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Summary. The multigrid full approximation scheme (FAS MG) is a well-
known solver for nonlinear boundary value problems. In this paper we re-
strict ourselves to a class of second order elliptic mildly nonlinear problems
and we give local conditions, e.g. a local Lipschitz condition on the derivative
of the continuous operator, under which the FAS MG with suitably chosen
parameters locally converges. We prove quantitative convergence statements
and deduce explicit bounds for important quantities such as the radius of
a ball of guaranteed convergence, the number of smoothings needed, the
number of coarse grid corrections needed and the number of FAS MG
iterations needed in a nested iteration. These bounds show well-known fea-
tures of the FAS MG scheme.

Subject Classifications: AMS(MOS): 65N20; CR: 5.15.

1. Introduction

We consider the following class of second order elliptic mildly nonlinear bound-
ary value problems on an open, connected, bounded domain Q =IR? with smooth
boundary 0Q:
—V.aVu)+bgou=f on Q
{ u=0 on 0Q

with aeC'(Q), min{a(x)|xeQ}>0, beC(Q), min{b(x)|xeQ}=20, fel*(Q),
geC'(R), g’(t)=0 for all teRR.

Existence and uniqueness of a solution of such a boundary value problem
is proved in literature using the global monotonicity of the problem. We reformu-
late the above problem in an equivalent variational form and give a finite element
discretization. Now, after discretization we have a nonlinear system of equations
to be solved. Two methods frequently used in a multigrid context to solve
such a system of equations are the following. One can use an iterative linearisa-
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tion process like (a modified) Newton’s method combined with a linear multigrid
method to solve the linear equations occurring in this Newton process. Another
method is a nonlinear multigrid method, known in literature as Full Approxima-
tion Scheme (FAS; Brandt in [2]) or Nonlinear Multigrid Iteration (Hackbusch
in [6]). With respect to the first method we note that for the Newton iteration
and the linear multigrid solvers seperately many theoretical analyses of conver-
gence properties can be found in literature (e.g. [9, 1, 6]). However the only
analysis of the first method known to the author is [10]. One might expect
(for experimental results see ch.I in [7]) that asymptotically, i.e. in a small
enough neighbourhood of the solution, the two methods (Newton+lin. MG
and FAS) behave similarly.

A convergence proof of a FAS-iteration scheme is given (only) by Hackbusch
in e.g. [6]. Hackbusch imposes general conditions on for example the derivative
of the discrete operator and the derivative of the relaxation operator used. Under
these general conditions he deduces the qualitative result that on a fine enough
discretization level in a small enough neighbourhood of the discrete solution
the FAS scheme with a bounded number of smoothings per iteration and a
bounded number of coarse grid corrections converges. He also proves that
asymptotically, under conditions, the convergence factor agrees with what one
expects.

In this paper we only consider FAS. We abandon generality and restrict
ourselves to the class of nonlinear problems defined above. We do note that
in our analysis of the FAS iteration all conditions and results are local ones
and thus our analysis can be applied to nonlinear problems which locally (in
a neighbourhood of the solution) behave like the above stated (monotone) prob-
lems. Having restricted to the above nice class of nonlinear problems we define
a class of suitable nonlinear Jacobi-like smoothing operators and a suitable
FAS iteration and prove a convergence statement in which quantitative state-
ments about e.g. a domain of guaranteed convergence, the number of smoothings
needed, the number of coarse grid corrections needed and the coarsest acceptable
grid are given. As Hackbusch does, we prove convergence by linearising the
FAS iteration. In essence the only assumption we make about the continuous
operator (apart from the monotonicity) is that its derivative satisfies a local
Lipschitz condition and a regularity condition. We discuss properties of g which
induce that these conditions are fulfilled.

Because of our more quantitative convergence statement we can prove
among other things the following features of a FAS iteration with suitably
(we will specify what is “suitable”) chosen parameters applied to the above
mentioned nonlinear system of equations: (more precise statements can be found
further on)

— the FAS two grid scheme (FAS TG) with one pre-smoothing and one post-
smoothing locally converges (the smoothers are nonlinear Jacobi-like
smoothers).

— under natural conditions the FAS multigrid (FAS MG) with W-cycles locally
converges.

— on fine enough grids (levels) there is a ball of guaranteed convergence (of
FAS TGQG) with a radius that is about inversely proportional to a local Lip-
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schitz constant of the derivative of the continuous operator (just as in many
Newton like iterations). So this radius is in essence independent of the level.

— for FAS MG convergence, the coarsest level (grid) used should be such
that the discretization error on that level is smaller than the radius of the
ball of guaranteed TG convergence.

— if FAS MG is used in a nested iteration, we need only a good enough
starting vector on a coarsest (but fine enough) level to generate acceptable
starting vectors for MG on finer levels. Suppose we have suitable finite
element spaces (S;)c=0. ;... on a sequence of ever refining grids (indexed by
k). Now suitable FAS MG generates a sequence of approximations u, €Sy,
k=1, 2, ... (approximating the discrete solution on level k) with error smaller
than the relative discretization error on level k. In this nested iteration we
need fewer FAS MG iterations for larger k, and in a FAS MG iteration
on level k we need fewer coarse grid corrections for larger k. Moreover
the number of FAS MG iterations needed and the number of the coarse
grid corrections needed tend ot expected lower bounds (for k — c0).

In this paper we use the convergence theory for linear TG methods for
symmetric elliptic problems as in [1]. The idea of linearisation is easy but our
proofs are somewhat technical because we need uniformity in some parameters
and we have to deal with (complicated) higher order terms occurring after linear-
isation of the FAS TG iteration.

The paper is organized as follows.

In §2 we consider the continuous problem and a finite element discretization.
We discuss existence and uniqueness of solutions.

In §3 we collect notations and conventions and prove relations between different
energynorms. In §4 we introduce a class of linear two grid operators and prove
a uniform convergence statement.

In §5 a FAS two grid iteration is defined and after linearisation, using estimates
for higher order terms and the convergence thm. of §4, a local convergence
statement is proved. In §6 we deal with a FAS multigrid iteration and prove
convergence using the FAS two grid convergence theorem of §5. Finally in
§7 we consider a nested iteration using FAS multigrid (Full Multigrid Algo-
rithm). In §8 we discuss simple conditions on the function g such that the
assumptions we make in §3—7 about the continuous problem are fulfilled.

2. A Class of Mildly Nonlinear Differential Equations
and their Discretization

In this section we consider a class of second order elliptic mildly nonlinear
boundary value problems and their finite element discretizations. The continuous
and discrete problems have unique solutions and assuming a Lipschitz condition
a natural bound for the discretization error can be given.

Definitions 2.1. Let Q<IR? be an open, connected, bounded area with smooth
boundary. By H*(Q) (keIN) we denote the Sobolev space of all functions ue L*(R)
whose distributional derivatives D*u for |a| <k are elements of the space L?(f).
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For ue H*(Q) its norm ||ull, is defined by |ul,=( Y, |D"u|7.)*. We also define
laf =k

HE () to be the closure in H*(Q) of D(Q):={peC™(Q)|supp(d)=Q}. On H}(R)

the norm |.||, is equivalent to ||.|| which is given by |u| =(u, u}* where

(u,v)=[Vu.Vvdx(u,ve H}(Q)).

2.2. The Problem Considered and its Discretization

We consider the following class of second order elliptic nonlinear boundary
value problems:
(1) {—V.(aVu)+bgou=f on Q

u=0 on 0Q

Here aeC'(Q), min{a(x)|xeQ} >0, beC(Q), min {h(x)|xeQ} =0, feL*(Q) and

geCY(R), g’'(t)=0 for all telR.
We also give a variational formulation of (1):

(2) Find ue HL(Q) such that: a(u, v)+(bgou, v),.=(f, v).. for all ve H}(Q). Here
(-»-)r2 is the I? inner product and a(u,v)= j aVu.Vvdx. The operator
u—a(u,.)+(bgou,.), will be denoted by n. 2

We assume a sequence of standard linear finite element spaces (i.e., a regular
affine family of continuous bilinear finite elements; see e.g. §3.2 in [5]), denoted
by S, S, =...c H(Q) with corresponding “stepsizes” hy>h, > .... We assume

0<K1§h“rl <K,<1 for i=0. Let {{;,¥,, ..., ¥, } be the standard bilinear

1

finite element basis of S,, then we define U,=IR™ and the isomorphism

B:U,—>S,, Ba= i aPy; where ot is the j-th coordinate of ac U,.
j=1
Now a finite element discretization of (2) is given by:
(3) Find u, eS8, such that: a(u, v) +(bgeouy, v)=(f, v);- for all v, €S,.
And an equivalent formulation is given by:
(4) Find «,e U, such that N, (o) :=A o, + g (o) = by, where A, is a standard Pois-
son discretization: (4); ;=M 2a(y;, ¥, and

@ @)?=h 2 [ b(x) g(Rou) Y;(x)dx,  bP=h.? [ f(x)y;(x)dx.

2.3. Existence and Uniqueness of Solutions

From [4] one can deduce that there exists a unique solution of (1) in
H?(Q) " H}(R), say u*.

Clearly u* is a solution of (2). Monotonicity, ie. a(u, —uy u, —u,)+
(b(gouy —gou,), uy —u,);->0 for all u, +u,e Hy(Q), guarantees uniqueness, so
u* is also the unique solution of (2).

Existence and uniqueness of a solution of (3) (and thus (4)) can be shown
by using monotonicity arguments as in the proof of existence and uniqueness
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of the continuous solution (actually: N, is maximal monotone and coercive,
see [3]). Another possibility, which in addition yields information about the
smoothness of the inverse, is to apply a suitable (global) version of the implicit
function theorem. Using Theorem 154 and 152 in [12] results in: N is a
C!-diffeomorphism on U,. The solution of (3) is denoted by uj.

Remark 2.4. In the remainder of this paper we will often use the following Sobo-
lev embedding theorem (see e.g. [5]):

Vgel[l, o0 [3d,eR:VueH§(Q): lull .. <d, [|ul|.
We define the function I: [1, o[ > ] 0, co[ by:
I(q)=sup {|lull e llull =" |ue H(Q), u%0}.
Lemma 2.5. Let a_:=min{a(x)|xeQ}, b, :=max{b(x)|xeQ}. H{(Q) is denoted
by H. U=1(2) a=" (b4 |g(0)ll 2+ f || .2) and B:={veH||v| < U}.

Assume n maps B into H' and |(n(v)—n(w))(w)| = Cgllv—w| ||u| for all v, weB,
all ue H (cf. 8.4 (a,)). Then with u* and uj¥ as in 2.3 the following holds:

d¢>0: Vk=20 |u*—uf| Zch,.

Proof. Our proof runs as the proof of Theorem 5.3.4 in [5]. We have:

lu*|?<a="a(*, u*)=aZ=" {n(u*)@*)—(b(gou*—g(0)), u*)..— (bg(0), u*)..}
SaZ'{(fu*)a—(bg(0), u*)2} aZ TQ) (I f L2+ b [gO)a) llu*].

So: |lu*|| £ U. The same bound holds for uj.
Now for arbitrary we S, we have:

lu* —u|* <aZ! (n(u*) —n@d) (w* —uf)=aZ" (n(u*)—n(wf)) (u* —w)

SaZ'Cglu*—uf| u*—w].

This implies |u*—u¥|<a-'Cyinf{||u*—w]||weS,}. Now the use of standard
finite element estimates and the fact that u*e H?(Q)n H§(Q) proves the lem-
ma. []

3. Assumptions, Definitions and Fundamental Relations

In the remainder of this paper we assume that the nonlinearity of the problem
as stated in 2.2.(2) fulfils certain conditions. These conditions are stated in 3.1
and 4.7. We comment on these in 3.3, 4.8 and 5.15.

In this section we also define norms and operators that we will frequently
use further on and we prove equivalence of a class of norms. In 3.5 we give
a bound for the error made by linearizing the nonlinear problem 2.2.(2).

Assumption 3.1. We denote H}(Q) by H. In Sect. 3-7 we assume that the operator
n:u—a(u,.)+(bgou,.).. satisfies:

(1) n maps H into H’ (the space of all continuous linear functionals on H).

(2) nis Fréchet differentiable on H (Fréchet derivative denoted by Dn).
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(3) for all ue H the operator (v, w) > Dn(u)(v)(w) defines a symmetric, bilinear
form on H x H.
(4) for every bounded subset B of H there exists a constant I}, such that:

Vv, weB Vu, zeH: |(Dn(v)—Dn(w)) ) (2) < Ty lo—wi full 2]

Sufficient conditions on the function g implying assumption 3.1 will be given
in §8.

Using (1) and (2) of 3.1 and because (n(u+h)—n(w)(h)=a(h,h) for all
u, he H3(Q) (results from g’'=0) we obtain that Dn(u)(h)(h)=a(h, h). And thus
(v, w) = Dn(u)(v)(w) is coercive on H}(Q) x H{ ().

Definitions and Conventions 3.2.

— The space H{() is denoted by H (with inner product (.,.) and norm |.||
asin 2.1).

— We recall the definition of the bilinear form a: Hx H > R:

a(u,v)= | aVu.Vvdx. We define a norm |. |, on H by |luf,:=}/a(u, u).
Q

— For ueH the symmetric continuous coercive bilinear form on H x H given
by (v, w)— Dn(u)(v)(w) is denoted by b, (also used as operator H — H'). We

also define the norm ||. ||, on H by |v|l,=]/b,(v, v).

— We use an obvious notation for operator norms, e.g.: j: H— H', ue H then
ljl.=sup{lj@)lveH, |v],<1}.

— For j: H— H' we denote jis,: Sy — S}, by j, and jis,: Sy = Sk—1 bY jx -1+

— We define therealsa_,a,,b_,b, by:

a_=min{a(x)|xeQ}, a, =max {a(x)|xeQ},
b_=min{b(x)|xeQ}, b, =max {b(x)|xeQ}.

— Let w* be an element of HNC(Q). In Sect. 3, 4, 5, 8 we keep this w* fixed
and in 5.13, §6 and § 7 we will specify a suitable w¥*.

— ForveH, re[0, o[ we define B(v;r):={ucH||u—v|,<r}.

Also: B*(v; r):=B(v; )" S,, B(r):==B(w*; r), B¥(r):=B(r) n S,.

— With [ from 3.1.(4) we define I:==aZ'*[},,.

Remark 3.3. With respect to assumption 3.1 we note the following. The condi-
tions in 3.1 may be weakened in the sense that there is some open ball B contain-
ing w* on which n is differentiable (with derivative as in 3.1(3)) and on which
Dn satisfies a Lipschitz condition as in 3.1.(4).

Our analysis is then still applicable and our results do not really change
(they only become “more local”). However these weaker conditions cause addi-
tional technical difficulties because we have to make sure that, after choosing
a starting vector (for the FAS algorithm) within B, “everything remains within
B”. These additional difficulties we have wanted to avoid.

We also note that the analysis and results can be adapted in a straightforward
manner if we only assume a Holder condition on Dn instead of a Lipschitz
condition. The condition (3) we consider to be reasonable because in standard
convergence theory for linear multigrid methods [1, 6, 11] assuming symmetry
is common practice (to make possible and analysis using energy norms).

We comment on the condition (4) in 5.15.
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The following lemma compares different inner products and all sorts of
equivalent norms. In the remainder we will often use estimates from this lemma.

Lemma 3.4. The following holds:
(1) 1b, (4, )= by (u, 2 < Ty lo—w Jull 2] S Jo—wll, lull, Iz,
for all v, weB(r), all y;,u, zeH.
There exists a function G: H — [0, oo such that the following holds:
(2) 1b,(u, z)—a(u, 2)| SG()|lull | z]| for all u,v,zeH;
3) a_ul?<|ull} < lulli=(ay +G©)|u]? for all u,veH;
@ lulli=(+at Ljo—w)luls <A+ L lo—wll,)lul? for all v,weB(r), all
u,yeH;
(5) lul2<(@s +Gw)+a_T; [o—wll,) lull? for all v, weB(r), all u, yeH;
©6) lulZ=(1+aZ*Gw)+ I} |lv—wl,) |ull for all v, we B(r), all u, ye H.
Proof. The proof of (2) is easy using the fact that b, and a are bounded bilinear
forms on H x H. The first two inequalities of (3) are also easy (cf. remark after
3.1), the third follows from (2); (1) follows from assumption 3.1.(4) and from
(3); (4) is easy using (1) and (3). Now note that using (1), (2) and (3):

Vo,weB(r)Vu, ye H: |ull —lluld =[llulld— llul 5+ lul— lulil
S(@-Llo—wl,+Gw)llul> *)
Now (5) is easy using (*); (6) follows using (*) and (3). [
The following lemma gives a bound for the error made by linearizing n.

Lemma 3.5. For veH let d,: HxH— H' be defined by d,(u, w)=n(u)—n(w)
—b,(u—w). For all r 20 and all u, v, we B(r) the following holds:

Hdv(ua W)Hué%ﬂ(”“‘”“u*‘ ”W'—v”v) HU—W“,)
Proof.
Id, (u, Wl,= lIn(w)—nw)—b,u—w)l,

flDn(w+t(u~w))(u—w)—b,,(u~—w)dt
0

v

dt

v

gjl Dn(w+t(u—w))(u—w)—b,(u—w)
0

“bw+t(u-w)(u_W)—bv(u—w)”udt

Il
O ey

LIA—0w—0v)+t@—0v)|.dtllu—w], (using3.4.(1))

lIA
O oy

SIL(w—vlly+ lu—vl)lu—=wl,. O
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4. A Class of Linear two Grid Operators

In this section we define a class of linear two grid operators and using the
convergence theory of [1] we prove uniform convergence for this class of opera-
tors.

Definition 4.1. Let I: S, xS, — R be a continuous, symmetric, positive definite
bilinear form. Let veH, for weS, let w be the unique element in S, such that:
LW, y)=LWw,y)—b,(w,y) for all yeS,. We define R,: S,— S, by R,w=w. If
I, b, are seen as operators S, — S; we have R,=ids, —I; 'b,. Let ve H, for e€S,
let éeS,_, be the element in S,_, such that b,(¢, y)=b,(e, y) for all yeS,_;.
We define C,: S; — S, by C,e=e—é&. Note that C, is the b,-orthogonal projection
upon S{_, (L w.rt. b,).

Remark 4.2. The operator R,C,R,: S, — S\ can be seen as a so called two grid
operator (cf. [1] and [7]). Classical convergence proofs give bounds smaller
than one independent of k for |R,C,R,]|, for fixed v. Here, we want uniform
bounds in v. Theorem 4.10 gives such a result.

Assumption 4.3. For all ke, all re]0, o[ let [, ,: S, x S, >R be defined with

the following properties:

(1) YkVr:l,, is a continuous, symmetric, positive definite bilinear form.

(2) 3ndc: VrVkYveB(r) VyeS,: b,(y, ) b (v, S c(L+ L)k 2 |lylE: (with I
as in 3.2).

Notation 4.4. R, as defined above, with [, =1, , is denoted by R, ,.

Examples 4.5. Possible choices for [, , are: Richardson relaxation where
b (i) =0, i%j, I ,(;, ¥)=c(1+I;r) with suitable ¢ (depending on b,,.), and
“damped Jacobi relaxation” where [ ,(f;,¥)=0, iFj, I (f;, y)=c(1+ L)
(1+1;,70) b, (¥;, ;) with voeB(r,) and suitable ¢ (depending on b,,.).

Lemma 4.6. Let k be given. With the definitions of R,,, and C, as in 4.1, 4.4
the following holds: |R, ||, =<1 for all ve B(r), |C,|,£1 for all veH.

Proof. For all w, yESkZ lk,r(Ru,rwa y)zlk,r(wa y)_bv(w, y)=lk,r(y’ W)_bv(y, W)
=1 .(R,,y,w) so R, , is [, -symmetric and consequently b,-symmetric. Since
0=l (R, ,w, W)l ,(w, W) "' =1—=b,(w,w)(l ,(w,w))"'<1 for all veB(r), all
weS, (use 4.3) we have that for the spectrum o(R,, ,) of R, ,: ¢(R, )<[0, 1]
and thus |R,,|,<1. Because C, is the b,-orthogonal projection upon Si_,
(1 wr.t. b)) we have |C,||,<1. [

Assumption 4.7. In the remainder of this paper (except §8) we assume that for
all r=0 there exists a constant dg,, such that for all veB(r) and for all
mel?(Q)= H' the unique solution u of b,u=m belongs to H*(Q) and satisfies
lull,Sdpg) Im| L2

Remark 4.8. In line with Remark 3.3 we note here that our analysis is still appli-
cable and the results do not really change if in 4.7 “for all r=0" is replaced
by “for some r>0”. Such a local uniform regularity condition we consider
to be reasonable because it is a natural generalization for our nonlinear problem
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of regularity conditions that are common practice in standard convergence
theory for linear methods (e.g. [1, 6]).
In §8 we give conditions on g under which assumption 4.7 is fulfilled.

In [1] convergence of a two grid method is determined by the so called
“generalized condition number”, denoted by . Using arguments deduced from
[1] we prove existence of (and give a bound for) a uniform k for a whole
class of problems. This uniform x implies a uniform convergence statement.

Lemma 4.9. For veH define S;_,:={ueS,|b,(y,u)=0 for all yeS,_,}. With I,
as in 4.3 the following holds:

Vr>03xp,): VkVveB(r)VueS;_: L ,(u, ) kg, b, (u, u).

Proof. First we note that, using standard finite element spaces, the following
holds ([5] theorem 3.2.1): for all ve H?(Q) there exists a constant e (independent
of k) such that min{|v—y||yeS,} <eh|vl,. *

Recall that h,_, <K{'h, (2.2). Now take k€N, veB(r) and ueSy_,. For
meL*(Q)let ze H?(RQ) be the solution of b,z=m (cf. 4.7). Now using lemma 3.4(5),
assumption 4.7 and (*) we get, with xeS,_; suitably chosen and k,(r):=a,
+Gw*)+a_Lr(cf. 3.4):

(m, u)2=b,(z,u)=b,(z—x,u) < | z—xl|, |ull, <k () |z — x| [[ull,
Sk (PeKi hllzls llull, <k, ()} e K1 hedpg) Imll a2 llull,.
So we have:
lull - = max {(m, u)..|me L*(Q), |Im|| 2= 1} <k ()} e K1 ' hydpg llull,.
Finally using assumption 4.3 we get:
b u)Sc(L+ LYk 2 |ul i< c Ky 2 ek (A + LrY'd uld=Kpe lul. O

Now using the convergence proof of Bank and Douglas [1] in combination
with lemma 4.9 results in the following uniform convergence statement:

Theorem 4.10. With iy, from lemma 4.9 and 5y, <1 defined by:
1- KE(}))Z if KB =3
5B(r)= 4 .
Kpr27 if k<3
we have for R, ,C R, ,: S, — S, as defined in 4.1-4.4:
Vr>0: LB(r) = Sup (”Rv,r CvRv.r”v)ééB(r)< 1

k; veB(r)

Remark 4.11. The reader may check that dp, is an increasing function of r.
The uniform contraction factor Ly, need not be an increasing function of r.
When we restrict to r<rp,, and take [, ,=I,,  for all r<r_,,, then R, ,
=R,,, . forallr<r,, and Ly is an increasing function of r for r <r,,.
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5. Two Grid Full Approximation Scheme Convergence

In this section we prove local convergence of the well-known two grid FAS-
iteration (see e.g. [2]). By linearisation and using the convergence theorem of
§4 we prove a local uniform convergence statement. The uniformity makes it
possible to prove multigrid convergence in the next section. As in the Newton-
Kantorovich theorem a domain of guaranteed convergence is determined by
a Lipschitz constant.

Given meS; we want to approximate the solution v*eS, of the Galerkin
discretization: n(v*, y)=m(y) for all yeS,.

Definition 5.1. For r>0 let |, ,: S; xS, — R be as in 4.3. For weS§, let weS,
be the unique element in S, such that:

lk,r(way)=lk,r(way)+m(y)——n(w’ y) foran yeSk'
We define R,: S, — S, by R,(w)=w. With the notation of 3.2 we also have:
R,=idg, + 1l m—1I }n.

Choices of I, , as in 4.5 correspond to Richardson relaxation and nonlinear
damped Jacobi with a modified Newton iteration.

1 For every ﬁeSk_l,. se]0, © [, meS; we define C: S, — S, by Cle)=e+
—(é—1) where eS8, _, is the unique element in S, _, such that:

s

n(e, x)=n(i, x)+s(m(x)—n(e,x)) forall xeS,_,

(for existence of such an e see 2.3). With the notation of 3.2 we also have:
1_ . -
C(e)=e+§ [ty (mi— 1@+ s(m—mny ;—((e))—].

We define Fi: ]0,00[ X SgxS;_;x]0,0[xS;—>S, by: F(r, w, 4, s, m)
=R, CR,(w) with C as above (corresponding to &, s and m). For given r¥, 49, s0
and m a two grid Full Approximation Scheme iteration for solving n,(u)=m
is defined by:

WU+ D =, (rD, wd), 59, 59, ),
We will indicate suitable choices of ¥, #? and sV later on.

Remark 5.2. The above definition in variational formulation of the FAS two
grid iteration is equivalent to the more familiar and practical definition in matrix
formulation (cf. (3), (4) in 2.2) as given in e.g. [2] and [6].

Clearly for convergence of the FAS iteration we are interested in the ratio
of ||| F.(r, w, &, s, m)—v*||| and |||w—v*||| for a suitably chosen norm |||.||| on ;.
Theorem 5.10 gives a bound for this ratio. We first give some lemmas, trying
to make the technical proof of Theorem 5.10 more transparant.

Lemma 5.3. The following holds ( for definition of G(w*) see 3.4):
(a) For all weH and all ve B(r):

Ibotb, |, <F with [:=14+aZ'Gw*)+1Lr.
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(b) For all v, weB(r):
by ' bull, <1+2Lr
(c) For all v, weB(r), for all yeH:
Iby by —idgll, <exp(L lv—wll,)—1<exp(2L;r)—1

Proof. Notice that for veB(r), w,zeH: b,(z, z) (1 +7) b,,(z, z) with y=aZ' G(w*)
+Lr (follows from 3.4 (6) and (3)); we may take y=21I,r if weB(r) (follows
from 3.4 (4)). Now note that b, 'b,u=z is equivalent to: b,(u, y)=b,(z, y) for
all yeH, and thus

2113 =by(z,2) S(1+7) by (2, 2)=(1 +7) by (u, 2) S (1 +) [[ul, | 2]
This results in ||z]|,<(1+7y)|lu|, and thus
by ' b,l|,=max {||by, ' b,ull,|ueH, [lull,=1} <1+

This proves (a) and (b). For (c) note that for v, we B(r), u,ze H with b, 'b,u=z
we have:

lz—ul =by(z—u,z—u)=b,(z, z—u)—b,,(z, z—w) = L Jv—w], |1zl | z—u].,

(using 3.4 (1) with y, =yeH, y, =w, y3=v). This implies:
lz—ul, <L v—wl,lizlW S Lllo—wl, 1+ o—wl,)? [ul,;
in the last inequality we used:
b, (2,2)=b,(u, 2) < lul,llz]l, < [ull, L+ L o —wl,)* |1zIl,,

(use 3.4 (4)). Conclusion:

Ibg  bou—ul, L lv—wl,(1+ L o—wl,)¥ ull, < (exp(L; [o—wl,) = 1) [ul,

S(expLr)—1)ul, (takey=w*. O

The following lemma will be used further on to linearize n~'. The nice looking
property 5.4 (a) will be used several times; the more general statement in 5.4 (b)
will be used only once.

Lemma 5.4. For te[0, 1] we define w,: Hx H — H by w,(u, )=n"'(n(u)+t ).
The following holds:
(a) Vr>0VueH YoeH YveB(r): ||lo,u, ¢)—ul, <L o, (f; asin 5.3).
(b) We define #: Hx H - R by
7(u, @) =inf{s|w,(u, p)e B(s) for all te[0,1]}
then: Yr>0VueHVY o, yecH YveB(r): |w,(u, ¢)—u—>b, |,
:<:{exp[Fmax(r,F(u.(a))(“v_u”v+f:“(pHv)]_1}||Q/I”v+f;-”(p_'//”v'

Proof. The reader may check that n: H—H' is a C'-diffeomorphism (as in
2.3 for N,). Now take ueH, ¢,y eH’, veB(r) and for te[0,1]: z():=n""(n(u)
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+t@)—u—b, 'Y so n(z(t)+u+b, 'Y)=n(u)+te and z(0)= —b, 'y. By differ-
entiating w.r.t. t we get:

Dn(z(®)+u+b; ") () =0 >bo,unZ ()= ()=bg i 0 ¢

implying:
1
=[Z()dt+2z(0)= jbwtm n@dt—b, "y
(4]
1
= [ bartu.oybo—id) by 'Y dt + fb;t}u,q,)b,,bv_l&p—xp)dt
0 0
Taking norms, using the continuity in t and ||b, !||,=1 results in:

1 1
Izl = § 1baytw.pbo—idldt Y llo+ § 166w pboldtlo—il,.
0 (4]

Taking y =0 and using 5.3 (a) proves (a).
For the term | bg{, ,b,—id||, we note that using 5.3(c) we get:

”bc;t%u,(p)bv_ ld”v éexp(l;nax(r,i‘(u. ) ”U '—wt(us (p)”v) -
éexp(rmax(r,?(u,q)))(”l)_qu+ ”wt(uz QD)-M”,,))—
éexp(rmax(r.i(u, ¢))(l|v—ul|,,+f:t HQDHv))_ 15

where in the last inequality we used (a). Now (b) follows. []

Remark 5.5. By using 5.3 (b) instead of 5.3 (a) in the proof of 5.4 it may be
seen that [} in 5.4 may be replaced by 142 .y 5. - MaX(r, 71, 0)).
Suppose in 5.4 we are interested in the following situation:

forevery r>0: u,veB(r); forevery r>0: peH' with [[@|Zf(r)

where ]: (r)is a continuolls increasing function of r with f(0)=0. Then F(u, @)
<f(r);+r and thus I, in (a) and (b) can be replaced by the factor
14200540 (f(7) I +71), which goes to 1if r | 0 (note that [} ¥if r | 0).

Remark 5.6. In lemma 3.5, 5.3, 5.4 the results do not change if H is _replaced
by some closed linear subspace H of H and n, b, are seen as operators H — H'.

In the remainder of this section we assume some fixed S>0.

Definition 5.7. We now define Lipschitz constants on different balls. For
r>0,%e[r,0[ is such that for all wveB(r): B(v;r)<B(r?). For
r,19>0,rVe[H9, oo [ is such that for all k, all veB*(r) the relaxation operator
R,: S,— S, as defined in 5.1 with m=n,(v) satisfies R,(B*(v;r)<=B(r'"). For
r, MO, rY >0, rPe[rM oo [ is such that for all k, all ve B¥(r), all deB*~1(r),
all s<S the operators R, and C as defined in 5.1 with m=n,(v) satisfy:
CR,(B*(v;r)) = B(r?).

Also define r®:=r + S(r') 4-r3),

The Lipschitz constants I, are denoted by I; (i = , 3). Finally we define

y,== max [;=max(l;, ;) (Lipschitz constant on a large enough ball).
i=0,1,2,3
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Remark 5.8. Actual bounds for #?, r¥) 2 in terms of r and the Lipschitz con-
stant I; can be deduced from lemma 3.4 and proposition 5.9. It turns out that
r® i=0,1,2 can be chosen such that they are continuous increasing functions

@)
of r with lim " _2. Also note that for § small enough y,=15.
rlo r

Proposition 5.9 gives bounds for higher order terms that occur when we
linearize the FAS two grid iteration (cf. 5.10).

Proposition 5.9. For r>0 and veS, we define 4R, ,: S, — S, by
ARu,r(u):Rr(v)_Rr(u)—Ru,r(v—u)

where R, is defined as in 5.1 with m=n,(v) and R, , as in 4.4.
For veS§; define AC,: S, - S, by

AC,(u)=C(v)—C(u)—C,(v—u)

with C as defined in 5.1 with m=n,(v) and C, as in 4.1.

Then for all veB*(r), all ieB* !(r), all ueB*(v;r) and all s<S we have,
with R, and C as in 5.1 with m=n,(v):

() 4R, W), <31 llo—ulf <3y, lv—ul;.

(2) 14C, (R, ), = A (v, lv—ully, v, llo—idll,) [lv—ull, where A,: [0, 00[ x [0, o[
—[0,00[ is given by A.(x,y)=(exp(y+Sz(x)—1)(1++x)+3%z.(x) with
z,(x)="Fxe* and I, from 5.3. _

) Il14R,, . (CR, W), = A, (7, lv—ully, v, llo—il,) [v—ull, where A,: [0,00[
x [0, o[ = [0, oo [ is given by 4,(x, y)=(1+1x+A4,(x, y)? Lx.

Proof. Take keN, r>0, veB*(r), ieB*~(r), ueB*(v;r), s<S and let R, and

C be as in 5.1 with m=n,(v).

Proof of (1): let E:={yeS;|l..(y, y)=1}.

Now
4R, (W), =b,(4R, (W), AR, ,W)* <, (4R, , (), AR, ,(w))*

= I?Eaé( ‘lk,r(Rr(U) - Rr(u) - Rv,r(v - u)s y)l
=max [b,(v—u, y)—n(v, y)—n(u, y)|= max Id, (v, w)(y)|

<“rrl}axlldu(v,u)(y)l=IIdv(v,u)ll.,éllBllv—ullﬁ (use 3.5) <4y, llv—ull3.
Yiv=
This proves (1).

Proof of (2): let

Q=5 -1 (V) =y - 1 (R, (W) Y :=5(b,)i,k-1(v—R,(u))
and for 05t <1
o =ng 2y (1 (@) +t ).

The definition of C with st instead of s implies:

CR, ) =R @+ {0~} (1+0)
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and so for all te]0, 1] we have:

e =w*l e =S-1- [ C(R, (u) = R, ()| o+ | 51— W] s
SV +r@)4r=r?  (cf.5.7).

Easy writing out using the definitions results in:
1 . _
AC, R ()= — (o, i~ ¥),
now using lemma 5.4 (b) (with S, _, instead of H) results in:

HACU(R,(u))Iiué% {exp[L(lo—dl,+Llel,)]—1} llllfllﬁ%ﬁ lo—vl,. (*)
Now note that:

loll,=S(lv—R, W], + 14, (v, R, W))l,)
(definition of d,,, see 3.5; use (b k- 1/,=1)
Ill,<sllv—R,)ll,, lo—¥l,=s|d,(, R,w)l,
Idy (v, R, )|, <417 [lv—R, ()| (see3.5)
lo—R, @, = llv—ul,+3Islo—ull} (using(l)and |R,,,|,<1,see4.6).

Using these estimates in (*) and tedious writing out results in:

”Acv(Rr(u))”uéAr(yr “u—U”u’ 7r ”ﬁ—‘UHu) HU—U“,; WIth
A, (x,y)=(xp(y+Sz,(x))— 1)1 +1x)+1z,(x) where z,(x)=1Ixe*

This proves (2).
Proof of (3): as in (1) one can prove:
4R, (CR, )|, <4 TI; | CR,(w)—v|7. **)
Also:
HCRr(u)—U“v= HCR,.(M)— CRr(U)”u§ HCv“v ”Rr(u)—Rr(v)”v+ ”Acv(Rr(u))Hv
Slu—vll,+4 0 lo—ull2+ A, @, lu—0l,,y, |d—0v],) lu—v],
(using 4.6 and (1) and (2) above)
S(+3ylv—ully+ 4@ llu—ovlps v ld—0]) [u—ol,.

Combining this with (**) leads to the result. []

Now we are able to prove the theorem about uniform FAS two grid conver-
gence for a whole class of problems that we announced in the beginning of
this section. We will also use this theorem in the next section to prove FAS
MG convergence. For comments concerning this theorem see 5.13, 5.14.

Theorem 5.10. FAS two grid convergence. (For definitions see 5.1 and 5.7).
Let r>0 be given; suppose ky such that B*(w*;r)=%¢. Then for all k>k,, all
meS;, with v*:=n; Y(m)e B¥(w*;r), all ie B*~1(w*;7), all we B*(v*;r) and all s<S
the following holds:
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I1Ec(r, w, i, 5, m)—0* || s = [ L)+ Opgry (7, W —0* || go, 7, = 0*[[ )] | W — 0%
with Ly, <1 as in 4.10 and:
Opr(%, )= x+A4,(x, )+ (1 +3x+ 4, (x, y)* 3 x,
where A, is as in 5.9(2), i.e.:
A,(x,y)=(exp(y+Sz,(x)) = )(1 +3x)+4z,(x), with z,(x)=1Fxe*.

Proaf. Take iie B*~1(r), s< S, meS;, with v*:=n; ! (m)e B*(w*; r) and we B*(v*; r).
Simple writing out using the definitions of 5.1 and 5.9 results in:
HF;((V, w, a5 S, m) - U* “v* = ”Rr CR,,(W)"—U* “v* é HRU",rCu"‘Rv*,r”v" HW_U* Hu*

+ ﬁRv*,r“v* ” Cv*”v* “ARV*,r(W)”v* + “Rv*,r“v* HACD*(Rr(W))“v*
+ HARv*,r(CRr(W))Hu*'

Now using Lemma 4.6, Theorem 4.10 and Proposition 5.9, the proof is complet-
ed. O

In the first order terms of the function A4,(x,y) (see theorem) the factor
I} occurs. We can replace I, by a better factor if we make a suitable assumption
about S. The following lemma makes this clear.

Lemma 5.11. The factor [} in A, (see 5.9(2) and 5.10) can be replaced by:

(a) 142L,,c(r)r with c(r):=FSexp(1ir)+1.

This new factor has the desirable property that it tends to 1 if r 0. However
to analyze its behaviour for y,r smgll is much more complicated than it is
for I,. For some 7>0 assume S=S,I,"" exp(—11I,7) with S, <1, then for all
r<flI, in A, can be replaced by

(b) 1420, 41, (S;+D)r=14+2(S;+1) y,1.

Proof. Inspection of the proof of 5.9(2) shows that the factor I is caused by
the fact that we use 5.4 where the factor I, occurs. We now use the variant
of 5.4 as mentioned in 5.5. We use the notation as in the proof of 5.9(2).

o, —w* [l e < 0, — ] e+ r S(L+ L) Lt )], 41
(using lemma 3.4(4) and 5.4(a)).

Using estimates as in the proof of Lemma 5.9(2) one can easily show:
lell,=S exp[l; lv—ull,]llv—ull,;
using this and te[0, 1], ue B(v; r) we get:
oy —w* |l S(L+ L LS exp(l ) r+r<exp [;7) [S exp(I; ) r+r
=([Sexp(13L;r)+1)r.
Now using 5.5 results in (a). The second statement is easy (use I3, <y,). [

Remark 5.12. In the next section we will again use the following estimate, that
occurs in the proof of 5.11 (also in the proof of 5.9(2)):
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Vi VoeB*(w*;r) Vue B (v;7): In, -1 (0) — g - 1 (R, W)
sexp[lillv—ull]llv—ull,<exp[Iir]r,

where R, as in 5.1 with m=n,(v).

Remark 5.13. If we want to prove two grid convergence only, we do not need
the uniformity in m in 5.10. Suppose for feS; we use a FAS two grid iteration
for the problem n,(u)=f (solution denoted by uf). Taking w* =v* =u¥ in theo-
rem 5.10 shows that convergence will occur if we take w (starting vector) within
the ball B*(u};r) and deB*"'(u};r) with r such that O, (3,7, 7,7)<1—Lp,
and k large enough such that B~ (u¥; r) % ¢.

With respect to Og, (7,7, y,7) we note the following:

OB(r)(yrra yrr)zz%'yrr‘i‘h'o'(Vrr)

for all r with y,r<% and S small enough (see below). Here h.o. denotes higher
order terms, and as an example: h.o.(0.3)~ 1.40, h.0.(0.2)~0.25, h.0.(0.1) ~0.06.
To make this clear we note the following. If we take S=0 in the definition
of O, (s0 [ in A, may be replaced by 1+2y,r; see 5.11) and neglect higher
order terms Op,(y,7, 7, r) results in 21y,r. So in order to get Og, (3,7, 7,r)<1
we restrict to r€]0, r,] with r, such that y, ro=%. Now assume S small enough
such that Sﬁ0<1, then 1+SI exp(y,r)~1 (r<r,) and for r<r, I} in A, may
be replaced by x~1+2y,r (see 5.11). Using this in the definition of Op,, we
get the above result.

Remark 5.14. In order to assess the sharpness of the theorem we consider two
extreme situations. Clearly, if we take y, =0 (linear problem) the theorem results
in the expected convergence statement. Another extreme situation is the follow-
ing: in the two grid situation of 5.13 we take the k—1 and k level identical,
resulting in C,.=0, and we also take S|0. Now the “two” grid FAS iteration
is a modified Newton iteration proceded and followed by a relaxation iteration
that is not locally convergent (IR, (w)—u]l . = e — it g + 31 ||u——u,’f||,f:). Let A?
be the function A4, of Theorem 5.10 with S=0. Inspection of the proof of the
theorem and of 5.9(3) shows that because C,.=0 we can get a somewhat better
(but analogous) result than in theorem 5.10: 'E:onvcrgence in B*(u¥;r) is guaran-
teed if r is such that A2(y,r,y,r)+(A47 (3,1, 7,1)*$7,r <1 (use Ly, =0). We have
that A°(y,r, 7,1 +(A%(y,r,y,7)* 3y, r=1%4y,r+h.0.(y,r) with (as an example)
h.0.(0.4)~0.78, h.0.(0.3)~0.35, h.0.(0.2)~0.13. The above kind of condition for
a domain of guaranteed convergence is well-known for Newton iterations. More-
over, if we also assume #=w, resulting in a non-modified Newton iteration,
we see that as a bound for the convergence factor we get (with e, :=||w —u} ||,,§):

A)(‘) (‘Vr €xs Vr ek) + (AI(‘) (yr €5 Vr ek))2 % Yrér= 1 'ZL‘yr € + h.O. (’yr ek)‘
This exhibits the quadratic convergence of the Newton iteration.

Remark 5.15. Finally, we reflect on the dispensability of the Lipschitz condition
that we assumed in 3.1.(4). We first recall that this Lipschitz condition could
be weakened to a local Hélder condition (see 3.3).
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In this section our goal is to prove a quantitative convergence statement
for a FAS TG scheme for solving n,(u,)—f=0 which is uniform in k (that
is, we wish to obtain explicit expressions for a domain of guaranteed convergence
and for a bound on the contraction factor which are independent of k; cf.
Theorem 5.10). In Remark 5.14 it is noticed that for an extreme choice of parame-
ters (h,—; = hy, S | 0) the FAS TG scheme reduces to a Newton kind of algorithm.
Thus our conditions should certainly warrant a quantitative convergence state-
ment that is uniform for this set of Newton algorithms. Now for a quantitative
convergence analysis of Newton iterations a Lipschitz condition (a local Holder
condition) on the derivative is a common requirement (cf. [9]), and it is, indeed,
not clear how one could do without. This leads then to Lipschitz conditions
on the Dn; uniform in k. Finally, recall that n, is just nj5,: S, —S; and that
| JSx=H. Hence, in our opinion, the Lipschitz condition on Dn in 3.1 is rather
k
a minimal condition.

6. Multigrid Full Approximation Scheme

In this section we define a multigrid FAS iteration with a bounded number
of coarse grid corrections on each level and prove convergence with contraction
number smaller than one, independent of the level, provided we start in a ball
with radius small enough (independent of the level) and provided the coarsest
level is fine enough.

Assume peN and fe*(2)<S,. We want to approximate the solution u}
of the Galerkin discretization n,(u)=f, using FAS multigrid on level p.

In 6.1 we define a FAS multigrid iteration on level p and in 6.5 and 6.6
we will prove a convergence statement.

Definition 6.1. If F,: S, x S;— S, is defined, then for neN, n>2 we define F7:
S, x S, = S, by F(u, m)=E,(F! (u, m), m).

We will now define a FAS multigrid iteration on level peN.

For k=k,, ..., p let there be given r, >0, @i, _,€S,_1, 0x: S xS, =10, 0[
and 7, eN.

We define F: S, x S, — S, by the following (cf. 5.1):

(1) k=ko: F, (w,m)=F(ri,, W, fly,— 1,0, (0*, W), m) with F, from 5.1 and
v*=n;_ ! (m).

(2) ko<k=p: choose weS,, meS; and let v*:=n; '(m); define R, : S;— S, as
in 5.1. Define

é:sk")sk by C(e)=e+0'k(v*,W)—l{é—ﬁk-l}
with
e=Fp (-1, M 1 (e~ 1)+ 0, (0%, W) {m—ny 1 (€)}).

Now F(w,m):=R,_CR, (w).
A FAS multigrid iteration on level p for solving n,(u)=f is defined by:

WitV =F (w0, ).
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In 6.2-6.5 we assume that there is some fixed w*eC(Q)~ H. The reader may
think of the following two possibilities for w* (cf. 6.6): w* =u* (u* the solution
in H of n(u)=f), w*=u} (u} the solution of the Galerkin discretization n,(u)=f).
Also in the remainder of this section we assume some fixed S > 0.

Given w* as above we define k_: ]0, co[ -» N by k_(r)=min {n| B*(w*; r) =+ ¢}.

Conditions 6.2. We state the following conditions, which we will use in 6.5. We
will discuss the feasibility of these conditions in 6.3.

(A) (“choice of r”) Define (cf. 5.1, 5.10):

NB(r):NB(w*;r)::sup{HEc(r’ w, a, S, m)_v*“v* “W——U*Hv_*l | k>k— (r)’ mES;‘
with v*:=n; ! (m)e B*(r), ie B* " (r), we B¥(v*; r) with w £ v*, s < S}.
Let N<1 and r>0 be such that Ny, <N for all te ]0, r].

(B) (“choice of 6,”). For 4]0, 1[, t>0let g,: S, x S, — 0, §] satisfy:

Iy {1 (= 1) + 0 (0, W) (M -1 (©) =g k= 1 (RyW)} =~ 1 [ s
s+ L~
for all 4, _,€S,_,;here R, is as defined in 5.1 with m = n, (v).

(C) (“choice of 7,”). Suppose we have sequences (a,),>0, (bp)uzo in R such

that:
(1) 34>0: A=Za,ZLay<1 forall n, and Ilima,=A.
(2) 3B=1: B<b,=bh, forall n, and limb,=B.

Now let (t,),»; be a sequence in IN such that with ¢,(x)=a,+b,x™
(x€[0, 1]) the sequence x; :=dy, X, 4 1 =@y 1 (X,) (1= 1) satisfies: sup(x,) < 1.

Remarks 6.3.

(A1) Theorem 5.10 implies that Ny, <Lg,+ Ope (3,1, 7,7 (1 +7,7)?). From 4.10
we deduce that Ly, <dp,) <1 for all 7>0 and d,, is an increasing function
of r. Using the definition of O, it is clear that there exist r, N: Ny, SN <1
for all te ]0,r].

(B1) Possible choices for o, are:

(a) oy related to the defect: if ve B(w*;t) then lemma 5.4(a) combined with
lemma 3.4 implies that with @:=n, ., (©)—n ,_ {(R,(u)) we have:

ety (-1 (= )+ 0,0, ) @} =T — 1 |\ S(L+ L) 0 (v, u) B3, ™)

min {S, nt(1+ L)™' LY@l '} if @0

S0 0o, u) ={arbitrary in 30, 5] if $=0

suffices.

(b) o, constant: if veB¥(w*;t), ueB*(v;t) then 5.12 results in @],
<exp(I;t) t. So using this and the estimate (*) in (a) results in the
choice: o, (v, u)=min {S,n 7 ‘exp(— 1411 1)}. Note that with I3 ¢ small
enough and S suitable (cf. 5.11) this results in g, (v, ¥) = min(S, #).



Convergence of the Multigrid Full Approximation 269

(C1) Possible choices for (1), are:

(a) take 7oeN such that ¢q(x):=ao+box™ has a fixed point x*€]0, 1[.
Now 1, =1, for all k=1 is a possible choice.

(b) let teIN be the minimal element in IN such that ¢(x):=A4+ Bx* has
fixed points x;, xge]0, 1[ with x; <xg. Suppose a,<xg. Now choose
¥ such that max(x,, ao) <y <xg. Define 1,:=min{meN|a,+ b, j"<j}.
The smallest fixed point of ¢,(x)=a,+b,x™ is denoted by x}. It is
easy to verify that 7, =1 for k large enough, x* <y for all n, lim x¥=x,

and x,.; Smax(xy,;,x,) for all n21 ((x,),>,; as in 6.2 (C)). So the
sequence (x,),> satisfies sup(x,)<1. Note that if (a,),>; and (b,),»

are decreasing sequences then for (t,),», we have t,,,<7t,, and
lim x,=x,.
Definitions 6.4. In the following we will need a Lipschitz constant on a large
enough ball. For this we define r:=r? +(1+ I r)*r with r® as in 5.7. And
with 7, as defined in 5.7: §,:=max ([, ya, V»)-
We also define the function M,: 10, co[ - ]0, oo [ by:

M,(x)=13x+31x?+A4,(x,2x(1+x)})x (4,asin 59(2)).
This function will arise in the proof of 6.5.

Theorem 6.5. FAS multigrid convergence. Let f€]0, 1[ be given, let r be such
that 6.2 (A) is satisfied. Define ky:=k _(Br) (k- as defined above); assume sequences
"z ko> ik, With ry ==r and for k>kg ry, ti_, such that 0<r,<r,_, and
i, _ € B*~ Y (w*; Br,) (this is possible; cf. definition of k_ ). Also for k> k, assume
o, as in 6.2 (B) with n=1—p, t=r, and let 7, be as in 6.2 (C) with a=Ng,_
and by=(1+M,, (,.r) I, exp(37,,ry).

Now let F, be as defined in 6.1 with r,,ii,_,, 6,, 7, (ke<n=<k) as above,
then the following holds:

for all k> kg, all meS;, with v*:=n; '(m)e B*(w*;r,), all we B*(v*;r}):

[ Fe(w, m) — 0¥ [ o S i [W— 0¥ with
Xko+1=0Gko+1s  Xi+1=+1 by 1 1Y, k>ko (note that y; depends on w*).

Proof. We will prove the assertion of the theorem by induction with respect
to k. Note that if the assertion holds for some k, then also [|F(w, m)—v*||,.
<k llw—0v*| . for nelN.
k=ky+1: choose meS; with v*:=n, ! (m)e B*(w*;r,) and we B*(v*; r,) (these
exist). Then: _
”Ec(w’ m)_v*Hv*= ”F;c(rk’ w, ak— 1> Uk(v*’ W)’ m)_v*”v*

S Npgry [lW = 0% [l = W —0*[| s

(use definition of Ny, in 6.2 (A)).
Suppose that the assertion is true for k—1; we now consider k. We have:

HE((W’ m)—v*”v*é HEc(rka w, ak— 1 O-k(v*7 W)’ m)_‘v*“v‘

+ “F;c(rln w, ﬁk— 1> G'k(U*, W)7 m)—Fk(W: m)”v*
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Using the definition of Ny, (6.2 (A)) we have:
“Et(rk’ w, ak—19 O'k(U*, W), m)”—v*“v*éNB(rk) Hw_v*Hv*'
We also have, using the notation as in 5.1 and 6.1:

I Fe(w, m) = E(res W, @ 1, 0 (0%, W), m)||,»= | R,, CR,, (W) — R, CR,, (W) »
SRy, o | CR,, (W) — CR,, (W)l + | e (CR,, (W), CR,, (W) e (1)
The last inequality can be shown as in the proof of 5.9(1). Now use that
IR, ll+ =1 (see 4.6); denoting R,, (w) by y and o, (v*, w) by g, we get:
ICR,, (W)~ CR,, (W).»

=|Cy—=Cyllw=+0x "=t )= +05 " G—dk— 1)
=°'k_1 ||Fik—1(ak—1,0‘)—"1:~11(°5)1|u* with

a=m_ (- )+ o(m—n -1 ().
Now note that because of 6.2(B) and & _ € B* ™1 (w*; fir,):

7y (@) = w* [l e S ey (@) = Gy n + Bre ST Sric—y

s0 ne i (@)eBF Y (w*; re— o) )
Also:

||"k_—11(°‘)_‘ﬁk—1||nk—_11(a)§_(1 +I;krk)% Ity (@) =t — 1 e S0 =B Sr_y,
S0 T 1 €B (et (@) 1) 3)

Now (2) and (3) make that we may use the induction hypothesis, implying:

ICR,, (W) — CR, (W)l »=0% " [ Ffy (- 1, %) — 1t ()] e
éak—l(l‘l'znkrk)%Hﬁik—l(ak—laa)—nk_—ll(a)an—J,(a)
§6[1(1+2Ek"k)%ﬁ"—1 ||ak—1_nk_—11(°‘)||n,;_n(a)
<oy MAH2L, ) ey -y — et ()]

S (20,0 B I - 1 (0%) = 1 = 1 ()1
(using 5.4(a))

< (120,10 B, explyrd lo*—wl e
(use 5.12)

<xi 1 B exp 37, rid 0¥ —wil . <1

The last inequality can be deduced from I, exp[3y, i i <bgxfe; <1 (cf.
definition of b, and 6.2(C)).
Summarizing:

ICR,, W) —CR, W)= xp 1 £, exp[37, 1] lw—v*[ W <1y C)]
Now note that | CR,, (W) —w*|| . <r(? (definition of r?, see 5.7) and that

ICR,, (W)= W*||,ps < | CR,, (W) = W* e+ | CR,, (W) — CR,, (W) | n
<@+ + L rdtre=r?

(see definition of ¥ in 6.4 and use (4)).
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Now returning to (1) and using Lemma 3.5 and (4) we get:

IR,,CR, (W)—R,, CR,, (W)= CR,, (w)—CR, W)||.»

+37,.(ICR,, (W)= v* |+ | CR,, (W) —v*[ 1) [CR,, (W) — CR,, (W)||»
(definition 7,: see 6.4)

<[1+47,,(ICR,, (W) — CR, (W) » + 2| CR,, (W) — v*[| )] xi 1 [,
-exp[37,, il [[v* —w( .

The reader may check (cf. proof of 5.9(3)) that:

%j;rk( ” CRrk (W) - CRrk (W) H v* +2 H CRrk (W) —v* H v')
é _ZL')?rk Ty + 77rk H CRrk(W) —v* “ v* é Mrk(j;rkrk)
with M,(x)=11x+1x>+4,(x,2x(1+x))x (4,asin 5.9(2)).

Finally we get:

1B (W, m) = 0*[| o S N | W — 0* o + (1 + M, (7. 120)) 28 1 B, €Xp[37,, 1] 0% — Wil
=[Npgyt 21 (L+ M, (3,1 I, exp[37, ] [[v* —w( .
=(@+ b ) v* =wlp=x [v*—=wl,s. O

Remark 6.6. Take w*=u* (=n"!(f)) and with B and r as in the theorem take
r.=r for k=0, and the O-level fine enough such that |u}—u*|,.<pr for all
k=0. Then k,=0 and the theorem guarantees convergence of the FAS MG
iteration on level k=1 for solving n,(u)=f when starting within B*(u¥;r) and
the contraction number is bounded by max {y,|0<n=<k}=<sup{y,|n>0} <1. If
in addition we assume a with 0<a<f and the O-level fine enough such that
there exists dioeS, with [|iiy—ufll.=(f—o) r and ||uf —u*| =ar, then the fol-
lowing choice for i, is possible: take i, =1, for n= 1, then:

Hﬁn_u*“u"é Hﬁo*u3”ut+ ||u3‘-—u*1|u,§([3—a)r+ocr=ﬂr.

Another choice for i, will be mentioned in the next section.

Take w*=u} for some p. Again take f and r as in the theorem and r,=r
for k=k, (k, as in the theorem). Assume k,<p. Then the theorem guarantees
convergence of the FAS MG iteration when starting within BP(u};r) and the
contraction factor is bounded by max{y,|ko<k=<p} <1 (a bound depending
on p). This holds even if u} is “far away” from u* (coarse level). However,
an important condition is k,<p which means that there are coarser levels than
the p-level on which we can approximate u} sufficiently accurate: B*(u}; fr)+¢
for ko <k<p.

Remark 6.7. Let r be as in the theorem and take ry=r for all k>k, (cf. 6.6).
Then with (@)k 2k, (P2 ks (TWk>k, as defined in the theorem we have for all
k>kg:

ag=ay,, by=b,, 1,=19, With1,such thata, + b, x™ has a fixed point.

Suppose a,,= Np(,)<%. Now if §,r small enough and S small enough (cf. 5.11)
we have that b, a,,<% so 1,=2. So we have local convergence of the FAS
MG algorithm using W-cycles.
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7. Nested Iteration

From the theorems in §5, §6 it is seen that a better starting vector (for FAS
MG) not only results in a smaller initial error but also in a smaller bound
for the contraction factor. Also better coarse grid approximations #, result in
a smaller bound for the contraction factor. By using Nested Iteration we can
make an algorithm that “automatically” generates good starting vectors and
good coarse grid approximations #,. In this section we specify a nested iteration
algorithm and prove a convergence statement which induces nice (expected)
properties of the algorithm,

Definition 7.1. We are now going to define a sequence of nested iteration approxi-
mations vieS, of uff (k=0); u} is the solution (in S,) of n,(u,)=f.

For all k=1 let there be given r, >0, o;: S, x S = 10, o[ and 1, i,eN.

We also assume vy€S, to be given. Now for k=1 we define v, :=Fix(v,_,, f)
with F, the FAS MG iteration on level k as defined in 6.1 with r,, 6,,, 7, (1 Sn < k)
as above and #,_,=v,-, (1 2n<k).

Assumptions 7.2. In this section for w* we take w*=u* We assume
[|u,’f——u,’f+1||u,’,‘+1§ek and ||uf —u*| <&, (k=0) with ¢, &, such that there are
constants e, ,e_,é,.,€_:

O<e_<ep 6, 'Se, <1, 0<é_£&,.,,86'<é,<1 forall k

(cf. 2.5: discretization error |luf —u*|| Sch ).

Main-theorem 7.3. Let f€]0, 1[. For k=0 define (withe_,=ey, é_,=8&,):
re=max{(1+0,_ &_)e_1+&_ ) L (1+L, _e_1)e_1+e )

Take r such that 6.2(A) is satisfied. Assume ey, &, small enough (“0-level fine
enough”) such that ro <r (then kg in theorem 6.5 equals zero ).

For all k=1 let g, 7y and y; be as in 6.5 with (r,);» o as above.

Take i €N, i, 21og((2+ 1, _,ex-1) eZ") log ' (xx 1) (k= 1). Assume voeS, with
lvo—u§llus<eo. Then the nested iteration approximations v, (k=0) as defined
in 7.1 with r,, a,, 7, and i, as above satisfy:

”Uk—”lf“u;f:ek

Proof. k=0 is obvious. Now consider k, assuming {lv,—u¥| . Ze,foralln<k—1.
Note that
lu¥ —u*||L&,&r, so ureB"(u*;r,)foralln. 8y

Fornsk—1:
”vn'—u*”u*< |[Un_u:”u*+ “u:‘_u*uu*é “vn_urf”u*_’_en'

And because u¥ e B"(u*; &,), using 3.4(4) results in:

lon—wf s S+ I, g — u* ] [0a— e (1 + 12, 8,) €,
nsk—1).
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So we get:
lon—u*lw=(+1,8) e, + 8,5 Proey  (nSk—1) 2

Because uf, uf_,€B(u*;é,_,) applying 3.4 (4) results in:

l0g -4 ‘“fﬂ“u;é(l +I—ék_1 o —ui— ”u;‘) Hvk—l'_uf—11|u;_l§(1 +I;kvlek~l)ek—l
SO
|Il’k—1_“1?||u;§ k-1 —“lf—1“u;+ lug i =l S+, e ) ey e <ri.(3)

Using (1), (2), (3) and the assumptions about g, 1,, we conclude that we may
apply theorem 6.5 with

w¥=u* i, =v,_(1=nZk),v¥*=uf,w=0v,_,,

resulting in: - . .
B (=1, f)—uf ||u;§Xk v - —uit Hu;

implying (see definition of v, in 7.1):

00— 168 g < o N0 1 — 1 [y
éx;'ck(uvk—l_ulf—l||u;+”ulf—l—uf|!ui)§x;;k(l|vkvl—u:*1]|u;+ek—1)
S (4G, e-)e-1+e— )=+ nh, e 1)e le, (seeT2)
<e, (usingchoiceofiy). [

Concluding Remarks 7.4. Because (r,), > o in Theorem 7.3 is a decreasing sequence
with lim r,=0 we have that (b,),>, (see 6.5) is a decreasing sequence with
k— -

lim b,=1. We also have: lim ak=1'l1{)1 NB(,,=1ier1 Lgy=:L, (linear two grid con-

k— oo k— r

vergence factor). For ease we assume that (a;);» 0 is also a decreasing sequence
(cf. definition of g, in 6.5 and remark 4.11). In the following we use 6.3(C1)(b).
Let ¢(x)= Lo+ x* with teIN minimal such that ¢ has two fixed points x; <Xxg.
Now the (7),»; in Theorem 7.3 are a decreasing sequence with 7, =1 for k large
enough. As an example take L, = 1%, then 1, =2 for k large enough (i.e., “ W-cycles
on high levels”) and x,=1%, xg=32. Assume that r=r, is small enough such
that ay,= Ny, <3 Now for the sequence (x);>; we have that y, <3 for all
k and klim 1.=% (cf. 6.3(C1)(b)). Now for i, in Theorem 7.3 we have that, assum-

ing I;, ,e,-1=0.1, i,=5 suffices for all k, but for k— oo i,=1 already suffices
(“approximately one FAS MG iteration on high levels™). The above shows
that using a suitable nonlinear nested iteration (consisting of a bounded number
of suitable FAS MG iterations on each level), starting on a coarsest level that
is fine enough with a good enough approximation of the discrete solution on
that level we get an approximation of the discrete solution within the relative
discretization error on arbitrarily fine levels. Besides, this nested iteration has
the nice property that we need fewer FAS MG iterations on finer levels and
in the FAS MG iterations we need fewer coarse grid corrections on finer levels.
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8. Simple Conditions on the Function g Instead of Conditions on the Operator n

The assumptions we made in the foregoing sections about the operator
n:u—a(u,.)+(bgou,.).. are stated in 3.1 and 4.7. In this section we give condi-
tions on g which induce that n has the properties as assumed in 3.1 and 4.7.

Definition 8.1. Let h: R —»IR. For p=1 we define: h has property LBA(p) (“Lip-
schitz-continuous for bounded arguments”) iff the following holds:

u—hou maps H into I7(Q2) and for every bounded subset B of H we have
a finite Lipschitz constant

I(B; p)=sup{|hou—hovl| ,llu—v]| ~*|u,veB, usv}.

Remark 8.2. If h has property LBA(p) then h has property LBA(q) for all g
with 1<¢g=<p.

Lemma 8.3. Let he C' (R). If for some me[0, co[ sup {|W' ())|(1+{t|™)~ !|teR} < o0
then h has property LBA(p) for all pe[1, oo [.

Proof. Take pe[1,0[ and let B be a bounded subset of H with |ju| <M for
all ueB. For a, feR, I, ; denotes the closed interval in R with endpoints «
and §.

Now for u, veB and for almost all xeQ we have, with suitable constant C:

u(x)

Ih(u(X))—h(v(X))i=| § h(add
v(x)

= max C(I+{Mfulx)—v(x)|= C(1+[u(x)" + o)) |u(x) —v(x)|.

telu(x), vix)

= max |F(8)flu(x)—o(x)

€lu(x). vix)

So we get, using the embedding theorem of 2.4:

Ihou—hov|lL, S C(I1lL2r + |4l T2pm+ 0l T20m) |4 — 0l 125

SC(M ) g2o+2(d2pm M) dyp llu—vl. O

Lemma 8.4. The collection of all bounded subsets of H is denoted by %. The
following holds:
(a) if g has property LBA(m) for some m> 1 then:
(a,) the operator n: u—a(u,.)+(bgou,.) . maps H into H';
(a,) YVBe# 3c: Vv, weBVueH: |(n(v)—n(w))@)| Zcllvo—w| |ull;
(b) if g’ has property LBA(m) for some m>1 then:
(b,) g has property LBA(s) for all se[1,m[;
(b,) n is Fréchet differentiable on H with derivative
Dn(w)(u)(z)=a(u,z)+(b(g o W) u, 2).2;
(b;) VBe#dc:Yv,weBYu,zeH: |(Dn(v)— Dn(w))w)(2)|Scllv—wl |uj llz|i;
(by) if m>2 then:
VYBe#3c:Yv,weBVu,zeH: |[(Dn{v)— Dnw)w)@)|Scllo—w| |lull ||zl .2;
NNt »p 1 1
Proof. For pe] 1, co[ we denote (1 ——) =——byp (—,+-= 1).
p 1—p Pp
(a) for pe[1,m], Be# let I'(B; p) be as in 8.1 with h=g. Take qe]1,m] and
u, ve H. Now the following holds:
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la(u, V) +(bgou,v)2|Say [ull (vl +by (goullalvllLe
. S(ay ull+by llgoull (@) vl
this proves (a,).
Take BeZ# and v, we B, uc H. Now we have:

l(n@)—nwW)WI=a, lo—wll l[ull +b. lIgev—gowllalul Lo

. S(a++b. I'(B;q) I(q) [o—w| [lull;
this proves (a,).
(b) for pe[1,m] Be% let I''(B; p) be as in 8.1 with h=g".

. 1 1 1
Take Be4, p,q,re]l, o[ withp<mand —+—+—=1,v,w, yeB, ze L. Then:
p q r

l(goy—gov—(g'ow)(y—0),2)r.|
<[ J1g @)+t —vx)—g W)y x)—vx)l|z(x) dtdx
Q0

°

(g o(v+t(y—v)—g ow|,|y—v||z]).2dt (using Fubini’s theorem)

Il
Oy

1
Sflge+ty—v)—g owliolly—vllzll. dt
0

<I"(conv(B); p) | (1 =t)(v—w)+t(y—w)l dtI(@)ly—vl] lz].
0

(conv(B): convex hull of B)
=3I (conv(B); p) I(@)(lo—wll + [ly—w) lly—vll 2]l - *
To prove (b,) take se]1,m[ and p, q,r as above with pe]s, m[, %zl—é. Then
the functional z —»(goy—gov—(g'ow)(y —v), z).2 is an element of (L), and
lgey—gov—(g'-w)(y—v)lls=cply —vl with cp:=I"(conv(B);p)I(g) diam(B).
Taking we B fixed and t>1 such that ts<m we have that for all y, veB:

Igoy—gevls=lgey—gov—(g ow)(y—0)[rs+lIg e Wlrsely—vll se
=(cpt g owllpseI(st)) [ly —vl.

This proves (b,).

Assume B is some open ball, we B fixed. Define the continuous linear opera-
tor b,,: H— H' by b, (h)(e)=a(h, e)+(b(g ow) h, e);-. Using (¥) with y=w+heB,
v=w, zeH with |z|=1 we get:

|n(w+ h)(2) = n(wW)(z) — b, () (2)
=|(b(go(w+h)—gow—(g'ow) h), 2)..| <b, 31" (B; p) 1(q) I(r) | 1] *.

Now (b,) easily follows.



276 A. Reusken

For (b;) and (b,) note that with v, weB, u, ze H:

(Dn()—Dn(w)H(w)(2)| =|(b(g'cv—g W) u, 2)..|
b, ligev—gowlllulielizli-=b. I'(B;p) @) llo—w llull llz]l-. (**)

Now (b,) follows using | z|| - I(r)]z]-

If m>2 we can take pe]2, m] and r £2, and (b,) now follows from (**). [

Remark 8.5. With respect to the Lemmas 8.3 and 8.4 we note that a restriction
on the growth of the function g is necessary to get a reasonable operator n.
This is shown by the following example.

Let 3(r)=={(x, y)eR x R|x2 +y><r} (r>0).
For £€]0,3[: u(x,y):==log*(x>+y»)~ ') on (%), g(t):==exp(t*") for te[0, o[
and g is defined on ]— o0, O[ such that geC'(IR) and g'=0.

Also v(x,y):=1 on @) and v is suitably extended such that v>0 and
ve HY(Q(1)). It is easy to check that ue H'(3(2)); now extend u such that u>0
and ue H{(Q(1)). Now we have (taking b=1):

|n () () = la(u, v) +(g o, V)2l Z (g oty V)pal —as [ull[lv]
1
= | Jewx ) vlx,y)dxdy—a,ul vz | jmdxdy—m lfee] ol

1) Q(F)

il
p

o

drdp—a, |jul o] =+ c0.

Il
[=J S )
O

So for this (too rapidly growing) function g we have that n does not map
H into H'. This also implies (use 8.4.(a,)) that g does not have property LBA (m)
for any m>1 (cf. 8.3).

Remark 8.6. Using Lemma 8.4 it is clear that if g’ has property LBA(m) for
some m> 1 then the operator n is such that Assumption 3.1 is fulfilled.

Lemma 8.7. Let Assumption 3.1 be fulfilled. Assumption 4.7 is fulfilled if n is

such that :

(1) b,. is two-regular, ie.: 3d,: YVmel?(QcH’: b, 'meH*(Q) and
by mlla <dy |m] 2.

(2) Yr=013c,: YveB(r)Vu,ze H: |(b,— b, )W) (2| = c, lull ||z]| 2-

Proof. Note that b, is uniformly one-regular, i.e.:
3d,:VoeHVmel*(Q): b, 'm|| <d, |m| ...
This is clear using 3.4(3):
by 'm|*=(b; *m, b, 'm)<aZ'b,(b; 'm, by 'm)=aZ"(m, b, m).
<aZ'1Q2)|m|| 2 1b, " m].

Take r>0, veB(r) and mel?(Q). Note that b,.! maps L?(Q) into H*(Q) and
b,—b,. maps H into [*(Q)<H'. Using b, ' =b,.! — b, (b,—b,.) b, * we have
that b, ! maps [*(Q) into H2(Q) and taking norms results in:

||b,,"1m||2§d1 lml . +d, ”(bu—bw")bt;—lmHLzédl(l+cra:1[(2))”m”L1' O
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Remark 8.8. Note that (1) and (2) in Lemma 8.7 are fulfilled if g’ has property
LBA(m) for some m>2. This is easily concluded from 8.4 (b,) and (b,) and
the well-known fact (see e.g. [8] Ch.III) that b,.(=Dn(w*)) of the form as
in 8.4(b,) is two-regular (use that g’ow*e C(Q)).

Combining this with lemma 8.7 and the remarks 8.6 and 8.2 we have that
the operator n satisfies the Assumptions 3.1 and 4.7 if g’ has property LBA(m)
for some m>2. This last condition is fulfilled (Lemma 8.3) if ge C*(R) and g”
has atmost polynomial growth.

Acknowledgements. The author is indebted to Professor A. v.d. Sluis and Dr. G.L.G. Sleijpen for
helpful discussions.
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