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Summary

In this paper we discuss convergence of multigrid methods with respect to the mazimum norm
for 2D elliptic boundary value problems. Our analysis uses Hackbusch’s framework based on
the Smoothing Property and Approximation Property (cf. [4]). We present a rather general
framework for establishing the Smoothing Property in the maximum norm. The analysis fits in
nicely with the classical theory of diagonally dominant matrices and of M-matrices.

1. Introduction

We consider multigrid methods applied to standard linear finite element discretizations of second
order elliptic boundary value problems in 2D. It is well-known that the convergence of these
methods can be analyzed using Hackbusch’s framework based on the Approximation Property
and Smoothing Property (cf. [4]).

In this paper we study convergence with respect to the mazimum norm. Some first results about
multigrid convergence in the maximum norm are given in [8,9]. Below in §4 we briefly discuss
the Approximation Property in the maximum norm. A detailed analysis concerning this subject
can be found in [9]. The main topic of this paper is to present a rather general framework
for establishing the Smoothing Property in the maximum norm. We show connections between
nonexpansive splittings (i.e. A = W — R with ||[W™ R|| < 1) and smoothers and between
(weak) regular splittings and smoothers.

Our analysis fits in nicely with the-classical theory of diagonally dominant matrices and of M-
matrices. In particular our analysis can be applied to the ILU-factorization of an M-matrix.
Our results differ from the results concerning the Smoothing Property in [4], [11,12] because we
use the maximum norm instead of the energy norm or the euclidean norm and we do not need
any symmetry conditions.
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2. Continuous problem, discretization and two-grid method

Let Q@ C IR? be a bounded convex polygonal domain. We consider the following second order
variational boundary value problem with homogeneous Diricklet boundary conditions (and f €
L¥()):

find @* € H}(R) such that for all 3 € HY{(Q) :

2.1
S [ awn(@) (0%'@) (DP%(2)) do = [ f(s) ¥(z)ds )
lallBi<1 0
We use the following notation
o= Y [ casle) (D%) (DP)dz (€ HHW)), (22)

leliBI<1 9

and we assume that the coefficients ang are such that this bilinear form is bounded and elliptic
on H}(Q).

We use standard linear finite element discretizations on a sequence of nested quasi-uniform

triangulations {7z | & € INp}. This results in a sequence of nested finite dimensional function
spaces

$CPC...CO,C...C H{R),
with

$r:={p€C(Q) | ¢ islincaron every T € Ty, , ¢=0 on 80} .
With 7, (or &) there corre§p0nds a mesh size parameter k. The collection of interior grid
points in 7 is denoted by {z}}ies, for some indexset Ji, with #J;, =: nj, = O(hi?). We use the

nqtatjon U = IR™. The standard basis in ®y, is given by the functions ga;; € ®;, which satisfy
i (z}) = 6; (4,5 € Ji). This induces the natural bijection

Po:Ur > ®, Plu)=Y, uh . (2.3)
ieJe

On Uj, we use a scaled euclidean inner product:

<u,v>e=hi Y ww;. (2.4)
' 1€Jy

Below adjoints are always defined with respect to this inner product on U and the L2-inner
product on @. The maximum norm on Uy is denoted by || - loo. The norms || - ||oo {on U) and

| - ||ze (on ®%) induce associated operator norms which are denoted by || - |leo-

Galerkin discretization results in a stiffness matrix L : Uy — Uy defined by

< Lpu,v >p= a{ Pyu, PBw) forall w,ve Uy. (2.5)
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In the two-grid (and multigrid) method we use a prolongation p = pj : Uk_1 — Uy and restriction
r =71y : Up = Up_1 defined by

p=F'Punr, T=p". (2.6)

The iteration matrix of the smoothing method (cf. §3) is denoted by Si. The standard two-grid
method, with v pre-smoothing iterations, for solving a system Liup = bs then has the following
iteration matrix:

Tu(v) = (I — pLi v La) Sy = (L' = pLi2yr) Le S - (2.7)
In §3 we give a detailed analysis of the following Smoothing Property (cf. [4]):

LkSE|loo < Eo(v) hz? with Lo(v) =0 for v — oo . (2.8)
In §4 we briefly discuss the following Approximation Property:

L5 = pLlyrlleo < CHIn u® B (2.9)

Combination of (2.8) and (2.9) yields a bound for the two-grid contraction number with respect
to the maximum norm:

IT(¥)leo < €o(v) 11n Pl - (2.10)

3. The Smoothing Property

The usual technique for proviag the Smoothing Property requires symmetry or a nearly sym-
metric situation, and yields results in the energy norm or in the euclidean norm. We refer to
Hackbusch [4] and Wittum [11,12] where smoothing and the construction of smoothers are dis-
cussed in a general framework.

In this section we present a rather general framework for establishing the Smoothing Property
with respect to the mazrimum norm. Our analysis is based on a new technique, that was first used
in [7], which does not require symmetry. One of the main res.ult's of this section (cf. Corollary 3.6
and Criterion 3.9) is a connection between weak regular splittings and smoothing methods. We
note that our analysis fits in nicely with the theory of diagonally dominant matrices and of
M-matrices.

We recall that the approach to the Smoothing Property used by Hackbusch {4] and Wittup,
[11,12] is based on the following elementary lemma:

If A is symmetric and o(4) C LO, 1] then

AT~ A [l2 < mo(v) = (TIVT)T*‘—I (~ = for v—00).

Also our analysis below is based on an elementary lemma (cf. Lemma 3.2) where instead of the

condition “A is symmetric and o(4) C [0,1]” we use the conditif)n “YAlloo < 17.
The following function turns out to be important for our analysis:
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fo(v) = 21 ( [%”V] ) (v € o) .

Lemma 3.1. The following holds for v > 1:
\/ig\/;&(u)<2\/g if vis even
2
\/55\/1/+1£0(1/)<2\/; if vis uneven

lim V7 &) =242

Proof. Define the following sequences for & € INg:

2
ay = ( 2:) VE 272k bk=/ sin"(a:)da: .
°

Elementary analysis yields that (be)r>0 is monotonically decreasing and

k-1

be= —5— bkz» bayr= (@K [ (2k + 1)t , by = Lm(2k)!/ (25 K1)? .

From this it follows that for & > 1

bzk _2k+1 bzk 1+1
bars1 2k by 2k’

1<

and thus lim bak

—_ . by __ 1 .
k—oo bapq1 = 1. Using 2641 W(l + ﬁ) a’lzg for k> 1 yields

lim ar = — .
k—co ﬁ
Furthermore (ax)k>o is monotonically increasing, so

<arp < forall k>1.

N

-

Also
VvV &o(v) = 2¢/2 ay, if v is even
and

Vv +1 &(v) = 4fu F T2-(+y) % ( v+1

G.1)

(3.2.2)

(3.2.b)

(3.2.c)

(3.3)

(3.4)

(3.5)

(3.6)

L(v+1) ) =2/2 81,41y if ¥ is uneven . (3.7)
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From (3.5), (3.6), (3.7) the results in (3.2.a-c) easily follow. (u}

Lemma 3.2, Let B be a square matriz with ||Blles < 1. Then the following holds for v € INg:

(- B) GU + B))lleo < &o(v) - (3.8)

Proof. Note that

I-BY{I+BY=(I-B 3 VY gk—r_ ptt = vy v B
(I-B) (I + By = )g(k) +E((k) (k_l))

k=1

So

||(I—B)(I+B)"|loo32+i I(Z)_(kil)l
k=1

£1(1)-(2) -
[%(g)] ((Z)_(kil))+[%(v§1:)1+1 ((kil)_(Z))

So [I(I - B) (3 + B))llee < 27(2 +2( ( [%"V] ) -1)) = &o(v). o

Remark 3.3. The estimate in (3.8) is sharp: Let B be the following » X n matrix

134



then for ¥ < n — 2 equality holds in (3.8).
We also note that the analysis above holds for other norms too (cf. [7]).

Definition 3.4. A =W — R with W regular is called a nonezpansive splitting if W iR < 1
holds.

In the remainder we only consider splittings A = W — R for which W is regular.

Theorem 3.5. Let A = W — R be a nonezpansive splitting. Then the following holds for
9 €)0,3]:

AT = 02 Al € 52 () Wllew (v € Io).

Proof. Let B := I — 20W=14 = 20W~1R + (1 — 26) I. Then ||B|lo < 1 and using Lemma 3.2
we get

1

AT = 8W 240 = Il 5 W(T = B) BT+ B) o < 35

fo(¥) IWlleo - o

Corollary 3.8. If we apply Theorem 3.5 to the stiffness matrices Ly(k > 0) of §2 this yields
the following. Let Lz = W, — Ry be such that for every &:

(a) we have a nonexpansive splitting; (3.9.2)
(b) [Willw < Chy? with C independent of k. (3.9.b)

Then for 8 €]0, 1] the following Smoothing Property holds:

C
ILk(T = W Lu) lloo < 55 Eo(v) g™ «

Usually for the splittings used as a smoother in multigrid methods the condition (3.9.b) is

fulfilled. The condition (3.9.a) is more severe. Below we give some criteria for nonexpansive
splittings.

First we recall some definitiors. A matrix A = (ay;) is called weakly diagonally dominant if
2 lais| < lail| for all 4. A splitting A = W — R is called a regular splitting if W= > 0 and

ifi
R > 0 hold (with “>” entrywise ordering); A = W — R is called a weak regular splitting if
W-1>0and W-1R > 0.

Variants of Criterion 3.7 below are well-known. In the literature one can find variants with
somewhat stronger assumptions (e.g. A irreducibly diagonally dominant or strictly diagonally
dominant, cf. [10], [13]) which are then sufficient to yield convergence, i.e. p(W~2R) < 1. Our
assumptions do not imply convergence but are sufficient for ||W ! R||o, < 1 to hold.

Criterion 3.7. Consider a sysiem Au = b with A an n X n nonsingular and weakly diago-

nally dominant matriz. We write A= D — L —U with D = diag(A), L strictly lower triangular,
U strictly upper triangular and consider the following splittings:
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(a) W=D, R=L+U (Jacobi);

) W=ip-L, R= (l ~1)D+U with w€l0,1] (SOR; Gauss-Seidel).
w w

Then A = W — R is a nonexpansive splitiing.

Proof. The proof for the Jacobi method is trivial (note that W is regular because A is reg-
ular and weakly diagonally dominant).

For the splitting in (b) the proof runs as follows. Take v € IR™ with |jv]]e = 1, and define
z:=W-IRu.

From (1D -L)z=((1 -1) D+ U)v it follows that for 1 <k < n

k-1 n
1
zg=(1-w)v +w — (——Z oz + Z ap;v;) -
ek i1 i=kt1

From this it is easy to prove with induction that for 1 < i < n the following holds:

> lagl<y,

I

1
%l <(1-w)+w —
|'I ( ) ‘aii|

and thus ||z]le = [[W Rv||ee < 1. o

Below we use the notation e = (1,1,...,1)T.

Criterion 3.8. Let A = W — R be a splitting such that W™ 'R > 0. Then A = W — R is
a nonezpansive splitting iff W—1Ae > 0.

Proof. Because W~1R > 0 we have that ||W-1R}||e = max (W~!Re);. And thus
W Rllw <1 <= max((I-W4)e); <1

<= 1-(Wlde)i<1 forall i
< (W l4e); >0 forall i

< W l4e>0. u]

An important application of Criterion 3.8 is given in Criterion 3.9 below. The latter criterion
relates weak regular splittings with nonexpansive splittings (and thus with smoothing methods).

Criterion 3.9. Let A be such that Ae > 0. Then every weak regular splitting A = W — R
is a nonexpansive splitting.

Proof. Because A = W —~ R is a weak regular splitting we have W-'R > 0 and W-1 > 0.
Combined with Ae > 0 this also yields W=2Ae > 0. Application of Criterion 3.8 proves that
A =W — R is a nonexpansive splitting. u}

Remark 3.10. Consider Li = W; — R and assume that this is a regular splitting for ev-
ery k.
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In [12] Wittum proves the following: If for every k Ly is symmetric, W, is symmetric positive
definite and [[Wi[lz2 < Chg? holds then, if we use a damping factor 8 €]0, 1[, the Smoothing
Property holds in the euclidean norm. Criterion 3.9 and Corollary 3.6 yield the following: If
for every k Lie > 0 and ||Wi|lw < Chi? hold then, if we use a damping factor 8 €], 1], the
Smoothing Property holds in the maximum norm.

We give a few examples in which Criterion 3.9 applies.

We assume that A is such that a;; < 0 for all i #£ j and ag > 0for all ¢ and that A is irreducibly
diagonally dominant (these conditions are easy to verify in practice). These assumptions imply
that A is an M-matrix and also that Ae > 0 holds.

Note that, due to the diagonal dominance, results for the Jacobi and Gauss-Seidel splittings
follow already from Criterion 3.7.

As a first important application we consider an ILU factorization of A. It is shown in [5] that
the corresponding splitting A = W — R is regular. Criterion 3.9 now yields that this is a non-
expansive splitting.

Other examples are block versions of Jacobi, Gauss-Seidel or ILU. Suitable block versions corre-
spond to regular splittings (cf. [10], [1]) and Criterion 3.9 then can be used to prove that these
are nonexpansive splittings.

4. Approximation Property

For a multigrid convergence analysis the results of §3 should be combined with an analysis of the
Approximation Property (cf. [4]). In this paper we do not present such an analysis, however,
for completeness we give some results from the paper [9] in which a detailed analysis of the
Approximation Property with respect to the maximum norm is given.

We outline a main result from [9] (cf. [9] for details). Assume that Q2 and the coefficients
in the differential operator (cf. §2) are sufficiently smooth and that the principal part of this
differential operator is symmetric (i.e. Gag = agq if |a] = || = 1). Assume that the triangula-
tions, which are quasi-uniform (cf. §2), satisfy hkh;e‘:_l < ¢ with ¢ independent of k. Then the
following holds:

There are constants kg and C such that for all & > kg:

1LY — pL,jElr”oo < ChE|In hel? . (4.1)

Remar_k 4.1. We briefly comment on the proof of the estimate (4.1). Two important arguments
in the proof are the following. Firstly, we use that the mass matrix P P has a condition number
which is O(1) (kg | 0) with respect to the maximum norm. This is a result due to Descloux
{2]. Secondly, we use the following finite element asymptotic error estimate due to Rannacher
and Frehse [3,6] (with f € L=(Q) and ¢} the Galerkin approximation of ¢* in &;):

ek — ¢z < Ch |1 hif? || fllp

Combination of the results in §3 with the Approximation Property (4.1) immediately yields
an (asymptotic) estimate for the contraction number of the two-grid iteration matrix (cf. §2):

137



1

1Tl < € 7

[ln i . (42)

So instead of an “optimal” bound Cv~! for the contraction number in the energy norm (or the
euclidean norm) we obtain a “nearly optimal” bound cv i |in hg|? if we use the maximum
norm. Furthermore the bound in (4.2) is sharp in a certain sense: For a concrete (very regular)
example it is shown in [9] that the contraction number with respect to the maximum norm of
a standard two-grid method with a fixed number of pre-smoothing iterations is bounded from
below by C|1n hgl.

(2]
(3]

(4]

5]

(6]

(7]

(8]

[0}

(10]

(11]

(12]

(23]
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