sphere that gets perforated and
splits into eight smaller closed manifolds that are not connected. The level set equa-
tion of the perforated manifold is similar to the decocube considered in [5, 11]. As
outer domain we consider Ω = (−3, 3)3 and as time interval we choose [0, 94 ]. On
Q = Ω× [0, 94 ] the evolution of the surface Γ(t) is described by the zero level of the
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Fig. 4.10: Merging spheres: the evolution of mass and surface area for k = 1.
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Fig. 4.11: The maximum mass error (4.4). Note that due to the large values of imass,
cf. Figure 4.10, the relative errors have reasonable sizes.

fifth order polynomial(
12x4 +

(
8y2 + 8z2 − 76

)
x2 + 12y4 +

(
8z2 − 76

)
y2 + 12z4 − 76z2 + 205

)
t

4

+ 5x2 + 5y2 + 5z2 − 125

4
=: ϕ(x, t), (x, t) = (x, y, z, t) ∈ Q.

On Q we construct a normal velocity field that transports Γ(t) by

w = −∂ϕ
∂t

∇ϕ
∥∇ϕ∥2

.
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Fig. 4.12: A sketch of the evolution of the disintegrating sphere. The discrete solution
uh at times t = iT

8 , i ∈ {0, . . . , 8}, is depicted in the images from top left to bottom
right. Here, we have ∆t = T · 2−6 and h = 2−4. The full animation can be found
here.

We take the initial condition

u0(x) := x+ yz + 15, x ∈ Γh(0)

and f = 0 for the right hand side. We choose k = 1, hinit = 2−1 and ∆tinit = 2−3. As
in Section 4.3.1 we do not measure the discretization error ue − uh because u is not
known. In Figure 4.12 we show results of numerical simulations. At t = 0 we have a
sphere which at first deforms to a rounded cube with small bumps. At t ≈ 0.61 an
additional sphere originates from a point singularity in the center of the outer surface.
This sphere gets larger over time and merges with the outer surface at t ≈ 0.87. The

30

https://doi.org/10.5281/zenodo.7385373


two disjoint surfaces with genus 0 merge to a connected surface with genus 6 which
we call decocube. At t ≈ 1.55 this decocube splits into eight smaller surfaces with
genus 0. Hence, in this example there are three points in time at which a topological
singularity occurs. In Figures 4.13 and 4.14 close-ups of the surface near two different
topological singularities are shown.

Fig. 4.13: Disintegrating sphere: on the left side we illustrate the solution on the
surface Γh(t), zoomed in near the spot where a hole emerges later. On the right side
we have the same perspective one time step later after the hole arose. The images
are colored with the discrete solution uh at times t = 24

64T (left) and t = 25
64T (right).

Here, we have ∆t = T · 2−6 and h = 2−4.

Fig. 4.14: Disintegrating sphere: on the left side we illustrate the solution on the
surface Γh(t), zoomed in near one of the edges of the decocube, where the surface
splits later. On the right side we have the same perspective one time step later after
the split happened. The images are colored with the discrete solution uh at times
t = 44

64T (left) and t = 45
64T (right). Here, we have ∆t = T · 2−6 and h = 2−4.

As in Section 4.2 we run numerical experiments to assess if and how accurate the
discrete solution satisfies a mass conservation property. In Figure 4.15 we illustrate
the evolution of mass and surface area over time. In Figure 4.15b we see that after
the first singularity at t ≈ 0.61 there is a strong increase of the surface area. The
merging of the inner and outer surfaces, i.e. the formation of the decocube at t ≈ 0.87,
leads to a decrease of the surface area and the splitting at t ≈ 1.55 does not change
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Fig. 4.15: Disintegrating sphere: the change of mass and surface area for k = 1.

this decreasing surface area behavior significantly. The mass on the inner sphere,
which arises from a point singularity at t ≈ 0.61, remains zero until the merging with
the outer surface at t ≈ 0.87. When the two surfaces merge we observe an abrupt
change of mass, which gets significantly smaller for finer refinement levels. The third
topological singularity, the splitting into eight smaller connected surfaces at t ≈ 1.55,
yields a (large) mass loss, even though the surface area does not change significantly
at that time. This mass loss becomes smaller on finer levels. The mass function
imass(t) seems to converge to a constant function, which is the expected behavior.

Finally we note one further robustness aspect. The results above show that both in
the example of the merging spheres and of the disintegrating sphere one obtains stable
and reasonably accurate results on very coarse meshes, e.g., level l = 2. This indicates
that with this discretization method one preserves a main favourable property of the
level set technique, namely that it can handle topological singularities in a very stable
way.

5. Conclusions. In this paper we studied a Eulerian finite element method for
the full discretization of scalar partial differential equations on evolving surfaces. The
method uses standard space-time finite element spaces on a bulk mesh in combination
with the trace technique known from the literature. The method is applied to the
model problem (2.1) which describes diffusive transport on an evolving surface. For
higher order accuracy we use a space-time parametric mapping. This leads to the
discrete problems (3.30), parameterized with β ∈ [0, 1]. Key properties and imple-
mentation issues of this discretization method have been addressed. The performance
of the method is illustrated in examples with one and two-dimensional surfaces. The
results show that the method has (optimal) higher order convergence (in space and
time) in cases with smoothly evolving surfaces and can handle topological singulari-
ties in a robust way.
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Appendix A. Proof of Theorem 3.2.
Proof. By e.g. [9] we know the partial integration rule for a smooth function g

defined on an arbitrary KS ∈ TSn
h∫

KS

∇Sh,ig dσh =

∫
KS

gκKS
(nSh

)i dσh +

∫
∂KS

g(νh)i dF, i ∈ {1, . . . , 4}.

Here, ∇Sh,ig denotes the i-th Cartesian component of ∇Sh
g. The function κKS

de-
notes the mean curvature on KS . Replacing g by uv

αh

(
PSh

wS

)
i
, summing over i and

using the product rule we get∫
KS

udivSh

(
v

αh
PSh

wS

)
+

(
v

αh
PSh

wS

)
· ∇Sh

udσh

=

∫
KS

κKS

uv

αh

(
PSh

wS

)
· nSh

dσh +

∫
∂KS

hv

αh

(
PSh

wS

)
· νh dF.

(A.1)

The first term on the right hand side vanishes, since the vectors in the dot product are
orthogonal. We calculate using (A.1) and the definition (3.16) of the discrete material
derivative∫

Sn
h

1

αh
ův dσh =

∑
KS∈TSn

h

∫
KS

v

αh

(
PSh

wS

)
· ∇Sh

udσh

=
∑

KS∈TSn
h

[
−
∫
KS

udivSh

(
v

αh
PSh

wS

)
dσh +

∫
∂KS

uv

αh

(
PSh

wS

)
· νh dF

]
.

We continue using the product rule and the tangency of νh|KS
to KS

∫
Sn
h

1

αh
ův dσh =

∑
KS∈TSn

h

[
−
∫
KS

uv divSh

(
1

αh
PSh

wS

)

− u

αh

(
PSh

wS

)
· ∇Sh

v dσh +

∫
∂KS

uv

αh
wS · νh dF

]
.

For the second term on the right hand side we use the tangency of PSh
wS to Sh

and the definition of the weak material derivative (3.16). We split the sum in the
third term on the right-hand side. In case ∂KS ⊂ ∂Sn

h we know νh = ν∂ at the top
boundary of the time slab and νh = −ν∂ at the bottom boundary of the time slab.
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We obtain∫
Sn
h

1

αh
ův dσh = −

∫
Sn
h

1

αh
ův dσh +

∑
F∈Fn

T

∫
F

un−v
n
−

αn
h,−

wS · (ν∂)
n
− dF

−
∑

F∈Fn
B

∫
F

un−1
+ vn−1

+

αn−1
h,+

wS · (ν∂)
n−1
+ dF +

∑
F∈Fn

I

∫
F

uvwS ·
[
1

αh

]
ν

dF

−
∑

KS∈TSn
h

∫
KS

uv divSh

(
1

αh
PSh

wS

)
dσh.

Due to the definition of Fn
T and Fn

B we get∫
Sn
h

1

αh
ův dσh = −

∫
Sn
h

1

αh
ův dσh +

∫
Γn
h(tn)

un−v
n
−

αn
h,−

wS · (ν∂)
n
− dsh

−
∫
Γn
h(tn−1)

un−1
+ vn−1

+

αn−1
h,+

wS · (ν∂)
n−1
+ dsh

+
∑

F∈Fn
I

∫
F

uvwS ·
[
1

αh

]
ν

dF −
∑

KS∈TSn
h

∫
KS

uv divSh

(
1

αh
PSh

wS

)
dσh.

Finally, using the definition R = 1
αh

wS · ν∂ completes the proof.
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