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A bstract. In this paper we introduce and analyze a new Schur complement approximation 
based on incomplete Gaussian elimination. The approximate Schur complement is used to 
develop a multigrid method. This multigrid method has an algorithmic structure that is very 
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almost purely algebraic and has interesting robustness properties with respect to variation in 
problem parameters.
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1 Introduction

In recent years extensive research has been devoted to the development and analysis of multi
grid methods for elliptic boundary value problems which converge with an optimal rate inde
pendent of the regularity of the solution (cf. [17], [18] and the references therein). Clearly this 
is a form of robustness. Another interesting topic with respect to robustness is the dependence 
of the multigrid convergence rate on certain problem parameters. An example of such a prob
lem parameter is the ratio of anisotropy in an elliptic boundary value problem. There are some 
recent papers (e.g. [5], [6], [9], [14]) in which multigrid methods are treated that are robust with 
respect to variation in this anisotropy parameter. A convection-diffusion equation is another 
example in which we have interesting problem parameters (convection/diffusion ratio, flow 
direction). In some recent work ([10], [11], [12]) we studied multigrid methods based on Schur 
complement approximation. An important property of these methods is a strong robustness 
w.r.t. variation in relevant problem parameters. In this paper we consider a multigrid method 
based on Schur complement approximation that is closely related to the methods in [10], [12]. 
However, in this paper we introduce a new and very simple Schur complement approximation. 
This new approximation is based on the algebraic tool of incomplete Gaussian elimination.
We assume two nested grids (”coarse” and ’’fine”) and on the fine mesh the new mesh points 
are ordered first and then the coarse grid points. This yields a block two by two partitioning 
of the fine grid stiffness matrix A:

A =
‘ A n  

. A 21

A\2 

A22 .



Based on the block LU factorization

I  0 ■ A n  A h

. ^21 ̂ n 1 I  . . 0 SA _
cM •— A-22 ~ ^21^n1 A \2 >

we consider a linear iterative method with iteration matrix

(1.1) W  = I -
I  0

A21AY1 I  _

A n  A 12

. 0 a;-1 £4

- 1

A .

In1 (1.1), SA is a preconditioner of the Schur complement SA and u  a scaling parameter. We 
will show that the linear iterative method with iteration matrix as in (1.1) can be implemented 
using an algorithmic structure that is very similar to the structure of classical two-grid meth
ods, which is now well understood. As in the classical approach we then obtain a multigrid
(V- or W-) cycle if we apply one or more recursive calls for solving the coarse grid problem 
(with matrix 5^) approximately.
A main topic of this paper is the choice for SA. Usually, in multigrid methods based on Schur 
complement approximation, the approximate Schur complement SA is based on the coarse grid 
stiffness matrix (e.g. [1], [2], [9], [12]). In [10] one can find a more advanced approach (resulting 
in a better approximation of S A) in which the Schur complement is approximated by the exact 
Schur complement of modified fine grid equations. These modified fine grid equations are ob
tained using information about the underlying differential equation (e.g. convection-diffusion 
equation). In this paper we introduce and analyze a very simple incomplete Gaussian elim
ination approach. Besides the given (fine grid) matrix this incomplete Gaussian elimination 
process only uses the underlying structure of a sequence of refined meshes. Thus we obtain a 
multigrid method which is almost purely algebraic. In a certain sense our multigrid method is 
a ’’perturbation” of the direct method of Cyclic Reduction (cf. [7], [15]), with a much larger 
range of applicability than the Cyclic Reduction method.
Using Fourier analysis we prove that the two-grid method has an interesting robustness prop
erty with respect to variation in problem parameters.

The remainder of this paper is organized as follows. In Section 2 we derive a few elementary 
algebraic properties of (approximate) block Gaussian elimination. In Section 3 we describe the 
Schur complement approximation based on incomplete Gaussian elimination. In Section 4 we 
apply Fourier analysis to the two-grid method and we derive estimates, both numerically and 
theoretically, for the contraction number of the two-grid method. In Section 5 we show results 
of numerical experiments with the multigrid W-cycle applied to a few test problems.

2 Block Gaussian elimination

In this section we discuss some algebraic aspects of a two-grid method based on Schur com
plement approximation.
We consider a second order elliptic linear boundary value problem on a plane polygonal domain 
ft. Let ft// be a given ’’coarse” mesh on ft consisting of triangles or quadrilaterals. By ftA



we denote the corresponding ’’fine” mesh that results after a standard refinement of QH. The 
space of grid functions on QH{^h) is denoted by UH(Uh). In UH and Uh we use the standard 
nodal basis. The ordering of the basis functions in Uh is chosen such that the basis functions 
corresponding to nodes in Qh\&H are taken first. This induces a partitioning of u e Uh into 
two blocks. We assume a given finite element or finite difference discretization method on Qh) 
resulting in a linear system

(2.1) AhX}i =  bh ,

with Ah : Uh —► Uh nonsingular. For ease of notation we drop the subscript h , i.e. we write 
A =  Ah. The ordering of the nodes yields a block partitioning

(2.2)
A n

A 22 .

in which [An  A 12] corresponds to the equations in the points of Qh\&H- We assume that A n  
is nonsingular. We introduce the following notation, in which we use a block partitioning as 
in (2.2): 6

(2.3a)

(2.3b)

(2.3c)

(2.3d)

S a •— A 22 — A^iA^i A \2

,r:= [0 /]

Pa  : =

~A ii A\2

I

(’’block Jacobi”)

(’’Schur complement”) 

(’’prolongation, restriction”)

(’’matrix dependent prolongation”) .

Note the identity 

(2.4) SA =  rApA ,

i.e., the Schur complement can be obtained with a Galerkin approach if we use a suitable 
matrix dependent prolongation.
The nonsingularity of A implies nonsingularity of the Schur complement SA. The Schur 
complement originates, in a natural way, from a block LU factorization of A:

A =
I  0

A 2\ A ^  I  _

A n  A 12 

. 0 ^



We now assume a given nonsingular Schur complement preconditioner S a . Our choice for Sa 
will be discussed in Section 3. We also use a parameter a; that can be used to correct a possible 
wrong scaling of S a compared to Sa (such that ujS ^ S a «  J). For given <5,4 and w there is an 
obvious candidate for a corresponding iterative method for solving the system in (2.1), namely 
the linear iterative method with iteration matrix W  defined by

(2.5) W  = I -
I  0

A 2i A f t  I

A n  A n

L 0 u- ' S a

- l

A .

The choice for S a will be such that S a has properties (e.g. w.r.t. sparsity and stability) 
comparable to those of A. Due to this we can solve the coarse grid problem with matrix S a 
approximately using a recursive call.
The implementation of classical multigrid methods (cf. [4]) based on presmoothing, coarse 
grid correction, postsmoothing is now well understood. The result in (2.6a) below shows that 
the method based on approximate LU factorization (iteration matrix as in (2.5)) can be im
plemented in the classical multigrid style.
By a(M)  we denote the spectrum of an operator M.

Lem m a 2.1. The following identities hold:

(2.6a) W  = J ( I -  u p S ^ r A ) J

(2.6b) W k = PA( I - u S ^ S A)kr(*€JV )

(2.6c) a(W ) = a(I -  u S j lSA) U {0} .

Proof. Using the relations .7 =  pAr, .72 = = rApA we obtain

(2.7) J ( I  -  u p S ^ l rA)J = J 2 ~ u>pAS j 'rA p A r  = pA(I -  u S ^ S A ) r  ■ 

On the other hand we also have

- l

(2.8) W  = I

= I

. A 2i Aij1 I  _

I  — A l i A n

0 I

A n  A\2 

0 v ~1S a _

A h1 0

0 u S ^ 1 j

/

i----
ist

. ~ A 2lA 1t

“ 
1

I -
I  A f t A i2(I — v S ^ S a )

0 uS ^ S a

0 —A 1̂ Ai2 

0 I
p(I -  u S A SA)r = pA(I -  u S AlSA)r .



Comparison of the results in (2.7) and in (2.8) yields the identity in (2.6a). The result in (2.8) 
shows that (2.6b) holds for k =  1. The identity in (2.6b) for k > 1 follows from a simple 
induction argument. Using (2.6b) with k =  1 and rpA = / ,  we obtain the result in (2.6c). □

Clearly, the algorithmic structure in (2.6a) is as in a classical two-grid method. As in the 
standard approach we obtain a multigrid (V- or W-) cycle if we apply one or more recursive 
calls for solving the coarse grid problem approximately. A complete description of a multigrid 
W-cycle algorithm is given in Section 5. We emphasize that the method with iteration matrix 
as in the right hand side of (2.6a) is not based on smoothing and coarse grid correction, but 
is just a special implementation of approximate block LU factorization. Using J 2 = J  we see 
that essentially we have to solve only one An system per iteration of the two-grid method. In 
practice (cf. §5) the An system is solved approximately. In general it is rather easy to obtain 
a satisfactory efficient approximate solver for the A n  system. For the analysis in this paper 
we assume that the An systems are solved exactly.

Remark 2.2. In certain special cases the choice SA =  SA, u  — 1 is feasible. For example, 
in the ID case if the matrix A corresponds to a 3-point discretization stencil. The multigrid 
F-cycle based on (2.6a) then results in a direct method. This multigrid U-cycle is an imple
mentation of (exact) block Gaussian elimination which is closely related to cyclic reduction 
type of methods (cf. [7], [15]). Also, for certain special problems in 2D one can obtain a Schur 
complement SA with acceptable fill-in. Examples of such direct block LU factorization meth
ods are the cyclic reduction method ([7], [15]) and the total reduction method ([13]). However, 
for most interesting problems the choice SA = SA is not feasible due to an unacceptable amount 
of fill-in.

3 A Schur complement approximation based on incomplete Gaus
sian elimination

As is indicated in Remark 2.2, for most problems the choice SA =  SA is not feasible. The 
range of applicability is much larger when we consider approximate Schur complement meth
ods. Multigrid type of methods based on Schur complement approximation already exist. In 
these multigrid methods the Schur complement is approximated using (an approximation of) 
the coarse grid stiffness matrix. Examples of such methods can be found in [1], [2] and in 
[12]. For a discussion of the differences between these methods we refer to [12]. The method 
presented in [12] is based on the two-grid method in (2.6a) with SA = Ah , where Ah is the 
coarse grid stiffness matrix. In [10] one can find a more advanced approach (resulting in a bet
ter approximation of SA) in which the Schur complement is approximated by the exact Schur 
complement of modified fine grid equations. These modified fine grid equations are obtained 
using information of the underlying differential equation (cf. Remark 3.2).
In this paper we propose a very simple incomplete Gaussian elimination approach. Besides the 
given (fine grid) matrix this incomplete Gaussian elimination process only uses the underlying 
structure of a sequence of refined meshes. Thus we obtain a multigrid method which is almost 
purely algebraic.

As in Section 2 we consider a coarse mesh Qh and a fine mesh that is obtained after 
a standard refinement of Q//.



Below we use the notion of a directed graph as explained in e.g. [3]. We assume that A  results 
from a discretization method with linear finite elements on triangles or with 9-point (or 5-point, 
7-point) finite differences on a square grid. Thus at a vertex v in the graph of A we have a 
typical graph structure as shown in Figure 1.

. = J \

linear finite elements 9-point finite differences
Fig. 1. Typical graph structures.

vertices in the graph at t; 
edges in the graph at v

We now consider Gaussian elimination from a graph theoretical point of view. To obtain the 
Schur complement system we should eliminate all edges C F , with C a vertex corresponding to
a grid point in Q// and F  a vertex corresponding to a grid point in H (note that C F ^ F C  
because we have a directed graph).
We consider an arbitrary edge C F  (cf. Figure 2a) and we perform an incomplete Gaussian 
elimination as follows. First we apply a standard Gaussian elimination step using the equation
at F  to eliminate the edge CF. This results in fill-in edges as shown in Figure 2b. Now fill-in 
edges CG  with G a vertex corresponding to a grid point in Qh\Qn are eliminated using a 
simple linear interpolation process. For example, an edge CG as in Figure 2b with associated 
value a  is removed and replaced by new edges CD i ,C D 2 with associated value \ot. An edge 
CG\ (cf. Figure 2b) with associated value a  is replaced by edges C D i ,C D 2,CDz,C C  with
associated value ~a. So after this incomplete elimination step we have removed the edge CF  
and created only fill-in edges between vertices corresponding to coarse grid points (cf. Figure
2c). Applying this elimination process for all edges CF  results in a decoupling of the coarse 
grid unknowns from the unknowns corresponding to grid points in For the Schur
complement approximation S a we use the resulting system of coarse grid equations.

■ ' " J r - "

i \ i \  ,

i i i i i
i i i F i i • : vertex corresponding
+ - - ±  —  ±  —  + - - 4 to

i x 1 1 1 T 1 1 m i i 1/ i i ■ : vertex corresponding
to Q,jj

Fig. 2a. Edge that has to be eliminated.

Remark 3.1. From Figure 2c it is clear that sparsity is preserved in the incomplete Gaussian 
elimination process. Also note that if the given matrix A has nonpositive off-diagonal elements 
and is weakly diagonally dominant, then the resulting Schur complement approximation Sa 
has these properties, too. In this sense, stability is preserved.

Remark 3.2. We now comment on implementation aspects of the incomplete Gaussian elimin



Fig. 2.c Fill-in edges after linear interpolation.

ation process. Consider the s itu a tio n ^  shown in Figure 2 (finite difference case). Let /? be 
the value associated with the edge CF. Furthermore, at F  we have a 9-point stencil denoted
by

(3.1)
-OiNW - a N -&NE
- a w a —aE
- a s w —as -&SE

After elimination and linear interpolation we obtain fill-in edges and associated values as shown 
in Figure 3.

Pi — P(<*s +  | ( » se  +  « 5tv) +  \  (oi\v + cue) ) /a
P2 =  P(\oisw  +  \o iw)/a
p3 = P ( \a SE +  \otE)/ot 

4 Pa = P{\<XNW +  \otw)/ot
Ps = P(otN  + \{CXNE + OLNw) + \(<X\V + «£?))/« 
Ps = P (\< *N E  +  \ o i E ) / a .

Fig. 3 Graph with associated values after incomplete Gaussian elimination.

The same result as in Figure 3 is obtained if we first modify the equation in the point F £
n k\QH and then eliminate the edge C F  using this modified equation. The modification process 
is based on linear interpolation, i.e. the stencil as in (3.1) is replaced by the stencil

~(°W +  \  (aNE +  (xnw) +  \ { a w  +  <*e )) 0 - ( lo tNE+ ± a E) 

<* 0 0 

+  \((*se +  <*sw) + \ ( a w  +  qe)) 0 -(%(*s e + \ aE)

(3.2)

+ \<*w) 0 

0 0 

. + \<*w) 0



Elimination of the edge C F  using the stencil in (3.2) yields the result shown in Figure 3. In 
matrix block form the modified system of equations can be represented as

_ A n  M 2
A = ,

. A 21 A 22 .

with A n  diagonal. The Schur complement approximation Sa , based on incomplete Gaussian 
elimination, is precisely the exact Schur complement of A:

(3.3) S a — S  ̂ A 22 — A 21 An1 ̂ 12 =  [0 I]A
■Aii ^12

I
=: rAp 7

Based on (3.3) we can implement the incomplete Gaussian elimination using the Galerkin 
approach, that is often used in multigrid algorithms. Given A , we first determine the matrix 
dependent prolongation p^ (here the linear interpolation is used). Then we compute the coarse 
grid operator S^ = rApA. We emphasize that this Galerkin approach is just a special (and 
often convenient) implementation of the incomplete Gaussian elimination described above.

4 Fourier analysis of the two-grid method

We consider the usual setting in which a Fourier analysis is applicable (cf. [4], [16]). On 
^  •'= (-1 , l]2 we introduce a uniform square grid with mesh size h:

(4.1) Qh := {(x,y) e Q \ x = vh, y = ph, l - N < u , p < N ] ,

with N  := 1/h. In we have 4iV2 basis vectors e1̂  defined by

(4.2) e ^ ( x , y )  = I c ^ + w )  , (x,y) e Qh, l  -  N  < v,/jl < N  .

We assume N  to be even and introduce a coarse grid space with mesh size H := 2h, Nh  := N/2, 
and Qff as in (4.1) with h and N  replaced by H  and Nfj respectively. In £2(Qh) we use the 
Fourier basis

<4f(*,y) =  (x,y)€U„,1~N„< < NH .

The vectors in (4.2) form an orthonormal basis with respect to a scaled Euclidean inner product, 
and thus the Fourier transform

N

Qh • (^/i)l-N<j/lM<N —►

is unitary. Every ’’low” frequency (^, //) with 1 — N h < i/, p < N h is associated with the 
’’high” frequencies (i/,/z), (v,p'), where v \p !  are defined by



v +  TV if v < 0 
v -  N  if v > 0

/ =  i  V + N  if n < 0
* [ A* — TV if /z > 0 .

Clearly £2(Qh) is a direct sum of the N 2 subspaces U ^  := span{e^, e)^, e ^ ' } ,  1- N h <
v,V< Nh . By Q1̂  we denote the 47V2 x 4 matrix with columns these basis vectors of U ^ ~h *

Q 7  ■■= Wh e,
un v

]■

We consider an operator A 
9-point difference star

(4.3) [/l] =
- A  - a  2
-Q?l 1
~ P \  - a  4

Ah ' £2(&h) —> £2{&h) that can be represented by a constant

—(3 2
~<*3 ,

(3 3

with 0 < a,-, (3i, Y  (<*» + P i) = 1 . We also assume +  a3 ^  0 and a 2 +  a4 ^  0, which 
*'=i

guarantees that only the constant function is in the kernel of the operator A. The Fourier modes 
are eigenvectors of the operator A, i.e. we have (Q ^ )* A Q ^  = diag(d ^ ,  d ^ ,  d ^ ,  d ^ )  (we 
use the adjoint w.r.t. the scaled Euclidean inner product). For the eigenvalues d"M} 1 -  NH < 
v,H< TV//, we have the following formulas

(4.4a) = 1 -  (v + w) -  z

(4.4b) c?2M = 1 +  (v -  w) + z

(4.4c) d ^  = l - ( v - w )  + z 

(4.4d) d1̂  = 1 +  (u +  w) — z ,

with

(4.5a) v = v(v) = a 1e~niuh + a3enil/h 

(4.5b) w = w(fi) =  Q'2e7ri/iA +  Q4e~ni^h

(4.5c) 2 = z{v,n) =  /?1e_7rt(l/_^)/l +  (32e‘ni(l/+t1)h p3eiri(v-i*)h _j_ /34€-*i(t'+t*)h .

In the remainder we also use the notation

(4.6) Sk =  sin(±k7rh) , ck =  co&(\knh) .

For (i/, ft) ^  (0, 0) we introduce the harmonic mean of the eigenvalues dj^:

(4.7) UVil := 4 ( 1 - N h < v, h < N h ) •



In Lemma 2.1 it is shown that for the two-grid iteration matrix W  we have a(W) =  a (I  -  
uS ^ S a ) U {0}. So the convergence (rate) of the two-grid method is determined by c r ^ 1̂ ) .  
Below we derive estimates, both numerically and theoretically, for this spectrum. We use 
Sa =  S^ as explained in Section 3 (cf. Remark 3.2). First we derive expressions for the eigen
values of S ^ 1S A (Lemma 4.1, Lemma 4.2, Corollary 4.3) and then we analyze the dependence 
of a { S j 1SA) on the coefficients a j , fij in the stencil of A.

For Sa , the Schur complement of A, we have the following result, that is proved in [10] (cf. 
also [12]):

Lem m a 4.1. The Fourier mode e1̂  (1 — Nfj < p < N jj, ^  (0,0)) is an eigenvector
of S a with corresponding eigenvalue the harmonic mean of d ^ , d ^ ,  d ^ ,  d ^ ,  i.e.:

(4.8) S Ae% = n ^ e t f  .

To be able to apply Fourier analysis to S^ = rAp^ we first introduce some notation. As 
discussed in Remark 3.2 we have modified equations [An Au]  in the grid points of Q,h.\Qfj. 
The grid points of are divided in three sets:

4 1’ =  {(*.y) € n h\s iH \y  = k H , k € Z }

« i2) =  {(*,y) € n h\ n H \ x = k H , k e z )

f i i 3) =  ( f 2 A f i f f ) \ ( 4 1 ) U f2 < 2 )) .

Note that for given j  G {1, 2, 3} A has a constant difference star in the points of thus for 
a suitable r ^ ,  independent of (x, y) £ we have

(4-9) ( ^ i e D I f l r r - er |n r

In Lemma 4.2 it is shown that the eigenvalues of S^  can be expressed in terms of these 
and the eigenvalues of A. A proof of this lemma can be found in [10].

Lem m a 4.2. For (i/, p) ^  (0,0) with 1 — N jj < v , p <  Njj the following holds’.

(4.10) SAe tf  =  K "  +  J ( r ^  +  r $ ) - < ? “) +  J ( r tf  -  r $ )  (d?* -(1) '(2)'
+ K 3)((dr + 4 " ) -  + .

(2)
On ’ we have (cf. Remark 3.2) the stencil



f
(2/̂ 1 +  4a l) 0 ~ (a2 +  2 {Pi +  P2) +  4 (<*1 +  <̂ 3)) 0 — (§/?2 +  4*23) "

[A]— 0 0 1 0 0

- ( 2 ^  +  4°^l) 0 — (<*4 +  \{Pz +  P4) + |(<*1 +  »3)) 0 — (|/^3 + ^ 3 )  .

A straightforward computation yields that for as in (4.9) we have the expression

(4.11a) =  dvf  +  y ^ v  +  2s \z  ,

with z, s„ as in (4.4), (4.5), (4.6) and

(4.12) yUfl :=2(slcl + slcl)  .

Similarly, we obtain for and the expressions

(4.11b) rjfi = d + yVftw +  2s£z ,

(4.11c) r ^  = d ^  + 2(slw + slv) .

When we substitute the results from (4.11) in (4.10), use the definitions in (4.4) and rearrange 
the terms in the resulting expression, we obtain

Corollary 4.3. For (v,p) ^  (0,0) with 1 -  NH < v, p < Nu  we have

(4.12) =  {d^ ( 2 -  d jM) +  2yl/flvw +  42(sjiu +  s^u)}e^ .

From Lemma 4.1 and Corollary 4.3 we immediately obtain an expression for the eigenvalues 
of Sa - Using this expression we can analyze cr(tS^1*SJ4). Below we first show results of 
numerical calculations for a few test problems, and then we derive some theoretical results.

For given coefficients ay, (3j (1 < j  < 4) we computed (using MATLAB) the quantities defined 
in (4.13), (4.14). Note that does not depend on the scaling of the operator A. We
always leave out the constant function (i.e. (1/, /x) =  (0, 0)). We take h =  1/64 and define

(4.13) shift := 2 ^min He (A) -f max Re (A)^ ,

where the minimum and the maximum is taken over ^ ( S j 1̂ )  and

(4.14) p := max{ |1 — shift * A| | A € ^(iS j1̂ ) }  .

Experiment 1 (Convection-diffusion, 5-point stencil).
We consider the difference star



' 0 -1  o ' ' 0 0 0 ' ' 0 0 0 '
- 1  4 -1 +  cos(v?) -1  1 0 +  sin(v?) 0 1 0

0 - 1  0 0 0 0 0 - 1 0

In Table 1 we give the results for shift and p for several values of e and y>.

£ 1 10"2 10"4
0 tt/32 tt/8 tt/4 tt/32 tt/8  tt/4

shift 0.85 0.67 0.67 0.67 0.69 0.69 0.69
P 0.19 0.33 0.33 0.33 0.40 0.40 0.40

Table 1

Experiment 2 (Convection—diffusion, 9-point stencil).
We consider the realigned skew upwind scheme proposed in [8]. With c := cos(</?), s := 
sin(y?), v7 € [0, §], the stencil is given by

r o -1 0 ' 1 0 0 0 '
- i 4 -1

i
+ - c 2 1 + cs 0

0 -1 0 c 4- s —cs - s 2 0

Results of numerical computations are given in Table 2.

£ 10"2 10"4

<P 2tt/16 3tt/16 4tt/16 2tt/16 3tt/16 4tt/16
shift 0.67 0.67 0.67 0.72 0.71 0.71

P 0.33 0.33 0.33 0.46 0.44 0.44

Table 2

Experiment 3 (random stencil).
We generated random coefficients otj,/3j G (0,1) (uniform distribution) and computed the cor
responding values for shift and for p. This was repeated hundred times. The results are shown 
in Figure 4.

In the numerical experiments above we see a strong robustness with respect to variation in the 
coefficients a3, (5j. Note that for almost all experiments we have shift «  0.7.

We now turn to theoretical bounds for cr(<S^1tS>i). We only consider the case of a 5-point 
stencil, i.e. (3j =  0 for j  =  1,2,3,4. For this case the expressions in (4.4) simplify:

(4.15a) d\* = 1 -  (v + w)

(4.15b) = l + { v -  w)

(4.15c) <£? =  1 -  (v -  w)

(4.15d) d 7  =  l +  (u +  w) .
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(4.16a) Re (u) _  (c^ -f cv3) cos(vnh)

(4.16b) \ v \ < ai + a3

(4.16c) Re (w) =  (»2 +  ô j) cos(pnh)

(4.16d) |w| < a 2 + a4 .

First we show some properties of the eigenvalues d ^ .

Lemma 4.4. For (*/, p) ±  (0, 0) with 1 -  NH < v,p  < N„ we have 

(4.17a) Re (dJM) > 0 for j  =  1,2,3,4

Re ( d ^ d / )  _  Re [ ( l - (u  +  u;))(l +  t7 -w )]=  Re [((1 -  w) -  u )(T ^ lF + V)]

= | i - H 2 - H 2 > ( i - M ) 2 - H 2

= (1 -  M  -  M )(l -  |w| +  M) > 0 (use (4.16b,d) and Ea; = 1) .

*
0.351 '* w* ^  * DC *

* m *^m *jl* m mm*##*** * ■
*ac.. w3K 1

0.3 -F---- 1-------*-------*------- 1____ L _ I i .
10 20 30 40 50 60 70 80 90

Fig. 4. +: shift, •*: p.
100

Note that for u, w we have:

(4.17b) Re ( d ^ /d ^ )  > 0 for all j , k 6 {1,2,3,4} .



The same argument with v and w exchanged implies the result for the case (j, k) — (1,3). For 
(j, k) =  (1,4) we have:

Re ( d ^ d ^ )  =  Re [(1 -  (v +  w))( 1 +  (FTw))]

= 0 .

We now consider j  =  2. For (j, k) =  (2, 3) we obtain

Re {du/ d 1'/ )  =  Re [(1 +  (v -  w))( 1 -  (v -  w))]

=  1 -  |u -  w\2 > 1 -  (M + M )2 > 1 - =  0 .

For (j, k) = (2,4) we have (cf. (j , k) = (1,2) above):

R e ( d ^ O  = Re [(1 +  (u -  w))(l +  (F+1F))

=  Re [(1 +  u — u?) (T+~u +  uJ)]

=  |1 +  u|2 -  M 2 > (1 -  M )2 -  M 2

=  (1  -  |u | -  | w | ) ( l  -  M  +  M )  >  0 •

Finally, the same argument as for the case (j, k) =  (2,4), but with v and w exchanged, implies 
the result for (j, A;) =  (3,4). a

From Lemma 4.1 and Corollary 4.3 we obtain the following expressions for the eigenvalues 
of SA and SA, denoted by ^ ( S A) and ^ ^ ( S A) respectively:

(4.18b) Z ^ { S A) = t2 “  >

with 7^^ as in (4.12). Using (4.4) the expression for ^v,i(SA) can be rewritten in the form

(4.18a)

(4.18c) ^ ( S A) = d r d 4̂  +  \ l u M 7 d 7  ~ d T O  •

In Lemma 4.5 and Lemma 4.6 we give estimates for £uti{SA)/£ û {Sa )’ 

Lem m a 4.5. For (i/, fa) ^  (0,0) with 1 — Njj < v, /z < N h we have

(4.19) Re ( ^ ( S A) / e ^ S A ) )  > |  •

in
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Proof. First we note that the equalities

1 / dT  + 1 =  2/(d . 'fd 'f)  and 1 /d 2“ + 1/dJ" =  2/(d ^d j* )

hold. Using this and the results in Lemma 4.4 we obtain for j  — 2,3:

(4.20) Re K X V d f )  =  K X V d f  P Re

=  i |d 7 < 7 d f |2 ( Re (dJ7 r f r )  +  Re > o .

With a similar argument we obtain for j  = 1,4:

(4.21) Re ( d ^ d ^ / d f )  2: 0 •

Combination of the results in (4.18a), (4.18c), (4.20), (4.21) yields

Re r ^ / r ' G l u ) )  =  Re [((1 -  l / d f ) ]  ,
i=i f

= I Re [((1 -  \l„ Y )d ? i?  +  W d? d Y ) ( ( d T d T ) - 1 +  ( ^ d f ) ' 1)]

=  I  Re [1 +  (l _  \ y ^ ) d 7 d T / ( d T d7 )  +  b ^ d? d ? /{ d Y d Y )]

= 5 +  jO  -  h en ) Re K " d 7 ( l / d ^  +  1/dje)]

+ W ^ { d ? d Y ( l / d Y  + l/dY)]

> j  (note that 7 ^  € [0,1] holds) .

□

Lemma 4.6. For (1/,/*) ^  (0,0) withl- N „  < v,fi < N„ we have

(4.22) |1 -  < j .

Proof. We introduce the notation H u  := d‘j“d‘Y , H a  := d^dT.
Using (4.18a), (4.18c) we obtain

(4.23) |l-{ " " (« S i )/f*'', (<!?4)|

=  |1 -  (^14 +  b ^ ( H 2 3 -  f f i i ) ) i ( E  1 / ^ ) 1
J =  l

~~ 1̂  ~ 2 ((^ “  2^ 0)dp4 +  br4iH2o){Hf4 +  dJ23)\

=  i l ( l  -  J7en)(l -  H u H £ )  +  i 7^ ( l  -  H 23H ^ ')\

^  1(1 -  57^)11 -  H I4Hf3l \ +  i 7, J l  -  .



vwf f  j r - l . W d ?  _ 1 - ( V  +  W)> _

14 23 "  i - ( v - w y  i  - ( v -  wy

we obtain

(4.24) \ L - H 1aH £ \  = A
t; id

|1 — (v — w)21 ’

We use the notation <5 := a\  +  a 3. From (4.16a,d) we get

(4.25) |u||tu| <  5(1 — 5) .

For 7 „M we have the identity

(4.26) 1 — 7 „M =  cos(uTrh) cos(f.nrh) .

The results in (4.16a,d), (4.26) yield:

(4.27) |1 — (v — w)21 =  |1 — (u — ty)||l +  (u — u;)|

> Re (1 — (v — w)) Re (1 +  (v — w)) = 1 — ( Re (v) — Re (u;))2 

=  1 — (Scos(u7rh) — (1 — 5) cos(finh) ) 2

= 1 — (<52cos2(unh) +  (1 -  5)2cos2(finh) -  25(1 — 5)(1 — 7 ^ ))

> 1 _  s2 -  (1 -  5)2 +  25(1 -  5)(1 -  7 ^ )  =  45(1 -  5)(1 -  §7^) •

Combination of the results in (4.24), (4.25), (4.27) yields

(4.28) |1 -  < (1 -  -

We now treat the term |1 — / jT23̂ i41 I (cf. (4-23)). Using

„  TT- l  W  1 ~ (tr -  W)2
23 14 _  ~  i  -  (« +  w y  “

and the result in (4.25), we obtain

4 5 (1 -5 )

vw
1 — (u +  w)2

(4.29) |1 -  H

We also have (cf. (4.26)):

|1 -  (v +  w)21



|1 -  (t) +  ui)2| =  |1 -  (t! +  to ) ||l+  (tH-to)l 

> Re ( 1 - (u +  io)) Re (1 +  (« +  «,)) =  1 - (  Re („) +  Re ( w ) ) 2  

=  1 -  ( iS c o s ( i /7 r / i)  +  (1  -  6) c o s ( n v h ) ) 2 

>  1 -  S 2 - ( 1  -  S)2 - 2 i(l -  <S)(1 -  7 „ „ )  =  2 i(l -  .

Using the latter result in (4.29) yields

(4.30) | l - / r 23f f - 1| < 2 7 - 1 .

Using the inequalities (4.28), (4.30) in (4.23) proves the estimate in (4.22).

As a direct consequence of Lemma 4.5 and Lemma 4.6 we have the following result: 

Theorem  4.7. For (i/./z) ±  (0,0) with 1 ~ N H < v ^ < N H the following holds:

e { z e C  I \z -  1| < 1 A Re (z) > i}  .

Clearly, Theorem 4.7 yields a strong robustness result: for all constant 5-point difference stars 
as in (4.3) (e.g. diffusion, anisotropic diffusion, convection-diffusion) the Schur complement
approximation SA based on incomplete Gaussian elimination yields an ’’optimal” precondi
tioner of S a -
Numerical experiments (e.g. Experiments 2,3 above) yield the claim that this robustness result 
even holds for constant 9-point difference stars as in (4.3). However, we have not been able to 
prove this claim.

Remark 4.8. With respect to the sharpness of the result in Theorem 4.7 we note the fol
lowing. Theorem 4.7 yields that for the spectral condition number of S~lSA we have the 
inequality A

(4.31) ( max
- 1VH

(Sa )Ij
VH

(£01 < 4

From numerical experiments we see that the bound in (4.31) is about a factor 2 too pessimistic. 
For example, for the operator with stencil

0
1
2 
0

0 0 
1 0

“ 5 0
, on a grid with h =  1/64 ,

the spectrum { ^ ( S A) / ^ ( S A) \ 1 -  N„ < „, ^ < N„, (v, ?) ?  (0,0)} is shown in Figure 5. 
In this case the spectral condition number is 2.24. Note that from this example we see that the 
estimate in Lemma 4.5 is sharp.



0.6 0.7 0.8 0.9 1 1.1

Fig. 5. ^ ( S ^ J 1) in the complex plane.

5 Numerical experiments

In this section we apply a multigrid W-cycle based on (2.6a) to the following two test problems

{- e A u  +  a(x , y)ux +  6(x, y)uy = f  in Q =  (0, l ) 2

u =  g on dQ
(5.1)

(5.2)
-ea(l i ) ux x - u yy — f  in Q =  (0, l ) 2 

u = g on dQ ,

with e > 0, a > 0 problem parameters. The problem in (5.1) is convection-dominated (in a 
part of the domain) if e/a <C 1 or e/b <  1 (in a part of the domain). The diffusion problem in 
(5.2) is strongly anisotropic in a part of the domain. We use standard finite difference discret
ization on a square mesh resulting in a 5-point stencil and a discrete problem A^xjx = b^. 
For the first order derivatives in (5.1) we use the full upwind discretization, and thus the matrix 
Ah is an M - matrix.
In the experiments below the finest mesh always corresponds to h = 1/128 and the coarsest 
mesh size is A =  1/4. For the multigrid method we use the approach as discussed in Remark 
3.2. Given the matrix on the finest grid, coarse-grid operators (<S^) are computed using a 
Galerkin approach with matrix dependent prolongations.

We now discuss the approximation used in the block Jacobi method with iteration matrix
" A~l 0

11 Ah . In general the matrix A\\  has a condition number 0(1) and then, inJ  = I  -



principle, any basic iterative method for solving A n y = z can be used. However, if we have 
strong alignment then cond(An) deteriorates. Our main interest in this paper in on robust
ness, so we should use a robust solver for the A n  systems. Probably the ILU method will 
yield a good compromise between robustness and efficiency. In the method we implemented 
some efficiency has been sacrificed and we used a simple line Jacobi method. One iteration 
of this method consists of a sweep over the ’’odd” horizontal lines followed by a sweep over 
the ’’odd” vertical lines (these lines together form the pattern of The result of pt
iterations of such a line Jacobi method with starting vector 0 applied to A n y  = z is denoted 
by j7M(A n;0;z).

Below we use the notation Qch := Qh\^H (i-e. ’’new” nodes). The two-grid method based on 
(2.6a) is as follows:

1. a) djftc := (AhXh — &/i)|fi£ : compute defect on Qch.
b) Xh := J ^ ( A U; 0; d|fic) : line Jacobi for solving A n  system.
c) Xhjnc := x h\Uc ~ xh : add correction on

2- a) d\nH := (Ahxh -  bh)\nH ■ compute defect on Q//.
b) SAhvH = d\nH : solve coarse grid problem.
c) xh\a.H := x h\UfI ~ uvr  : add correction on Qh -

3. Repeat la,b,c.

This algorithm has the same structure as a standard two-grid algorithm. As in the standard 
approach, we use two recursive calls in 2b) to obtain a multigrid W-cycle.
In the experiments below we always take the data such that the exact discrete solution is equal 
to zero and we take an arbitrary starting vector. As a measure for the error reduction we com
puted r := (l^olh/Heol^)1/20, with ek the error in the A:-th iteration. For i.e. the number 
of line Jacobi iterations, we take /i = 3. Experiments have shown that this yields sufficiently 
accurate approximations when solving the An systems; often even // =  2 is sufficient. Based 
on the Fourier analysis we take u  = 0.7 in all experiments.

Experiment 1 (convection-diffusion). We apply the multigrid W-cycle to the discrete ver
sion of (5.1) with a(x,y)  =  cos(/3), b(x,y) = sin(/?). In Table 3 the resulting r are given for 
several values of /? and e.

£ P 0 7T/10 2tt/10 3tt/10 47r/10 5tt/10
10-1 0.23 0.23 0.23 0.23 0.23 0.23
10“3 0.30 0.40 0.40 0.40 0.40 0.30
10"5 0.37 0.35 0.42 0.42 0.35 0.37

Table 3

Experiment 2 (rotating flow). We define QR := {(&, y) | ((x -  | ) 2 +  (y -  £)2) < ^ } , and

{ a ( x j It) =  s in (7 r ( i /  — 5 ) )  co s(7r(:r  — f )) i f  (a;, y) £ a n d  z e r o  o t h e r w is e  ;

y) = ~ cos(7r(y -  !)) sin(7r(z — ^)) if (x , y) £ Q/*, and zero otherwise .



We apply the multigrid W-cycle to the discrete version of (5.1) with these functions <z, 6. The 
results for r are given in Table 4. In Table 4 we also show the values of r corresponding to the 
two-grid method. These two-grid results are obtained by applying 5 recursive calls (instead 
of 2) on the coarse grid.

€ 10"1 ~ W r 10"3 IQ"4 10~5
W-cycle 0.23 0.25 0.32 0.34 0.34

TG 0.23 0.30 0.36 0.33 0.33

Table 4

Experiment 3. We apply the multigrid W-cycle to the discrete version of (5.2). The result
ing values for r are given in Table 5. Again, as in Experiment 2 we give the values of r 
corresponding to the two-grid method.

a 1 5
W-cycle 0.33 0.37

TG 0.26 0.28

Table 5

The Fourier analysis in Section 4, which yields a strong robustness result, applies to a two-grid 
method, with exact An-solver, for solving a boundary value problem with periodic boundary 
conditions and constant coefficients. In the experiments above we observe that the multigrid 
W-cycle, with inexact An-solver, applied to a boundary value problem with Dirichlet boundary 
conditions and variable coefficients is very robust w.r.t. variation in problem parameters, too. 
Finally we note that if the A\\ system is solved approximately using an ILU method then 
our two-grid method is a combination of two incomplete Gaussian elimination processes: ILU 
for solving the An system and incomplete Gaussian elimination as described in Section 3 for 
constructing a sparse coarse grid matrix.
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