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AN EULERIAN FINITE ELEMENT METHOD FOR TANGENTIAL
NAVIER-STOKES EQUATIONS ON EVOLVING SURFACES

MAXIM A. OLSHANSKII∗, ARNOLD REUSKEN† , AND PAUL SCHWERING‡

Abstract. The paper introduces a geometrically unfitted finite element method for the numerical solution of
the tangential Navier–Stokes equations posed on a passively evolving smooth closed surface embedded in R3. The
discrete formulation employs finite difference and finite elements methods to handle evolution in time and variation
in space, respectively. A complete numerical analysis of the method is presented, including stability, optimal order
convergence, and quantification of the geometric errors. Results of numerical experiments are also provided.
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1. Introduction. Lipid membranes and liquid crystal shells are examples of deformable thin
structures exhibiting lateral fluidity [6, 8, 21]. Continuum based modeling of such materials leads
to systems of PDEs posed on evolving surfaces embedded in R3. For example, the motion of an
inextensible viscous fluid layer represented by a material surface is governed by the evolving surface
Navier–Stokes equations derived in e.g., [17,22,28,44,50]. While the evolving surface Navier–Stokes
system was discussed in the literature, to the best of our knowledge there is no existing well-
posedness or numerical analysis of this problem. The recent paper [37] addressed well-posedness of
a simplified problem consisting of tangential surface Navier–Stokes equations (TSNSE) posed on a
passively evolving surface embedded in R3. A weak variational formulation of TSNSE was shown
to be well-posed for any finite final time and without smallness conditions on the data. For that
variational formulation we introduce a discretization method and prove its stability and optimal
order convergence. This is the first study addressing numerical analysis of a fluid PDE system posed
on an evolving surface.

For discretization of the TSNSE we consider a geometrically unfitted finite element method
known as TraceFEM [32,35]. The TraceFEM applies to a fully Eulerian formulation of the problem
and does not require a surface triangulation, which makes it convenient for deforming surfaces. In
TraceFEM one uses standard (bulk) finite element spaces to approximate unknown quantities on the
surface Γ(t) which propagates through a given triangulation of an ambient volume Ω, i.e. Γ(t) ⊂ Ω
for all times t. The discrete formulation does not need a surface parametrization and uses tangential
calculus in the embedding space R3. For scalar PDEs on evolving surfaces, a space–time and a
hybrid (finite difference in time – finite elements in space) variant of TraceFEM are known in the
literature [26, 36]. For the TSNSE we choose the hybrid approach since it is more flexible in terms
of implementation and the choice of elements.

A variant of the hybrid FEM that we consider in this paper has recently been applied to time-
dependent Stokes equations in a moving volume domain Ω(t) ⊂ R3 in [4, 49]. In [49] Taylor-Hood
finite elements are used, whereas in [4] equal order finite element spaces combined with a continuous
interior penalty pressure stabilization are applied for space discretization. Both papers present a
complete discretization error analysis. The resulting error bounds in [49] are suboptimal both for
velocity and pressure and in [4] the bound for the pressure error is suboptimal. In both papers it is
mentioned that the suboptimality of the bounds is essentially due to the lack of a uniform discrete
pressure stability bound, cf [49, Remark 5.11], [4, Section 4.1]. Related to this we mention a further
new contribution of this paper. We introduce, in the surface case, a new argument which leads to a
discrete pressure stability bound that is uniform in the parameter range h2 . ∆t, cf. Remark 4.2.
Using this we derive error estimates for velocity and pressure that are optimal in the parameter
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range h2 . ∆t . h. These parameter range restrictions are reasonable if one considers BDF1 or
BDF2 time discretization methods and low order finite element pairs, e.g. Taylor-Hood P2-P1.

Concerning related work on numerical analysis and development of computational methods for
fluid equations posed on surfaces we note the following. In the past few years there was an increasing
interest is this research field; see, e.g., [2,3,7,10,13,18,23,31,33,34,37,39,40,42–44,46,48]. In many
of these papers the main topic is the development of numerical methods. The papers that focus on
numerical (error) analysis mostly address the “simple” case of a homogeneous viscous surface fluid
flow on a steady smooth surface. For the scope of this paper, the most relevant results can be found
in [2,18,23,33], where first stability and error analyses of finite element discretizations for the Stokes
problem on a steady surface are presented. The authors of [2,23] analyzed H(div)-conforming finite
elements for the surface Stokes equation. The surface Stokes problem has been discretized using
unfitted P2-P1 elements in [33], and with higher order Taylor-Hood bulk elements [18]. We also
mention the work in [14, 16, 20], where the surface FEM of Dziuk [9] and TraceFEM are analyzed
for the surface vector-Laplace problem, which is closely related to the surface Stokes problem. Here
we will use results from these papers for the analysis of the geometric error.

The rest of the paper is organized in four sections. In section 2 we introduce necessary notations
from tangential calculus and formulate the TSNSE as a well-posed variational problem. Section 3
presents the discretization method for this problem. We first explain the idea of how the system is
integrated numerically in time and proceed to a fully discrete method. Section 4 contains the main
results. The error analysis presented in this section is rather long and technical but its structure
is canonical. We derive continuity and stability estimates for the discrete problem. Substituting
the continuous solution in the discrete variational formulation results in consistency terms for which
bounds are derived. A priori discretization error bounds are derived by using an established ap-
proach, based on discrete stability, consistency error bounds and interpolation error bounds. In
Remark 4.1 we give more explanation concerning the structure and the key new ingredients of the
error analysis. The main result of the paper is Theorem 4.14 which yields optimal order error esti-
mates for the velocity in an energy norm and for pressure in a special H1-type norm. Results of a
numerical experiment presented in section 5 illustrate the optimal order convergence of the method.

2. Problem formulation. In this section we explain the tangential surface Navier-Stokes
equations that we treat in this paper. Consider, for t ∈ [0, T ], a material surface Γ(t) embedded
in R3 as defined in [15, 30], with a density distribution ρ(t,x). By u(t,x), x ∈ Γ(t), we denote the
velocity field of the density flow on Γ(t), i.e. u(t,x) is the velocity of a material point x ∈ Γ(t). We
further assume that the geometric evolution of Γ(t) is determined by a given smooth velocity field
w = w(t,x), which passively advects the initial surface Γ0 := Γ(0):

Γ(t) = {y ∈ R3 | y = x(t, z), z ∈ Γ0}, (2.1)

with the trajectories x(t, z) being the unique solutions of the Cauchy problem

d

dt
x(t, z) = w(t,x(t, z)), x(0, z) = z (2.2)

for all z ∈ Γ0. This induces the smooth space-time manifold

G =
⋃

t∈[0,T ]

{t} × Γ(t) ⊂ R4.

We need a few notations of geometric quantities and tangential differential operators. For a given
t ∈ [0, T ] we write Γ = Γ(t). The outward pointing normal vector on Γ is denoted by n. The
normal projector on the tangential space at x ∈ Γ is given by P = P(x) = I − nnT . For a scalar
function p : Γ → R or a vector field u : Γ → R3 their smooth extensions to a neighborhood O(Γ)
of Γ are denoted by pe and ue, respectively. The surface gradient, covariant derivative and surface
divergence on Γ can be defined through derivatives in R3 as ∇Γp = P∇pe, ∇Γu = P∇ueP, and
divΓ u = tr(∇Γu). These definitions are independent of a particular smooth extension of p and u off
Γ. The surface rate-of-strain tensor [15] is given by Es(u) = 1

2 (∇Γu+∇Γu
T ). By H = ∇Γn ∈ R3×3
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we denote the Weingarten mapping and by κ := tr(H) twice the mean curvature. For velocity fields
on Γ(t) we use a splitting into tangential and normal components

u = uT + uN = uT + uNn, with uN = u · n.

In our setting, the normal component of u is completely determined by the ambient flow w, i.e.
u ·n = w ·n on Γ. Besides derivatives on Γ we also need the material derivative along G, denoted by
.
g, which is the derivative of a surface quantity g along the trajectories x(t, z) of material points. It

can be written as
.
g = ∂ge

∂t + (u · ∇)ge on G. We also introduce the so-called normal time derivative
of g, denoted by ∂◦g, which describes the variation of g along normal trajectories of points on Γ(t):

∂◦g :=
.
g − u · ∇Γg =

∂ge

∂t
+ (wN · ∇)ge on G. (2.3)

For a vector valued quantity we use this definition componentwise. Conservation of momentum and
an inextensibility condition lead to the following system governing the free lateral motion of the
material viscous surface [17, 37]: For a given density distribution ρ > 0, viscosity coefficient µ > 0,
find the tangential velocity field uT and surface pressure p satisfying the initial condition uT (0) = u0

and the system of equations, which we call the tangential surface Navier-Stokes equations (TSNSE):{
ρ
(
P∂◦uT + wNHuT + (∇ΓuT )uT

)
− 2µPdivΓEs(uT ) +∇Γp = f

divΓuT = f
on Γ(t), (2.4)

with right-hand sides known in terms of geometric quantities, wN and the tangential component of
the external area force b:

f = −wNκ, f = bT + 2µPdivΓ(wNH) + ρ
2∇Γw

2
N . (2.5)

The system can be seen as an idealized model for the motion of a thin fluid layer embedded in bulk
fluid, where one neglects friction forces between the surface and bulk fluids as well as any effect of
the layer on the bulk flow (more precisely, one may assume that a lateral component of the normal
bulk stress is given by bT ). System (2.4)–(2.5) also appears as an auxiliary problem if one applies
directional splitting to the full system of equations governing the evolution of a material inextensible
fluidic surface; see [17]. We further set ρ = 1.

In this paper, we represent Γ(t) as the zero level set of a smooth level-set function φ(t,x),

Γ(t) = {x ∈ R3 : φ(t,x) = 0},

such that |∇φ| ≥ c > 0 in O(G), a neighborhood of G. To simplify the presentation and analysis, we
make the assumption that the level set function has the signed distance property. This assumption,
however, is not essential. In Remark 3.2 we comment on the generalization of the method to the
case where φ is not necessarily a signed distance function.

3. Discretization method. In this section we present a fully Eulerian finite element method
for the TSNSE (2.4). The method is based on the same ideas as used in [26], namely a combination
of an implicit time stepping scheme with a TraceFEM in space. We start with the discretization of
the system’s evolution in time.

3.1. Time-stepping scheme. Consider uniformly distributed time nodes tn = n∆t, n =
0, . . . , N , with the time step ∆t = T/N and In := [tn−1, tn], 1 ≤ n ≤ N . We assume that the time
step ∆t is sufficiently small such that

Γ(tn) ⊂ O(Γ(tn−1)), n = 1, . . . , N, (3.1)

with O(Γ(t)) a neighborhood of Γ(t) where a smooth extension of surface quantities from Γ(t) is
well defined. Among smooth extensions of a (scalar or vector valued) function g we now choose the
constant extension in normal direction ge, i.e., ∇d · ∇ge = 0 in O(Γ(t)), with d = d(t, ·) the signed
distance function to Γ(t). For the normal extension the lest term in (2.3) vanishes and thus we have

∂◦g =
∂ge

∂t
on G. (3.2)
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Based on this we introduce on Γ(tn) the normal time derivative approximation

P∂◦uT = P
∂ueT
∂t
≈ uT (tn)−P(tn)uT (tn−1)e

∆t
. (3.3)

Due to (3.1) uT (tn−1)e is defined on Γ(tn). For the normal n on Γ(tj) its constant extension

in O(Γ(tj)) is also denoted by n, i.e., n = ∇d. We further use the notation ujT and pj for an
approximation of uT (tj)

e and p(tj), respectively. Based on (3.3) and (3.1) we consider the following
time discretization method for (2.4). Given u0

T = uT (0)e in O(Γ0), for n = 1, . . . N , find unT , defined
in O(Γ(tn)) and tangential to Γ(tn), i.e. (unT · n)|Γ(tn) = 0, and pn defined on Γ(tn) such that

unT −Pun−1
T

∆t
+ wnNHunT + (∇Γu

n
T )un−1

T − 2µPdivΓEs(u
n
T ) +∇Γp

n = fn

divΓu
n
T = fn

on Γ(tn), (3.4)

n · ∇unT = 0 in O(Γ(tn)), (3.5)

with wnN := wN (tn), fn := f(tn), fn := f(tn). Geometric information in (3.4) is taken for Γ(tn),
i.e. n = n(tn), P = P(tn), H = H(tn). In (3.4) we use a BDF1 (i.e., Euler implicit) type time
discretization, which has local truncation errorO(∆t2). Related to that we use a simple, first order in
∆t accurate, linearization of the quadratic nonlinearity, i.e., (∇Γu

n
T )unT is replaced by (∇Γu

n
T )un−1

T .
This approach has a straightforward extension to higher order in ∆t schemes, cf. the discussion in
Remark 3.2 below. The space discretization (3.4)–(3.5) is presented in the next section.

3.2. Space discretization method. Consider a fixed polygonal domain Ω ⊂ R3 that strictly
contains Γ(t) for all t ∈ [0, T ]. Let {Th}h>0 be a family of shape-regular consistent triangulations
of Ω, with max

K∈Th
diam(K) ≤ h. Corresponding to the bulk triangulation we define a standard finite

element space of piecewise polynomial continuous functions of a fixed degree k ≥ 1:

Vh,k = {vh ∈ C(Ω) : vh ∈ Pk(K), ∀K ∈ Th}. (3.6)

The bulk velocity and pressure finite element spaces are standard Taylor–Hood spaces:

Uh = (Vh,m+1)3, Qh = Vh,m, with m ≥ 1. (3.7)

We want to avoid the assumption that all Γ(tn) are given in an explicit parametric form or that the
exact level set functions φ(tn, ·) are known. If, for example, (2.4) is part of a system, where tangential
surface motions are coupled to the normal ones, then finding Γ(tn) is part of the problem, and
knowledge of only a (finite element) approximation to φ(tn, ·) would be a more realistic assumption.
In turn, this results in approximation of all geometric quantities involved in (2.4). This issue of
geometry approximation is explained in section 3.2.1 below.

If not specified otherwise, all constants C, c, c0, c1, etc. appearing later in the text are generic
positive constants which are independent of h, ∆t, other discretization parameters, time instance
tn, and the position of Γ in the background mesh, but may depend on wN , G, u, and the shape
regularity of Th. In order to reduce the repeated use of such constants, we often write x . y to state
that the inequality x ≤ cy holds for quantities x, y with such generic constant c. Similarly for x & y,
and x ' y will mean that both x . y and x & y hold.

3.2.1. Geometry approximation. For any fixed t ∈ [0, T ], φh(·) = φh(t, ·) is a given contin-
uous piecewise polynomial approximation (with respect to Th) of φ(·) = φ(t, ·), which satisfies

‖φ− φh‖L∞(Ω) + h‖∇(φ− φh)‖L∞(Ω) . hq+1, (3.8)

with some q ≥ 1. For this estimate to hold, we assume that the level set function has the smoothness
property φ(t, ·) ∈ Cq+1(Ω). Moreover, we assume that |∇φh| ≥ C > 0 in O(Γ(t)), t ∈ [0, T ], and
that φh is sufficiently regular in time such that with φnh(x) = φh(tn,x), n = 0, . . . , N , there holds

‖φn−1
h − φnh‖L∞(Ω) . ∆t‖wN‖L∞(In×Ω), (3.9a)

‖∇φn−1
h −∇φnh‖L∞(Ω) . ∆t

(
‖wN‖L∞(In×Ω) + ‖∇wN‖L∞(In×Ω)

)
, for n = 1, . . . , N. (3.9b)
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We define the discrete surfaces Γh ≈ Γ as the zero level of φh:

Γh(t) := {x ∈ R3 : φh(t,x) = 0}. (3.10)

From the property (3.8) it follows that the Lipschitz surface Γh is an approximation to Γ with

dist(Γnh,Γ) = max
x∈Γh

|φ(x)| = max
x∈Γh

|φ(x)− φh(x)| ≤ ‖φ− φh‖∞,Ω . hq+1. (3.11)

Furthermore, it also follows that the vector field nh = ∇φh/|∇φh| (nh is the normal to Γh), and the
extended normal vector to Γ satisfy

|nh(x)− n(x)| ≤ c|∇φh(x)−∇φ(x)| . hq, in O(Γ(t)). (3.12)

On Γh we have the tangential projection operator Ph = I− nhn
T
h . Besides the geometric quantity

nh we also need a discrete approximation of the Weingarten mapping Hh ≈ H. We assume that
this approximation is of the form

Hh = ∇Γhnh, with nh ∈ H1(Γh)3 that satisfies |nh(x)− n(x)| . hq, x ∈ Γh. (3.13)

Here ∇Γh is defined (a.e. on Γh) analogous to ∇Γ. The normal approximation nh may be chosen as
a suitable interpolation operator in a finite element space applied to nh, e.g., nh = Ihnh, with Ih
the (componentwise) Oswald averaging operator that maps into the finite element space (Vh,q−1)3.

We emphasize that all bounds in (3.8)–(3.13) are uniform in t (as well as in h, ∆t, n and position
of Γ or Γh in the mesh).

Remark 3.1. In the method that we present below integrals over Γh occur. We assume
that these integrals can be computed accurately. In practice, this is straightforward for piecewise
linear φh(·, t). The higher order case q > 1 is more involved and requires special approaches for the
construction of quadrature rules or the use of an parametric FEM technique [11,12,24,29,38,45,47].

3.2.2. Fully discrete method. For computational efficiency reasons, we use an extension not
in the given (h and ∆t-independent) neighborhoodO(Γ(tn)) of Γ(tn) but in a smaller (∆t-dependent)
narrow band around Γnh = Γh(tn). This narrow band consists of all tetrahedra within a δn distance
from the surface, with δn ' ∆t. More precisely, we define the mesh-dependent narrow bands

Uδ(Γ
n
h) := {x ∈ Ω : dist(x,Γnh) ≤ δn} ,

Oδ(Γnh) :=
⋃{

K : K ∈ Th and dist(x,Γnh) ≤ δn for some x ∈ K
}
⊃ Uδ(Γnh).

(3.14)

We also need a subdomain of Oδ(Γnh) consisting of tetrahedra intersected by Γnh,

ωnΓ :=
⋃{

K ∈ Th : K ∩ Γnh 6= ∅
}
.

Note that the subdomains Oδ(Γnh) and ωnΓ consist of unions of tetrahedra K ∈ Th. The finite
element spaces for velocity and pressure are restrictions to these narrow bands Oδ(Γnh) and ωnΓ of
the time-independent bulk spaces Uh and Qh:

Un
h := {v|Oδ(Γnh) | v ∈ Uh }, Qnh := { q|ωnΓ | q ∈ Qh }. (3.15)

We also use the notation V nh,m := { v|Oδ(Γnh) | v ∈ Vh,m }. In the derivation of a finite element
formulation based on the discrete-in-time system (3.4)-(3.5), we need to address three important
aspects: tangentiality of unT , extension of the velocity along normal directions as in (3.5) and a
handling of the inertia term. First, we relax the condition for the solution to be tangential to Γ(tn)
to allow for Un

h as trial and test velocity space. The tangentiality condition is weakly enforced using
a penalty approach, which is often used in finite element methods for vector-valued surface PDEs
[16, 19, 34, 39]. The constraint in (3.5) is also relaxed. For this we use a penalty (or stabilization)
approach that is standard in trace finite element method and based on adding a volume normal
derivative term to the discrete bilinear form. The treatment of inertia also follows an established
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approach. For this we rewrite the corresponding trilinear form, where we use integrals over the exact
surface Γ = Γ(tn) and uT · ∇ΓvT = (∇ΓvT )uT :∫

Γ

(uT · ∇ΓuT ) · vT ds = 1
2

∫
Γ

(uT · ∇ΓuT ) · vT − (uT · ∇ΓvT ) · uT ds− 1
2

∫
Γ

divΓuT (uT · vT ) ds.

Using divΓuT = f on Γ, the second term on the right-hand side becomes linear. The first term
is linearized using the uT approximation from the previous time step leading to an antisymmetric
bilinear form, which is convenient for the stability analysis of the discretization.

Putting these components together leads to the following fully discrete problem (one time step),
where we use (sufficiently accurate) extensions weN , fe, fe of the data wN , f , f : For given un−1

h ∈
Un−1
h find unh ∈ Un

h, pnh ∈ Qnh, satisfying∫
Γnh

(
unh − un−1

h

∆t
+ we,nN Hhu

n
h

)
·Phvh dsh

+ 1
2

∫
Γnh

(un−1
h · ∇ΓhPhu

n
h) · vh − (un−1

h · ∇ΓhPhvh) · unh dsh − 1
2

∫
Γnh

fe,nunh ·Phvh dsh

+ 2µ

∫
Γnh

Es,h(Phu
n
h) : Es,h(Phvh) dsh + τ

∫
Γnh

(ñh · unh)(ñh · vh) dsh︸ ︷︷ ︸
penalty for n·un=0

(3.16)

+

∫
Γnh

∇Γhp
n
h · vh dsh + ρu

∫
Oδ(Γnh)

(nh · ∇unh)(nh · ∇vh) dx︸ ︷︷ ︸
velocity stabilization and extension

=

∫
Γnh

fe,n · vh dsh ∀vh ∈ Un
h,

−
∫

Γnh

∇Γhqh · unh dsh + ρp

∫
ωnΓ

(nh · ∇pnh)(nh · ∇qh) dx︸ ︷︷ ︸
pressure stabilization

=

∫
Γnh

fe,nqh dsh ∀ qh ∈ Qnh. (3.17)

Here we mimic the notation used in the PDE system on Γ. For example, ∇Γhvh = Ph∇vhPh,
Es,h(wh) = 1

2 (∇Γhwh + ∇Γhw
T
h ). The additional term τ

∫
Γnh

(ñh · unh)(ñh · vh) ds with penalty

parameter τ > 0 is included to weakly enforce the tangentiality condition ñh · unh = 0 on Γnh. In
this term we use an “improved normal”, denoted by ñh, which has one order better accuracy (as
approximation of n) than the discrete surface normal nh. We assume (compare to (3.12)):

|ñh(x)− n(tn,x)| . hq+1, x ∈ Γnh. (3.18)

From the literature it is known that such a more accurate normal in this penalty term is needed for
optimal order discretization errors, cf. [16,20]. The volumetric term

∫
Oδ(Γnh)

(nh ·∇unh)(nh ·∇vh) dx,

scaled by the parameter ρu, plays a twofold role. Firstly, due to this term instabilities caused by
“small cuts” are damped, resulting in satisfactory conditioning of the stiffness matrix for velocity, cf.
e.g. [5]. Secondly, this term weakly enforces the extension condition (3.5) with O(Γ(tn)) replaced by
Oδ(Γnh). The volumetric term ρp

∫
ωnΓ

(nh · ∇pnh)(nh · ∇qh) dx is added for the purpose of numerical

stabilization of pressure, both with respect to finite element (LBB) stability and conditioning of the
resulting matrix, cf. [33]. Due to these stabilizations the algebraic system (in each time step) is well-
posed and has conditioning properties comparable to those of a discretized linearized Navier-Stokes
system in Euclidean domains.

The formulation (3.16)–(3.17) is consistent up to geometric errors: If Γnh is replaced by Γn =
Γ(tn) and all geometric quantities by the corresponding exact ones (e.g., Hh by H), then the equa-
tions in (3.16)–(3.17) are satisfied with unh, pnh, un−1

h replaced by the solution un, pn and un−1 of
(3.4), extended along normal directions.

3.3. Discussion of the method. In addition to the mesh size parameter h and time step ∆t,
the finite element method involves several other discretization parameters summarized below.

• ρu: a normal stabilization and extension parameter for velocity;
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• ρp: a normal stabilization parameter for pressure;
• τ : a penalty parameter for nh · uh = 0 constraint;
• δn: a narrow band parameter at time tn.

We assume that these parameters satisfy the conditions

h ≤ c1, ∆t ≤ c2, (3.19a)

cρh
−1 ≤ ρu . h−1, (3.19b)

ρp ' h, (3.19c)

τ ' h−2, (3.19d)

∆t ≥ 2 τ−1, (3.19e)

cδ∆t ≤ δn . h, (3.19f)

where c1, c2 are sufficiently small O(1) and cδ, cρ are sufficiently large O(1) constants independent
of the parameters, time, and position of Γh in the mesh. The parameter conditions (3.19b) and
(3.19c) are known from the literature on trace finite element methods. The condition “cρ sufficiently
large” is needed to obtain sufficient control of a velocity extension in the narrow band (it is used
to prove a key estimate (4.10c)). Parameter τ as in (3.19d) guarantees accurate enough fulfillment
of the tangentiality condition for the discrete velocity. Taking τ even larger may lead to a ’locking’
phenomenon. Eq. (3.19e) is a technical condition that we need to prove the stability estimate in
Theorem 4.7. The upper bound in (3.19f) on the narrow band parameter δn keeps the complexity
of method optimal, i.e. the number of active degrees of freedom is O(h−2) on each time step.
Concerning the lower bound on δn we note the following. In a time step from tn−1 to tn, the surface
Γ(t) can move at most ∆t supt∈In ‖wN‖L∞(Γ(t)) distance in normal direction. Thanks to assumption

(3.9a) the maximum distance from Γnh to Γn−1
h is also proportional to ∆t supt∈In ‖wN‖L∞(Γ(t)).

Therefore, cδ in (3.19f) can be taken such that

ωnΓ ⊂ Oδ(Γn−1
h ). (3.20)

This condition is the discrete analog of (3.1) and is essential for the well-posedness of the finite
element problem. The assumptions (3.19d)–(3.19f) can be satisfied if we take ∆t and h such that
the scaling conditions

h2 . ∆t . h (3.21)

hold. These scalings are reasonable. Consider Taylor–Hood elements with m = 1. For optimal
O(h2)-convergence in the energy norm of (3.16) one needs ∆t ' h2. For the more time-accurate
BDF2 scheme (this is our practical choice, cf. Remark 3.3) ∆t ' h leads to O(h2)-convergence in
the energy norm, and ∆t ' h3/2 is the choice consistent with the best possible O(h3)-order in the
velocity L2-norm. In the remarks below we briefly address a few further aspects of the method.

Remark 3.2. In practice we typically do not use a level set function that has the signed distance
property. Then the extension does not satisfy (3.5), but is approximately constant along the normals
to the level lines and instead of P∂◦uT = P∂uT

∂t , cf. (3.2), one uses the general relation

P∂◦uT = P

(
∂ueT
∂t

+ (∇ueT )wN

)
,

as basis for the discretization. Hence, for the case of a general level set function we include in (3.16)
the term

∫
Γnh

(wN · ∇Phunh) ·Phvh dsh. Apart from this, the discretization method stays the same.

Remark 3.3. The BDF2 variant is very similar to the method introduced above. The time
difference unh − un−1

h in the first line in (3.16) is then replaced by 3
2u

n
h − 2un−1

h + 1
2u

n−2
h and in the

linearization of the inertia term we use 2un−1
h − un−2

h instead of un−1
h . All other terms in (3.16)–

(3.17) remain the same. For BDF2, in addition to (3.20) one has to guarantee ωnΓ ⊂ Oδ(Γ
n−2
h ),

which means that the narrow bands Oδ(Γnh) have to be taken thicker than in the BDF1 method.
Remark 3.4. In the surface gradient operators ∇Γh in the inertia term and the surface rate-

of-strain tensor Es,h(·) we use projected vector fields Phv. Differentiating projector Ph (which in
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general is discontinuous across element faces) we loose H1 conformity, cf. [20]. Based on the formula
∇ΓvT = ∇Γv − vNH, in order to avoid differentiation of Ph, in the implementation of the method
we replace ∇ΓhPhvh by ∇Γhvh − (nh · vh)Hh.

Remark 3.5. For convenience, in the error analysis below we assume that the data exten-
sions weN , fe, fe are constant extensions along the normals n. In practice one typically uses other
(sufficiently smooth) extensions.

4. Error analysis. We continue with an error analysis of the finite element scheme (3.16)–
(3.17). We assume the solution of (2.4) is sufficiently smooth, at least u ∈ Wm+2,∞(G)3, p ∈
Wm+1,∞(G). In the remainder we assume that the parameter conditions (3.19a)–(3.19f) are satisfied.
As common in analysis of incompressible fluid problems, we assume a homogeneous divergence
condition in (2.4):

f = 0.

We use the notations (·, ·)S and ‖ · ‖S to denote the L2-scalar product and L2-norm over a surface
or volumetric domain S. To represent the discrete problem in a compact form, we introduce

an(z;u,v) :=ân(u,v) + cn(z;u,v), with

ân(u,v) :=

∫
Γnh

we,nN v ·Hhu dsh + 2µ

∫
Γnh

(Es,h(Phu) : (Es,h(Phv)) dsh

+ τ

∫
Γnh

(ñh · u)(ñh · v) dsh + ρu

∫
Oδ(Γnh)

(nh · ∇u)(nh · ∇v)dx

cn(z;u,v) := 1
2

∫
Γnh

(z · ∇ΓhPhu) · v − (z · ∇ΓhPhv) · u dsh

bn(p,v) :=

∫
Γnh

∇Γhp · v dsh.

(4.1)

Using this, the discrete problem can be rewritten as follows (recall that f = 0): given un−1
h ∈ Un−1

h

find unh ∈ Un
h, pnh ∈ Qnh such that for all (vh, qh) ∈ Un

h ×Qnh:

(unh,Phvh)Γnh
+ ∆t an(un−1

h ;unh,vh) + ∆t bn(pnh,vh) = (un−1
h ,Phvh)Γnh

+ ∆t(fe,n,Phvh)Γnh

bn(qh,u
n
h) = ρp(nh · ∇pnh,nh · ∇qh)ωnΓ .

(4.2)

We introduce the following natural energy norm

|||v|||2Un := 1
2‖v‖

2
Γnh

+ 2µ‖Es,h(Phv)‖2Γnh + τ
2‖ñh · v‖

2
Γnh

+ ρu‖nh · ∇v‖2Oδ(Γnh). (4.3)

The norm that we use for the pressure will be introduced later in (4.26).
Remark 4.1. We outline the structure of the error analysis. We first collect some preliminary

results and prove a few helpful estimates, with a particular emphasis on having them uniform in
discretization parameters, time and the surface position in the bulk mesh. Using these results it is
easy to derive a suitable coercivity and continuity estimates for the trilinear form an(·; ·, ·) used in
(4.2). Based on rather straightforward arguments we derive in Theorem 4.7 a stability result for
the discrete velocity solution unh of (4.2) in a natural energy norm. The analysis continues with
addressing the more delicate question of the finite element pressure stability. Here we introduce
new arguments, namely the use of a specific (non-standard) pressure norm and of a special discrete
velocity function that gives control of the pressure via the discrete inf-sup stability condition, cf.
Remark 4.2. Thus we obtain a uniform discrete stability estimate (Theorem 4.8) in the parameter
range (3.21). In Section 4.4 we present a consistency analysis that quantifies geometric errors
resulting from the approximation of surface and geometric quantities (normal vectors, tangential
projectors, curvatures) in the finite element formulation. In that analysis we use results already
available in the literature on surface vector-Laplace and Stokes problems. Finally, in Section 4.5 we
apply a standard technique for proving discretization error bounds. The discretization error is split
into an interpolation error and an error component that lies in the finite element space. Bounds
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for the latter can be derived using the discrete stability, consistency error bounds, and bounds for
the linearization error. With respect to the interpolation error a key point is that in the Euclidean
setting of this trace method we can use a (nodal) interpolation operator on a fixed bulk mesh. Due
to this the time differentiation and interpolation operator commute, which then leads to optimal
bounds for the difference of interpolation errors at t = tn and t = tn−1, cf. Lemma 4.12.

4.1. Preliminaries. We start with an equivalence result between norms on Γ and Γh, which
is uniform in time and discretization parameters. We use a lifting v` of functions v defined on Γnh
to a neighborhood O(Γnh), defined as follows:

for y ∈ O(Γnh) : v`(y) := v(x) for x ∈ Γnh such that pn(y) = pn(x), (4.4)

where pn is the closest point projection on Γn. Differentiating the identities v`(y) = v`(pn(y)) one
obtains the useful transformation relation

∇v`(y) = ∇v`(pn(y))(P(y)− d(y)H(y)), v ∈ H1(Γnh)3, (4.5)

with d the signed distance function for Γn. For vector-valued functions we define componentwise
H1 norms, namely ‖v‖2H1(Γ(tn)) :=

∑3
i=1 ‖vi‖2H1(Γ(tn)) for v ∈ H1(Γ(tn))3, and similarly on Γnh for

v ∈ H1(Γnh)3. For any v ∈ H1(Γnh), v ∈ H1(Γnh)3 it holds

‖v‖Lp(Γnh) ' ‖v`‖Lp(Γ(tn)), p ∈ [1,∞], ‖v‖H1(Γnh) ' ‖v`‖H1(Γ(tn)). (4.6)

The first equivalence in (4.6) is straightforward and follows from the uniform equivalence of the
surface measures ds (on Γ(tn)) and dsh (on Γnh). A proof of the second equivalence in (4.6) is given
in [20, Lemma 5.14]. We also need uniform interpolation and Korn-type inequalities:

‖v‖L4(Γnh) . ‖v‖
1
2

Γnh
‖v‖

1
2

H1(Γnh) for all v ∈ H1(Γnh) (4.7)

‖v‖L4(Γnh) . ‖v‖
1
2

Γnh
‖v‖

1
2

H1(Γnh) for all v ∈ H1(Γnh)3 (4.8)

‖v‖H1(Γnh) . |||v|||Un for all v ∈ Un
h. (4.9)

The results (4.6), (4.7) and (4.9) are derived in Appendix, Section A. Componentwise application
of (4.7) yields (4.8).

In [26] a finite-difference in time – trace finite element method in space was analyzed, but for
a scalar parabolic type problem on an evolving surface. The following lemma collects some results
from that paper, useful for our error analysis.

Lemma 4.1. The following uniform estimates hold

‖vh‖2Uδ(Γnh) . δn‖vh‖2Γnh + δ2
n‖nh · ∇vh‖2Oδ(Γnh) ∀ vh ∈ V nh,m, (4.10a)

‖vh‖2Oδ(Γnh) . (δn + h)‖vh‖2Γnh + (δn + h)2‖nh · ∇vh‖2Oδ(Γnh) ∀ vh ∈ V nh,m, (4.10b)

‖vh‖2Γnh ≤ (1 + c∆t)‖vh‖2Γn−1
h

+ 1
2ρu∆t‖nn−1

h · ∇vh‖2Oδ(Γn−1
h )

∀ vh ∈ V n−1
h,m . (4.10c)

The results in (4.10a)–(4.10b) give control of the L2-norm of a finite element function in a narrow
band volume based on a combination of the L2-norm on the surface and the normal derivative in
the volume that is provided by the stabilization. Eq. (4.10c) provides a bound for the trace of a
function on Γnh through its trace on Γn−1

h and the volume normal derivative. We also need a slightly
modified version of the bound in (4.10c), given in the following lemma.

Lemma 4.2. The following uniform estimate holds for all vh ∈ V n−1
h,m ,

‖vh‖2Γnh . ‖vh‖2Γn−1
h

+ δn−1‖nn−1
h · ∇vh‖2Oδ(Γn−1

h )
. (4.11)

A proof is given in Appendix B. It uses arguments similar to those found in [26].
In the analysis of two-dimensional Navier-Stokes equations one typically needs bounds for ‖u‖L4

to control the quadratic nonlinearity. We will derive such a bound in Lemma 4.4. As a preparation,
in the next lemma we give an analog of the result (4.11), with the norm ‖ · ‖L2 replaced by ‖ · ‖L4 .
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Lemma 4.3. The following uniform estimate holds

‖vh‖2L4(Γnh) . ‖vh‖
2
L4(Γn−1

h )
+ ‖nh · ∇vh‖2Oδ(Γn−1

h )
, for all vh ∈ V n−1

h,m . (4.12)

Proof. We use the notation Oδ = Oδ(Γn−1
h ). First we consider an inverse estimate for ‖nh ·

∇vh‖L4(Oδ). Using nh = |∇φh|−1∇φh, where φh is a finite element function with |∇φh| ' 1 in Oδ,
and finite element inverse estimates we get

‖nh · ∇vh‖L4(Oδ) ≤ ‖|∇φh|
−1‖L∞(Oδ)‖∇φh · ∇vh‖L4(Oδ) . ‖∇φh · ∇vh‖L4(Oδ)

. h−
3
4 ‖∇φh · ∇vh‖L2(Oδ) . h−

3
4 ‖|∇φh|‖L∞(Oδ)‖nh · ∇vh‖L2(Oδ)

. h−
3
4 ‖nh · ∇vh‖L2(Oδ).

(4.13)

Using this and (4.10b) applied to v2
h we get

‖vh‖2L4(Oδ) = ‖v2
h‖L2(Oδ) . (δn−1 + h)

1
2 ‖v2

h‖L2(Γn−1
h ) + (δn−1 + h)‖nh · ∇v2

h‖L2(Oδ)

. (δn−1 + h)
1
2 ‖vh‖2L4(Γn−1

h )
+ (δn−1 + h)‖vh‖L4(Oδ)‖nh · ∇vh‖L4(Oδ)

≤ c0(δn−1 + h)
1
2 ‖vh‖2L4(Γn−1

h )
+

1

2
‖vh‖2L4(Oδ) + c1h

− 3
2 (δn−1 + h)2‖nh · ∇vh‖2L2(Oδ).

Shifting the term ‖vh‖2L4(Oδ) to the left-hand side we obtain

‖vh‖2L4(Oδ) . (δn−1 + h)
1
2 ‖vh‖2L4(Γn−1

h )
+ h−

3
2 (δn−1 + h)2‖nh · ∇vh‖2L2(Oδ). (4.14)

We use (4.11) with v2
h, which is a finite element function of degree 2m and so (4.11) applies:

‖vh‖2L4(Γnh) = ‖v2
h‖L2(Γnh) . ‖v2

h‖L2(Γn−1
h ) + δ

1
2
n−1‖nh · ∇v2

h‖L2(Oδ). (4.15)

From the chain rule and the result (4.13) above we obtain

‖nh · ∇v2
h‖L2(Oδ) ≤ ‖vh‖L4(Oδ)‖nh · ∇vh‖L4(Oδ) . h−

3
4 ‖vh‖L4(Oδ)‖nh · ∇vh‖L2(Oδ)

Substituting this in (4.15) and using (4.14) we get

‖vh‖2L4(Γnh) . ‖vh‖
2
L4(Γn−1

h )
+ δ

1
2
n−1h

− 3
4 ‖vh‖L4(Oδ)‖nh · ∇vh‖L2(Oδ)

. ‖vh‖2L4(Γn−1
h )

+ δn−1h
− 3

2 ‖vh‖2L4(Oδ) + ‖nh · ∇vh‖2L2(Oδ)

.
(
1 + δn−1h

− 3
2 (δn−1 + h)

1
2

)
‖vh‖2L4(Γn−1

h )
+
(
δn−1h

−3(δn−1 + h)2 + 1
)
‖nh · ∇vh‖2L2(Oδ).

Due to (3.19f) (i.e. δn−1 . h) we get δn−1h
− 3

2 (δn−1 + h)
1
2 . 1 and δn−1h

−3(δn−1 + h)2 . 1, which
completes the proof.

Lemma 4.3 is used in the proof of the next lemma.
Lemma 4.4. The following uniform estimate holds

‖vh‖2L4(Γnh) . ‖vh‖Γn−1
h
|||vh|||Un−1 + h|||vh|||2Un−1 for all vh ∈ Un−1

h . (4.16)

Proof. Take vh ∈ Un−1
h . Component-wise application of (4.12) yields

‖vh‖L4(Γnh) . ‖vh‖L4(Γn−1
h ) + ‖nh · ∇vh‖Oδ(Γn−1

h ) . ‖vh‖L4(Γn−1
h ) + h

1
2 |||vh|||Un−1 . (4.17)

Using (4.8) and (4.9) we get

‖vh‖L4(Γn−1
h ) . ‖vh‖

1
2

Γn−1
h

|||vh|||
1
2

Un−1 .

Substituting the latter estimate in (4.17) completes the proof.
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4.2. Coercivity and continuity estimates. We derive coercivity and continuity estimates
for the trilinear form an(· ; ·, ·).

Lemma 4.5. For arbitrary z ∈ L2(Γnh) and vh ∈ Un
h it holds

an(z;vh,vh) ≥ |||vh|||2Un − ξh‖Phvh‖2Γnh with ξh := 1 + max
n=0,..,N

‖we,nN Hh(tn)‖L∞ . (4.18)

Proof. From (3.12) and (3.18) it follows for sufficiently small h that

|v|2 = |nh · v|2 + |Phv|2 ≤ (1 + chq)
(
|ñh · v|2 + |Phv|2

)
∀v ∈ R3.

Using this, cn(z;vh,vh) = 0, Hh = PhHhPh, and τ ≥ 1 + chq (for h, τ satisfying (3.19a) and
(3.19d)), we obtain the following lower estimate for an(z; ·, ·):

an(z;vh,vh) = ân(vh,vh) = (we,nN Hhvh,vh)Γnh
+ |||vh|||2Un + τ

2‖ñh · v‖
2
Γnh
− 1

2‖vh‖
2
Γnh

≥ |||vh|||2Un −
(
‖we,nN Hh(tn)‖L∞ + 1

2 (1 + chq)
)
‖Phvh‖2Γnh ∀ vh ∈ Un

h,

from which the result follows.
Lemma 4.6. The following uniform estimate holds:

an(z;u,v) .
(
‖Phz‖L4(Γnh) + 1

)
|||u|||Un |||v|||Un , z ∈ L4(Γnh), u,v ∈ Un

h. (4.19)

Proof. For the terms in the trilinear form a(· ; ·, ·) that do not depend on the first argument, cf.
(4.1), we apply Cauchy-Schwarz inequality:

|ân(u,v)| . |||u|||Un |||v|||Un . (4.20)

We now consider the term
∫

Γnh
(z ·∇ΓhPhu) ·v dsh. The term

∫
Γnh

(z ·∇ΓhPhv) ·u dsh can be treated

similarly. Using (4.8) and (4.9) we obtain∣∣∣ ∫
Γnh

(z · ∇ΓhPhu) · v dsh
∣∣∣ . ‖∇ΓhPhu‖Γnh‖Phz‖L4(Γnh)‖Phv‖L4(Γnh)

. ‖Phz‖L4(Γnh)‖Phu‖H1(Γnh)‖Phv‖
1
2

Γnh
‖Phv‖

1
2

H1(Γnh)

. ‖Phz‖L4(Γnh)|||u|||Un |||v|||Un .

(4.21)

Combining this with the same estimate for the other trilinear term and with (4.20) we obtain the
result (4.19).

4.3. Stability estimate. First we derive a stability result for the discrete velocity. Using this
stability result and a suitable discrete inf-sup property, we then derive a stability estimate for the
discrete pressure in Theorem 4.8.

Theorem 4.7. A solution of (3.4) satisfies the following estimate:

‖unh‖2Γnh +

n∑
k=1

‖Phukh − uk−1
h ‖2Γkh + ∆t

n∑
k=1

(
|||ukh|||2Uk + 2ρp‖nh · ∇pkh‖2ωkΓ

)
. exp(c tn)

(
‖u0

h‖2Γ0
h

+ ∆t|||u0
h|||2U0 + ∆t

n∑
k=0

‖fe,k‖2Γkh

)
, (4.22)

with c independent of h, ∆t and n.
Proof. We test (4.2) with vh = unh, qh = −∆tpnh. Adding the two identities leads to

1
2 (‖Phunh‖2Γnh + ‖Phunh − un−1

h ‖2Γnh ) + ∆t an(un−1
h ;unh,u

n
h) + ∆tρp‖nh · ∇pnh‖2ωnΓ

= 1
2‖u

n−1
h ‖2Γnh + ∆t(fe,n,Phu

n
h)Γnh

.
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We use the lower bound (4.18) and apply (4.10c):

‖Phunh‖2Γnh + ‖Phunh − un−1
h ‖2Γnh + 2∆t

(
|||unh|||2Un + ρp‖nh · ∇pnh‖2ωnΓ

)
≤ ‖un−1

h ‖2Γnh + 2ξh∆t‖Phunh‖2Γnh + ∆t‖Phunh‖2Γnh + ∆t‖fe,n‖2Γnh (4.23)

≤ (1 + c∆t)‖un−1
h ‖2

Γn−1
h

+ 1
2∆tρu‖nn−1

h · ∇un−1
h ‖2Oδ(Γn−1

h )
+ C∆t‖unh‖2Γnh + ∆t‖fe,n‖2Γnh .

Due to (3.19e) we have

1
2∆t|||unh|||2Un ≥ 1

2∆t τ‖ñh · unh‖2Γnh ≥
1
2∆t τ‖nh · unh‖2Γnh − c∆t τ h

2(q+1)‖unh‖2Γnh
≥ ‖nh · unh‖2Γnh − c∆th

2q‖unh‖2Γnh .
(4.24)

Using this and ‖unh‖2Γnh = ‖Phunh‖2Γnh + ‖nh · unh‖2Γnh in (4.23) we obtain

‖unh‖2Γnh + ‖Phunh − un−1
h ‖2Γnh + 3

2∆t|||unh|||2Un + 2∆tρp‖nh · ∇pnh‖2ωnΓ
≤ (1 + c∆t)‖un−1

h ‖2
Γn−1
h

+ 1
2∆t|||un−1

h |||2Un−1 + C∆t‖unh‖2Γnh + ∆t‖fe,n‖2Γnh . (4.25)

We sum up the inequalities for n = 1, . . . , k, and with c∗ = c+ C we get

‖ukh‖2Γkh +

k∑
n=1

‖Phunh − un−1
h ‖2Γnh + ∆t

k∑
n=1

(
|||unh|||2Un + 2ρp‖nh · ∇pnh‖2ωnΓ

)
≤ (1 + c∆t)‖u0

h‖2Γ0
h

+ 1
2∆t|||u0

h|||2U0 + ∆t

k∑
n=0

c∗‖unh‖2Γnh + ∆t

k∑
n=0

‖fe,n‖2Γnh .

Finally, we shift the term ∆t c∗‖ukh‖2Γkh from the right-hand side to the left hand side and apply, for

∆t ≤ (2c∗)−1, a discrete Gronwall inequality.
We now derive a stability bound for the discrete pressure. The analysis is based on results

derived in [33]. We recall some results from that paper. We use the scaled H1(ωnΓ)-norm given by

‖q‖1,ωnΓ ,h := h
1
2 ‖∇q‖ωnΓ . (4.26)

Note that this norm is equivalent to the scaled H1(Γ(tn)) norm in the following sense. Assume
Γ(tn) ⊂ ωnΓ and qe is the normal extension of q ∈ H1(Γ(t)). Then h‖∇Γq‖Γ(t) ∼ ‖qe‖1,ωnΓ ,h holds.

For a given qh ∈ Qnh we define a corresponding function v̂h ∈ Un
h by

v̂h(x) =
∑

E∈Ereg

h2
EϕE(x)(tE · ∇qh(x))tE , (4.27)

with Ereg being a subset of edges of tetrahedra in ωnΓ , tE the unit tangent vector along the edge E
and ϕE the quadratic nodal basis function corresponding to the edge E (extended by zero to Ω).
Recall that the finite element function φh(t, ·) defines the surface approximation Γh(t), cf. (3.10).
The following result was shown in [18, Theorem 5.9]: For a fixed tn and φh a piecewise linear
finite element function satisfying (3.8)–(3.9b) there exist a subset Ereg and C independent of qh,
discretization parameters and the position of Γh in the mesh such that

‖qh‖21,ωnΓ ,h ≤ C
(
b(qh, v̂h) + ρp‖nh · ∇qh‖2ωnΓ

)
(4.28)

|||v̂h|||Un ≤ C‖qh‖1,ωnΓ ,h. (4.29)

Assumption 4.1. We assume that (4.28)–(4.29) hold for a Pk finite element function φh
satisfying (3.8)–(3.9b), with C independent of qh, discretization parameters, the position of Γh in
the mesh and of tn.

A result similar to (4.28)-(4.29) is also known if φh = φ, i.e., if the geometry approximation
Γh ≈ Γ is exact (cf. [33]). This is a further support of the plausibility of Assumption 4.1. We claim
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that the analysis of [33] can be extended to the case of an arbitrary polynomial degree approximation
φh of φ, with uniform constants as specified in Assumpton 4.1. Such an extension, however, will not
be straighforward and is expected to be rather technical and therefore is not addressed here.

Theorem 4.8. Denote the upper bound in (4.22) by Fn = Fn(u0
h, f

e). The discrete problem
(4.2) has a unique solution and for the discrete pressure solution the following holds:

∆t

n∑
k=1

‖pkh‖1,ωkΓ,h . Fn +
( h√

∆t
+ 1
)
F

1
2
n . Fn + F

1
2
n . (4.30)

Proof. From the discrete infsup property (4.28) and standard results for saddle point problems it
follows that the discrete problem (4.2) has a unique solution. Let pnh, n = 1, . . . , N , be the pressure
solution and, for given n, v̂h ∈ Un

h as in (4.27) a corresponding discrete velocity. We then have

‖pnh‖21,ωnΓ ,h . b(pnh, v̂h) + ρp‖nh · ∇pnh‖2ωnΓ . b(pnh, v̂h) + ρ
1
2
p ‖nh · ∇pnh‖ωnΓ ‖p

n
h‖1,ωnΓ ,h. (4.31)

We use the test function v̂h in (4.2) and thus get

b(pnh, v̂h) = − 1

∆t

(
(unh,Phv̂h)Γnh

− (un−1
h ,Phv̂h)Γnh

)
− an(un−1

h ;unh, v̂h) + (fe,n,Phv̂h)Γnh
.

Now note the following:

‖v̂h‖2Γnh . h−1‖v̂h‖2ωnΓ . h3‖∇pnh‖2ωnΓ . h2‖pnh‖21,ωnΓ ,h. (4.32)

Using this and the continuity estimate in (4.19), (4.16) and (4.29) we obtain

|an(un−1
h ;unh, v̂h)| .

(
|||un−1

h |||Un−1 + 1
)
|||unh|||Un |||v̂h|||Un

.
(
|||un−1

h |||2Un−1 + |||unh|||2Un + |||unh|||Un
)
‖pnh‖1,ωnΓ ,h.

Using this and (4.32) we get

|b(pnh, v̂h)| . h

∆t
‖Phunh − un−1

h ‖Γnh‖p
n
h‖1,ωnΓ ,h + h‖fe,n‖Γnh‖p

n
h‖1,ωnΓ ,h

+
(
|||un−1

h |||2Un−1 + |||unh|||2Un + |||unh|||Un
)
‖pnh‖1,ωnΓ ,h.

Hence, using (4.31) we obtain

‖pnh‖1,ωnΓ ,h .
h

∆t
‖Phunh − un−1

h ‖Γnh + h‖fe,n‖Γnh + ρ
1
2
p ‖nh · ∇pnh‖ωnΓ

+ |||un−1
h |||2Un−1 + |||unh|||2Un + |||unh|||Un .

(4.33)

Summing over n = 1, . . . , k, yields

∆t

k∑
n=1

‖pkh‖1,ωkΓ,h . h

k∑
n=1

‖Phunh − un−1
h ‖Γnh + h∆t

k∑
n=1

‖fe,n‖Γnh (4.34)

+ ∆t

k∑
n=1

ρ
1
2
p ‖nh · ∇pnh‖ωnΓ + ∆t

k∑
n=0

|||unh|||2Un + ∆t

k∑
n=0

|||unh|||Un .

We use the estimate (4.22), with upper bound denoted by Fn, and k . 1/∆t. The different terms
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on the right-hand side can be bounded as follows, using Cauchy-Schwarz,

h

k∑
n=1

‖Phunh − un−1
h ‖Γnh .

h√
∆t

( k∑
n=1

‖Phunh − un−1
h ‖2Γnh

) 1
2 .

h√
∆t

F
1
2

k , (4.35)

h∆t

k∑
n=1

‖fe,n‖Γnh + ∆t

k∑
n=1

ρ
1
2
p ‖nh · ∇pnh‖ωnΓ

. h
(
∆t

k∑
n=1

‖fe,n‖2Γnh
) 1

2 +
(
∆t

k∑
n=1

ρp‖nh · ∇pnh‖2ωnΓ
) 1

2 . F
1
2

k ,

∆t

k∑
n=0

|||unh|||2Un + ∆t

k∑
n=0

|||unh|||Un . Fk + F
1
2

k .

Combining these estimates completes the proof.
Let us discuss the stability bound in (4.30). Note that the bound yields stability in a discrete

L1(H1) type norm with a uniform constant for h2 . ∆t, which covers parameter choices typically
used in practice for m = 1 (the lowest order Taylor–Hood pair), namely ∆t ∼ h2 (for BDF1)
and ∆t ∼ h (BDF2). The stability bound can be compared with bounds derived in the recent
papers [4, 49] in which a similar discretization method for the Stokes problem on moving domains
is treated. The analyses in these papers yield a uniform (in ∆t and h) pressure bound only for
∆t2

∑n
k=1 ‖pkh‖Ωk . Note the square in the scaling factor ∆t2 in this quantity. In particular these

analyses do not yield uniform bounds for ∆t
∑n
k=1 ‖pkh‖Ωk if ∆t ∼ h or ∆t ∼ h2.

Remark 4.2. We briefly explain why our analysis yields a uniform bound if h2 . ∆t. First
note that (4.28)–(4.29) implies the discrete inf-sup property. In the stability analysis of the discrete
pressure we do not use this discrete inf-sup property. We rather use the specific choice of the function
v̂h in (4.28)–(4.29). For this function we have, cf. (4.32), ‖v̂h‖Γnh . h‖pnh‖1,ωnΓ ,h. Here we gain a
power of h compared to the more naive estimate ‖v̂h‖Γnh . |||v̂h|||Un . ‖pnh‖1,ωnΓ ,h. Due to this we get

the factor h in front of the time difference term ‖Phunh − un−1
h ‖Γnh in (4.33)-(4.34), which leads to

h√
∆t

, instead of 1√
∆t

in (4.35). Hence we have a uniform bound for h2 . ∆t. It looks plausible that

this approach can be used to improve the suboptimal pressure stability estimate in [49] as well.
We now proceed with an error estimate. Its proof combines the arguments we used for the

stability analysis with geometric and interpolation error estimates. The geometric and interpolation
error estimates are treated at each time instance tn for ‘stationary’ surfaces Γnh and so results already
available in the literature (cf. [18,35,41]) can be used. We start with a consistency estimate for (3.4).

4.4. Consistency analysis. In this section we derive estimates for the consistency error. The
analysis is based on a standard technique and uses estimates already available in the literature for
surface vector-Laplace and surface Stokes equations. In the consistency and error bounds we need
estimates on derivatives of the extended solution ue(t,x) = u(t,p(x)) in the strip O(G). To simplify
the notation, the extension of (scalar or vector-valued) functions v defined on G is also denoted by
v. By differentiating the identity v(t,x) = v(t,p(x)), (t,x) ∈ O(G), k ≥ 0 times one finds that for
Ck+1-smooth manifold G and v ∈ Ck(G) the following bound holds:

‖v‖Wk,∞(O(G)) . ‖v‖Wk,∞(G). (4.36)

Further calculations, see, for example, [41, Lemma 3.1], yield

‖v‖Hk(Uε(Γ(t))) . ε
1
2 ‖v‖Hk(Γ(t)), for t ∈ [0, T ] (4.37)

and any ε > 0 such that Uε(Γ(t)) ⊂ O(Γ(t)), where Uε(Γ(t)) is an ε-neighborhood in R3.
We next observe that the smooth solution un = u(tn), un−1 = u(tn−1) = u(tn−1)e, pn = p(tn)

of (2.4) satisfies the identity∫
Γnh

(
un − un−1

∆t

)
·Phvh ds+ an(un−1;un,vh) + bn(pn,vh) = EnC(vh) +

∫
Γn

fn · v`h ds, (4.38)
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for any vh ∈ Un
h and with an(·; ·, ·), bn(·, ·) as in (4.1) and EnC(vh) collecting consistency terms due

to geometric errors, time derivative approximation and linearization, i.e.

EnC(vh) :=

∫
Γn
h

(
un − un−1

∆t

)
·Phvh dsh −

∫
Γn

ut(tn) · v`
h ds︸ ︷︷ ︸

I1

+ ρu

∫
Oδ(Γn

h
)

((nh − n) · ∇un)(nh · ∇vh)dx︸ ︷︷ ︸
I2

+ 1
2

∫
Γn
h

(un−1 · ∇ΓhPhu
n) · vh − (un−1 · ∇ΓhPhvh) · un dsh − 1

2

∫
Γn

(un · ∇Γu
n) · v`

h − (un · ∇ΓPv`
h) · un ds︸ ︷︷ ︸

I3

+ 2µ

∫
Γn
h

Es,h(Phu
n) : Es,h(Phvh) dsh − 2µ

∫
Γn
Es(un) : Es(Pv`

h) ds︸ ︷︷ ︸
I4

+

∫
Γn
h

we,n
N vh ·Hhu

n dsh −
∫

Γn
wn

Nv`
h ·Hun ds︸ ︷︷ ︸

I5

+ τ

∫
Γn
h

(ñh · un)(ñh · vh) dsh − τ
∫

Γn
(n · un)(n · v`

h) ds︸ ︷︷ ︸
I6

+

∫
Γn
h

∇Γhp
n · vh dsh −

∫
Γn
∇Γp

n · v`
h ds︸ ︷︷ ︸

I7

.

All terms above except I3 have been considered in consistency analyses of TraceFEM in the
literature, [18, 20, 26]. In the next lemma we collect results which are essentially known and then
treat the term I3 in Lemma 4.10.

Lemma 4.9. The following uniform estimates hold

|I1| . (∆t+ hq)‖vh‖Γnh (4.39)

|I2| . hqρ
1
2
u ‖nh · ∇vh‖Oδ(Γnh) (4.40)

|I4| . hq
(
‖vh‖H1(Γnh) + h−1‖ñh · vh‖Γnh

)
(4.41)

|I5| . hq‖vh‖H1(Γnh) (4.42)

|I6| . hq+1τ‖ñh · vh‖Γnh . hqτ
1
2 ‖ñh · vh‖Γnh (4.43)

|I7| . hq‖vh‖Γnh (4.44)

where q + 1 is the order of geometry recovery defined in (3.8) and (3.13).

Proof. Componentwise application of the arguments in the proof of Lemma 11 in [26] and ‖Ph−
P‖L∞(Γnh) . hq yields the bound in (4.39). In the same proof the result (4.40) is derived, using the
assumption (3.19b). Recall that Es,h(Phvh) represents Es,h(vh)− (nh ·vh)Hh, cf. Remark 3.4. The
result (4.41) is shown in Lemma 5.15 and (5.42) in [20]. For the estimate (4.42) we use assumption
(3.13) and an appropriate partial integration to shift the derivatives in Hh and H to the function vh.
Details of a proof are given in Appendix C. The result (4.43) also follows with similar arguments,
using (3.18), cf. proof of Lemma 5.18 in [20]. The result (4.44) is obtained with the same techniques.
In the literature cited, bounds (4.41)–(4.44) were proved for the case of a stationary surface. However,
the arguments need only norm equivalences as in (4.6) and geometry approximation inequalities
formulated in section 3.2.1. Since in our setting these results hold uniformly in time, this implies
uniform boundedness of the constants in (4.41)–(4.44) also with respect to time.

The nonlinear term requires a more careful handling, which is carried out below.

Lemma 4.10. It holds |I3| . (∆t+ hq)‖vh‖H1(Γnh).

Proof. Recall that the spatial-normal extension of u to O(G) is denoted by u, too. We start with
estimating the differences between the quadratic nonlinear terms, i.e. the third and fourth terms in
I3, and the corresponding linearized ones on the exact surface at time tn. For the fourth term in I3
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we get, using the smoothness of u∣∣∣∣∣
∫

Γn
(un · ∇ΓPv`h) · un ds−

∫
Γn

(
un−1 · ∇ΓPv`h

)
· un ds

∣∣∣∣∣ =

∣∣∣∣∣
∫

Γn

( ∫ tn

tn−1

utdt · ∇ΓPv`h
)
· un ds

∣∣∣∣∣
≤ ∆t ‖∇ΓPv`h‖L2(Γn) . ∆t ‖v`h‖H1(Γn) . ∆t ‖vh‖H1(Γnh).

With very similar arguments we obtain for the third term in I3:∣∣∣∣∣
∫

Γn
(un · ∇Γu

n) · v`h ds−
∫

Γn
(un−1 · ∇Γu

n) · v`h ds

∣∣∣∣∣ . ∆t‖vh‖Γnh .

For the approximate surface∇ΓhPhw represents∇Γhw−(nh ·w)Hh. We now compare the linearized
terms on the approximate surface Γnh (first and second one in I3) with the corresponding ones on
the exact surface. For the second term in I3 we get∣∣∣∣∣

∫
Γnh

(un−1 · ∇ΓhPhvh) · un dsh −
∫

Γn
(un−1 · ∇ΓPv`h) · un ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫

Γnh

(un−1 · ∇Γhvh) · un dsh −
∫

Γn
(un−1 · ∇Γv

`
h) · un ds

∣∣∣∣∣︸ ︷︷ ︸
J1

+

∣∣∣∣∣
∫

Γnh

(nh · vh)un−1 ·Hhu
n dsh −

∫
Γn

(n · v`h)un−1 ·Hun ds

∣∣∣∣∣︸ ︷︷ ︸
J2

For the term J1 we use ∇Γhvh = Ph∇v`hPh, the transformation relation (4.5) applied to vh,
‖P−Ph‖L∞(Γnh) . hq and the bound in (A.1) for the change in surface measure. Thus we get

J1 . hq‖v`h‖H1(Γn) . hq‖vh‖H1(Γnh).

For the term J2 we proceed as in the derivation of the bound for I3 in (4.42), cf. Appendix C. As
in (C.1) we obtain ∫

Γn
(n · v`h)un−1 ·Hun ds = −

∫
Γn

(n · v`h)n · ∇(Pun−1)un ds. (4.45)

In the other term in J2 we replace nh by n, with error bounded by Chq‖vh‖Γnh . With the same

arguments as in (C.2)–(C.4) the resulting term
∫

Γnh
(n · vh)un−1 · Hhu

n dsh can be replaced by

−
∫

Γn
(n·v`h)n`h ·∇(Pun−1)un ds with error bounded by Chq‖vh‖Γnh . Comparing the latter term with

the one on the right-hand side in (4.45) we get, using the assumption (3.13), a bound Chq‖vh‖Γnh .
Summarizing we get J1 + J2 . hq‖vh‖H1(Γnh).

For the remaining first term in I3 we use similar arguments. First note∣∣∣∣∣
∫

Γnh

(un−1 · ∇ΓhPhu
n) · vh dsh −

∫
Γn

(un−1 · ∇Γu
n) · v`h ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫

Γnh

(un−1 · ∇Γhu
n) · vh dsh −

∫
Γn

(un−1 · ∇Γu
n) · v`h ds

∣∣∣∣∣+

∣∣∣∣∣
∫

Γnh

(nh · un)un−1 ·Hhvh dsh

∣∣∣∣∣ .
The first term | · | can be bounded by Chq‖vh‖Γnh using the same arguments as for J1 above. For the
second | · | term we also obtain such a bound using nh ·un = (nh−n) ·un and ‖nh−n‖L∞(Γnh) . hq.
Combining these estimates we obtain the result of the lemma.

From the estimates in Lemmas 4.9,4.10 and eq. (4.9) we obtain the following corollary.
Corollary 4.11. For the consistency error the following uniform estimate holds

|EnC(vh)| . (∆t+ hq)|||vh|||Un for all vh ∈ Un
h. (4.46)
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4.5. Error estimates. In this section we derive a bound for the velocity error En := un−unh ∈
H1(Oδ(Γnh)) and for the pressure error rn := pn − pnh, rn ∈ H1(ωnΓ). From (4.2) and (4.38) we get
the error equation, for arbitrary vh ∈ Un

h,

1
∆t (E

n−En−1,Phvh)Γnh
+cn(En−1;un,vh)+an(un−1

h ;En,vh)+bn(rn,vh) = EnC(vh)+δnf (vh), (4.47)

with the data error term δnf (vh) :=
∫

Γn
fn · v`h ds −

∫
Γnh

fe,nPh · v`h dsh. Let unI ∈ Un
h and pnI ∈ Qnh

be the nodal interpolants for un in Oδ(Γnh) and pn in ωnΓ , respectively.
We proceed using standard techniques, based on splitting the error En into approximation and

finite element parts,

En = (un − unI )︸ ︷︷ ︸
enI

+ (unI − unh)︸ ︷︷ ︸
enh

.

Using an(un−1
h ;En,vh) = ân(enI ,vh) + ân(enh,vh) + cn(un−1

h ;En,vh) equation (4.47) can be refor-
mulated as

1
∆t (e

n
h−en−1

h ,Phvh)Γnh
+ ân(enh,vh)+bn(pnI −pnh,vh) = EnC(vh)+EnI (vh)+Cn(vh)+δnf (vh), (4.48)

with the interpolation and nonlinear terms

EnI (vh) := − 1
∆t (e

n
I − en−1

I ,Phvh)Γnh
− ân(enI ,vh)− bn(pn − pnI ,vh),

Cn(vh) := −cn(En−1;un,vh)− cn(un−1
h ;En,vh).

An estimate for the interpolation terms is given in the following lemma.
Lemma 4.12. It holds

|EnI (vh)| . (hm+1 + hq) |||vh|||Un , vh ∈ Un
h. (4.49)

Proof. For this to hold it is important to use the nodal interpolation. This operator has the key
property that it interpolates velocity in the fixed (i.e., time independent) finite element space Uh,
which allows to shift time differentiation from outside the interpolation operator to inside. Using
this approach, which is standard in the analysis of parabolic problems on Euclidean domains, one
avoids a factor 1

∆t while handling the first term in EnI (vh), cf. [26, Lemma 12]. Estimates of the
remaining two terms in EnI (vh) follow by standard arguments of applying the Cauchy-Schwarz and
uniform trace FE interpolation inequalities [35]; see e.g. [20, § 6.1.2]

For the nonlinear terms a bound is given in the following lemma.
Lemma 4.13. The following holds, with vh ∈ Un

h,

|Cn(vh)| .
(
hm+2 + ‖en−1

h ‖Γn−1
h

+ h|||en−1
h |||Un−1 + |||un−1

h |||
1
2

Un−1(hm+1 + |||enh|||Un)
)
|||vh|||Un (4.50)

|Cn(enh)| .
(
hm+2 + ‖en−1

h ‖Γn−1
h

+ h|||en−1
h |||Un−1 + |||un−1

h |||
1
2

Un−1h
m+1

)
|||enh|||Un . (4.51)

Proof. We estimate, using (4.11),

|cn(En−1;un,vh)| . (‖en−1
I ‖Γnh + ‖en−1

h ‖Γnh )‖un‖W 1,∞(Γnh)|||vh|||Un

. (hm+2‖un‖Wm+2,∞ + ‖en−1
h ‖Γnh )‖un‖W 1,∞ |||vh|||Un

. (hm+2 + ‖en−1
h ‖Γn−1

h
+ δ

1
2
n−1‖n

n−1
h · ∇en−1

h ‖Oδ(Γn−1
h ))|||vh|||Un

. (hm+2 + ‖en−1
h ‖Γn−1

h
+ h|||en−1

h |||Un−1)|||vh|||Un .

For the other term in Cn(vh) we use the estimates in (4.21), (4.12), (4.8) and (4.9)

|cn(un−1
h ;En,vh)| . ‖un−1

h ‖L4(Γnh)

(
hm+1 + |||enh|||Un

)
|||vh|||Un

. (‖un−1
h ‖L4(Γn−1

h ) + ‖nh · ∇un−1
h ‖Oδ(Γn−1

h ))
(
hm+1 + |||enh|||Un

)
|||vh|||Un

.
(
‖un−1

h ‖
1
2

Γn−1
h

|||un−1
h |||

1
2

Un−1 + h
1
2 |||un−1

h |||Un−1

)(
hm+1 + |||enh|||Un

)
|||vh|||Un

.
(
‖un−1

h ‖
1
2

Γn−1
h

+ h
1
2 |||un−1

h |||
1
2

Un−1

)
|||un−1

h |||
1
2

Un−1

(
hm+1 + |||enh|||Un

)
|||vh|||Un .
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From the stability result in Theorem 4.7 and h2 . ∆t we get ‖un−1
h ‖Γn−1

h
≤ C and h

1
2 |||un−1

h |||
1
2

Un−1 .

∆t
1
4 |||un−1

h |||
1
2

Un−1 ≤ C, with C specified in (4.22), in particular depending only on the data. Com-
bining these results yields (4.50). If vh = enh we use skew-symmetry and obtain

|cn(un−1
h ;En, enh)| = |cn(un−1

h ; enI , e
n
h)| . |||un−1

h |||
1
2

Un−1h
m+1|||enh|||Un .

Now we are prepared to prove the main result of the paper. Let u0
h = u0

I ∈ U0
h be a suitable

interpolant to u0 ∈ O(Γ0
h).

Theorem 4.14. Let (u, p) be the solution of (2.4). Let unh, pnh, n = 1, . . . , N , be the finite
element solution of (4.2). For the errors En = unh − un, rn = pnh − pn the following estimate holds:

‖En‖2Γnh + 1
8∆t

n∑
k=1

(
|||Ek|||2Uk + ρp‖nh · ∇rk‖2ωnΓ

)
. exp(c tn)

(
∆t2 + h2(m+1) + h2q

)
, (4.52)

∆t

n∑
k=1

‖rk‖1,ωnΓ ,h . exp(c tn)
(
∆t+ hm+1 + hq

)
, (4.53)

with c depending on the problem data and independent of h, ∆t, n and of the positions of the surface
in the background mesh.

Proof. The arguments used to prove (4.52) largely repeat those used to show the stability result
in Theorem 4.7 and involve estimates from Corollary 4.11, Lemmas 4.12 and 4.13 to bound the
arising right-hand side terms. We set vh = ∆tenh in (4.48). This yields

‖Phenh‖2Γnh + ‖Phenh − en−1
h ‖2Γnh + 2∆t|||enh|||2Un + 2∆t bn(pnI − pnh, enh)

≤ ‖en−1
h ‖2Γnh + c∆t‖enh‖2Γnh + 2∆t

(
|EnI (enh)|+ |EnC(enh)|+ |Cn(enh)|+ |δnf (enh)|

)
.

(4.54)

As in (4.24) we get

‖enh‖2Γnh ≤ ‖Phe
n
h‖2Γnh + 1

2∆t|||enh|||2Un + c∆th2q‖enh‖2Γnh .

Using this, (4.10c) and the relation

bn(pnI − pnh, enh) = bn(pnI − pnh,unI ) + ρp‖nh · ∇(pnh − pnI )‖2ωnΓ + ρp
(
nh · ∇pnI ,nh · ∇(pnh − pnI )

)
ωnΓ︸ ︷︷ ︸

E1(pnh−p
n
I )

one gets

‖enh‖2Γnh + ‖Phenh − en−1
h ‖2Γnh + 3

2∆t|||enh|||2Un + 2∆tρp‖nh · ∇(pnh − pnI )‖2ωnΓ
≤ ‖en−1

h ‖2
Γn−1
h

+ c∆t
(
‖en−1
h ‖2

Γn−1
h

+ ‖enh‖2Γnh
)

+ 1
2∆t|||en−1

h |||2Un−1

+ 2∆t
(
|EnI (enh)|+ |EnC(enh)|+ |Cn(enh)|+ |δnf (enh)|+ |bn(pnI − pnh,unI )|+ |E1(pnh − pnI )|

)
.

(4.55)

We estimate the different terms in the last line of (4.55). From (4.49) we get

|EnI (enh)| ≤ C(hm+1 + hq)|||enh|||Un ≤ C̃(h2m+2 + h2q) + 1
16 |||e

n
h|||2Un . (4.56)

For the second term we obtain, using (4.46):

|EnC(enh)| ≤ C(∆t+ hq)|||enh|||Un) ≤ C̃(∆t2 + h2q) + 1
16 |||e

n
h|||2Un . (4.57)

For the third term we have the result (4.51):

|Cn(enh)| ≤ C(hm+2 + ‖en−1
h ‖Γn−1

h
+ h|||en−1

h |||Un−1 + hm+1|||un−1
h |||

1
2

Un−1)|||enh|||Un

≤ C̃
(
h2m+2(1 + |||un−1

h |||Un−1) + ‖en−1
h ‖2

Γn−1
h

+ h2|||en−1
h |||2Un−1

)
+ 1

16 |||e
n
h|||2Un .

(4.58)
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For the data error term we have |δnf (enh)| ≤ Chq‖enh‖Γnh ≤ C̃h2q + 1
2‖e

n
h‖2Γnh . Furthermore we have,

using n · ∇pn = 0 and ‖nh · ∇(pnI − pn)‖ωnΓ . hm‖pn‖Hm+1(ωnΓ ) . hm+ 1
2 ‖pn‖Hm+1(Γn):

|E1(pnh − pnI )| = ρp

∣∣∣(nh · ∇(pnI − pn),nh · ∇(pnh − pnI )
)
ωnΓ

+
(
(nh − n) · ∇pn,nh · ∇(pnh − pnI )

)
ωnΓ

∣∣∣
≤ Cρp(h2m+1 + h2q) + 1

2ρp‖nh · ∇(pnh − pnI )‖2ωnΓ
≤ C(h2m+2 + h2q+1) + 1

2ρp‖nh · ∇(pnh − pnI )‖2ωnΓ .
(4.59)

It remains to estimate the term |bn(pnI − pnh,unI )| in the last line of (4.55). We use the splitting

|bn(pnI − pnh,unI )| ≤ |bn(pnI − pnh,unI − u)|+ |bn(pnI − pnh,u)|

For the first term on the right-hand side we get

|bn(pnI − pnh,unI − u)| . hm+2‖∇Γh(pnI − pnh)‖Γnh . hm+ 3
2 ‖∇(pnI − pnh)‖ωnΓ

. hm+1‖pnI − pnh‖1,ωnΓ ,h.
(4.60)

For the second term we define qh := pnI − pnh ∈ H1(Γh) and note the following. For the lifting of this
function we have

∫
Γ
∇Γq

`
h · u ds = 0. Recall the transformation formula ∇Γhqh(y) = Ph(y)(P(y)−

d(y)H(y))∇q`(p(y)). Using this and Pu = u we get

bn(qh,u) =

∫
Γnh

PPh(P− dH)∇q`(p(·)) · u dsh.

Using ‖d‖L∞(Γnh) . hq+1 and ‖PPhP−P‖L∞(Γnh) = ‖Pnhn
T
hP‖L∞(Γnh) . h2q we get∣∣∣∣∣bn(qh,u)−

∫
Γnh

P∇q`h(p(·)) · u dsh

∣∣∣∣∣ . hq+1‖∇Γhqh‖Γnh .

Using
∫

Γ
∇Γq

`
h · u ds = 0 and the bound for the change in surface measure in (A.1) we obtain∣∣∣∫Γnh P∇q`h(p(·)) · u dsh

∣∣∣ . hq+1‖∇Γhqh‖Γnh . Combining these results yields the estimate

|bn(pnI − pnh,u)| . hq+1‖∇Γh(pnI − pnh)‖Γnh . hq+
1
2 ‖∇(pnI − pnh)‖ωnΓ . hq‖pnI − pnh‖1,ωnΓ ,h.

Collecting these results, we see that the term between brackets (. . .) in the last line in (4.55) can be
bounded by

3
16 |||e

n
h|||2Un + 1

2ρp‖nh · ∇(pnh − pnI )‖2ωnΓ + C‖en−1
h ‖2

Γn−1
h

+ Ch2|||en−1
h |||2Un−1

+ C̃
(
∆t2 + h2q + h2m+2(1 + |||un−1

h |||Un−1) + (hm+1 + hq)‖pnI − pnh‖1,ωnΓ ,h
)
.

(4.61)

The first two terms in (4.61) can be shifted to the left in (4.55). We assume that h is sufficiently
small such that Ch2 ≤ 1

16 . Then we get

‖enh‖2Γnh + ‖Phenh − en−1
h ‖2Γnh + ∆t|||enh|||2Un + ∆tρp‖nh · ∇(pnh − pnI )‖2ωnΓ

≤ ‖en−1
h ‖2

Γn−1
h

+ c∆t
(
‖en−1
h ‖2

Γn−1
h

+ ‖enh‖2Γnh
)

+ 5
8∆t|||en−1

h |||2Un−1

+ C∆t
(

∆t2 + h2q + h2m+2(1 + |||un−1
h |||Un−1) + (hm+1 + hq)‖pnI − pnh‖1,ωnΓ ,h

)
.

(4.62)

For deriving a bound for ‖pnI − pnh‖1,ωnΓ ,h we use the same approach as in the proof of Theorem 4.8.
For the given qh := pnI − pnh ∈ Qnh we take the corresponding v̂h ∈ Un

h as in (4.27), for which the
estimates (4.28) and (4.29) hold. We take vh = v̂h in (4.48). For the right-hand side in (4.48) we
introduce the notation Gh(vh) := EnC(vh) + EnI (vh) + Cn(vh) + δnf (vh). As in (4.33) we then get

‖pnI − pnh‖1,ωnΓ ,h .
h

∆t
‖Phenh − en−1

h ‖Γnh + ρ
1
2
p ‖nh · ∇(pnI − pnh)‖ωnΓ

+ |||en−1
h |||2Un−1 + |||enh|||2Un + |||enh|||Un + |Gh(v̂h)|‖pnI − pnh‖−1

1,ωnΓ ,h
.

(4.63)
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We estimate the terms in |Gh(v̂h)|:

|EnC(v̂h)| . (∆t+ hq)|||v̂h|||Un . (∆t+ hq)‖pnI − pnh‖1,ωnΓ ,h
|EnI (v̂h)| . (hm+1 + hq)|||v̂h|||Un . (hm+1 + hq)‖pnI − pnh‖1,ωnΓ ,h

|Cn(v̂h)| .
(
hm+2 + ‖en−1

h ‖Γn−1
h

+ h|||en−1
h |||Un−1 + |||un−1

h |||
1
2

Un−1(hm+1 + |||enh|||Un)
)
|||v̂h|||Un

.
(
hm+2 + |||en−1

h |||Un−1 + |||un−1
h |||

1
2

Un−1(hm+1 + |||enh|||Un)
)
‖pnI − pnh‖1,ωnΓ ,h

|δnf (v̂h)| . hq‖v̂h‖Γnh . hq+1‖pnI − pnh‖1,ωnΓ ,h.

Thus we obtain

‖pnI − pnh‖1,ωnΓ ,h .
h

∆t
‖Phenh − en−1

h ‖Γnh + ρ
1
2
p ‖nh · ∇(pnI − pnh)‖ωnΓ

+ |||en−1
h |||2Un−1 + |||enh|||2Un + |||en−1

h |||Un−1 + |||enh|||Un

+ ∆t+ hm+1 + hq + |||un−1
h |||

1
2

Un−1(hm+1 + |||enh|||Un).

(4.64)

Now note that

C∆t(hm+1 +hq)|||un−1
h |||

1
2

Un−1(hm+1 + |||enh|||Un) ≤ ∆t
16 |||e

n
h|||2Un + C̃∆t(h2q +h2m+2)

(
1 + |||un−1

h |||Un−1

)
.

Using this, (4.64) and h2 . ∆t we obtain (for h sufficiently small) for the last term in (4.62):

C∆t(hm+1 + hq)‖pnI − pnh‖1,ωnΓ ,h ≤
1
2‖Phe

n
h − en−1

h ‖2Γnh + 1
2∆tρp‖nh · ∇(pnI − pnh)‖2ωnΓ

+ 1
8∆t

(
|||en−1
h |||2Un−1 + |||enh|||2Un

)
+ C̃∆t

(
∆t2 + (h2q + h2m+2)(1 + |||un−1

h |||Un−1)
)
.

Substituting this in (4.62) and shifting terms from the right to the left-hand side we get

‖enh‖2Γnh + 1
2‖Phe

n
h − en−1

h ‖2Γnh + 7
8∆t|||enh|||2Un + 1

2∆tρp‖nh · ∇(pnh − pnI )‖2ωnΓ
≤ ‖en−1

h ‖2
Γn−1
h

+ c1∆t
(
‖en−1
h ‖2Γnh + ‖enh‖2Γnh ) + 6

8∆t|||en−1
h |||2Un−1

+ c2∆t
(
∆t2 + (h2q + h2m+2)(1 + |||un−1

h |||Un−1)
)
.

(4.65)

We drop the term 1
2‖Phe

n
h−en−1

h ‖2Γnh , sum over n = 1, . . . , k, apply the discrete Gronwall inequality

and use the discrete stability estimate ∆t
∑k
n=1 |||u

n−1
h |||Un−1 .

(
∆t
∑k
n=1 |||u

n−1
h |||2Un−1

) 1
2 ≤ C to get

Qe,k := ‖ekh‖2Γkh + 1
8∆t

k∑
n=1

(
|||enh|||2Un +ρp‖nh ·∇(pnh−pnI )‖2ωnΓ

)
. exp(c tk)(∆t2 +h2m+2 +h2q). (4.66)

The triangle inequality and standard FE interpolation properties give

‖Ek‖2Γkh + 1
8∆t

k∑
n=1

(
|||En|||2Un + ρp‖nh · ∇rn‖2ωnΓ

)
≤ 2Qe,k + 2‖ek‖2Γkh + 1

4∆t

k∑
n=1

(
|||en|||2Un + ρp‖nh · ∇(pn − pnI )‖2ωnΓ

)
. Qe,k + Ch2m+2.

This completes the proof of (4.52).
We now derive a pressure error bound. The approach is similar to the one used in the proof of

Theorem 4.8. First note that if we do not drop the term 1
2‖Phe

n
h − en−1

h ‖2Γnh when going from (4.65)

to (4.66) we get

Q̃e,k := Qe,k + 1
2

k∑
n=1

‖Phenh − en−1
h ‖2Γnh . exp(c tk)(∆t2 + h2m+2 + h2q) =: Fk. (4.67)

20



From (4.64) we obtain, with the same arguments as in the proof of Theorem 4.8:

∆t

k∑
n=1

‖pnI−pnh‖1,ωnΓ ,h .
(

h√
∆t

+ 1
)
Q̃

1
2

e,k+Qe,k+∆t+hm+1+hq+∆t

k∑
n=1

|||un−1
h |||

1
2

Un−1(hm+1+|||enh|||Un)

Similar to above, using discrete stability for the last term we get

∆t

k∑
n=1

|||un−1
h |||

1
2

Un−1(hm+1 + |||enh|||Un) . hm+1 +Q
1
2

e,k.

Recall that h2 . ∆t. Hence, we obtain

∆t

k∑
n=1

‖pnI − pnh‖1,ωnΓ ,h . Q̃
1
2

e,k + Q̃e,k + ∆t+ hm+1 + hq . F
1
2

k + Fk . F
1
2

k .

Finally we combine this result with the interpolation error estimate

‖pnI − pn‖1,ωnΓ ,h = h
1
2 ‖∇(pnI − pn)‖ωnΓ . hm+ 1

2 ‖p‖Hm(ωnΓ ) . hm+1‖p‖Hm(Γ)

which then proves the result (4.53).
Both bounds in (4.52) and in (4.53) are optimal in terms of convergence order in ∆t and h.

5. Numerical experiments. In this section, we present results of numerical experiments
with the proposed method. We consider a simple geometry evolution, namely that of a slowly
moving sphere which does not change its shape. The exact level set function is given by φ(t,x) =
‖x − g(t)‖2 − 1, with g(t) = (0.2t, 0, 0)T . The normal velocity can be determined using wN =
−∂φ∂t /‖∇φ‖. The exact tangential velocity uT is chosen as uT = P(n × ∇Γψ) with the stream
function ψ = xy− 2t. Hence, divΓuT = 0 holds. The pressure is taken as p = (x− 0.2t)y+ z, which
satisfies

∫
Γ(t)

p ds = 0. The time interval is I = [0, 2] and the evolving sphere is embedded in the

domain Ω = [− 4
3 ,

10
3 ]× [− 4

3 ,
4
3 ]2. Using Maple [27], we calculate the corresponding exact force terms

f and f .
The method introduced in this paper is implemented in Netgen/Ngsolve [1] with the add on

ngsxfem [25]. The geometry approximation is based on an Oswald type quasi-interpolation in the
finite element space Vh,q (cf. (3.6)), denoted by Iqh:

φnh = Iqh(φ(tn, ·)), φ̃nh = Iq+1
h (φ(tn, ·)), nnh :=

∇φnh
‖∇φnh‖

, ñnh :=
∇φ̃nh
‖∇φnh‖

.

For the approximation of the Weingarten mapping we use Hn
h = ∇Γhn

n
h, with nnh = Iqhn

n
h the (Os-

wald type) componentwise quasi-interpolation of nnh in the finite element space (Vh,q)
3.

In the experiments below we use the lowest order Taylor-Hood pair (cf. (3.7)), i.e., m = 1, and
consider q = 1 and q = 2. For the case q = 2 the zero level of φnh is not easy to determine, cf.
Remark 3.1, and we use the parametric finite element technique developed in [12, 24]. For the time
discretization we use the BDF1 or BDF2 scheme. We start with a uniform tetrahedral triangulation
of Ω with maximum mesh size h0 = 0.5. In each refinement step the mesh size is halved. As initial
time step size we chose ∆t0 = 0.2. In each spatial refinement step we halve the time step size in the
BDF2-scheme and we divide it by four when the BDF1 scheme is used.
The parameter choices we use are consistent with (3.19a)–(3.19f). For the stabilization and the
penalization we take ρu = h−1, ρp = h and τ = h−2. To define the extension area Oδ(Γh) the
approximative level set function φh (instead of the distance function) is used in (3.14). We choose
the thickness of the narrow band as δn = c̃δnR∆t‖wN‖∞,In , with R = 1, 2, for BDF1 and BDF2,
respectively. The default value is c̃δn = 2.5 and we check in each step whether δn is sufficiently large
such that ωnΓ ⊂ Oδ(Γ

n−i
h ), i = 1, . . . , R, holds, cf. (3.20).

In case of the BDF1 scheme we use the first order accurate linearization (∇Γhu
n)un−1

h , cf. Sec-
tion 3. For the BDF2 scheme we consider the second order accurate linearization (∇Γhu

n
h)unh ≈
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(∇Γhu
n
h)
(
2un−1

h − un−2
h

)
.

The error quantities we use are defined as follows. The velocity and pressure errors in each time step
are denoted by En = unh − u(tn) and rn := pnh − p(tn) for n = 1, . . . , N . We consider the following
error quantities:(

EL
2L2

u

)2

:= ∆t

N∑
n=1

‖En‖2L2(Γnh),
(
EL

2U
u

)2

:= ∆t

N∑
n=1

|||En|||2Un ,

(
EL

2L2

p

)2

:= ∆t

N∑
n=1

‖rn‖2L2(Γnh), E
L1H1

ωn
Γ

p := ∆t

N∑
n=1

‖rn‖1,ωnΓ ,h.

Recall that the norm ‖ · ‖1,ωnΓ ,h is closely related (cf. discussion below (4.26)) to the scaled H1(Γnh)
norm h‖∇ · ‖Γnh , consistent with the error term hm+1 in (4.53).

We start with results for the BDF1 method, presented in the Figures 5.1 and 5.2. The first
order convergence for the error EL

2U
u in Figure 5.1(a) shows that the geometric error bound hq for

this term in (4.52) is sharp. The result for the pressure error E
L1H1

ωn
Γ

p in Figure 5.1(b) indicates

that the geometric error term hq in (4.53) might be not sharp. The results for EL
2U

u and E
L1H1

ωn
Γ

p

in Figure 5.2 confirm the second order convergence predicted by Theorem 4.14. Although we did
not derive a bound for the error EL

2L2

u , this error has the expected (approximately) second order
convergence in Figure 5.2(a), due to the term ∆t ∼ h2 in the time discretization error.

10−1 10−0.5

10−2

10−1

100

Mesh size h

EL2U
u

EL2L2

u

O(h)

O(h2)

(a) Errors in velocity

10−1 10−0.5

10−2

10−1

100

Mesh size h

E
L1H1

ωn
Γ

p

EL2L2

p

O(h2)

(b) Error in pressure

Fig. 5.1: q = 1, BDF= 1, use (∇Γu
n
T )un−1

T , ∆t ∼ h2

Results for the BDF2 method are shown in Figures 5.3, 5.4 and 5.5. We claim that our theoretical
analysis can be extended to this case, in which then the time discretization error terms ∆t in (4.52)-

(4.53) would be replaced by ∆t2. In Figure 5.3(a) we observe again that for EL
2U

u we only have first
order convergence due to the h1 geometric error term. The results in Figure 5.4 show close to second
order convergence for all error quantities (as in Figure 5.2). In Figure 5.4(a) one observes for EL

2U
u

a slightly worse than second order convergence. It turns out that this (pre-asymptotic) behaviour
is caused by the velocity stabilization term. If we repeat this experiment with ρu = 1

100h
−1 instead

of ρu = h−1 we obtain the results shown in 5.5 with almost perfect second order convergence for
EL

2U
u .

Appendix A. Proof of (4.6), (4.7) and (4.9). Define B = B(t,x) = P(I − dH)Ph for
x ∈ Γh(t). Geometry approximation assumptions from section 3.2.1 imply that B is invertible on
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(a) Errors in velocity
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(b) Error in pressure

Fig. 5.2: q = 2, BDF= 1, use (∇Γu
n
T )un−1

T , ∆t ∼ h2
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(a) Errors in velocity

10−1.5 10−1 10−0.5

10−3

10−2

10−1

100

Mesh size h

E
L1H1

ωn
Γ

p

EL2L2

p

O(h)

O(h2)

(b) Error in pressure

Fig. 5.3: q = 1, BDF= 2, use (∇Γu
n
T )
(
2un−1

T − un−2
T

)
, ∆t ∼ h

the range of P (for h small enough, cf. (3.19a)) and the following uniform in time and discretization
parameters estimates hold (see [16]):

‖B‖L∞(Γh) ≤ C, ‖PhB−1P‖L∞(Γh) ≤ C,
‖PhB−1P−PhP‖L∞(Γh) ≤ Chq+1, ‖1− |det(B)| ‖L∞(Γh) ≤ Chq+1.

(A.1)

These bounds and the identities

dΓ = |det(B)|dΓh and ∇Γu
`(p(x)) = PB−T∇Γhu(x), x ∈ Γh, u ∈ H1(Γh), (A.2)

and the vector analogues, see [20, section 5.4.1], imply the norm equivalences in (4.6). Same uniform
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(b) Error in pressure

Fig. 5.4: q = 2, BDF= 2, use (∇Γu
n
T )
(
2un−1

T − un−2
T

)
, ∆t ∼ h
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(a) Errors in velocity
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(b) Error in pressure

Fig. 5.5: q = 2, BDF= 2, use (∇Γu
n
T )
(
2un−1

T − un−2
T

)
, ∆t ∼ h, ρu = 1

100h
−1

estimates (A.1) together with (3.12) and (3.13) yield (cf. [20, Lemma 5.14]) for any v ∈ H1(Γh)3,

‖(∇Γv
`)e −∇Γhv‖Γnh . hq‖v‖H1(Γnh),

‖Es(Pv`)e − Eh(Phv)‖L2(Γh) . hq(‖v‖H1(Γh) + h−1‖v · nh‖L2(Γh).
(A.3)

Now the uniform Korn-type inequality follows from the uniform in time Korn inequality on Γ(t)
from [37, Lemma 3.2], estimates (4.6), (A.3) and FE trace and inverse inequalities by the arguments
in [20, Lemma 5.16]. Finally, (4.7) follows from the uniform in time interpolation inequality on Γ(t)
from [37, Lemma 3.4] and (4.6).
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Appendix B. Proof of Lemma 4.2. To prove Lemma 4.2 we first note that due to condition
(3.20) we have Γnh ⊂ Uδ(Γ

n−1
h ) ⊂ Oδ(Γn−1

h ) ⊂ O(Γn−1), where the last inclusion holds for ∆t, h
small enough, see condition (3.19a). Hence, for v ∈ L2(Γn−1

h ) we define a lift v` ∈ L2
(
Uδ(Γ

n−1
h )

)
as

in (4.4), with n replaced by n− 1. We use the splitting

‖vh‖2Γnh =

∫
Γnh

(|vh|2 − |v`h|2) dsh + ‖v`h‖2Γnh . (B.1)

For the second term on the right-hand side we apply the estimate ‖v`h‖Γnh . ‖vh‖Γn−1
h

(see, e.g. [26,

Lemma 6]). For the first term we obtain (we abbreviate Uδ = Uδ(Γ
n−1
h ) here):∫

Γnh

(|vh|2 − |v`h|2) dsh .
∫
Uδ

∣∣nn−1 · ∇(|vh|2 − |v`h|2)
∣∣ dx (|vh|2 = |v`h|2 on Γn−1

h )

≤
∫
Uδ

∣∣nn−1
h · ∇|vh|2

∣∣ dx+

∫
Uδ

∣∣(nn−1 − nn−1
h ) · ∇|vh|2

∣∣ dx (as nn−1 · ∇|v`h|2= 0)

. ‖vh‖Uδ‖n
n−1
h · ∇vh‖Uδ + ‖nn−1 − nn−1

h ‖L∞(Uδ)‖∇vh‖Uδ‖vh‖Uδ
. ‖vh‖Uδ

(
‖nn−1

h · ∇vh‖Uδ + hq−1‖vh‖Oδ(Γn−1
h )

)
(eq. (3.12) and FE inv. ineq.)

. ‖vh‖Uδ
(
‖nn−1

h · ∇vh‖Uδ + ‖vh‖Γn−1
h

+ ‖nn−1
h · ∇vh‖Oδ(Γn−1

h )

)
(eq. (4.10b) and δn−1 + h . 1)

.
(
δ

1
2
n−1‖vh‖Γn−1

h
+ δn−1‖nn−1

h · ∇vh‖Oδ(Γn−1
h )

)
(eq. (4.10a))

×
(
‖vh‖Γn−1

h
+ ‖nn−1

h · ∇vh‖Oδ(Γn−1
h )

)
. ‖vh‖2Γn−1

h

+ δn−1‖nn−1
h · ∇vh‖2Oδ(Γn−1

h )
.

This completes the proof.

Appendix C. Proof of (4.42). The term that has to be bounded is given by

A :=

∣∣∣∣∣
∫

Γn
wnNv`h ·Hun ds−

∫
Γnh

we,nN vh ·Hhu
n dsh

∣∣∣∣∣ .
Using H = P∇nP, Pun = un and the product rule ∇(w · n)T = w · ∇n + n · ∇w we get∫

Γn
wnNv`h ·Hun ds =

∫
Γn
wnN∇(Pv`h · n) · un ds−

∫
Γn
wnNn · ∇(Pv`h)un ds

=

∫
Γn
wnN∇Γ(v`h ·Pn) · un ds−

∫
Γn
wnNn · ∇(Pv`h)un ds = −

∫
Γn
wnNn · ∇(Pv`h)un ds.

(C.1)

Using the definition Hh = ∇Γhnh = Ph∇n`hPh, the transformation formula (4.5) applied to nh,
‖d‖L∞(Γnh) . hq+1, ‖P − Ph‖L∞(Γnh) . hq, the bound for the surface measure change in (A.1) and
the smoothness of u we obtain∣∣∣∣∣

∫
Γnh

we,nN vh ·Hhu
n dsh −

∫
Γn
wnNv`h ·P∇n`hPun ds

∣∣∣∣∣ . hq‖vh‖Γnh . (C.2)

We apply partial integration as in (C.1), which yields∫
Γn
wnNv`h ·P∇n`hPun ds =

∫
Γn
wnN∇Γ(v`h ·Pn`h) · un ds−

∫
Γn
wnNn`h · ∇(Pv`h)un ds. (C.3)

For the first term on the right-hand side we apply partial integration and using ‖Pn`h‖L∞(Γn) =

‖P(n`h − n)‖L∞(Γn) . hq, cf. (3.13), we get∣∣∣∣∣
∫

Γn
wnN∇Γ(v`h ·Pn`h) · un ds

∣∣∣∣∣ =

∣∣∣∣∣
∫

Γn
(v`h ·Pn`h) divΓ(wnNun) ds

∣∣∣∣∣ . hq‖vh‖Γnh . (C.4)
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With the results (C.1)-(C.4) we get, using again (3.13),

A ≤

∣∣∣∣∣
∫

Γn
wnNn · ∇(Pv`h)un ds−

∫
Γn
wnNn`h · ∇(Pv`h)un ds

∣∣∣∣∣+ hq‖vh‖Γnh

=

∣∣∣∣∣
∫

Γn
wnN (n− n`h) · ∇(Pv`h)un ds

∣∣∣∣∣+ hq‖vh‖Γnh . hq‖vh‖H1(Γnh),

which completes the proof.
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