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Abstract — Zusammenfassung

On a Robust Multigrid Solver. We consider a two-grid method based on approximation of the Schur 
complement. We study the dependence of the two-grid convergence rate on certain problem 
parameters. As test problems we take the rotated anisotropic diffusion equation and the convection- 
diffusion equation. Using Fourier analysis we show that for both test problems the two-grid method 
is robust w.r.t. variation in the relevant problem parameters. For the multigrid method we use a 
standard W-cycle on coarse grids. This multigrid method then has the same algorithmic structure as 
a standard multigrid method and is fairly efficient. Moreover, when applied to the two test problems 
then, as in the two-grid method, we have a strong robustness w.r.t. variation of the problem 
parameters.

AMS Subject Classification: 65N20, 65N30, 65N55
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Uber einen robusten Mehrgittersolver. Wir betrachten eine Zweigittermethode, die auf der 
Approximation des Schurkomplements basiert. Wir untersuchen die Abhangigkeit der Zweigitter- 
Konvergenzrate von bestimmten Parametern des Problems. Als Testprobleme wahlen wir die 
rotierte anisotrope Diffusionsgleichung und die Konvektions-Diffusions-Gleichung. Mittels 
Fourieranalyse zeigen wir, daB die Zweigittermethode robust beziiglich Variationen in den relevanten 
Parametern des Problems ist. Als Mehrgittermethode verwenden wir einen iiblichen JF-Zyklus auf 
groben Gittem. Diese Mehrgittermethode hat dann dieselbe algorithmische Struktur wie eine 
Standard-Mehrgittermethode und ist effizient. Weiters erhalten wir bei Anwendung auf die zwei 
Testprobleme ebenso wie fur die Zweigittermethode starke Robustheit beziiglich Variation der 
Problemparameter.

1. Introduction

Today multigrid methods are used in nearly every field where partial differential 
equations are solved by numerical methods. Concerning the theoretical analysis 
of multigrid methods different fields of application have to be distinguished. For 
selfadjoint and coercive linear elliptic boundary value problems the convergence 
theory has reached a mature, if not its final state, cf. [14], [15]. In other areas the 
state of the art is (far) less advanced. For example, for convection-dominated 
problems the development of a satisfactory theoretic analysis is still in its 
infancy.

In recent years extensive research has been devoted to the development and 
analysis of multigrid methods for elliptic boundary value problems which con-



verge with an optimal rate, independent of the regularity of the solution (cf. [14], 
[15], and the references therein). Clearly this is a form of robustness. Another 
interesting topic with respect to robustness is the dependence of the multigrid 
convergence rate on certain problem parameters. An example of such a problem 
parameter is the ratio of anisotropy in an elliptic boundary value problem. 
There are some recent papers (e.g. [6], [7], [9], [11]) in which multigrid methods 
are treated that are robust with respect to variation in this anisotropy parame
ter.

In this paper we treat multigrid robustness with respect to variation in problem 
parameters. Two important test problems in this field are the discrete rotated 
anisotropic diffusion equation and the discrete convection-diffusion equation 
(cf. [13]). In the discrete rotated anisotropic diffusion problem we have parame
ters h (mesh size), (3 (rotation angle) and e (ratio of anisotropy). In the discrete 
convection-diffusion problem we have parameters h (mesh size), (3 (convection 
angle) and e/h  (Peclet number). An important difference between the two test 
problems is that the rotated anisotropic diffusion equation yields a symmetric 
operator, whereas the operator corresponding to the convection-diffusion prob
lem is (strongly) nonsymmetric.

We study a two-grid method which is strongly related to the two-level methods 
underlying the hierarchical basis multigrid method (HBMG, cf. [4]) and the 
algebraic multilevel iteration (AMLI, cf. [2,3]). We assume two nested grids 
(“coarse” and “fine”) and on the fine mesh the new mesh points are ordered 
first and then the coarse grid points. This yields the usual block two by two 
partitioning of the fine grid stiffness matrix:

Ah
A n A 12 
A 21 A 22

( 1.1)

Block LU-decomposition results in the following identity:

j J l -

h ~ I A n 1

■ V [ 0 / K k = O ,  (1.2a)

Ahi :~ A 22—A 21A n 1A 12. (1.2b)

We consider a two-grid method that results from (1.2) if we solve the A n system 
in Jh only approximately and if we replace by coA#1, with A H the coarse 
grid stiffness matrix and co a scaling parameter. The main topic of this paper is 
the robustness of this two-grid method with respect to variation in the parame
ters of the two test problems. In many cases a robust and efficient approximate 
solver for the A u system is not hard to find. For example on a rectangular mesh 
one may use a line solver or a variant of ILU. For the analysis in this paper we 
assume that the A n systems are solved exactly. Then the spectral radius of the 
two-grid iteration matrix is given by p(I -  coA^1̂ ) .  We take periodic boundary



conditions in the test problems and apply Fourier analysis to estimate p ( I — 
(oAff1̂ ) .  The Fourier analysis yields that p(I — OJA#1̂ )  < 0.6 holds for 
both test problems. This is an important result in this paper, because it shows 
that for both test problems A H is a robust preconditioner for the Schur 
complement J?*H. We note that for the rotated anisotropic diffusion equation 
with a finite element discretization robustness results can be derived from [8], 
[9], [12], too.

To obtain a feasible method we solve the A n systems approximately by a robust 
basic iterative solver, and we apply a standard PT-cycle on coarse grids. With 
respect to the implementation we note that the algorithmic structure is the same 
as in standard multigrid. In the “smoothing” phase (i.e. Jh) only unknowns 
corresponding to “new” nodes in the fine grid are updated. This is similar to the 
approach in the HBMG method (cf. [4]). Note, however, that in HBMG a 
F-cycle is used, whereas we consider a fT-cycle. Numerical experiments with the 
multigrid IT-cycle applied to (a large class of) problems similar to the two test 
problems show convergence factors between 0.3 and 0.6. Apparently the robust
ness property of the two-grid method also yields a robust multigrid IT-cycle. 
Unfortunately, we do not have a convergence analysis of this W-cycle method.

The remainder of this paper is organized as follows. In Section 2 we derive a 
two-grid method based on a Schur complement approximation. In Section 3 we 
present the results of a Fourier analysis for this two-grid method applied to the 
two test problems. In Section 4 we show the results of numerical experiments 
with the multigrid IT-cycle.

2. Derivation of the Two- and Multigrid Method

In this section we discuss some algebraic aspects of a two- and multigrid method 
based on a Schur complement approximation. The setting presented here is 
rather general. Concrete examples are given in Sections 3 and 4.

We consider a second order elliptic linear boundary value problem on a plane 
polygonal domain 12. Let f lH be a given “coarse” mesh on i? consisting of 
triangles or quadrilaterals. By Qh we denote the corresponding “fine” mesh that 
results after a standard refinement of Oh . The space of grid functions on 
0 H({2h) is denoted by UH(Uh). In UH and Uh we use the standard nodal basis. 
The ordering of the basis functions in Uh is chosen such that the basis functions 
corresponding to nodes in Oh \  Oh are taken first. This induces a partitioning of 
u ^ U h into two blocks. We assume a given finite element or finite difference 
discretization method on f th, resulting in a linear system

with A h:Uh
A hxh =bh,

Uh. The ordering of the nodes yields a block partitioning

A h
A n A 12
A 21 A 22

(2 .1)

( 2.2)



in which [An A 12] corresponds to the equations in the points of {lh\ 0 H. It is 
assumed that A n is invertible.

We introduce the following notation, in which we use a block partitioning as in
(2.2):

h - = I - ( “block Jacobi”) (2.3a)

JT’fj := A 22 —A 21A u1A 12 ( “Schur complement”)

P ~ ( “prolongation”)

(2.3b) 

(2.3c)

r — [* I] ( “restriction”). (2.3d)

In (2.3c, d) the “ * ” blocks are chosen arbitrarily. A block LU-factorization of 
A h yields the identity

Jh( I - p S ^ ' r A h)Jh - 0 .  (2.4)

The structure in (2.4) is as in a classical two-grid method, but clearly (2.4) does 
not yield a feasible method. We may try to use an approximation Jh of Jh (e.g. 
by solving the A n system approximately) and an approximation of In 
general it is rather easy to obtain an efficient approximation of Jh. This will be 
discussed further in Section 4. For the analysis in this paper we assume Jh =Jh, 
i.e. the systems with A n are solved exactly. A suitable approximation of 
is much harder to obtain. In this paper we mainly consider the obvious choice

5*’h =A h/ (*>, (2-5)

with A h a discretization of the same boundary value problem but now on the 
coarse mesh PiH, and a> a scaling factor. Another option is the Galerkin 
approach

<¥’H = rAhp/(o, (2.6)

with a given prolongation p and restriction r. In Section 3 we will comment on 
the approach in (2.6).

Because rAhJh and Jhp  are independent of the choice for the “ *” blocks in 
(2.3c, d) we may take

P = P inj = r = rinj = [0 J]-

If we take a Schur complement approximation as in (2.5), this results in a 
two-grid iteration matrix

wh =Jh(I - ^ P 1njA HlrlnjA h)Jh.

The spectrum of a matrix A  is denoted by a (A).

(2.7)



Proposition 2.1. For Wh as in (2.7) the following holds

W t~ -AT,'A11 ^12 
I

( I -a ,A -H^ „ ) kr,nl (leN),

<'{Wh) - * ( I - » A - H'2 ’H) U{0}. 

Proof: Note that /;, can be written as

(2.8a)

(2.8b)

^ l l1 ^12
i nj  ■

Thus we get J,f=Jh, rinjA hJh =S^Hrinj. Using this it is easy to show that the 
results in (2.8a, b) hold. ■

As expected, the two-grid convergence is determined by the quality of A H as a 
preconditioner for 5e>li. In Section 3 we will analyze cr(A S^H) for a specified 
class of problems.

For the multigrid method we use the standard JF-cycle approach (cf. [5]). So if 
WH is the iteration matrix on the coarse grid, then for the iteration matrix Wh of 
the W-cycle we have

W„ «./>,■„,(/- tV*)A-H'rwjA h) jh. (2.9)

In the remarks below we compare the approach from above with similar other 
methods.

Remark 2.2. Comparing (2.9) with a standard multigrid IF-cycle (cf. [5]) we note 
that the algorithmic structure of a method based on (2.9) is the same as for a 
standard multigrid JF-cycle. However, instead of the usual smoothing iterations 
we now apply a (approximate) block Jacobi iteration in the points of Oh\{2H. 
Another difference with standard multigrid is that in (2.9) the correction from 
the coarse grid is scaled with a factor oj. Finally we note that in standard 
multigrid one should not use pinj/ r inj for the prolongation/restriction.

Remark 2.3. The approach above is similar to the algebraic multilevel precondi
tioning methods (AMLI) of Axelsson and Vassilevski (cf. [2,3]). For comparison 
with AMLI we formulate the multigrid method based on (2.9) in terms of a 
preconditioner of A h. If we define the preconditioner MH of A H by WH = I — 
Mff]A H (WH iteration matrix on the coarse grid as in (2.9)) and Mh by 
Wh = /  -  M flA h (Wh as in (2.9)), then some rewriting yields

0
 

X1 _ I Afi A 12

S2

T----1 .0 i
with Afj1 = (o i l -p j fM ff1 A H))Ajfl, p 2U) = (1 — t)2. Only if co= 1, this is of 
the form as in version (ii) in [2]. Below in Section 3 we will see that the 
parameter a> plays an important role in our method and that we will use w# 1. 
Note that w.r.t. implementation our approach is different from AMLI. The



method based on (2.9) is implemented as a standard multigrid PT-cycle (cf. §4), 
whereas the AMLI method is based on a recursively defined polynomial precon
ditioner, using a shifted Chebychev polynomial of degree 2 or 3.

Remark 2.4. The method corresponding to (2.7), (2.9) can also be derived using a 
suitable basis transformation (cf. hierarchical basis two-grid method, e.g. [4]). If 
we introduce the matrix dependent basis transformations

SL
I 0
21 ̂ l l 1 I

A \ \A n
/

then on the transformed bases we have a block diagonal matrix:

Bu ■= S, A hSR = A n
0

0

To the transformed problem with matrix Bh we apply the iterative method with 
iteration matrix

I -
A

0
0

cvA^1
Bu

Reformulation of this method in terms of the original nodal basis yields the 
method with iteration matrix as in (2.7). With respect to implementation we note 
that in the method based on (2.9) in the “smoothing” phase (i.e. Jh) only 
unknowns corresponding to the “new” nodes in the fine grid are updated. This is 
similar to the approach in the hierarchical basis multigrid method (HBMG, [4]). 
Note, however, that HBMG is a multigrid F-cycle, whereas we consider a 
multigrid JT-cycle.

3. Two-Grid Fourier Analysis

Numerical experiments (e.g. as in Section 4, cf. also [9], [10]) have shown that 
the method based on (2.9) has interesting robustness properties both with 
respect to the amount of anisotropy and the amount of convection in the 
problem. For a first analysis of this phenomenon we take two relevant classes of 
test problems as in [13] and we apply a two-grid Fourier analysis. We note that 
by means of an analysis of cr(Af,lÂ H) and using Proposition 2.1 we can do a 
Fourier analysis of the complete two-grid iteration, whereas in [13] only the 
smoothing part of a two-grid method is analyzed using Fourier analysis. 
On fl  = [ — 1, 1] X [ — 1, 1] we consider the rotated anisotropic diffusion equation

— ( ec2 + s2)uxx — 2( e — 1 )csuxy-  ( es2 + c2)uyy = 0, (3.1)

and the convection-diffusion equation
- e(uxx + uyy) + cux + suy = 0, 

with c = cos( yS), s = sin( /3), /3 e  [ 0 , r], e e  (0, 1],

(3.2)



For the Fourier analysis we assume periodic boundary conditions. We use a 
uniform square grid with mesh size h:

f lh ■= {(x,y) e  f l\x  = vh, y = ixh, - N  + 1 < v, n < N ) , (3.3)

with N  ■= 1/h. The differential operators are replaced by standard difference 
stars as in [13]:

dxl

dxdy

2 - 1], -
<?2

- » h

1 0 - 1
i / r 24“ 0 0 0

- 1 0 1

- 1
2

- 1

d
dx

d 0
h~l [ - 1 1 0 ] , ------ >h~x 1 .

dy _ i

Thus for the rotated anisotropic diffusion equation we obtain, after scaling with 
h2, a discrete system of equations with stencil

[Ah] = {ec2+ s2) [ - 1  2 - l ]  + (e f2 + c2)

' 1 0 - 1  
+ i ( e - l ) c f  0 0 0

- 1  0 1

- 1
2

- 1

(3.4)

For the Fourier analysis we use the standard approach (cf. [5]). In f 2{flh), with 
Nh = 1, we introduce 4N 2 basis vectors with

e ^ ( x , y )  = I e« («+«o, ( x ,y )  e  I2h, - N +  1 < v, ^ < N .  (3.5)

For the coarse grid space we define H ■= 2h, NH ■= N /2  and f lH as in (3.3) with 
h and N  replaced by H  and NH respectively. In / 2{£1H) we use the Fourier 
basis

e]?(x,y) = \ e ^ v*+»>\ ( x , y ) & 0 H, ~NH+ l < v ,  n < N H. (3.6)

The vectors in (3.5) form an orthonormal basis w.r.t. a scaled Euclidean inner 
product, and thus the Fourier transform

N

Q h  • (  - N +  1 < ~ * ^  a v , f i ^ h
v , f i -  - N +  1



is unitary. Every “low” frequency ( v, fx) with — NH + 1 < v, /x < NH is associated 
with the “high” frequencies (v ', /x), (v, /x'), (vr, /x') where v', /j! are defined by

' = / V + N  i f ^ < 0  ' = I ^  + N  i f ^ °
V \ v  — N  if */> 0 ’ M \ n - N  if /x> 0.

Clearly / 2( f lh) is a direct sum of the N 2 subspaces ■= span{e^, e ^ ,  e^', 
evh M'}, - N h + 1 < v, fx < Nh . By Q T  we denote the 4vV2 X 4 matrix with columns 
these basis vectors of U^\

Q T ~ W  e ^ e F ’ e t* ] .

Now note that we have (Q r)*AhQ,r = diag{d r ,  d r ,  d r ,  d ^ )  (we use the 
adjoint w.r.t. the scaled Euclidean inner product). For the operator A h as in 
(3.4) we obtain the following formulas for the eigenvalues dj^ (~NH + 1 < v, 
fx < Nh ):

with

d r  = ^(K xxs„ + Kyysl + Kxysvcvs/JLcfĴ  (3.7a)

d r  = 4[Kxxc2v + Kyysl -  Kxysvcvsflcft) (3.7b)

d r  = 4 (Kxxsl + Kyyc l - K xysvcvsltc/I)  (3.7c)

d r  = 4 (K xxc; + Kyycl + Kxysvcvs^c^) (3.7d)

Kxx = ec2 + f 2, Kyy = c1 + es2, Kxy = 2( e -  1 )cs, 

sk = sin^kirh), ck = cos(^7r/z). (3.7e)
Note that for -A ^  + 1 < k < NH we have sk e [  — \-J l , ], e  [\'J2 , 1],

We now introduce the harmonic mean of the eigenvalues j  = 1, 2, 3, 4. For 
(v, /x) (0,0) we define

= E  l / ^ j  (-JVh + I s ^ ^ s ATh). 

If A h\ / 2{ n h) -> f2{flh) would be nonsingular, then the identity

[ 0 / K - 1

(3.8)

holds. Fourier transformation of p inj, A h, rinj then results in block-diagonal 
matrices with diagonal blocks

V 0

1 1 d r
4 1 J d r

1 0

—
i

4ti-

and [1 1 1 1],



respectively. This then yields <5*’He Z  = ^VfJLeZ- However, in the case with peri
odic boundary conditions A h is singular and a special treatment of the constant 
grid function e^ is needed. This then leads to the following result (as in [10]).

Lemma 3.1. The Fourier mode eZ  ( —NH + 1 < v, p < NH, (v, p) ¥= (0,0)) is an 
eigenvector of TAH with corresponding eigenvalue the harmonic mean of dZ, dZ, 
dZ, dZ, i-e.:

(3-9)
Proof: The grid function in / 2(0 ,t) ( Z 2(Oh )) with value 1 in all grid points of 
B h (B h ) is denoted by l h (1H). We define

r:= [ - A 21A f f  I] , p = -A T M ,

Due to rank(A;i) = rank(An ) + rank(j/"H) we have that dim (K er(^)) = 1. Note 
that '9*H = rAhp  and A hl h = A Thl h — 0, p l H = l h, rTl H= l h. Using this we 
obtain Ker(<5^) = < \ H > , = K erC ^)-1 = 1^ and thus -> 1^ is
regular; the inverse is denoted by TAf1. Now define W:lfx ~^>/2({lh) by

W = pS^H lr + I
0 A i \ V  *>]•

Note that W is well-defined due to r ( l;f ) c  1^. A simple calculation shows that 
A hW= Inx. Using Pinj(Xf ) c  l ;f we see that Wpinj: 1^ - * f 2( f lh) is well-defined. 
From the definition of W we now conclude that rinjWpi n ] Not e that

e r = e Z ( - N H + l J v , p < N H). (3.10)ri n j c h i n j c h = = r.i n j ^ h

We take a Fourier mode e ^ e l ^ ,  i.e. (v, p) =£ (0,0). Using pinj = rfnj = \r*nj 
and (3.10) we obtain

n f>Vft = — ( pvr- pv' r- -A- pvpt 4. pv'
P i n H  4 \ e h ^  e h ^  e h )■ (3.11)

From A hW = f x± we get A hWeZ = eZ  and thus WeZ = 1 / d Z  eZ  + aVfJLl h for a 
certain aVfJL e  C. Similar relations hold for e f  eZ  and e f /i'. Combining this 
with (3.11) yields

WPi„,eff = K l / i T ‘T  + 1 / d ?  e ^ +  1 / d ?  e’f  + 1 / d ?  +
for a certain f3v/JL e  C. Using (3.10) and rin-lh = l H we obtain

( 1 ±  \
rinjWpinjeZ  = -  E  1 /d Z  eZ  + Z Z h •

\ W = i  /
Finally, because rin]Wpinj î. —> 1# we conclude f3v/JL = 0 and

1 
4^ H  eH

7VfL
-H ■



Lemma 3.1 makes it possible to apply a Fourier analysis to
( e ^ ) x . For the rotated anisotropic diffusion equation the coarse grid operator
A h , corresponding to A h in (3.4), has eigenvalues (cf. (3.7)):

:= 16{Kxxsvcv + Kyysi ci + K xysvcv( 1 -  2s^)s^Cfl(l -  2 ^ )} . (3.12)

Now, as an example, consider the case with jS = 0, i.e.

[A h] = e [ - 1 2 - 1 ]  +
- 1

2
- 1

We only consider (v, /jl) (0,0) with —NH + 1 < v, /jl < NH. It is easy to see that 
1 + + 1 / d ?  + 1 / d vf )  e  (1,4) and thus ^ J d ^  e  (1,4), i.e. the
(v, /x)-th eigenvalue of the Schur complement ) is of the same order of 
magnitude as the ( v , ^,)-th eigenvalue of A,, ( d ^  = 4(es^ + s^)), with constants 
independent of the parameters e, h. Because df* is the eigenvalue correspond
ing to a low frequency, it can be expected that d ^  is of the same order of 
magnitude as dff. Indeed, we have

d_r4 ( est + sj)
d t f  16 ( t s l c l+ s lc l )  l4 ’ 2)'

Thus we have that for (v, /x) ¥= (0,0) A f lS^He^f = with £ vtl e  [{, 2], i.e.
is a preconditioner of *5^ that is robust w.r.t. variation of e and h. 

Analogous results are derived for the rotated anisotropic diffusion equation with 
/3 # 0 in Lemma 3.2, 3.3 and Theorem 3.4. In essence similar results hold for the 
convection-diffusion equation, too, but then we have to take into account that 
the eigenvalues are complex. This will be discussed below.

Lemma 3.2. For all (v, /jl) =£ (0,0) with —NH + 1 < v, /jl < NH the following holds, 
with d ^  and as in (3.7), (3.8):

[ l - i i / 2 , 4 ]•

Proof: First note that A?Vfl/ d ^  = 4(1 + d ^ / d ^  + d ^ / d ^  + . Using
dj* > 0 for j  = 1, 2, 3, 4 we obtain ^ , ^ / d ^  < 4. Furthermore:

d ?  = 4 {Kxxs; + + Kxysvcvsvc^)

< 4[ K xxc 2 v + Kyycl + Kxysvcvs^c^} = d vf . (3.13)

We now derive an upper bound for d ^ / d ^ .  Due to e e  (0,1] we have \Kxy \ < 2|c[ 
|s|. Using this and k l <  we get

I k r ,V .  V J  -  2 V'2" l“ ,J

< < ± t2 (K „ c l  + K „st) .  (3.14)



This yields

d T  = + KyySl  -  KyySyC^S^}

> 4 ( l - i  yl2)(Kxxc2„ + Kyysl). 

Using (3.14), (3.15) results in the following

d r 1
<

d r  “ 1 — 4/2

1

KxXs; + Kyysl + KxysvcvsfJLclx 
K „cl + K„sl

^ T r u j ( 1 + ^ ) - 3  + 2V2.

A symmetry argument yields d r  / d r  < 3 + 2 /2 . Thus we finally have 

Ky./dl'1 > 4(2 + 2(3 + 2V2 ))~ ‘ = 1 -  {-Jl.

(3.15)

□

Lemma 3.3. For all ( v,  /jl) ¥= (0,0) with —N H +  1 <  v, /jl <  N H the following holds, 
with d r  and d r  as in (3.7), (3.12):

]. (3.16)

Proof: Take (v, /jl) =£ (0,0), — NH + 1 < v, n < N H . We use the notation z ■= 
Kxys„cvsficfl. Then we have:

d r - 4 { K „ s ?  + K „ 4  + z),

dtf  “  16{K ^ s lc l  + K „Sy ;  + 2(1 -  2 ^ ) ( l  -  2„l)}.

Note that

2 < 2|&J I < s2s; + c2sl < Kxxs; + Kyys2 (3.17)

holds. First we consider the case 2 > 0. Then we have, using (3.17) and cj, c2> \:  

d ? < % {K „ s l+ K yysl)

< 161 Kxxy;c: + + z (l -  2 i ;j( l  -  2.t;)j

- d tf  < 16(K„,sl + K „ sl + z) = 4d r -  

So then we obtain

dT/d-Ĥ [ \ ,  1]. (3.18)

We now assume 2 < 0. Then we get

^  S 4{Kx, sl + K yysl + 2(1 -  2s‘)(l -  2j *)}

- i d p  + ^ K ^  + t  : „ 4 ) . (3.19)



Also we note that

d'ff = 16{Kxxs lc l+ K yyslcl  + 2( € -  1) [ss„c„(l -  2s2)] [ c s ^ l  -  2s2)] ) 

> l6^Kxxs‘c‘ + Ky,sl cl~ -  2s2)2 + c2s2c2( 1 -  2s'

— m {k x, s1cI{ i- (1 -  2s2)2) + K „ slc l[ l  -  (1 -  2s'

“  16{4Jf„s„4cJ + 4Xws*c*)

> 1 6 (K „ s )+ K „ s ‘ ). (3.20)

Combination of (3.19), (3.20) yields that for z < 0 we have

d ^ / d t f  < (3.21)

On the other hand we have, using —z < Kxxs2c2 + Kyys2c2:

d tf  = 16{^«s2 + K „ s2 + 2(l -  2(s2c2 + s2c2)) -  (K „ s 4 + )}

-  4</r -  32 z ( s2c2 + s2cj) -  16( Kxxsi + if„s„4)

< 4d?  + 32( X „ s 2c2 + ^ , s 2c2) ( s 2c2 + s2c2) -  1 6 (K „s4 + K„Sf)
= 4d r  + 16K „s)(2c4 -  1) + 16X „ s4(2c„4 -  1) + 32(K „  + K „ ) s t f s t f

< 4{ d r  + 4iC„s) + 4K , X  + 8 ( * „  + * „ ,)* # } •  (3.22)

Now note that

IzI <  2\ssvcv\ \cs^c^\<Kxxs2vc l + K yyslcl,
and also

IzI < 2|&„c/J Icj^cJ  < Kxxs2c2 + Kyyslc2.
This yields

^  S 4 { lf„s2(l -  cl) + K „ sl(  1 -  c2)} -  4{Kxxst + K , X ) ,  (3-23)

and also

d r  > 4 { lf„s2(l - c l )  4 Kyysl(  1 -  cj)} -  4 (Jf„  + K „ )s2s2. (3.24) 

Using (3.23) and (3.24) in (3.22) yields

dtf  < 4{ ^  + df11 + 2d ^}  = 16dp .
In combination with (3.21) we obtain that for z < 0 we have d ^ /d ' t f  e  [^ , ^]. 
Together with the result in (3.18) this yields a proof of the lemma. □

Theorem 3.4. For all ( v ,  /a )  ¥= (0,0) with — N h  + 1 < v , / j l < N h  the following 
holds, wzY/z dff  as in (3.8), (3.12):

^ / < s [ i ( l - i ^ 2 ) , 4 ] . (3.25)



Proof: Direct consequence of the results in Lemma 3.2, 3.3. □

The result of Theorem 3.4 shows that for the rotated anisotropic diffusion 
equation A H is a preconditioner of which is robust with respect to variation 
in the problem parameters h, e, (3. If the bounds in (3.25) would be sharp then 
the condition number can be quite large and we would need a significant 
acceleration to obtain a reasonable convergence rate. A simple IF-cycle on 
coarse grids would not be sufficient then.

To obtain an indication of the dependence of cond( A f f ^ )  on the parameters 
e and (3 we computed the following quantities.

We take h = 1/64 and different values for /3 and e: (3 — (3k = A;7r/64, k = 0, 1, 
2,..., 64 and e = el = 10(1_/)/4, / = 1, 2 ,..., 25. We introduce:

M( k ,  l) = m axj^ y  d]f\h = 1/64, /3 = (3k , e = e h

-31  < v, /a<32, ( v, /a) ^(0 ,0)} ,

m ( k , l ) = minj^/djyPl/i = 1/64, (3k, e = e/5

-31  < v,fx<32, (v,/x)  ¥=(0,0)},

Cond(/:, /) = cond(A^1l5^) = M (k,  / ) /m (k ,  /).

The computations resulted in the following. For all k, l we have 0.99 < M(k, l) 
< 1, i.e. p(A ^1̂ )  = 1 independent of k, l. Furthermore 2 < Cond(A:, /) < 4 for 
all k,l. The graph of Cond(A:,/) is shown in Fig. 1. These results confirm the 
robustness proved in Theorem 3.4. Also these results indicate that p ( I -  
(uAfj^n) < 0.6 with cu = 8/5 for all values of /3 and e, i.e. a reasonable 
convergence rate with a fixed cu.

0 0
Figure 1. Cond(k,l)



Note that if the discrete problems are rescaled such that both the discrete 
operator on the fine grid and the discrete operator on the coarse grid are 
consistent with the differential operator, then M (k,l) (=  p{AjJly ’H)) will be 
approximately 4 (instead of ~ 1) and we should rescale the parameter to, too.

It is easy to verify that for the problem (3.1) with Dirichlet boundary conditions 
and /3 = 0 we have con&iAjj1̂ ) 11 for e 10. This is not observed in Fig. 1. It is 
noticed in [13] that for Dirichlet boundary conditions often a better agreement 
with Fourier analysis results is obtained if we only consider frequencies 
with v + 0 and /jl # 0. So we also computed

M {k,l)  = m ax(j^//dtf\h = 1/64, (3 = f3k, e = ez,

— 31 < v , /jl < 32, v A 0 and /x ^  0},

m (k ,l)  = = 1/64, (3 = (3k, e= e,,

— 31 < v , /X < 32, v ¥= 0 and /jl ¥= 0}, 

Cond(&:,/) = M ( k , l ) / m ( k , l ) .
The results for Cond(A:,/) are shown in Fig. 2.

Note that the results in Fig. 1 and Fig. 2 are very similar. In Figure 2 we indeed 
observe that Cond(k,l) is close to 1 for /3 = 0, and e <§: 1.

Remark 3.5. The discretization for the rotated anisotropic diffusion equation in 
(3.4) is not a finite element discretization. In a finite element setting one can use 
the strenghtened CBS inequality to derive estimates for cond(y4^1̂ / ). For 
symmetric positive definite problems there is a direct relation between the CBS 
constant y 2 and c o n d f^ 1̂ ) :  cond(Al^1̂ / ) = (1 -  y 2)-1(cf. [1]). The theory 
as in [8] shows y 2 <  f independent of the anisotropy, resulting in cond( y4^l5^) 
< 4 (cf. [9] for a robust AMLI method based on this result). Note that this 
bound is the same as the bound observed in Figs. 1 and 2.

Figure 2. Cond(k,l)



As discussed in Remark 3.5, for the rotated anisotropic diffusion equation, 
discretized using finite elements, one can prove a robustness result for 
con6.{.AJjlS^H) using the theory of the strengthened CBS inequality. Clearly, for 
the convection-diffusion test problem (3.2) such an analysis is not available. 
However, a Fourier analysis is still possible. In the Fourier analysis some 
technical complications arise due to the fact that we now have complex eigenval
ues.

For the test problem (3.2) we consider the following difference star:

ah = e/h. (3.26)
- 1 O '

i A h ]  =  <*h - 1  4 
- 1

t-H1 + c[ - 1  1 0 ]+s 1

- 1

The corresponding eigenvalues are (sk, ck as in (3.7e)):

d ?  = 4 « a( 5? +  5m) +  2 £ ( s * + isvcv) +  2 s(sl  +  is^c j  

dT  = 4ah(c2v +s^) + 2c(c; -  isvcv) + 2s(si + i s ^ )  

dT  = 4o:/l(s; + cl )  + 2c(^2 + isvcv) + 2s(c; -  i s ^ )  

d ?  = 4ah(cl + cl) + 2c(c; -  isvcv) + 2f(c 2 -  i s ^ ) .

The coarse grid discrete analogon A H of A h in (3.26) has eigenvalues 

d VH = §och(slc; + slcl)  + 4c(2j;ct2 + is^c^c; -  s;))

+ 4f(2 slcl + i s ^ c ^ c l - s l ) ) .

(3.27a)

(3.27b)

(3.27c)

(3.27d)

(3.28)

In a recent paper [10] we applied a two-grid Fourier analysis to the convection- 
diffusion problem in (3.26), but then with a Schur complement approximation 
resulting from a Galerkin approach as in (2.6). In [10] it is shown that with a 
suitable fixed a) one can obtain p(I — a)(rAhp)~xS?H) < C < 1 with C indepen
dent of h , e, (3. Using tools as in [10] one can prove a similar robustness result if 
we use the coarse grid discretization (cf. (3.28)) as an approximation of the 
Schur complement. However, a proof would require many technical manipula
tions (as in [10]) and therefore we will not present this here. We do present 
numerical results comparable to the results for the first test problem shown in 
Fig. 1.

We take h = 1 /64, (3 = /3k = k ir /64, k = 0, 1 ,..., 32 and ah = ah< s = 10(5 -/)/4, 
/ = 1, 2 ,.. .,  25 (i.e. (3 e  [0, \ tt], ah e  [10-3, 10]). We introduce

h 1/64, 13 = 13,, a ,  =

— 31 < v, p  < 32, ( v , /x) ¥=(0,0)},

with &  the harmonic average of the eigenvalues in (3.27) and dtv£  as in (3.28). 
This results in a spectrum that is contained in an ellipsoid in the complex right



half plane (cf. [10]). To measure the quality of A H as a preconditioner for S*H 
we define

Radius( k , l )  ■= max{|l -  (okj \ \  |A e  crk ^ A  (3.29)

where we use a shift parameter oik l given by

o)kj  = 2 |m in R e(A) + max R e(A)j , (3.30)

in which the minimum and maximum is taken over A e  crk l(AJjl5^H). The graph 
of Radius(fc, /) is shown in Fig. 3. For the shift parameter a)k l we have 
0.66 <(j)k l < 0.76 for all k, l.

Figure 3. Radius(k,/): = A h/ cj

Note that here we have a scaling parameter co ~ 0.7, which is about a factor 2 
smaller than the scaling parameter for the rotated anisotropic diffusion equa
tion. This is related to the different scaling of the problems in (3.4) and in (3.26).

We now compare the Schur complement preconditioner = A H/co from 
above with the Schur complement preconditioner = ?Ahp/a> as proposed in 
[10]. Based on the identity

^ , ,  = [0 I]A„ •A 11-A 12
I

we use r = [0 I] and for p a matrix dependent prolongation explained in [10]. We 
take h = 1/64 and use parameter values /3 = /3k, ah = ah l as above. For given 
(3k and ah l the spectrum of (rAhp)~1S^pH is denoted by crkj((rAhp)~lS*H). We 
computed Radius(A:, /) as in (3.29) but now with (Tk l({rAhp)~lSAH) instead of 
ak,i(Ajjly ?H). The results are shown in Fig. 4. In this case for the shift parameter 
cokj  (cf. (3.30)) we have 0.7 <(ok l < 0.9 for all k, l. We conclude that both in 
Fig. 3 and Fig. 4 we observe robustness with respect to variation in ah and /3. 
Finally, note that with o>~0.7 we have p(I  -  ojAJj1̂ )  < 0.5 and that the 
preconditioner based on the Galerkin property seems to be better than the 
standard coarse grid discretization preconditioner A H.



4. Numerical Experiments

In this section we apply a multigrid IF-cycle based on (2.9) to the following test 
problems (cf. (3.1), (3.2)):

j - ( e c 2 +s2)uxx-  2 ( e -  l)csuxy -  ( es2 + c2)uyy = f  in /2 = ( 0 ,1) X(0,1)
I u — g on dfl

(4.1)

j - eA u  + a (x ,y )u x + b (x ,y )u r = / in f i -  (0,1) X (0,1)
|  u= g  on <?/2,

with c = cos( (3), s = sin( /3), f3 e  [0, ^7r], e e  (0,1].

We use standard finite difference discretization on a square mesh as in 
Section 3, resulting in a discrete problem = bh. The scaling of the discrete 
equations is as in (3.4), (3.26). The finest mesh always has mesh size h = 1/128 
and the coarsest mesh size is h — 1 /4 . For the approximation of the Schur 
complement we use the approach of (2.6) i.e. = A h/ oj.

We use the notation (!£ = Oh\ f l H (i.e. “new” nodes).

We now discuss the approximation used in the block Jacobi method with 
iteration matrix

J u = I -
x4

A ,

In general the matrix A u has a condition number 0(1) and then, in principle, 
any basic iterative method for solving A n y = z  can be used. However, if we 
have strong alignment then cond(Hn ) deteriorates. Our main interest in this 
paper is on robustness, so we should use a robust solver for the A n systems. 
Probably the ILU method will yield a good compromise between robustness and



efficiency. In the method we implemented some efficiency has been sacrificed 
and we used a simple line Jacobi method. One iteration of this method consists 
of a sweep over the “odd” horizontal lines followed by a sweep over the “odd” 
vertical lines (these lines together form the pattern of (lh \  f lH ). The result of /x 
iterations of such a line Jacobi method with starting vector 0 applied to A n y = z  
is denoted by 0; z).

The two-grid method based on (2.7) is as follows:

1. a) dinc ■= (A hxh — bh) î c : compute defect on flfr
b) xh ■=t/ '^ ( A n ; 0; d̂ n ) : line Jacobi for solving A u system.
c) xh\nhc:= (xh\fihC — xhj : add correction on f2,cr

2- a) d\aH := (A hxh -  bh\ nH : compute defect on n H.
b) A hvh = din : solve coarse grid problem.
c) xi,\nH :=xh\nH ~ 0)Vh  '• add correction on Oh .

3. Repeat la, b, c.

This algorithm has the same structure as a standard two-grid algorithm. As in 
the standard approach, we use two recursive calls in 2b) to obtain a multigrid 
W-cycle, with iteration matrix as in (2.9).

In the experiments below we always take the data such that the exact discrete 
solution is equal to zero and we take an arbitrary starting vector. As a measure 
for the error reduction we computed r ■= (ll^olb/lkolb)1/2(), with ek the error in 
the A>th iteration. For /x, i.e. the number of line Jacobi iterations, we take /x = 3. 
Experiments have shown that this yields sufficiently accurate approximations 
when solving the A n systems; often even /x = 2 is sufficient. Based on the 
Fourier analysis we take <x» = 1.4 in Experiment 1 (rotated anisotropic diffusion 
equation) and a> = 0.7 in Experiments 2 and 3 (convection-diffusion equation). 
As noted already in Section 3, the value of a> is related to the scaling of the 
discrete problems. In the two discrete test problems the scaling differs by a 
factor h (cf. (3.4), (3.26)). Using the same scaling in the discretization of the two 
test problems would result in one fixed a) for all three experiments below.

Experiment 1 (rotated anisotropic diffusion equation). We apply the multigrid 
IF-cycle to the discrete version of (4.1). In Table 1 the resulting r are given for 
several values of (3 and e.

Table 1

\ / 3
e \

0 jt/  10 2tt/10 37r/10 47t/10 5tt/10

10° 0.30
K T 1 0.31 0.29 0.30 0.30 0.30 0.31
10-2 0.31 0.35 0.37 0.37 0.35 0.31
lO^3 0.31 0.44 0.45 0.45 0.44 0.31
1(T4 0.35 0.46 0.46 0.46 0.46 0.35



Experiment 2 (convection-diffusion). We apply the multigrid IF-cycle to the 
discrete version of (4.2) with a(x, y ) = cos( /3), b(x, y ) = sin( /3). In Table 2 the 
resulting r are given for several values of /3 and e.

Table 2

> <
0 tt/ 1 0 2 tt/ 1 0 3tt/10 4tt/10 5-rr/lO

10“ 1 0.29 0.29 0.29 0.29 0.29 0.29
10“2 0.30 0.30 0.30 0.30 0.30 0.30
10-3 0.30 0.39 0.43 0.43 0.39 0.30
10"4 0.33 0.38 0.46 0.46 0.38 0.33
10"5 0.37 0.38 0.46 0.46 0.38 0.37

Table 3

€ 10_1 10~2 10"3 10“ 4 R T 5

r 0.29 0.31 0.44 0.53 0.55

Experiment 3 (rotating flow). We define f lR ■= {(x, y)|((x -  I )2 + (y — j ) 2) < ^}, 
and

| a(x, y) = sin(7r(y — j) )  c o s ( t7-(x  — if (x, y) e  {}R, and zero otherwise;
1 b (x ,y )  = -cos(77-(y -  I))  sin(7r(x -  j) )  if (x,y) e  Or , and zero otherwise.

We apply the multigrid IF-cycle to the discrete version of (4.2) with these 
functions a, b. The results are given in Table 3.

In these experiments we see a convergence behaviour of the multigrid IT-cycle 
that is similar to the convergence behaviour of the two-grid method in Section 3. 
As in the two-grid method we have robustness w.r.t. variation in the problem 
parameters and contraction numbers between 0.3 and 0.6. Finally we note that 
in this paper the main topic is robustness and not efficiency. The method we 
used above can be improved w.r.t. efficiency, for example by using an ILU solver 
instead of the line Jacobi solver for the A n systems or by using a Galerkin 
approach as in (2.6) for approximation of the Schur complement.
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