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Abstract — Zusammenfassung

A Finite Difference Discretization Method for Elliptic Problems on Composite Grids. In this paper 
we discusss a simple finite difference method for the discretization of elliptic boundary value 
problems on composite grids. For the model problem of the Poisson equation we prove stability of 
the discrete operator and bounds for the global discretization error. These bounds clearly show how 
the discretization error depends on the grid size of the coarse grid, on the grid size of the local fine 
grid and on the order of the interpolation used on the interface. Furthermore, the constants in these 
bounds do not depend on the quotient of coarse grid size and fine grid size. We also discuss an 
efficient solution method for the resulting composite grid algebraic problem.

AMS Subject Classifications: 65N06, 65N15, 65N22

Key words: Finite difference scheme, local refinement, error estimates.

Ein Finite-Differenzen-Verfahren fur elliptische Probleme auf zusammengesetzten Gittern. In diesem 
Artikel diskutieren wir ein einfaches Finite-Differenzen-Verfahren zur Diskretisierung elliptischer 
Randwertprobleme auf zusammengesetzten Gittern. Fur die Poissongleichung als Modellproblem 
beweisen wir Stabilitat des diskreten Operators und Schranken fur den globalen 
Diskretisierungsfehler. Diese Schranken zeigen deutlich, in welcher Weise der Diskretisierungsfehler 
von der Feinheit des groben und des lokalen feinen Gitters und der Ordnung der am Ubergang 
verwendeten Interpolation abhangt. AuBerdem hangen die Konstanten in diesen Schranken nicht 
vom Quotienten der Maschenweiten des groben und des feinen Gitters ab. Weiterhin diskutieren 
wir eine effiziente Losungsmethode fur das resultierende algebraische Problem auf dem 
zusammengesetzten Gitter.

1. Introduction

Many boundary value problems produce solutions which possess highly localized 
properties. In this paper we consider two-dimensional elliptic boundary value 
problems with one or a few small regions with high activity. In these regions the 
solution varies much more rapidly than in the remaining part of the domain. We 
are mainly interested in problems in which this behaviour is due to the source 
term (e.g. a strong well). In general, from the point of view of efficiency, it is not 
attractive to use a uniform grid for discretizing such a problem. Often the use of 
local grid refinement techniques will be advantageous.

In this paper we study a local grid refinement technique based on the combina
tion of several uniform grids with different grid sizes which cover different parts 
of the domain. The continuous solution is then approximated on the composite



grid which is the union of the uniform subgrids. Methods based on such a 
technique have been addressed by several authors. The finite volume element 
(FVE) method used in McCormick’s fast adaptive composite grid (FAC) method 
is of this type and an analysis of this composite grid discretization is given in 
[3,14]. This finite volume type of method uses vertex-centered approximations. 
A finite volume method for composite grids using special cell-centered approxi
mations is analysed in [5,12]. The local defect correction (LDC) method intro
duced in [9] is a very general approach which can be used for discretization on a 
composite grid too. For discretization of parabolic problems on composite grids 
we refer to [6] and the references therein.

In this paper we analyze a very simple discretization technique based on 
standard finite differences on uniform grids and a suitable (linear or quadratic) 
interpolation on the interface between a coarse and a fine grid. The method is 
closely related to a special case of the LDC method. In fact, the idea to study 
this discretization method originated from an analysis of the LDC method in [7].

We consider a discretization in which all composite grid points on the interface 
are also part of a global coarse grid and we use the corresponding standard 
coarse grid stencils at these grid points. So we do not always use the nearest 
neighbours in the composite grid discretization on the interface. At the fine grid 
points adjacent to an interface we use the standard fine grid discretization 
stencil. Information needed on the interface is then provided by a suitable 
(piecewise linear or piecewise quadratic) interpolation. At all other grid points 
we use the standard finite difference discretization.

We will discuss how this approach results in a natural way from the LDC 
method. Two important issues in this discretization approach have to be ad
dressed: the size of the global discretization error and a solution method for the 
resulting composite grid algebraic problem. We will discuss both issues although 
the emphasis lies on the first one. Using techniques on M-matrices and the 
discrete maximum principle we prove stability of the discrete operator and 
(optimal) estimates for the global discretization error. These estimates clearly 
show how the discretization error depends on the grid size of the coarse grid, on 
the grid size of the local fine grid and on the order of the interpolation used on 
the interface. Furthermore, the constants in our bounds do not depend on the 
refinement factor (i.e. the quotient of coarse grid size and fine grid size).

Nice features of the present discretization method are its simplicity, the optimal 
order discretization error and the fact that we can use an efficient solver for the 
resulting algebraic system. On the other hand, unlike the finite volume tech
niques, we do not have a conservation property and in the analysis we need a 
high regularity of the solution (we use fourth order derivatives).

The remainder of this paper is organized as follows. In Section 2 we first 
consider a simple two-point boundary value problem. We discuss very elemen-



tary properties of discrete Greens functions corresponding to two types of 
composite grid discretizations. Most of these properties, which play an impor
tant role in the analysis of the discretization error, can be generalized to the 
two-dimensional case. This generalization and the resulting error estimates for a 
two-dimensional model problem are the topic of Section 3. In Section 4 we show 
how the composite grid discretization is related to the LDC method. Also, we 
show how the composite grid algebraic problem can be solved using the LDC 
method. In Section 5 we present numerical results and we discuss another 
seemingly rather natural finite difference discretization method on composite 
grids.

2. A One-Dimensional Model Problem

In this section we consider a very elementary two-point boundary value problem. 
We introduce two different composite grid discretizations for this problem. The 
main issue is to show some interesting properties of the discrete Greens 
functions related to certain grid points on, or close to, the interface between the 
coarse and the fine grid. In the next sections we will show that these properties 
can be generalized to the two-dimensional case. The approach used in the 
analysis in this section is of interest, because a similar approach, with some 
technical complications, is used in the two-dimensional analysis in Section 3.

We consider the following two-point boundary value problem

~ uxx(x )  = / ( * ) ,  x e / T = ( 0 , l ) ,
17(0) = 1/(1) =0. (2.1)

We assume a (high activity) subregion O, c  fl of the form = (0, T ), with 
0 < T < 1 .

We assume a “coarse” grid size H such that 1 /H  e  N and r / H  e  N and we 
introduce a “fine” grid size h given by

h ■= H/cr, a<=N. (2.2)
A fine grid /2C;' on H, and a coarse grid on fl \  Ol are defined as follows: 

n1~ r / h  — 1, dj? ■■= [ih\\ <i < n j ,  (2.3a)

n2 — (1 — T ) / H ,  n cH ■■={r+iH\0<i<n2- l ) .  (2.3b)
The composite grid fl^ ’H is given by

n * u n cH. (2.4)
The composite grid is illustrated in Fig. 1.

I- I f -H - l- l-+o------ e------ e------ 0----
r

Figure 1. Composite grid f lhc’H, H = 1/6, h = 1/24
0 1



Below, for the representation of the discrete problem, we use both (stiffness) 
matrices and difference stars. For a given discretization method on the compos
ite grid, with stiffness matrix A h H, the corresponding difference star (or stencil) 
in a grid point M e  /2c/,,h is denoted by [Ah H]M. A discrete approximation on 
the composite grid can be represented as a grid function or as a vector, which is 
obtained using the left to right ordering of nodes in fi*’H. Below, we sometimes 
use the same notation for both representations. For example (cf. Theorem 2.1), 
for a given function g on [0,1], both the corresponding grid function 
on the composite grid and the vector in [R"1+'12 with values g(x,), x( e  
1 <i < nl + n2 (left to right ordering), are denoted by ĝ n i,.h.

We now discuss finite difference discretizations of (2.1) on this composite 
grid. At the grid points in Qj! we use the standard stencil h ~2[ - 1 2 — 1] 
for approximating - d2/d x 2. At the points in 0 ^ \ { r )  we use the stencil 
H ~2[ - 1 2 -1]. For the approximation at the interface point F  we use two 
approaches, resulting in stiffness matrices A hJi and A hJi. In F we consider 
the following two stencils (u e  l2( D ^ H), a  as in (2.2)):

[Ah,H] r u = H ~2 { ~ u( r  ~ H ) + 2 u ( T ) - u ( r  + H) ) ,  (2.5a)

[AluH}r u = H - ^ - ^ u ( r - h ) + 2 , T u ( r ) - ~ u ( r + H ) \ .  (2.5b)

Note that in (2.5a) the interface point F is treated as a coarse grid point; the 
corresponding local discretization error is / f ( H 2). In (2.5b) we have a nonsym- 
metric finite element type of stencil with local discretization error @(H). In the 
latter case, the constant in (f(.) depends on cr = H /h. The constant is proportio
nal to (cr— l)/cr, and thus bounded for ere f\J and equal to 0 for cr= 1 (i.e. a 
uniform grid).

First we analyze the discrete operator A fl H. We introduce a block-partitioning 
corresponding to (2.4). By ek we denote the A:-th standard basis vector in 
Wn(m = nx or m = n2). The matrix A h H has the following block form:

with

A k,
A i ^12

H ~ ~^21 ^22

'  2 - 1
- 1 2 - 1

1IIT

- 1 2
- 1  2

" 2 - 1
- 1 2 - 1

1£II(N

- 1 2
- 1  2

A n =h 2e e[ e Xn 25 •̂ 21 = H~2e1e

(2.6a)

(2.6b)

(2.6c)

n2Xn (2.6d)



In the remainder, for an n X n  real matrix A = (ai;) we use the notation A > 0, 
if aij> 0 holds for all i,j = 1 ,2 ,...,« . We recall that a matrix 5 e R " x,! is 
called monotone if B is regular and B~x > 0 holds.

Theorem 2.1. A h H is monotone and < 1 /8  holds.

Proof: The result follows from a standard argument: A h H is an M-matrix and

A , / / ( ( M  1 = ( l , l , - - - , l ) r
holds. □

By r *  we denote the fine grid point adjacent to the interface T, i.e. r *  ■= T —h. 
The corresponding basis vector (,eTn &)T (partitioning as in (2.6)) is denoted by 

.1 h

Theorem 2.2. The following inequality holds:

I IA /W II  - ~ ( r - h ) ( i - r + H ) ^ .  (2.7)

Proof: We introduce the function gpjfx),  which is continuous on [0,1], linear on 
the intervals (0, T — h), ( T — h, D ,  (T,  1) and has values

£r,/i(0) = Sr,h(^-) = 0’ 
h2

g r A r - h )  = - ( r - h ) ( i - r + H ) ,

8r , h ( r )  = ~jf{P — H) ( l  — T ) .

A  simple computation yields that

A h,H((gr,h)\nTH) = er,*
holds. From this and using that gr H is positive, and attains its maximum value
at T -  h, we obtain (2.7). □

From the result in (2.7) we see that for H fixed the norm of the discrete Greens 
function corresponding to r *  decreases proportional to h2 for h 10. This 
behaviour is similar to the case of a discrete Greens function corresponding to a 
grid point next to the boundary in a global uniform grid with grid size h. In 
Section 3 we will see that a similar result holds in the two-dimensional case.

The situation is very different if we consider the discrete Greens function 
A f 1Her corresponding to the interface point T  (i.e. er  = (0 e[)r ). Using an 
approach as in the proof of Theorem 2.2 yields the following

\\A-h xHer L  = r ( l - r ) H .  (2.8)

So now there is a damping as if er  is an interior point of a global uniform grid 
with grid size H.



We now discuss comparable results for the case with stiffness matrix A h H 
(cf. (2.5b)). First we note that Theorem 2.1 (and the corresponding proof) also 
holds if A h H is replaced by A h H. A  straightforward analysis, using arguments 
similar to the case with stiffness matrix A h H, yields the following:

IM’jT.Wiu -  (r-A)(l -  r  + h)h, (2.9)

IIA-,VerlU = i r ( i - r ) ( i  + 1 ) h . (2.10)

Note that the result in (2.10) is very similar to the result in (2.8). However, there 
is a significant difference between the results in (2.7) and in (2.9). For H  fixed 
we have a discrete Greens function of size ( f (h2) in (2.7), whereas in (2.9) we 
have a discrete Greens function of size In Section 3 and Section 5 we will
see that results similar to those in (2.7), (2.9) hold in the two-dimensional case.

Remark 2.3. Using standard techniques and the results in (2.8), (2.10) we can 
derive (sharp) bounds for the global discretization error. Define

e<i^H ~  —A h 'Hf h H, ef^H ■= U\nh.H — A h Ĥf hH,

with U the continuous solution, f h:H(x) =f(x)  for x e  12^'H. Then for j  — 1,2 
we obtain:

lkjft/ll» < Cxh2 + C2H 2 + C ^ H i+l. (2.11)

The constants CUC2 depend on max{|w(4)(x)l |x e  (0,D }  and max{|w(4)(x)| |x <e 
(T , 1)} respectively, and C ;̂) depends on \U^+2Kx)\ with x in a small neighbour
hood of r.  From (2.11) we conclude that the difference between A h H and 
A h H as discussed above has only little influence on the global discretization 
error. In Section 5 we will see that a similar conclusion cannot be drawn in the 
two-dimensional case.

Remark 2.4. Results very similar to those in Theorem 2.1 and Theorem 2.2 can 
be obtained if we consider a composite grid with two interface points, i.e. O, is 
of the form ( / \ ,  T2) with 0 < Tx < f 2 < 1.

3. Finite Difference Discretization 
on Two-Dimensional Composite Grids

In this section we analyze a two-dimensional finite difference discretization 
method. Essentially we generalize the analysis of the previous section to obtain 
a result for the global discretization error on a composite grid. We will show 
what the effect is of the interpolation used on the interface. We consider a 
discretization method in which the interface points are treated as coarse grid 
points (cf. (2.5a)). In Section 5 we will discuss a method which can be seen as a 
generalization of the one-dimensional approach in (2.5b) (i.e. a nonsymmetric 
stencil on the interface with ( f ( H ) local discretization error).



We take the following model problem

-A U  = f  in / 2 - (0,1) X (0,1),

U = 0 on dCl, (3.1)

and a composite grid which is composed of a global coarse grid covering B and 
a local fine grid covering the region = (0, y t) X (0, y2) (see Fig. 2). We only 
consider coarse grid sizes H  such that 1 / i f e  N, y x/ H  e  N, y2/H  e  N and fine 
grid sizes h such that h =H/cr,  ere [U

Figure 2. Composite grid f1h’ H, H  = 1 /8 , h = 1 /32

We use the following notation (cf. Fig. 2):

B h = {(x,y)  e M 2\x/h,y/h<=N}, £2H = {(x,y)  e  U2\x/H, y / H  e  N],

B hc = n, n n h, n cH = (n \  n,) n n H, n ^ H = a? u n cH,

r oer,= {(x,y) GlR2k = 71,0 <y < y 2), 

r >,or = {(x ,y)  e  u2\y = y2,Q<x ^yx},

r - rvert u rAorJ r /! = r n r H = r n 
rul t - r uertn n h, r Z t - r uertn n H,

r h o r  =  r h or  H  > - T w  — F hor  f |  B H ,

r h = {0,10 e Afldist( ( x ,y ) ,T )  = /i}.

The differential operator — A in (3.1) is replaced by the following stencils.

At grid points of £2^ we use

H - 2 - 1
-1
4 - 1  .

- 1
(3.3a)



At grid points of \  F* we use

> ~2
— 1

— 1 4 - 1
- 1

At grid points we use the difference given by (« e  12(O h ))\
H~2(4u( M ) - u( M - - u( M+ (H,0))

— u ( M — (0 , H) )  — u(M + (0 ,H) ) )
(i.e. M  is treated as a coarse grid point, cf. (2.5a)).

(3.3b)

(3.3c)

At points M  e  r *  we use the following discretization. We assume a given 
interpolation operator pr : l2( r H) —> C (D . Now at M we discretize by applying 
the standard 5-point fine grid stencil as in (3.3b); unknowns corresponding to 
grid points in r h \  T H are eliminated using pr .

The usual modifications are used at grid points close to the boundary dFl. The 
discretization above is fully determined if pr \ l2( F H) -» C (D  is given. In this 
paper we consider a piecewise linear interpolation and a piecewise quadratic 
interpolation, denoted by p (P  and pf2) respectively. If uH e l2( r H) is given, 
then at x e  r h \  T H we use an interpolated value (pr iiH)(x) as shown in Fig. 
3. If M has distance H to the boundary dO, we use the Dirichlet boundary 
values in the interpolation. For example, for x = (1 -  5)(0, y2) + 8(H, y2), 
0 < 8 < 1, the linear interpolation is defined by

(pr uH)(x) = (1 -  S)£/((0,y2)) + Suh((H,  y2)) = SuH(( H, y2)), 
since we consider homogeneous Dirichlet boundary conditions.

M - { H ,  0) x M  M  + (H,  0)

M e r " , . ,  x e r L W L .
o : uH values 
_____: p ^ u 11

_____ : p ^ u 11

Figure 3. Piecwise linear and piecewise quadratic interpolation on interface

Note that in case of quadratic interpolation there is some freedom: one may 
apply a shift of the interpolation points by a factor H (in Fig. 3: use M — (2 H, 0), 
M — (H, 0), M  as interpolation points).

To avoid technical complications (in the proofs of Lemma 3.1 and Theorem 3.4), 
we assume that in case of quadratic interpolation on the line segments 
(H, y2) -  (2H, y2) and (yl5 H)  -  (yv 2H)  we use the points (2H,y2),



OH, y2) and (y v H ), (yv 2H), (y1,3H ) respectively. In that case we have 
(pr v)(x) < u(x) for x e  f ,  if v is a positive constant function on i~\

Corresponding to f 2 f H = {2* U Z2/* we partition the discrete operator, result
ing in

A h , H  ~
A u 
A 21

A ir Pr
A  22

(3.4)

In (3.4) the operator pr : l2({.2/0 -* C ( D  is defined by piecewise linear (pf1}) or 
piecewise quadratic (pf2)) interpolation r H -> f  and pr = 0 on \  r H. The 
matrix [An —A xr] corresponds to the standard 5-point stencil on the local fine 
grid (ilj1) and [~A 21 A 22] corresponds to the standard 5-point stencil on the 
coarse grid (cf. (3.3b), (3.3c)).

Below we use the following notation. For a subset V of grid points in ( 2 f H we 
denote by l v the grid function (vector) with value 1 at all grid points of V and 0 
at all other grid points. As in Section 2, for the grid function representation and 
for the vector representation (corresponding to the given node ordering) of 
discrete approximations, we sometimes use the same notation. From the context 
it is clear which representation is meant.

Lemma 3.1. Define w : (R2 -» R by w(x, y ) := \x(l —x).
Both for linear and quadratic interpolation, the operator A h H satisfies

Ah,H(w\â -H) — 1/2*-" • (3-5)

Proof: For M e  flfi we denote the unit basis vector corresponding to M by eM 
For M e  flfi we have

el A h H(win,,H) > H - z

Similarly, for M  e  {2* \  r f  we have

eMAhH(w\nh.H)>h

Finally, we consider M e  r*.  We define the set of neighbour grid points: 

Nh( M)  ■■= { M + ( h , 0 ) , M -  (h , 0 ) , M+ ( 0 , h ) , M - (0,/z)}.

We introduce the grid function vv e  l2({2h), given by

if g e r h \ r H
w (£) otherwise

- 1
-1
4

-1
- 1 w\n“ = 1-

- 1
-1
4

-1
wn "  = L



Note that both for piecewise linear and piecewise quadratic interpolation we 
have 0 < w( £) < w( £) for all £ e  {}h. Using this we obtain for M  e  T f

= / r 2

> h - 2

= h~2

In the following theorem we prove mono tonicity of A h H (cf. Theorem 2.1). For 
the case with piecewise quadratic interpolation some technical tools are needed. 
This is due to the fact that then A h H is not an M-matrix.

Theorem 3.2. Both for piecewise linear and piecewise quadratic interpolation, the 
operator A h H is monotone, i.e. A h H is nonsingidar and A f lH > 0 holds.

Proof: First we consider the case with piecewise linear interpolation.

For every line segment [M -  M] -■ lM on r hor (cf. Fig. 3) the linear
interpolation p f ] of a grid function « e / 2( f H)on  lM results in

Pr V  y) = a x( j ) u ( M - ( H , 0 ) )  + a2(y )u (M)
with weights afy)  > 0, a 2(y) > 0, a,(y) + a2(y) = 1 for y <E lM. A similar result 
holds on r uert. Using this, it follows that A h H is an irreducibly diagonally 
dominant matrix with ( Ah>H)ij < 0 for i J=j. Hence A h H is an M-matrix and 
thus A h H is monotone.

We now consider the case with piecewise quadratic interpolation, which is more 
involved. We will show that A,l H (which is not an M-matrix) can be written as 
the product of two M-matrices. The technique is based on ideas from [2,13].

A special role is played by the equations in which the quadratic interpolation is 
used. So we introduce the set

r** ■■= { x e r h* \ ( x + ( h , o ) )  £ r H a  ( w + ( o,/*)) g r H).
As an example we take X  e  /)** as shown in Fig. 4. The equation at X  is as 
follows:

i ^h,H]xu =h~2{4u(X)  - u ( X - ( h , 0)) - u ( X + ( h , 0 ) )  - u ( X - ( 0 , h ) )
— a3u(A)  — a2u(B)  — a 1u(C)),  (3-6)

with a x = ±8(8 -  1), a 2 = (1 -  5)(1 + 8), a3 = f 5(1 + 8), 0 < 8 < 1.

- 1  
- 1  4 - i

- 1 M

4w(M)  - E * (£ ) ]\

4w(M)  - E w(£) )\ S e N h( M )  ’

- 1
- 1  4 -1 =

- 1 M



h i

SH H
1 1 1 {A, B , C} C

— g l-------------------- * C ^
•  o  •  •  •  o
X

Figure 4. Example Z e F ”

Note that 0 < 5 < 1 implies < 0, 0 < a2 < 1, 0 < av  Also we have
— QTj 1 5  1
£*2 2 1 + 5 4

(3.7)

We decompose A h H as A h>H = D + N  + P such that D is diagonal and 
diag(D) = diag(Ah H), diag(N) = 0, A+ < 0 for all i + j, diag(P) = 0, Ptj > 0 for 
all i + j.

Now introduce Nv N2 with stencils [Nt]x (i = 1,2) defined as follows.

For X <£ ( T H U /).**) we take [NAX = [N]X, [N2]v = [0]. Also at the corner 
point X  = (yv y2) we take [N1]X = [N]X, [X2]Ar = [0],

For X  e  r,%r \  ( y v  y 2) we define

'0 -1 O' ' 0 0 0C'J1II 0 0 0

C41ll - 1 0 - 1
0 - 1 0 0 0 0

Similarly, for X  e  r^ert \  (y^ y2) we define

' 0 0 0 '0 -1 o'
[V,].v = / r 2 - 1 0 - 1 , [ n 2]x = h - 2 0 0 0

0 0 0 0 - 1 0
(3.8b)

(Note that obvious modifications are used if X  is close to the boundary dfl).

Finally, we consider X  e  /)**. As an example we take X  as in Fig. 4; then we 
define (cf. (3.6)):

[Nx]x u = h~2 { - u ( X  -  ( h , 0 ) ) - u ( X + ( h , 0 ) ) - u ( X - ( 0 , h ) )  -  a2u{B)},
(3.9a)

[iV2]^ = [0 ]. (3.9b)

Note that [N2]x  ^  [0] only for M  e  T H \  (yv  y2). From the definitions of D and 
N2 it immediately follows that /  + D~XN2 is an M-matrix.

It is easy to check that D + Nx is an irreducibly diagonally dominant matrix (use 
0 < a2 < 1) with (D + Nl)ij < 0 for all i + j, and thus D + Nl is an M-matrix.



From the definitions of Nv N2 it follows that

holds.
N  <NX +N2 (3.10)

We now consider the nonnegative matrix P. First note that [P]x ^  [0] only for 
points I s  T**. Again, as a model situation we take X  as in Fig. 4, in which 
case we have (cf. (3.6)):

[P]x u= - h ~ 2a xu(C ). (3-11)
For this X  we also have

[N^D- 'N^xU  = \ h~2cx2( u ( A ) + u ( C) ) .  (3.12)

Combination of the results in (3.7), (3.11), (3.12) and using NlD~1N2 > 0 yields 
the inequality

P <NlD~1N2. (3.13)

From (3.10), (3.13) we get the following:

A h H = D + N  + P < D + N l +N2+ NxD~lN2 = (D + Nx) ( l  + D~lN2). (3.14)

Since both D + Nx and I + D~lN2 are M-matrices we conclude that 
((D + N{)~lA hiH)ij < (I + D~1N2)ij < 0 for all i =£ j. From Lemma 3.1 we see 
that there exists a vector u > 0 such that A hHu> 0. Due to ( D + N x)~l 
nonsingular and (D + N x)~l > 0 this yields (D + N l)~]A h Hu > 0. Thus we ob
tain (cf. [8]) that (D + Nx)~xA h H is an M-matrix. Thus we see that 
A htn = (£* + NxX(D + N X)~'Ah H) is the product of two M-matrices and conse
quently we have that A h H is nonsingular and A]7̂ H > 0 holds □

Stability of the discretization is proved in the following theorem.

Theorem 3.3. Both for linear and quadratic interpolation we have the following 
stability result:

(3.15)

Proof: Follows directly from Lemma 3.1 and Theorem 3.2. □

We now consider, as in the one-dimensional case in Section 2 (cf. Theorem 2.2) 
a problem where the source term has nonzero values only in r*. More 
precisely, we will derive bounds for The anlaysis used in the proof
below differs from the approach used in the proof of Theorem 2.2. It is possible 
to prove a result as in Theorem 3.4 by means of an analysis of A hiH(gy , fx)  + 
gy2,h(yy)\n*-«> S7uh and gy^h piecewise linear functions as in the proof of 
Theorem 2.2. However, complications arise, due to the interpolation pr on F, 
and the resulting proof (which we found) is not much simpler than the proof 
given below. The analysis below has the advantage that it is a better starting 
point for a more general analysis (cf. Remark 3.10).



Theorem 3.4. The following inequality holds:

h2
— (Q?r Cr  + # )  — >

with

and
C r 2 yj y2 <2

for linear interpolation, 
for quadratic interpolation.

(3.16a)

(3.16b)

(3.16c)

Proof: With u —A h lHl r * and using the partitioning as in (3.4) we get

' A n A ir pr y l l r J1 h
~a 21 A 22 V2 0

Here l r * is used as an element in /2( //!'). Using the block LU-factorization of 
A h j i results in

v\ ~ A nlA ir pr v2 T ^ n 1 lr,* > (3.17a)

v2 = S~lA 21A f f  l r *, (3.17b)

with the Schur complement

S := A 22 ~ A 2j A li1A i rpr . (3.17c)
Note that we can represent l r * as

l r * = h2A i r wr i,, (3.18)

with wru a grid function on T 1' with values 1/2  (at grid points M e f 1' with 
dist(M,(7j, 72)) = h) or 1 (elsewhere). So for y, we have

A uul —A i r (pr u2 + h2wr i,̂  = 0.

The discrete maximum principle yields Hy/L < ||pr y2lb + ^2- For piecewise 
linear interpolation (i.e. pr =Pr)) we have ||pr y2|L < ||y2|U and for piecewise 
quadratic interpolation (pr =P<r )) we have \\pr u2\U < fl|y2IU This yields

IliqlL < Cpr \\v2L  +h2, (3-19)

with Cpr = 1 if Pr = Prl) and Q v  = f if pr = Pp\

It remains to obtain a bound for ||y2|U = \\S~lA 2l A f f  l r *IL.

We introduce w ~ A f f  l r *. From (3.18) we obtain that A uw —A i r (h2wr h) = 0 
holds. The discrete maximum principle yields that 0 <w <h21 ni, holds. So for 
w ~ A 21w  e  l2U2"), which has nonzero values on T H \  (yl5 y2) only, we have 
0 <w( M) <H~2h2 = a~2 for M  e  T H \  (yl5 72). We define ejfor e  l2((lff) as 
the grid function with value 1 at all points of ThHor \  (y ^ y ^  and value 0 at all 
other points of Tiff. Similarly we define efert (cf. Fig. 5). Note that 
w = A 21A f f  l r * and that the characteristic function in Of1 corresponding to



f2i

, N< \ < \J J
Jk

k
f

| f22
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0 71 1

Qi = (0,1)x (72,1)
^2 = (7i,l) x (0,72)
0 : r w \ (7 l,7 2 )
* : r ^ r t \ ( 7 1 , 7 2 )

x : ’•=  {(*»») £ I y =  72,71 <  X  <  1}

Figure 5. Partitioning of f l f

r H \  ( y]t y2) is given by ej?or + e^errHence we have the following result
0 < A21A f,‘ l r , < a - 2(e»„ + e»„). (3.20)

Due to

5 " ‘ - [ 0 ,H

and the monotonicity of A h H (Theorem 3.2) we have S 1 > 0. Combination 
with the result in (3.20) yields

l|u2L  = ||5 -U 2,/ i r l, l r>, |U < rr-2( ||S - |e"JU  + ||5 - |e»„IU). (3.21)

We now consider the term IIS“ le/fDJU. We use notation as explained in Fig. 5. 
The piecewise linear function g is defined as follows

1
(1 ~y) if 3^72g(x , y )  { l - 7 2 (3.22)

if 7 < 72
We use the notation g H :=g\nn, g c :=g\nH- Now consider Sg? = (A 22 — 
A 2iAii  A ir Pr)gc e  For M ^ ( ^ r UY"r, U F / )  we have

- 2( 5 g » ) ( M ) « [ ^ 22]Mgc» > H  

For M  e  r atf we get

(% ")(M ) = [ ^ 22]Mg f  > / /

-1
- 1  4 - 1

-1
g " > 0 . (3.23a)

-1
- 1  4 -1

- 1 AM

=  0 +

l d i d
dxLu 72 FT 7y g|/2' + ~H ~dyg^-  

1 1

**!>’=•

H  1 - 7 2
+ 0 > 0 . (3.23b)



With respect to the result on (r£ rt U r hHor \  (yl5 y2»  we note the following.

Define wh - = A ^ A xrpr g^. Due to the assumption we made concerning 
the quadratic interpolation on the line segments ( H, y2) — (2H, y2) and 
i y2, H ) - ( y v 2H)  and because g is constant on r  we have pr g^  <g\r = 1. 
The discrete maximum principle then yields 0  <  w h <  I n * .  Thus we get

0 < A 21A n XA !r pr gcH < H~2 (efor + ).

Using this we have for M  e  \  (y1? y2):

(SgcH) (M)  -  ( ( A 22- A 2iA ^ ' A i r P r ) g " ) ( M)  >H- 2
- 1

0 4 - 1
- 1

g H- H
AM

1
~ 77 +

1 1
=  0 .

/ /  H 2 H 2

Finally, for M e  r ,”r \  (y l5 y2) we get:

( ^ CW) ( M )  =  ( ( ^ 22

(3.23c)

- l
- l  4 - l  

0

~8\rhor
l <7

—: ---- £, n +
l  1 1 1

dx*'J" h" H dya]n' H 2 H 2 H l - y 2 

Combination of (3.23a-d) yields

(3.23d)

Sg?>
l l

and thus

TT 1 noriH 1 -  y2

||5-1eforIU<//(l -  y2)llg"!L = //(! -  y2)•
The term US Xe\jert\\x can be treated similarly. Using these results in (3.21) we 
set

||u2IL < cr~2(H (\  — y2) + H(1 — 7 ,)). 
Using (3.24) in (3.19) completes the proof of the theorem.

(3.24)

□

Remark 3.5. Note that the result in Theorem 3.4 is very similar to the one-di
mensional result in Theorem 3.2.

It is well-known (cf. e.g. [1,4]) that in case of a global uniform grid with grid size 
h relatively large (e.g. (1)) local discretization errors at grid points close to the



boundary may still result in acceptable (e.g. t f (h2)) global discretization errors. 
In Theorem 3.4. we have a very similar effect with H fixed and h ! 0, but now 
with respect to local discretization errors at grid points of T* (i.e. close to the 
interface). Below we will see that this effect (i.e. the result of Theorem 3.4) plays 
an important role in the analysis of the global discretization error.

We discretize the right hand side of (3.1) as usual, i.e. f h H e  is given
by =f (M)  for The local discretization error at
corresponding to the discretization A h Huh H =fh H is denoted by dh H(y), so 
dh H(y) = AU)(y) -  (A h H(U\nh,n))(y). As usual in a finite difference setting 
we assume f / e C 4(il). Then for the local discretization errors we have the 
following:

max \dh H(y) \<Clh2, (3.25a)
y e  /2 * \  r *

max \dh H(y)| < C0H 2, (3.25b)
y e n ?

max | dh H{y)\< C3a 2Hj~x + Cxh2, (3.25c)
y e T *

with j  =  1 for linear interpolation (p f!)) and j  =  2 for quadratic interpolation 
(p\2)). The constants C, are of the form

C, = c, max{|f/(4)(x)| |x g 13( = (0, y,) X (0, y2)}, (3.26a)

C2 = c2 max{|f/(4)(x)| |x e  O \  ((0, y, —H ) X (0, y2 - / / ) ) } ,  (3.26b)

C3= c 3 max{|t/(1+;)(x)| |x eT } , (3.26c)

with cj, c2, c3 independent of h, H, U.

Remark 3.6. The bound in (3.25c) is not sharp for the (less interesting) case 
cr= 1. A composite grid as in Fig. 2 only makes sense for problems in which the 
solution U varies much more rapidly in 17, than in O \  O,. Thus we assume 
Ci »  C2, Cx »  C3. Clearly, then one would use a composite grid with h <z.H, 
i.e. c r»  1. In that case the local discretization error on r *  may be large 
compared to the local discretization error on \  T* (cf. (3.25)). A strong 
damping of these large local discretization errors is a necessity for obtaining an 
acceptable global discretization error.

Theorem 3.7. For the global discretization error the following holds 

\\uh H ~ U1{2h,hL  < + Cpr Cr -  + h2 j/z2 + \ C2H 2 + C3(Cpr Cr + H ) H j

< ^ C xh2 + \ C2H 2 + 3C3H j, (3.27)



with C, as in (3.26), Cpr and Cr as in (3.16), j  = 1 for piecewise linear 
interpolation and j  = 2 for piecewise quadratic interpolation.

Proof: Using Theorems 3.2-3.4 and (3.25) we get
h 2

\ K h ~ U10>.b\L < \C \h2 + \C 2H 2 + (Cpr Cr + H ) - ( C 3cr2W - 1 + Cxh2).

The first inequality in (3.27) follows from rearranging the terms on the right 
hand side. The second inequality in (3.27) is a consequence of h <H < 1/2, 
Cpr  < 5 /4  and Cr < 2. □

Remark 3.8. We comment on the main result of this paper given in Theorem 3.7. 
As usual in finite difference estimates, the result in (3.27) has the disadvantage 
that high (fourth order) derivatives are involved. A nice feature is that the 
constants in (3.27) do not depend on a = H/h.  Furthermore, the bounds in 
(3.27) nicely separate the influence of the high activity region (Cxh2), the low 
activity region (C2H 2), and the interpolation on the interface (C3H j). Note that 
for linear interpolation the discretization is convergent, but not consistent. We 
also note that in (3.27) the bound for linear interpolation (j = 1) is worse than 
the one for quadratic interpolation only asymptotically for H i  0. In practice 
(where we have a given positive desired accuracy) it may happen that this 
asymptotic behaviour does not occur and that the results for quadratic and for 
linear interpolation are comparable. Examples of this will be given in Section 5.

Comparing our results with related results in the literature we note the fol
lowing. The analyses in [3,5] use weaker assumptions concerning the regularity 
of the solution. On the other hand, the analysis for the finite volume element 
method in [3] only treats the case with cr= 2. In the schemes in [5] larger values 
of a are allowed, but it is not clear how the discretization error (bound) 
depends on a.

The sharpness of the bounds in (3.27) will be discussed in Section 5.

Remark 3.9. Results very similar to those in Theorem 3.4 and Theorem 3.7 can 
be obtained if we consider a composite grid with O, of the form (711, 712) x 
(72i , 722) with 0 < 7n  < 7i2 < 1, 0 < y21 < 722 < 1-

Remark 3.10. We now comment on a generalization of our discretization error 
analysis to more general elliptic boundary value problems. In the analysis in this 
section we use three main arguments: local discretization error estimates (as in 
(3.25)), a stability result (Theorem 3.3) and a strong damping of local discretiza
tion errors on r *  (Theorem 3.4).

We consider an elliptic boundary value problem, on the unit square, of the form 
a(x,y)Uxx + b(x,y)Uyy + c(x,y)Ux + d(x,y)Uy =f ,  (3.28)

with homogeneous Dirichlet boundary conditions. The coefficient functions are 
smooth and satisfy the usual requirements for an elliptic problem which is not



convection dominated. We use a standard finite difference discretization with 
central differences for the first order derivatives. This results in a composite grid 
operator A h H of the form as in (3.4).

We first discuss the case with piecewise linear interpolation. The resulting local 
discretization error estimates are as in (3.25), with j  = 1. Under the usual 
conditions for the local mesh Peclet number, the matrix A h H is an M-matrix. 
We cannot apply the usual technique for proving the existence of a barrier 
function (cf. [10], section 5.1), because the composite grid discretization is not 
consistent. However, in this fairly concrete setting one can still derive concrete 
barrier functions. For example, in the case with c(x, y) = d(x, y) = 0 we can take 
the same function as in Lemma 3.1, and for the case with c(x, y) = constant > 0 
we can use W(x,y)=x  as a barrier function. If the existence of a barrier 
function can be proved, we have a stability result as in Theorem 3.3 (with 1 /8  
replaced by another constant). With respect to the result in Theorem 3.4 we 
note the following (cf. the proof of this theorem). As in (3.18), we can represent 
l r * as l r * = h2A xrwr h, with 0 < wr /. < cx. The constant cx depends on the 
coefficient functions a, b, c, d, but is independent of H  and h. For

— -d-h, 1h 1/v

we obtain (cf. (3.17) and (3.19))

IKIL < l|y2ll« + c\h2’
ll«2ll» = h2\\S~[A 2lA ^ A ir Wpi,\U.

So it remains to obtain a bound for ||y2|U. We sketch an approach, different 
from the one used in the proof of Theorem 3.4, that can be applied to a more 
general problem as in (3.28). Note that A 22lA 2x > 0 and A xllA xfpr > 0, so using 
the maximum principle we obtain

\\A22A 2\A filA ir pr \\x < \\A22A 2x\U\\AyyAXpPp\\x < \\A22A 2X|U = \\A22A 2X1\L

We introduce w ■= A 22A 2X1, so w satisfies A 22w —A 2X 1 =0. This corresponds 
to the discretization, on a uniform grid with size H, of the differential equation 
on a subdomain fl c  Q. On fl  we use Dirichlet boundary conditions with values 
0 on the part of dfl that coincides with dfl and values 1 on the remaining part 
of dfl. Due to the maximum principle we have that IMU < 1 holds. Since we 
restrict ourselves to diffusion problems it is reasonable to assume that even 
IMU < 1 — c2H  holds with c2 > 0. If the latter inequality holds, we obtain

l|y2IU = /z“||(7 — A 22A 2lA lxA xr pr ) A 22A 21A xxA xrWph\\x
co

< h~ 2̂, llA221A 21A 111A 1pPp\\0o\\A221A 21A xl1A i r Wp/,\\cC 
k=o

<h2 E  (1 - c 2H ) kc, = - f .
k= 0 C2 n



So we then have a result as in Theorem 3.4. From these observations we derive 
the claim that for the case with piecewise linear interpolation the analysis 
presented in this section can be extended to more general elliptic boundary 
value problems as in (3.28).

For the case with piecewise quadratic interpolation it is not clear (to us) how the 
analysis of this section can be extended to a more general setting. It is not clear 
how we can prove monotonicity of A h H (Theorem 3.2) if we have a problem as 
in (3.28) with variable coefficients. In Section 5 we present numerical results for 
a problem as in (3.28). There we observe that both for linear and for quadratic 
interpolation we have a discretization error behaviour that is very similar to the 
behaviour in case of the Laplace equation.

4. Connection with the Local Defect Correction Method

In this section we will discuss a close connection between the composite grid 
discretization in Section 3 and the Local Defect Correction method (LDC) 
introduced in [9]. The results in this section are based on [7]. This connection 
can be used to solve efficiently the composite grid system of Section 3. Below we 
explain the LDC method applied to the problem in (3.1). For a more general 
discussion of the LDC method we refer to [9].

In Section 3 we introduced the local fine grid fl* and the coarse grid Of1 (both 
part of the composite grid, cf. (3.2)). To make the notation in this section more 
transparant, we will write fl{' instead of fl*. We now introduce the global 
coarse grid

n gH -.= n H n n ,  ( 4 .1 )

and the standard 5-point discretization on this grid denoted by

A h uh ~ I h - (4.2)
Below we also use the local coarse grid

f i?  ■■= n , n n H.
Furthermore, we introduce the characteristic function * : / 2(/2/0 
given by

( /Vvv) ( x )
I w(x) x e f i f
I 0 x e n f \  a ? '

(4.3) 

i 2( f i gH)

(4.4)

For a given uH e l2(flg ) we consider a corresponding local fine grid problem 
defined as follows. We use the standard 5-point stencil on fl* and artificial 
boundary values on T h given by pr vH, where pr is an interpolation as in 
Section 3 (^f!): piecewise linear interpolation; piecewise quadratic inter
polation). Using the notation as in (3.4) this yields a local fine grid system



In LDC one starts with solving the basic coarse grid problem (4.2). The resulting 
uH is used to define boundary values for a local fine grid problem, i.e. we solve 
(4.5) with uH = uH, resulting in a local fine grid approximation uh. By solving the 
local fine grid problem we aim at improving the approximation of the continuous 
solution U in the region fl,. However, the Dirichlet boundary conditions on T h 
result from the basic global coarse grid problem and the approximation uh can 
be no more accurate than the approximation uH at the interface, which in 
general will be rather inaccurate. Therefore the results of this simple two step 
process usually do not achieve an accuracy which is in agreement with the added 
resolution (see e.g. [9]). In the LDC iteration coarse and fine grid processing 
steps are reused to obtain (quickly) such accuracy.

In the next step of the LDC iteration the approximation uh is used to update 
the global coarse grid problem (4.2). The right hand side of (4.2) is updated at 
grid points that are part of 0,H. The updated global coarse grid problem is given
by

with
^■h lih ~ / h > (4.6a)

/tfO ) =
I (Au(u/'U1p))(x) -  (A ir 0 /v « ) ) ( x) 

i/w (x)

x e  n,H
. (4.6b)

x e  \

The operators : l2(0,H) -» and A*fr : l2( r H) -* f - in j1) are coarse
grid analogues of A hn and A'\r in (4.5).

Using (4.4) we can rewrite (4.6a), (4.6b) as follows

a h lih = / h + { uh[Uii) ~ A ‘\r(uĤrn) ~ f n ) -  (4-7)

So the right hand side of the global coarse grid problem is corrected by the 
defect of a local fine grid approximation. Once we have solved (4.7) we can 
update the local fine grid problem:

A u uh = th + A '\rPrllH • (4-8)
The approximations uH and uh of U can be used to define an approximation of 
U on the composite grid:

uc(x)
j Uh(x) X e  n f  
j uH (x) x e  = Oc,H \  Of1

(4.9)

In the LDC iteration global problems like (4.7) and local problems like (4.8) are 
combined in the way described above.

LDC
Start: solve the global problem

^ H UH,0 ~f ff  ° n ^g



solve the local problem

^ n uh,o fh +y^irPruH,o on A*
i = 1,2,...:
a. Compute the right hand side of the global problem

///: (1  x ) f H ' ^ x { ^ n ( u h , i - i \aj ' )  - A \ r i u H , i - \ \ r H) ) (4.10a)

b. Solve the global problem

AHUH,i~fH on fig (4.10b)
c. Solve the local problem

A h\\uh,i ~fh r PruH,i on A* (4.10c)

Corresponding to uHJ and uh one can define a composite grid approximation 
uc<i as in (4.9).

In practice the systems in (4.10b), (4.10c) will be solved approximately by a fast 
iterative method. Then one can take advantage of the fact that one has to solve 
(standard) problems on uniform grids.

Any fixed point (uH,uh) of the iterative process (4.10) is characterized by the 
system (see [9])

Corresponding to uH and uh one can define a composite grid approximation uc 
as in (4.9). We now discuss a main result from [7]. It is proved in [7] that uc is the 
solution of the composite grid problem that is analyzed in Section 3 (cf. (3.4)). 
Based on this result we make the following observations:

— The LDC method seems a natural approach for computing discrete approxi
mations on a composite grid. The close connection between LDC and the 
composite grid discretization of Section 3 (where with respect to discretization 
an interface point is treated as a coarse grid point) yields a further justification 
of this discretization method.

— The result of Theorem 3.7 yields a discretization error bound for the limit 
(uc) of the LDC iteration.

— The LDC method can be used for solving the composite grid system of 
Section 3. Note that in the LDC solution process we do not need the composite 
grid operator A h H. We only use the discretizations on the local fine grid (A'lf) 
and on the global coarse grid (A H).

— In [7] the rate of convergence of the LDC method is studied. Based on the 
results in [7] (and in [9]) we expect the LDC method to be an efficient solver for 
the composite grid system of Section 3.



5. Numerical Results

In this section we will show results of some numerical experiments. First, we 
present results related to the global discretization error bound proved in 
Theorem 3.7. Then we discuss a two-dimensional nonuniform discretization 
method which can be seen as a generalization of the one-dimensional method 
with stiffness matrix A h H of Section 2 (cf. (2.5b)). Finally, we show composite 
grid discretization errors for a problem with variable coefficients (Experiment 4) 
and for a problem with a singular solution (Experiment 5).

Below in Experiments 1, 2 and 3, we will illustrate certain phenomena using 
numerical results for the following model problem:

— AU = f  in 13 = (0,1) X (0,1),
U = g on dfl. (5.1)

We consider two cases:

Case 1. / , g such that the solution is given by
U ( x , y ) = x 2+y 2. (5.2)

Case 2. /, g such that the solution U is given by
U( x , y ) = |{tanh(25(x +y -  | ) )  4-1]. (5-3)

Clearly in Case 1 we have a very smooth solution and we do not need a 
composite grid. This example is used below for theoretical considerations. The 
solution U in Case 2 is shown in Fig. 6. The solution varies very rapidly in a

o o
Figure 6. The solution U from (5.3)



small part of the domain and is relatively smooth in the remaining part of the 
domain. In both cases for C2l we take

A  = {(x,y) e  fl\x  < \  Ay < J}.

Experiment 1. In the upper bound for the global discretization error as proved 
in Theorem 3.7 we have a term C2H  if we use piecewise linear interpolation on 
the interface (j = 1). In this experiment we show that the bound is sharp with 
respect to this C2H  term. We consider Case 1. Then for Cv C2 in (3.27) we 
have Cj = C2 = 0. In Table 1 we show values of the global discretization error 
\\uh H -  U]nu,h|U for several values of H  and cr = H /h. We clearly observe the 
linear dependence on H.

Table 1. Global discretization errors; Case 1; 
piecewise linear interpolation

cr == 2

H = 1/16 H=  1/32 H =  1/64 H=  1/128

100o

A Ale -  4

tT1A)oN

9.60e -  5

H = 1/16

cr = 2 cr= 4 (7=8 cr = 16m100o
1.26e -  3 1.35e -  3 1.42e — 3

Experiment 2. We consider Case 2 and use piecewise quadratic interpolation on 
the interface. For this (model) composite grid problem Theorem 3.7 yields a 
discretization error bound of the form D^h2 +D2H 2 with Dl » D ?. Based on 
this bound we expect the following. If we take H fixed then decreasing h (i.e. 
increasing cr) should result in h2 convergence until a certain threshold value 
crmax is reached. This convergence behaviour can be observed in the rows of 
Table 2. For H=  1/8 we see a threshold value amax ~ 16. Also note that in 
Table 2 there is only little variation in the values if we take h fixed and vary a. 
For example, along the diagonal from (H, cr) = (1/64,1) to (H, cr) = (1/8,8) 
(i.e. h = 1/64) all values are about 5.5c -  3. This means that the global dis
cretization error corresponding to the composite grid problem with H  = 1/8, 
h = 1/64 is approximately of the same size as the global discretization error 
corresponding to the standard discrete problem on the global uniform grid with 
h = 1 /64. So in this sense the quality of the discrete solutions of these two 
problems is the same. Flowever, in the composite grid problem the discrete 
solution can be computed with significantly lower arithmetic costs. When we 
repeat this experiment, but now with linear interpolation instead of quadratic 
interpolation on the interface, we obtain discretization errors that are very close



Table 2. Global discretization errors; Case 2; piecewise quadratic interpolation

H 1 2 4 8 16 32 cr

1/8 2.55e -  1 6.02e -  2 2.29e -  2 5.39e -  3 1.49e -  3 1.54e -  3
1/16 6.08e -  2 2.29e -  2 5.54e -  3 1.35e -  3 8.03e -  4
1/32 2.30e — 2 5.61e — 3 1.41e — 3 3.33e — 4
1/64 5.63e -  3 1.43e -  3 3.51^ — 4

to the discretization errors shown in Table 2 (difference less than a few percent).

We now discuss an obvious two-dimensional generalization of the one-dimen
sional approach in (2.5b). We use the same discretization stencils as in Section 3 
at all grid points of H \  T H. Again, we use piecewise linear (; = 1) or 
piecewise quadratic (; = 2) interpolation. On r H we do not use a coarse grid 
stencil as in Section 3, but a nonsymmetric stencil of the same type as in (2.5b). 
For example, in M e  rjjrt we use (u e

(j- 2 2(J
“V T I  u(M-(h,0))+2au(M)-

+ H~2( —u( M — (0, H) )  + 2 u{M) - u ( M +  (0, H)) ) .  (5.4)

This results in a discretization with stiffness matrix denoted by A h H and with 
local discretization errors as in (3.25) but now with an cf (H)  error at points 
MElT h. In Section 2 we noticed that in the one-dimensional case the local 
discretization error in r*  is reduced only by a factor h (cf. (2.9)). Numerical 
experiments show that in the two-dimensional case we also have IM/7,wlr*IU ~ 
ch. So then for the local discretization errors on r *  of size C3cr2Hj~ 1 -I- C{h2 
(cf. (3.25c)) we only have a damping factor ch =cH/cr,  instead of the damping 
factor c H / a 2 as in Theorem 3.4. This then implies a global discretization error 
estimate of the form

\\uh — U^h.n\\x < H~ T C3Ccr/T , (5.5)

with C, as in (3.27). Clearly, due to the factor cr the bound in (5.5) is less 
favourable than the result in Theorem 3.7. We also note that for solving the 
resulting discrete problem an FAC type of method can be used. Then we need 
the composite grid operator A h H in the solution method, whereas in the LDC 
approach (cf. Section 4) the composite grid operator A h H is not needed. So the 
composite grid discretization with stiffness matrix A h H has disadvantages when 
compared with the composite grid discretization of Section 3.

Experiment 3. This experiment is similar to Experiment 1 but now with the 
stiffness matrix A h H instead of the stiffness matrix A h H. We use piecewise 
linear interpolation on the interface and we consider Case 1. Then the bound in 
(5.5) is of the form C3ccrH, so we expect a growing discretization error if cr is 
increased. A dependence of the global discretization error on cr is observed in 
Table 3, too. Apparently this dependence is not linear in cr. Probably this is due



Table 3. Global discretization errors; Case 1; 
linear interpolation; stiffness matrix A h>H

(7=2

H  = 1.16 H = 1.32 H = 1/64 H =  1/128
1.48c -  3 6.82e -  4 3.25e -  4 1.60e -  4

H = 1/16

(7=2

OOIIbIIb <r = 16
1.48e -  3 2.54e -  3 3.84e -  3 5.30c -  3

to the fact that the local discretization errors on r* ,  i.e. dh H(y) with y e f / ,  
show an oscillating behaviour and approximating dh H(y)]y e r * by ll^z/lL.r* l r * 
(as is done in the proof of (5.5)) is rather crude.

Our discretization error analysis in Section 3 applies to the Laplace equation 
with a solution £/<e C4(/2) (cf. Remark 3.10 for a possible generalization). In 
the following experiments we apply the composite grid finite difference method 
of Section 3 to other problems. In Experiment 4 we consider a problem in which 
the differential operator has variable coefficients, and with data such that the 
solution U is still in C4(/2). In Experiment 5 we consider a Laplace equation 
with a singular solution (U <£ C(/2)).

Experiment 4. We consider an elliptic boundary value problem as in (3.28), i.e. 
with variable coefficients. We consider the problem;

-  (2 + sin( — )) Uxx -  exyUyy + cos| —  j Ux + (1 +x)eyUy

= f  in 12= (0,1) X (0,1),

U =g on dfl.

We take the data / ,  g such that the solution U is as in (5.3). We use a standard 
discretization with central differences for the first order derivatives. The result
ing discretization errors with H=  1/16 are shown in Table 4. Note that the 
results are very similar to the results for the Laplace equation in Experiment 2. 
As in Table 2, we observe an <f(h2) behaviour until a certain threshold value 
crmax is reached. We also see that for linear and quadratic interpolation we have 
approximately the same threshold value for a. Apparently, for H = 1/16 the 
error in the low activity region (corresponding to the term ~ C2H 2 in (3.27)) 
dominates the linear interpolation error on r  (corresponding to the term 
~ C2H  in (3.27)).



Table 4. Global discretization errors; Experiment 4

cr 1 2 4 8 16 32

linear 6.66c -  2 2.43 e -  2 5.87e -  3 1.45c -  3 9.91c- 4 1.02e -  3

quadratic 6.66e -  2 2.43c -  2 5.87c -  3 1.6e — 3 9.25c -  4 9.51c- 4

Experiment 5. We consider a problem with a singular solution (as in [9], [11]): 

- A U = f  in n = ( 0,1) X (0,1),

U = g on df l ,

with /, g such that the solution is given by U(x,y) = log(-/r2 + y2 ).

Due to the singularity at the origin it is not reasonable to compare discretization 
errors on certain (uniform or composite) grids by using the maximum norm on 
different grids. We use a uniform coarse grid on fl with size H = 1 /16, denoted 
by 131/16. On this grid and on finer grids we always measure discretization errors 
using the maximum norm over F21/16. For u ^ l 2( f l h), with /2y'D l l 1/16 we 
define

11̂ 1)00,121/16 := max{|u(M)| |M e  12l/16}.

When we use a global uniform grid with size h, denoted by f l h, and the standard 
finite difference discretization for the Laplacian, we obtain discretization errors 
(in II" Hoc,22v,6) as in Table 5.

Table 5. Global discretization errors on uniform grids; Experiment 5

h 1/16 1/32 1/64 1/128 1/256 1/512

IIuh -  U|n*lkn‘/>‘ 7.14c -  2 2.85e -  2 9.74c -  3 3.05c -  3 9.08e -  4 2.63e -  4

Table 6. Global discretization errors; Experiment 5

(7 1 2 4 8 16 32

linear 7.14c- 2 2.90e -  2 1.04c -  2 4.27e -  3 4.01c- 3 3.93e -  3

quadratic 7.14c- 2 2.86e -  2 9.80e -  3 3.lie  — 3 1.15c- 3

CO1O

In Table 6 we show the values \\uh H — Uini,,H\\Xt n1/l6 for the composite grid 
discretization of Section 3, with H =  1/16. From these results we see that for 
piecewise linear (quadratic) interpolation we obtain fine grid accuracy until the 
threshold value cr= 8 (cr= 16) is reached.
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