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Abstract — Zusammenfassung

Further Analysis of the Local Defect Correction Method. We analyze a special case of the Local 
Defect Correction (LDC) method introduced in [4], We restrict ourselves to finite difference 
discretizations of elliptic boundary value problems. The LDC method uses the discretization on a 
uniform global coarse grid and on one or more uniform local fine grids for approximating the 
continuous solution. We prove that this LDC method can be seen as an iterative method for solving 
an underlying composite grid discretization. This result makes it possible to explain important 
properties of the LDC method, e.g. concerning the size of the discretization error. Furthermore, the 
formulation of LDC as an iterative solver for a given composite grid problem makes it possible to 
prove a close correspondence between LDC and the Fast Adaptive Composite grid (FAC) method 
from [8-10].

AMS Subject Classifications: 65N22, 65N50

Key words: Local defect correction, fast adaptive composite grid method.

Weitere Analyse der lokalen Defektkorrektur-Methode. Wir analysieren einen Spezialfail der lokalen 
Defektkorrektur-Methode (LDC) die in [4] eingefiihrt wurde. Wir beschranken uns auf Finite- 
Differenzen-Diskretisierungen elliptischer Randwertprobleme. Die lokale Defektkorrektur-Methode 
verwendet Diskretisierungen auf einem globalen uniformen groben Gitter und einem oder mehreren 
lokalen uniformen feinen Gittern zur Approximation der stetigen Losung. Wir beweisen, daB diese 
LDC-Methode als iterative Methode zur Losung einer zugehorigen Diskretisierung auf dem 
zusammengesetzten Gitter betrachtet werden kann. Dieses Resultat ermoglicht es, wichtige 
Eigenschaften der LDC-Methode zu erklaren, z.B. in Bezug auf die GroBenordnung des 
Diskretisierungsfehlers. AuBerdem ermoglicht die Formulierung der LDC-Methode als iterativer 
Solver fur ein gegebenes Problem auf dem zusammengesetzten Gitter den Beweis eines engen 
Zusammenhangs zwischen LDC und der “Fast adaptive grid (FAC)” -  Methode aus [8-10].

1. Introduction

Many practical boundary value problems produce solutions which contain sev
eral high activity regions. In these regions the solution varies much more rapidly 
than in the remaining part of the domain. This behaviour of the solution may be 
caused by the differential operator itself, by the forcing terms in the differential 
equation, by the boundary conditions or by an irregular boundary (e.g. a 
re-entrant corner).

If one wants to discretize such a boundary value problem on a uniform grid, 
then, due to the large variations of the solution in the high activity regions, a



relatively small mesh size is required to obtain a sufficiently accurate approxima
tion of the solution. However, outside the high activity regions the behaviour of 
the solution is much more smooth and therefore a (much) larger mesh size 
seems to be sufficient in that part of the domain. So approximating the 
continuous solution on a single uniform grid is often computationally inefficient 
for boundary value problems which produce solutions that contain high activity 
regions.

Instead, the solution can be approximated using several unifoim grids with 
different mesh sizes that cover different parts of the domain [1, 4, 9]. At least one 
grid should cover the entire domain. The mesh size of this global coarse grid is 
chosen in agreement with the smooth behaviour of the solution outside the high 
activity regions. Besides a global grid, several local grids are used which are also 
uniform. Each of them covers only a (small) part of the domain and contains a 
high activity region. The grid size of each of these grids is chosen in agreement 
with the behaviour of the solution in the corresponding high activity region. In 
this way every part of the domain is covered by a (locally) uniform grid whose 
mesh size is in agreement with the behaviour of the continuous solution in that 
part of the domain. This refinement strategy is known as local uniform grid 
refinement. The solution is approximated on the composite grid which is the 
union of the uniform subgrids.

In [4] Hackbusch introduced the local defect correction method (LDC) for 
approximating the continuous solution on a composite grid. In this iterative 
process a basic global discretization is improved by local discretizations defined 
in the subdomains. At every step this iterative process yields a discrete approxi
mation of the continuous solution on the composite grid. This method is an 
iterative discretization and solution method. The discrete problem that is 
actually being solved is an implicit result of the iterative process.

In this paper we present a further analysis of the LDC method. In [4] an overlap 
parameter d > 0 is introduced and an analysis of the LDC method for the case 
d > 0 (independent of the mesh size) is given. In this paper we analyze the LDC 
method for the case with minimal overlap, i.e. d = 0. We show that the discrete 
problem that is actually being solved by this LDC method is a composite grid 
discretization. This result has some interesting consequences for the analysis of 
the LDC method. For example, using the underlying composite grid system 
(that is not used in the LDC algorithm) bounds for the discretization error, in a 
finite difference setting, can be derived. Also an expression for the iteration 
matrix is derived that can be used to gain understanding of the convergence 
properties of the LDC method.

The fast adaptive composite grid (FAC) method by McCormick [8-10] is an 
iterative method for solving a given discrete problem on the composite grid. 
Approximations of the solution of this discrete problem are computed by solving 
discrete problems on the global and local grids. It is often noted in literature



that LDC and FAC are very similar. Here, we give a concrete theoretical 
comparison of these methods for a model situation. We show that the LDC 
method is equivalent with the FAC method applied to the composite grid 
discretization resulting from the LDC method. The resulting iterates of both 
methods are the same (although the algorithms are different!).

The remainder of this paper is organized as follows. In Section 2 we describe a 
model problem and a model composite grid. In Subsection 3.1 the LDC iteration 
is presented. The underlying composite grid discretization and an expression for 
the iteration matrix are derived in Subsection 3.2. Some numerical results 
related to the convergence rate of the LDC method are presented. In Subsec
tion 3.3 we present a Finite Difference based FAC method and we prove that 
this method is equivalent with the LDC method.

2. Model Situation

In this section we introduce notation and describe a model case with a global 
coarse grid and one local fine grid. In Remark 2.1 we discuss possible general
izations.

We consider Dirichlet boundary value problems
3 ’U = f  in fl,

’ ( 2 .1)(J = g on dfl,
with fl — (0,1) X (0,1), dfl the boundary of fl  and S? a scalar linear elliptic 
second-order differential operator. Dirichlet boundary conditions are chosen for 
ease of presentation. We assume that problem (2.1) is such that the continuous 
solution varies very rapidly in some (small) part of the domain, which is 
contained in the region f l , c  fl. In the remaining part of the domain the 
continuous solution is assumed to behave much more smoothly. The boundary 
dfl, of fl, consists of two parts. A part that coincides with dfl and a remaining 
part. The latter part is called the interface T=  dfl, \  dfl (see Fig. 1). We note 
that we may have dfll f) dfl = {0}. in which case the interface T  coincides with 
dfl,.

In order to compute a numerical approximation of the solution U we discretize 
(2.1) with respect to some discretization grid using finite differences. We assume 
that the finite difference matrices that appear in this section are all nonsingular.

We use two uniform grids, a global one and a local one. The global coarse grid 
f l H is a uniform grid with mesh size H that covers the domain fl. The local fine 
grid Of1 is a uniform grid with size h that covers the region fl, (see Fig. 1). The 
space of grid functions on f l H{f l , )  is denoted by The continuous
solution varies (much) more rapidly in fl, than in the remainder of fl. 
Therefore, a (much) smaller grid size is needed in fl, than in the remainder of 
fl to provide the required level of resolution: h <stH.
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Figure 1. Examples of H,, f l H, fV/ and

We assume that the interface T coincides with grid lines of F2H. Also we 
assume that all grid points of F2H f] F2t belong to F2j'. We note that 12/' does 
not contain grid points on the interface iP (see Fig. 1). These fine interface grid 
points generate the fine interface grid F h. The coarse interface grid r H consists 
of all coarse interface grid points x e  F1H f] F . The corresponding spaces of grid 
functions are denoted by Sffi and Sf? respectively.

Below we will also use a so called composite giid. The composite grid Flc is a 
nonuniform grid that covers the domain FI. It is the union of the global coarse 
grid FIH and the local fine grid F2{' (see Fig. 2). The space of grid functions on 
the composite grid is denoted by

Figure 2. Partitioning of f l c; O grid point of f l c, •  grid point of Of, X grid point of T H

Related to these grids we now introduce discrete operators and appropriate 
intergrid transfer operators.



First we discretize (2.1) with respect to the global coarse grid f l H. At all grid 
points x e  f l H the differential operator in (2.1) is replaced by a finite difference 
approximation. This yields the basic coarse grid, problem:

LHuH= f H on n H, (2.2)
with uH, f H g F h and LH : F H - * F H. The Dirichlet boundary values in (2.1) 
are incorporated in f H.

For a given (e.g. vH = uH) we consider a corresponding fine grid
problem on flj'. For this problem artificial Dirichlet boundary values are 
specified at all grid points x e T 1' using the values vH(x), x <e T h and an 
interpolation operator pr \FrH ->Frh. In practice one will use piecewise linear 
or quadratic interpolation with suitable modifications near the boundary d f l : 
the boundary values from (2.1) are used when interpolating between a point of 
dfl and a grid point of T H. For example, let (H, y) e  r H. Then, for x on the 
line segment (1 -  S)(0, y) + 8(H,y),  0 < 5 < 1, the linear interpolation is de
fined by

(M « ir» ))(* )  “ O ' 5) u ( ( ° . r ) )  + y))
= ( l - 5 ) g ( ( 0 , y ) ) + S v " ( ( H , y ) ) .  (2.3)

At all grid points x e  flj' the differential operator in (2.1) is replaced by a finite 
difference approximation. Using boundary values derived from uH results in the 
linear system

£ ? « ; '- / / '- L krPr(ufr „) on/2‘ , (2.4)
with uj‘, fi L'l -.JF/' Lhr \Frh -^ F /\  The Dirichlet boundary condi
tions on dflt f) dfl are incorporated into / / ’. The incorporation of the artificial 
Dirichlet boundary conditions on T in the system is given explicitly by the term 
- L hr pr (v",i).

Finally we consider a discretization on the composite grid Oc. At all grid points 
x e  f lc the differential operator in (2.1) is replaced by a certain finite difference 
approximation. We denote the resulting composite grid problem by

Lcuc =fc on n c, (2.5)
with uc, f c e.Fc and Lc :FC -*FC.

The composite grid is partitioned in the following way (see Fig. 2):
n c = n c u r H\j o f .  (2 .6)

We assume that at all grid points xg  f lc the same finite difference formula is 
used as in the discretization process on the global coarse grid:

(Lcuc)(x) = (LH(uĉnH))(x),  x g /]c ,

fc(x) = f H(x), x <e Oc ,
with Lh and f H as in (2.2).

(2.7a)

(2.7b)



We assume that at all grid points x e  Of1 the composite grid discretization is of 
the following form:

( Lc“c)(x) = (LU % * ,))(x) + ( Lr M “c |r"))(x)> x S  (2.8a)

/ c ( x )  = /* (x)> (2.8b)
with L'f Lllr , //' and pr as in (2.4).

There are several options for choosing the composite grid discretization at the 
interface points In Subsection 3.3 we will consider one particular choice
which results from the analysis of the LDC method.

Remark 2.1. In [4] a more general setting is presented. For example, for the 
LDC method it is not necessary that the local fine grid is a refinement of the 
coarse grid ((L2H f| 12,) c  f}/1). Also the setting in [4] allows the use of a variety 
of discretization methods. Due to this generality the analysis in [4] uses several 
technical assumptions which may be hard to verify in concrete situations. In this 
paper we restrict ourselves to the specific situation described above. This makes 
it possible to give a detailed analysis of the LDC method without technical 
assumptions.

3. Local Defect Correction

3.1. Introduction of the LDC Method

In the LDC iteration the global coarse grid LlH and the local fine grid Of1 are 
used to compute a numerical approximation of the continuous solution U of 
(2.1). At each iteration step a discrete problem on ClH and a discrete problem 
on Oj1 are solved.

We introduce the following notation. We use a local coarse grid

n lH: =n l n n H, (3.1)

and the space of grid functions on 0,H is denoted by The local coarse grid 
is a uniform grid with size H  that covers the region f l l (see Fig. 1).

The characteristic function x  is defined by

( F ) W  :=
X G  L l f

x < = n H \ n t i .
(3.2)

In LDC one starts with solving the basic coarse grid problem (2.2). The resulting 
uH is used to define boundary values for a local fine grid problem, i.e. we solve 
(2.4) with uH = uH, resulting in a local fine grid approximation wf. By solving the 
local fine grid problem we aim at improving the approximation of the continuous 
solution U in the region /2,. However, the Dirichlet boundary conditions on r h



result from the basic global coarse grid problem and the approximation uf can 
be no more accurate than the approximation uH at the interface. In general, local 
phenomena cause the approximations uH(x) to be relatively inaccurate at all 
grid points x e  O H. Therefore, the results of this simple two step process usually 
do not achieve an accuracy that is in agreement with the added resolution (see 
e.g. [2], [4]). In the local defect correction iteration coarse and fine processing 
steps are reused to quickly obtain such accuracy.

In the next step of the LDC iteration the approximation u\ is used to update the 
global coarse grid problem (2.2). The right hand side of (2.2) is updated at grid 
points that are part of (If1. The updated global coarse grid problem is given by

L huh = f H (3.3a)
with

f H(x) f ( L" ( “ W ) ) ( x) + L r W 'O H * )  (3 .3b)
\ / H(x)

The operators L f :SrlH and L f  :^rH -* ^ jH are coarse grid analogues of
L) and Lhr in (2.4) and they satisfy:

( L h wh )( x) =  (L f(w ^«))(x ) + (L ? (w f  tf))(x), wh g ^ - h , x e n , H.

(3.4)

Using (3.2) we can rewrite (3.3) as follows:

L"uH= f "  + - /" )■  (3-5)

So the right hand side of the global coarse grid problem is corrected by the 
defect of a local fine grid approximation.

Remark 3.1. In [4] Hackbusch considers local defect correction with overlap (i.e. 
d > 0). Then the right hand side of the global coarse grid problem is not 
corrected at all grid points of fi,H, but only at those grid points of f2;H that have 
a distance larger than d to the interface T.

Once we have solved (3.5) we can update the local fine grid problem:

Lhtu>l =f th — Lhr pr ). (3-6)

The approximations uH and wf of U are used to define an approximation of U 
on the composite grid:

Mc(X)
“?(*) x e  Of
uH(x) x £ f i c \  n f

In [2] an error analysis for this approximation that results after only one LDC 
step is given.



In the LDC iteration global problems like (3.5) and local problems like (3.6) are 
combined in the way described above.

LDC

Start: exact solution of the global problem
L Hug = f H  Qn  0 H

exact solution of the local problem

Lhiui, o = fi ~ Lr Pr v  J on O',' 

computation of the composite grid approximation

( uf 0(x) x e f l f

’ \ uq(x) x e  Clc \  Oj*
i = 1 ,2 ...:

a. Computation of the right hand side of the global problem

f H := (1  ~ x ) f H + x£?(w?f/- i | fl«) + x L Hr{u"r H)

b. Exact solution of the global problem

L Hu ? = f H on f l H
c. Exact solution of the local problem

£/«?,,■ = f t  “  LrPr (“,"*) on n ‘
d. Computation of the composite grid approximation

, , l uu (x) X£/3f 
M- (X)= «?(X)

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(3.7e)

(3.7f)

(3-7g)

Remark 3.2. In the LDC iteration it is not necessary to compute the composite 
grid approximation explicitly. (3.7g) is added for reasons that will become clear 
later on.

In practice the systems in (3.7e, 3.7f) will be solved approximately by a fast 
iterative method. Then one can take advantage of the fact that one has to solve 
problems on uniform grids. The LDC iteration (3.7) is most naturally inter
preted as an iterative discretization and solution method for a boundary value 
problem whose solution contains a high activity region. At each iteration step an 
approximation of the continuous solution is computed both on the global coarse 
grid and on the local fine grid. The approximation on the local fine grid is used 
to define a discrete problem on the global coarse grid. Thus the discretization 
process and the solution process are coupled and the discrete problem that is 
actually being solved is an implicit result of the iterative process. In the



following subsection we consider both the discretization aspect and the iterative 
solution aspect of the LDC iteration.

3.2. Properties of the LDC Iteration

Any fixed point (uH, u\ ) of iterative process (3.7) is characterized by the coupled 
system

Lhuh - x L r ^ p n )  ~xL*i ( « W )  = (1 ~ x ) f H on I2H, (3.8a)

L\uf = ff  -  Lhr pr (u^ h) on Oj1. (3.8b)
If dfll fl df2 =£ (0), then the second term on the right hand side of (3.8b) 
contains boundary values of (2.1) (see (2.3)). In order to separate data and 
unknowns, we rewrite (3.8b) in the following way. We introduce the interpola
tion operator pr \<FrH Away from the boundary d!2 this operator is the
same as the interpolation operator pr from (2.4). When interpolating between a 
point of dfl and a grid point of r H, a zero value at the point of dfl is used in 
pr . We recall that in that case the boundary values from (2.1) are used in the 
interpolation operator pr . So, if dfll f| dfl = {0} or if g = 0, then pr = pr . In 
general, however, this does not hold. In Fig. 3 the difference between pr and pr 
is illustrated in case of linear interpolation.

| : grid point of 
o : point of dQ,
□ : Dirichlet boundary value 
...... : Pr----  : pr

Figure 3. p r and p r in case of linear interpolation

Since
pr (v + w) = pr v + pr w for all v, w G^rrH,

we get
— LhrPr ( “ jrw) = ~ -̂hpPr (^ r )i

with 0^ ^&pH, 0p (x) = 0 at all x e  r H.

(3.9)

We define
f i = f , h - L hr pr (a“ ).

Then (3.8b) can be replaced by

Lh[Û  = fr — Lhr pr [u^pĤ .

(3.10)

(3.8c)

In the following we show that the composite grid function corresponding to 
(uH, u^) (as in (3.7g)) is the solution of a discrete problem on the composite grid



(cf. (2.5)). As stated in Section 2 we consider linear problems and we assume 
that the finite difference operators LH, L f , L!\ are nonsingular. In this section 
we also assume that LH, L f , Lh, correspond to 9-point stencils.

At grid points x e  Ofi  two approximations exist: uH(x) and uf(x). We show that 
these approximations are identical.

Lemma 3.3. Any limit value (uH, wf) of the LDC method satisfies

UH(x) = W;'(x), X €E f l f i . (3.11)

Proof: From (3.2) and (3.8a) we obtain

( Lhuh) ( x) -  (L?(u^«))(x) -  (L f (fifjfl«))(x) =0, x e  Ofi.

From (3.4) it follows that

( L huh ) { x) = (L f  (m,V ) ) ( x) +  (L f  (« jr»))(x), x e  Ofi.

Thus

L f (^in,w) = L f (^/|/2")>
and this is equivalent with (3.11) since L f is nonsingular. □

As a consequence of Lemma 3.3 the coupled system (3.8) can be represented as 
a composite grid system. To show this, we first introduce some further notation 
related to the composite grid.

Define uc G.Sf by

t o * )  x e A* (3.12)
cW  ( « " ( x) x e n c \ n j '  = n H \ n , H.

Define
t H ■= {xe {2,H |distance(x, L ) = H).

The space of grid functions on f2H \  flfi  ( P H) is denoted by SF0H Note
that SrH =SfH . We introduce L f \ S?0H Sf0H and L f \SPjH such
that (cf. (3.4))

( L hwh ) (x) = (L f(w ^ //X < ))(x) + (Lf(w,f*))(x)

wH e ^ H, x ^ n H\ n , H. (3.13)

Further we introduce the trivial injections rp : ^ h and rr —>.9^:
rf-w = W\fH, (3.14a)

rr u —û r H. (3.14b)

In the following theorem we use block partitioning corresponding to S9c =9rlh ® 
(see Fig. 4).
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Figure 4. Partitioning of f l c corresponding to f7c =&jh ® ^0H

Theorem 3.4. The composite grid approximation uc from (3.12) satisfies:

L c“c =fc
with

L =
L'l Lhr pr rr  ̂

L f r t  L f

r.H ̂u\nH \  n,w

f t
\J\nH \  n,H

(3.15a)

(3.15b)

(3.15c)

(3.15d)

Proof: First note that

L*]u'i + Lhr pr rr (ufnn N qh j = f lh 

holds due to (3.8c) and (3.14b).

For x e  LIH \  O f  we have

LHr rt  wf + L f  (ufnH x fl/r ))(x) °'=a) (l ^ u' ^ h) + L f  [ufn n N fl«))(x)

(3==!) +Lf (u f nH^n r ))(x)

(3.13)
-  ( LHuH)(x)

(3.8a) „
=  /  ( x ) .

Thus Lf r fU1; + Lf(ufnn ^ n») = f f u  x □

Remark 3.5. The composite grid problem (3.15) is such that (2.7), (2.8) hold. 
Furthermore, we have specified the discretization at the interface points x £ f H 
(cf. (3.13)).



Note that existence and uniqueness of a fixed point of the LDC iteration is 
guaranteed if the matrix L c in (3.15b) is nonsingular. In certain cases nonsingu
larity of Lc can be concluded from properties of LH and Lht. For example, 
suppose that the finite difference matrices LH from (2.2) and L!\ from (2.4) have 
positive diagonal elements and nonpositive nondiagonal elements and that the 
matrices are irreducibly diagonally dominant (see e.g. [6]). If we use piecewise 
linear interpolation on the interface then it is easy to verify that L c in (3.15b) 
also has positive diagonal elements and nonpositive nondiagonal elements and 
that Lc is irreducibly diagonally dominant. Hence Lc is nonsingular (it is even 
an M-matrix). In case of piecewise quadratic interpolation things are more 
complicated. In [3] nonsingularity of Lc is proven for the Poisson equation and 
piecewise quadratic interpolation on the interface. If both L'} and LH are 
nonsingular then, in general, this does not imply that L c is nonsingular. A 
counter-example is given in [4], Example 3.3.1.

An important consequence of Theorem 3.4 is that for the discretization error of 
the limit of the LDC iteration it is sufficient to analyze the composite grid 
discretization in (3.15) (which may be easier than an analysis of the coupled 
system in (3.8)). Note that in this discretization the treatment of the interface 
points is rather unusual. It turns out that, at least for the finite difference case, 
stability and reasonable error estimates can be proved. A detailed analysis of the 
finite difference discretization on composite grids for Poisson type of problems 
is presented in another paper [3]. Here we just give a typical error estimate from 
[3]. By dh H(y) we denote the local discretization error at the grid point y. By r *  
we denote the set of grid points in 0,H next to the interface T, i.e.

r *  = {x e  H/! | dist(x, r ) = hj .

Due to the interpolation needed on r  the local discretization errors at points 
y e  r*  depend on <j~H/h.  For the composite grid discretization as in (3.15) 
applied to a Poisson problem, the following estimates are valid:

max \dh H(y)\< CXH 2, (3.16a)
y &nH\n[1

max \dh H(y)\< C0h2, (3.16b)
yenl‘\ r f

max | d
ye A* h,H (y)| < C3a 2Hi + C2hz, (3.16c)

with y' = 0, 1 if pr corresponds to piecewise linear or piecewise quadratic 
interpolation respectively. The constants C; depend on higher derivatives of U 
and due to the local high activity we have C2 »  Cx, C2 »  C3. In [3] it is proved 
that the following global discretization error estimate holds:

||uc -  U |L < C{CXH 2 + C2h2 + C3H j + 1),

with C a small constant that does not depend on U, h, H.

(3.17)



As usual in finite difference estimates, the result in (3.17) has the disadvantage 
that high (fourth order) derivatives are involved. However, the estimate in 
(3.17) nicely separates the influence of the high activity region (C2h2), the low 
activity region (CXH 2), and the interpolation on the interface (C3Hj+l). Note 
that all constants in (3.17) are independent of a = H/h.  We refer to [3] for 
numerical results related to the global discretization error bound (3.17).

In the remainder we assume that L c is nonsingular. Thus the LDC iteration 
(3.7) has a unique fixed point uc as in (3.12).

Below, in Theorem 3.6, we derive an expression for the iteration matrix of the 
LDC method. First we introduce two trivial injections rc and rcl and correspond
ing prolongations. The restrictions rc \&'c ->3rH and rcl\3rc -*3r{1 are defined by

rcw:=w\nH> (3.18)

rdw:ssw\n?- (3-19)
We use prolongations r f \3rH and r f  Below the following
operators Pl -.3̂  ~^3rc play an important role:

P, ' =rJ(LHy ' r cL c, P2 -~rJl( L " , y ,rd L c. (3.20)
We use block partitioning corresponding to 3rH = 3rlH ®3raH, 3f = 3 ^ '® 3raH. 
Then the restrictions rc, rcl are of the form

0
with rinj :3̂ ,h • s y  the trivial injection, and

'< ,=  [ /  0]-

(3.21)

Theorem 3.6. The iterates uci(i > 1) from the LDC method (3.7) satisfy

Uc , i - “ c = = M ( U c , i - \  -  M e) ,
with

(3.22a)

(3.22b)

Proof: First we note that:
r(3.7 d)

f H -  (1 - x ) f H + + *£?(« /'-,,,„)
(3.4),(3.18) ,  x „

= { ^ - x ) f H + x L Hrcuc t X

= LHrcuc,i-1 + (1 -  x ) ( f H- L HrcuCJ_x). (3.23)
Consider the term (1 -  x ^ f H ~ LHrcuc i_ ;)• We will show that for all x e  O h 
the following holds:

((1 ~ x ) ( f H- L HrcucJ_ x)){x) = (rc( / c - L cMc,i-i))00- (3.24)



For x g Of1 the left hand side in (3.24) equals zero due to the definition of x- 
On the other hand, for x g {If1, we also have

(rc( / c - £ c“c,«-l)(X)) = ( l rinj 0 ] ( / c - 4 “c,/-l))(X)

=  [ ri n j [ f i  ~  L A u l i _  i O’ ( “ , % « « ,  « * ) ) ) ( * )

= [ r i n j ( f ? - L W j - i - L hr P r { u ? -  I|r« )) ) (x) = 0 ’ 

due to (3.7b), (3.7f). So (3.24) holds for x G O f1.

For x g Dc = O h \  (Of1 U r H) we have (rcL cuc)(x) = (LHrciic)(\) and thus 

((1 ~ x ) { f H ~ ^ Hrcuc,i-\)){x) = ( f H ~ L HrcucJ_l)(x)

So (3.24) holds for x g O c .

Finally, for x g r  H, we have

( ( l - A r ) ( / " - ^ c “c,«-i))(x) = ( f H - L Hrcuc<i-x)(x)

= ( /c/c )(X) -  ( ^ V c , i - l ) ( X)
(3.13) , a . /

=  ( / J c ) ( X) -  ( L a O C, , - x /J// X) ~

L r ( “ c.i-Hr*))(x)

= (c /c )(x) -  {Lcuc, i - i)(x)

X) .
(3.18)

So (3.24) also holds for x g r H.

Combination of (3.23), (3.24) yields

f H = LHrcuci_ , + rc[fc -  Lcuci_ x). (3.25)

For uc i in the LDC method we have the following (where we use block 
partitioning corresponding to 3^ = ̂ ' /' ® ^ w):

UC,l~UC =

(3 .7 /)

0 0 
0 /

0 0 
0 /

r7’,.H i T . .h 
c U i ^ r c l U Li

(3.9),(3.10) 0 0 
0 /

(3.146)

LhrPr (ut » )  +rci(L i Y lfih ~ “ t

Y u? + Yi(Lhl ) 1 rclL cuc — uc0 - (L { ) ’ Lhr pr r
0 /



(3.7e)

(3.25)

+

(3.21)

+

0 ( £ / )  L hr p r rr

0 /

0 — {L1}) Lhr pr rr
0 /

0 — (L/) Lhr pr rr

0 (7 /)  P'rPrrr

0 - ( L ? ) _ 1 L * /5 r rr

rc ( LH)~1 f H — ( I  — P2)uc 

r I r c U c , i - l  -  { I - P z ) u c 

rI ( L Hy lrc(fc ~ L cuc i_

U c , i - i  “  U ~ P i ) u c

P l { u c — (3.26)

Now note that

0 ( -L /) L'fPrrr = / - / (L;/) Lhr pr rr
_0 / .0 0

= / - 7
0 W ) " ' [ L? Lhr pr

- 7 - r J ( L { ) “ rclL c
= I - P 2. (3.27)

Substituting (3.27) in (3.26) yields

Uc,i - “c - i 1 -  A K . i - l  -  ( / -  A ) “ c - ( l - P l ) P \ ( U c , , -  \ ~ “c)
=  ( I - P 2) ( I - P I ) ( U ' , , - 1 - u e ) .  □

In the proof of Theorem 3.6 we have used the structure of the starting 
procedure in the LDC method. For the vector uc 0, resulting from the starting 
procedure in the LDC method, we have the following result:

Lemma 3.7. 77ie initial approximation uc0 in (3.7c) satisfies

uc , o~“c = U - P i ) { < - U c )
with

u* = rI  f H.

(3.28a)

(3.28b)

Proof: For 0 in the LDC method we have:

Uc,0 ~ Uc = 

(3.76)

0 0 
0 /

0 0 
0 /

rl u0 +rllu 1,0~ “c

r i n g - r j , ( L i )  1 LhrP r(u”rH) + r3(Lf) Xf i ~ u L



(3.9X3.10)

(3.14ft)

0 0 
0 /

- r I i (L h,) 1 Lhr pr (u§r„) +rJl(Lhl ) ' f f - u c 

rI"o +rJl(Lhl )~l rclL cuc - u c 

r I ( L " y lf " - ( I - P 2)uc.

0 (-^/) Lhr pr rr
0 7

0 ( — 7//) Lhr pr rr
0 /

Using (3.27) we obtain (3.28).

(3.7a)

□

Substituting (3.28a) in (3.22a) and using the fact that (7 -  P2)2 = (7 -  P2), yields 
the following expression for the LDC iterates.

Corollary 3.8. The iterates uc i (i > 1) from the LDC method satisfy

Uc,i-*c = ( ( I - P i ) ( I - P M I - P 2 ) y W - & c ) -  (3-29)
From Theorem 3.4 and Corollary 3.8 we conclude that the LDC method in (3.7) 
is a linear iterative method for solving the composite grid system in (3.15) and 
that the rate of convergence of the LDC method is determined by the operator

A7 = (7 — 7,2)(7 — 7>,)(1 —Pi). (3.30)
From the definition of the LDC method it is clear that, in a certain sense, this 
method can be seen as a multiplicative Schwarz domain decomposition type of 
method. In mathematical terms this is made precise by the expression for the 
error propagation operator M  in (3.30). Using the expression for the error 
propagation operator M we can show a close relation between the LDC method 
and the FAC method of [10]. This will be discussed in Section 3.3 below.

Unfortunately, we are not able to derive satisfactory bounds for the norm (or 
spectral radius) of M. With respect to this we note that (almost) all convergence 
analyses of related methods (e.g. FAC applied to a FVE discretization as in [10]) 
use a variational setting, whereas it is not clear to us how the discrete operator 
L c (and thus P{ and P2) can be put in such a variational setting. So a 
satisfactory convergence analysis of the LDC method with <7 = 0 (no overlap) is 
still lacking, although we have been able to prove that the rate of convergence is 
determined by the matrix M (i.e. we need bounds for \\M\\,. p(M)). Below we 
give an indication of convergence properties of the LDC method by means of 
numerical results for two (model) problems. We consider the boundary value 
problems:

Case 1. The Poisson problem
— A u = f  in 77 = (0,1) X (0,1),

U = g on dd, ,
with /, g such that the solution U is given by

U(x,y)  = |{tanh(25(x + y -  £)) + l}. (3.31)



Case 2. The elliptic problem with variable coefficients

~ (2 + sin( — ))Uxx -  exp(xy)Uyy + cos( JUx + (1 + x) exp(y)Uy = f

in n =  (0,1) X (0,1),
U — g on dfl,

with / ,  g such that the solution U is given by (3.31).

The solution U in (3.31) is shown in Fig. 5. The solution varies very rapidly in a 
small part of the domain and is smooth in the remaining part of the domain. For 
Ol we take (2, = {(x,y) e  D\x < 1/4 A y  < 1/4}. Both on the uniform global 
coarse grid and on the uniform local fine grid we use a standard discretization. 
We take central difference approximations both for the second order and the 
first order derivatives. We consider piecewise linear interpolation and piecewise 
quadratic interpolation on the interface. Numerical results related to the com
posite grid discretization errors for these problems are given in [3],

In Table 1 we give the average error reduction per iteration (in 
four iterations:

1 V
: -  U,

in the first

We see that, both for Case 1 and Case 2, the rate of convergence is high and 
more or less independent of the parameters H  and cr. The error reduction 
factors for piecewise linear and piecewise quadratic interpolation are compara-



Table 1. Average error reduction factors p

Case 1 H  = 1/20 <7=2

linear
quadratic

a =  2 
2.2 e -  02 
1.9c -  02

(7=4 
2.9c -  02 
2.2 e -  02

(7=8
3.1c- 0 2  
2.3e -  02

H =  1/20 
2.2 e -  02 
1.9c -  02

H  = 1/40 
1.5e -  02 
1.0c- 0 2

H =  1/80 
1.1c -  02 
0.7c -  02

Case 2 H =  1 /20 (7=2

linear
quadratic

cr = 2 
2.3e -  02 
2.1e -  02

(7=4
3.1c- 0 2  
3.8c -  02

(7=8
3.3e -  02 
4 .1c- 0 2

H  = 1/20 
2.3c -  02 
2.7e -  02

H  = 1/40 
2.7e -  02 
2.9e -  02

H =  1/80 
2.0e -  02 
1.7c -  02

ble. So, for these (and related) test problems we observe a satisfactory conver
gence behaviour of the LDC method.

3.3. Correspondence to FAC

In Subsection 3.2 we have shown that the discrete problem solved by the LDC 
method is the composite grid problem (3.15):

M e  =fc-

The fast adaptive composite grid method (FAC) by McCormick [8-10] is an 
iterative method for solving a given discrete problem on a composite grid. In the 
FAC method all actual computation (i.e. (approximately) solving discrete prob
lems) is performed on the uniform subgrids of which the composite grid is 
composed. In [8,9] the FAC is described, and convergence theory is presented, 
for the variational case. In [10] the FAC method for solving composite grid 
problems resulting from a finite volume element (FVE) discretization technique 
is considered. There convergence results for the FVE-based FAC are derived.

It is noted in the literature that FAC and LDC are very similar (see e.g. [8,9]). 
In [7] a comparison of FAC and LDC (and FIC) is made by means of numerical 
experiments. In the literature we did not find any theoretical results concerning 
the relation between FAC and LDC. Based on the analysis of the LDC method 
in the foregoing sections, we can show a clear relation between FAC and LDC. 
We consider a Finite Difference-based FAC method for solving the composite 
grid problem (3.15) and we prove that this method is equivalent with the LDC 
method (3.7).

In the FAC method approximations of uc from (3.15) are computed in an 
iterative way. At each iteration step a discrete problem on the uniform global 
coarse grid and a discrete problem on the uniform local fine grid are solved 
exactly and the resulting solutions are used to improve the current iterate.



Let uc be an approximation of uc. Inserting iic into the system Lcwc—/ c = 0 
yields the composite grid defect

dc .~fc - L cuc. (3.32)

The correction vc •— uc -  uc satisfies

L cvc = dc. (3.33)

The composite grid defect dc is restricted to the global coarse grid in the
following way:

dH~ r cdc, (3.34)

with rc \£FC -+SFH a restriction operator that satisfies

^ ^ ) \ c i co r H = ^\acor»-  (3.35)

So rc is the trivial injection outside the local region O,.

The composite grid defect is restricted to the local fine grid in a trivial way:

4-d̂ .(3.36)

An approximation vH ^S rli of the correction uc is computed by solving the 
global coarse grid problem

LHvH = dH, (3.37)
with LH as in (2.2) (cf. (2.7a)).

Also an approximation vf of uc is computed. The approximation vH of uc 
that results from (3.37) is used to define artificial Dirichlet boundary conditions 
on the interface in the following local fine grid problem (cf. (2.4), (2.8))

L W - d t - O r P ^ v ”, ) ,  (3.38)

with Lhh Lhr as in (2.4). The interpolation operator pr has been introduced in 
Subsection 3.2. We recall that zero boundary values are used in pr when 
interpolating between a point on dfl and a grid point of r H (see Fig. 3).

The approximation uj’ from (3.38) is used to correct the approximation uc of uc 
at grid points of il/1:

uc(x) := “c(x) + vi ( x)> x e  Hi1. (3.39)
At grid points x G fic \  F2/1 the approximation vH from (3.37) is used to correct 
the approximation uc:

mc( x) := uc(x) +  uH(x), (3.40)

The FAC iteration is an iterative process that combines local and global discrete 
problems in the way described above.



FAC

Start: Initial composite grid approximation uc Q given.

1 - 1 , 2 , . . . :

al. Computation of the composite grid defect

^c ' fc 1

a2. Restriction of the composite grid defect to the global coarse grid

d H'-=rcdc

a3. Restriction of the composite grid defect to the local fine grid

d{ ■= dc1 c\nh

b. Exact solution of the global problem

L HvH = d H on n H

c. Exact solution of the local problem

L) uj‘ = d'i -  Lhr pr ( V\ph j on n[l

d. Correction of the composite grid approximation

u c , i - i ( x )  +  ^ ( x) x G n i 

u c , i - i(x) + y" ( x) X e  -Cc \  n j

(3.41a)

(3.41b)

(3.41c)

(3.41d)

(3.41e)

( 3 .4 1 0

The FAC iteration (3.41) is written in its delayed correction form (cf. [10], Section 
4.1). In this form the method is not applicable to nonlinear problems. In case L c 
is nonlinear, the method should be used in FAS-form (see [10], Section 4.5).

A simple computation shows that

[ f c - L cucJ)(x) = 0 , x G f l c \ r H, i> 1.

So, after the first FAC step we have that df  = 0 and that d^jH rH = 0. Using this, 
one can easily show that uc from (3.15) is the unique fixed point of (3.41).

Below, in Theorem 3.9, we derive an expression for the iteration matrix of the 
FAC method. The notation is as in Subsection 3.2.

We use block partitioning corresponding to = 5r[H ® ^0H, S f = S rlh 
Then the restriction operator rc from (3.35) is of the form

r  0 

0 I
(3.42)

with r : ->



Below, the operators P2 from (3.20) and Px \3rc -*&'c, defined by

(3-43)
play an important role.

Theorem 3.9. The iterates uci (i > 1) from the FAC iteration (3.41) satisfy

( Mc , / - “c) ~ “c) (3.44a)
with

M = ( I - P 2) ( l - P x). (3.44b)

Proof: For uc l in the FAC method we have:

Uc , i ~ “ c =  U c , i - l  “ “ c + ^ c W  +  

(3.41e)

0 0 
0 /

=  '  Mc , i - i  ~ u c + rTci(Lhi) 1L hr pr (ufIrH) +

(3 .41a,c) A j a

= ~ wc +C/ (L/) rclL c(uc - u Cti_f)

0 0 
0 /

0 - ( L * ) ~  L hr p r rr

0 /

(3.4 Id )
=  V ~ P l ) ( U c , i - \  - “ c )  +

(3.41a, b)
=  ( I  ~  P 2 ) ( u c J - \  ~  &c )

0 ~{ L ' ; y  Lhr pr rr
0 /

0 (Lhi ) L f pr rr
.0  /  

Substituting (3.27) and (3.43) yields (3.44).

cr( L")

□

The iteration matrix M of the FAC iteration depends on the restriction 
operator r:&\h from (3.42). So the iteration matrix of the FAC iteration
differs from the iteraton matrix of the LDC iteration if r  A rinJ. Due to the fact 
that (I  -  P2)2 = ( /  — P2), the error propagation of the FAC method is de
termined by the operator ( /  -  P2)(I -  PX)(I -  P2):

= ( ( I - P 2) ( l - P 1) ( I - P 1))i~ \ l - P 2) ( l - P 1) (uc,0- u c), (3.45)

for i > 1.

Lemma 3.10. The operator ( /  — P2)(I — Pf)(I — P2) is independent of the choice of 
r in (3.42).



Proof: First note that I — P2 does not depend on r. The operator I  — P2 is of the
0 ★  /  \ Tform „ so ( /  - P 2)rc does not depend on r.

Further we note that L C(I  -  P2) is of the form 

depend on r.

0 0 
0 ★

so rcL c(I  -  P2) does not

□

Since ( /  -  P2){I — PX)(I — P2) does not depend on r, we have that

( J - P 2) ( / - P , ) ( / - / > , ) - ( / - P 2) ( / - P , ) ( / - i > 2) (3-46)

with Px as in (3.20).

We note that in the FAC method the initial approximation is not specified yet. 
A possible choice for this initial approximation is the approximation that results 
from the starting procedure in the LDC method (3.7a-c). By Lemma 3.7 we 
have that this initial approximation satisfies

u c,o ~ a c =  ( / - F 2 ) ( m* - u c ) .

Using this initial approximation, the FAC iterates satisfy

u c , i ~ a c = M i ( u CtQ- u c )

= ( ( I - P , ) ( [ - P l) ( I - P 2))\u (3-47)

The equivalence of LDC and FAC follows from (3.29), (3.46) and (3.47).

Corollary 3.11. The FAC method (3.41) with initial approximation from (3.7a-c) 
and the LDC method (3.7) yield identical iterates.
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