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henAbstra
tWe present a �nite volume s
heme for solving ellipti
 boundary value problems withsolutions that have one or a few small regions with high a
tivity. The s
heme results from
ombining the lo
al defe
t 
orre
tion method (LDC), introdu
ed in [11℄, with standard�nite volume dis
retizations on a global 
oarse and on lo
al �ne uniform grids. Theiterative dis
retization method that is obtained in this way yields a dis
rete approximationof the 
ontinuous solution on a 
omposite grid.For the LDC method in its standard form, the dis
rete 
onservation property, whi
h isone of the main attra
tive features of a �nite volume method, is lost for the 
ompositegrid approximation. For the modi�ed LDC method we present here, dis
rete 
onservationholds for the 
omposite grid solution, too.AMS Subje
t Classi�
ations: 65N22, 65N50.Key words: Ellipti
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al defe
t 
orre
tion, 
ompositegrids.1 Introdu
tionMany boundary value problems produ
e solutions that have highly lo
alized properties. Inthis paper we 
onsider ellipti
 boundary value problems with solutions that have one or a fewsmall regions with high a
tivity.We study a �nite volume dis
retization method based on a 
ombination of standard �nitevolume dis
retizations on several uniform grids with di�erent grid sizes that 
over di�erentparts of the domain. At least one grid should 
over the entire domain; the meshsize of thisglobal 
oarse grid is 
hosen in agreement with the relatively smooth behavior of the solutionoutside the high a
tivity regions. Apart from this global 
oarse grid, one or several lo
al gridsare used whi
h are also uniform. Ea
h of these lo
al grids 
overs only a (small) part of thedomain and 
ontains a high a
tivity region. The meshsizes of the lo
al grids are 
hosen inagreement with the behavior of the solution in the 
orresponding high a
tivity region. In thisway, every part of the domain 
an be 
overed by a (lo
ally) uniform grid with a meshsize thatis in agreement with the behavior of the 
ontinuous solution in that part of the domain. Thisre�nement strategy is known as lo
ally uniform grid re�nement. The solution is approximatedon the 
omposite grid, whi
h is the union of the uniform subgrids. Note that su
h 
ompositegrids are highly stru
tured and hen
e very simple data stru
tures 
an be used.In [11℄, Ha
kbus
h introdu
ed the lo
al defe
t 
orre
tion method (LDC) for approximating the
ontinuous solution of ellipti
 boundary value problems on a 
omposite grid. In this method,whi
h is an iterative pro
ess, a basi
 global dis
retization is improved by lo
al dis
retizations1



de�ned in the subdomains. This update of the 
oarse grid solution is a
hieved by putting adefe
t 
orre
tion term in the right hand side of the 
oarse grid problem. At ea
h iterationstep, the pro
ess yields a dis
rete approximation of the 
ontinuous solution on the 
ompositegrid. The dis
rete problem that is a
tually being solved is an impli
it result of the iterativepro
ess. Therefore, the LDC method is both an iterative dis
retization and solution method.An analysis of the LDC te
hnique in 
ombination with �nite di�eren
e dis
retizations ispresented in [5{7℄.In this paper, we 
onsider the integral formulation of a two-dimensional 
onve
tion-di�usionproblem, and 
ombine the LDC te
hnique with standard �nite volume dis
retizations of thisproblem on the global 
oarse and lo
al �ne grids. In the LDC method as in [5{7, 11℄, thedis
rete 
onservation property, whi
h is one of the main attra
tive features of a �nite volumemethod, does not hold for the 
omposite grid approximation. Here, we present a modi�edLDC method, whi
h is based on a spe
ial form of the defe
t 
orre
tion term used in the righthand side of the 
oarse grid problem. Due to this �nite volume adapted defe
t 
orre
tionterm, the 
onservation property is preserved in the dis
retization on the 
omposite grid.Attra
tive features of the �nite volume based LDC method presented here are:{ the method yields a dis
retization on lo
ally re�ned grids;{ a dis
rete 
onservation property holds for the dis
retization on the 
omposite grid;{ the method is simple: it only uses standard �nite volume dis
retizations on uniform(global 
oarse and lo
al �ne) grids.Dis
retization methods on 
omposite grids have been dis
ussed by other authors too. M
-Cormi
k presents the �nite volume element (FVE) method, whi
h is used in the fast adaptive
omposite grid (FAC) method (
f. [15{17℄). Ewing et al. [3, 4℄ give an analysis of a �nite vol-ume based lo
al re�nement te
hnique with 
omposite grids. In both approa
hes, an expli
itdis
retization s
heme for the 
omposite grid is proposed, in whi
h spe
ial di�eren
e starsnear the 
omposite grid interfa
es are used. The resulting dis
rete system is then solved byan iterative method (e.g. FAC) whi
h may take advantage of the 
omposite grid stru
ture.This is a 
ru
ial di�eren
e with the LDC method, whi
h 
ombines standard dis
retizationson uniform grids only and does not use an a priori given 
omposite grid dis
retization.This paper is organized as follows. In Se
tion 2, we formulate a stationary 
onve
tion-di�usionproblem, and dis
uss a standard vertex-
entered �nite volume te
hnique for dis
retizing thisproblem on a uniform grid. In Se
tion 3, we brie
y re
all the 
on
ept of 
omposite grids, andderive a �nite volume adapted LDC method. For the resulting 
omposite grid dis
retization,we prove a dis
rete 
onservation property. In Se
tion 4, we show results of a few numeri
alexperiments.2 Problem formulation and �nite volume dis
retization on auniform gridWe 
onsider a stationary 
onve
tion-di�usion problem in the domain 
 = (0; 1)� (0; 1) withDiri
hlet boundary 
onditions ' =  on �
. By V � 
 we denote a generi
 Lips
hitzsubdomain of 
. The outward unit normal ve
tor to �V is denoted by n. We assume givenfun
tions � = �(x; y) � �min > 0 (di�usion 
oeÆ
ient), v = (v1(x; y); v2(x; y))T (mass 
ux),2



and s = s(x; y) (sour
e term). Introdu
ing the 
ux ve
torf' = (f; g)T = v'� �r'; (1)the problem we 
onsider 
an be represented in integral formulation as: determine ' 2 H1(
)with 'j�
 =  (in the sense of tra
es), su
h thatI�V f' � n d
 = ZV s d
; for all V . (2)Here we used standard notation for the Sobolev spa
e H1(
). In this paper, we study a �nitevolume dis
retization te
hnique based on a 
ombination of �nite volume dis
retizations on sev-eral uniform grids with di�erent meshsizes. For the dis
retization of the 
onve
tion-di�usionproblem on the uniform grids, we 
onsider a standard vertex-
entered �nite volume dis
retiza-tion method. The te
hnique we present may be generalized, however, to 
ell-
entered methodsand to so-
alled stru
tured boundary 
onforming grids (
f. [19℄) or to logi
ally re
tangulargrids, 
f. Remarks 3 and 8.The �nite volume dis
retizations on the uniform grids are standard and 
an be found in manytextbooks; the presentation, however, is adapted to the generalization to 
omposite grids.We use a meshsize parameter H = 1=(N + 1), N 2 IN , and grid points (xi; yj) := (iH; jH),(xi+1=2; yj) := ((i+1=2)H; jH), (xi; yj+1=2) := (iH; (j+1=2)H), i; j 2 IN . In a vertex-
enteredapproa
h one uses a 
omputational grid 
H de�ned by�
H := f(xi; yj)g \ �
; � �
H := �
H \ �
; 
H := �
H n � �
H ;and a 
ontrol volume Vij around ea
h grid point in 
HVij := (xi�1=2; xi+1=2)� (yj�1=2; yj+1=2): (3)The midpoints of the interfa
es of these volumes form a dual gridV H := �f(xi+1=2; yj)g [ f(xi; yj+1=2)g� \ 
;on whi
h we will de�ne dis
rete 
uxes. The spa
es of grid fun
tions on 
H , �
H , V H aredenoted by G(
H), G(�
H), G(V H), respe
tively. For grid fun
tions we use boldfa
e notation;for FH 2 G(
H), we write FH = (FHij )1�i;j�N with FHij := FH(xi; yj). We use a similarnotation for elements in G(�
H), G(V H). We introdu
e, for FH 2 G(V H), 
entral di�eren
eoperators rHx , rHy : G(V H)! G(
H) by(rHx FH)ij := FHi+1=2;j � FHi�1=2;j ; (rHy FH)ij := FHi;j+1=2 � FHi;j�1=2:We de�ne the 
ontinuous 
ux F(') 2 G(V H) as follows (
f. (1)):Fi+1=2;j := Z yj+1=2yj�1=2 f(xi+1=2; �) d�; Fi;j+1=2 := Z xi+1=2xi�1=2 g(�; yj+1=2) d�: (4)Note that this is the 
ontinuous 
ux over the interfa
es of the 
ontrol volumes Vij as in (3).Finally, we de�ne S 2 G(
H) bySij := ZVij s d
: (5)3



Applying the 
onservation law in (2) with V = Vij yields:�rHx F(')�ij + �rHy F(')�ij = Sij: (6)In �nite volume dis
retizations the 
ontinuous 
uxes in (4), whi
h depend on the 
ontinuoussolution ', are approximated using a �nite di�eren
e s
heme. For � 2 G(�
H), we introdu
ea dis
rete 
ux grid fun
tion FH(�) 2 G(V H). Here we use a general setting and we will notbe spe
i�
 about the parti
ular �nite di�eren
e s
heme that is used. We only assume thatthe di�eren
e s
heme FH(�) is lo
al and linear in �, i.e.,FHi+1=2;j(�) = Xk=0;1; m=�1;0;1�i+k;j+m �i+k;j+m; (7)with given 
oeÆ
ients �pq 2 IR. We use a similar approximation FHi;j+1=2. In pra
ti
e, theintegral in (5) is approximated by a quadrature rule. The resulting approximation of S isdenoted by SH .Example 1 If we apply the midpoint rule to approximate the integrals in (4), (5), and use
entral di�eren
es to approximate the 
uxes at midpoints of volume fa
es, we obtain for FH(�)and SHFHi+1=2;j = fHi+1=2;jH; FHi;j+1=2 = gHi;j+1=2H; SHij = s(xi; yj)H2;wherefHi+1=2;j = v1(xi+1=2; yj) �ij + �i+1;j2 � �(xi+1=2; yj) �i+1;j � �ijH ;gHi;j+1=2 = v2(xi; yj+1=2) �ij + �i;j+12 � �(xi; yj+1=2) �i;j+1 � �ijH :In the above, � 2 G(�
H), FH(�) 2 G(V H), and SH 2 G(
H).In (6), we repla
e the 
ontinuous 
uxes F by approximate 
uxes FH as in (7) and Sij by SHij .We then obtain a �nite volume dis
retization whi
h 
an be represented as:8>><>>: �nd 'H 2 G(�
H) su
h that:rHx FH('H) +rHy FH('H) = SH ;'H =  on � �
H : (8)This dis
retization yields N2 equations for the N2 unknown values of 'H on 
H .3 An iterative �nite volume dis
retization on 
omposite gridsIn this se
tion, we will present a �nite volume method for approximating the 
ontinuoussolution ' on a 
omposite grid. In Se
tion 3.1, we explain how a 
omposite grid is formedby 
ombining two or more uniform grids with di�erent meshsizes. In Se
tion 3.2, we adaptthe general Lo
al Defe
t Corre
tion (LDC) method from [11℄ to a �nite volume setting. TheLDC method is an iterative method, hen
e we obtain an iterative �nite volume dis
retizationmethod. In Se
tion 3.3, we derive some properties of the method. In parti
ular it is shownthat a 
onservation property holds on the 
omposite grid.4



Figure 1: A 
omposite, global 
oarse and lo
al �ne grid; H = 1=6, N = 5, and the re�nementfa
tor � equals 3. Grid points, 
ontrol volumes, and 
uxes are denoted by little 
ir
les, largesquares, and arrows, respe
tively. The shaded region is 
l; the points of �H are marked by�lled 
ir
les.3.1 Composite gridIn this se
tion we re
all the 
on
ept of 
omposite grids and introdu
e some notation. Com-posite grids 
an be found in e.g. [1{3, 8{10, 15℄. The grids we 
onsider result from a uniformbasis grid with meshsize H, 
f. Se
tion 2, that is extended with a region of lo
ally uniformre�nement 
l, whi
h is su
h that it 
ontains the part(s) of 
 in whi
h relatively high resolu-tion is needed. In Se
tion 4, an example of an interfa
e problem is given, where it is a priori
lear that in a (small) part of the domain 
 a mu
h higher resolution is required than in theremaining part. Further examples 
an be found in [5, 7, 11℄.The uniform basis grid, denoted by 
H , is 
alled the global 
oarse grid. We assume that
l � 
 is 
hosen su
h that(xi; yj) 2 
H \ 
l () Wij � 
l (9)holds withWij := (xi�1; xi+1)� (yj�1; yj+1): (10)Note that Vij � Wij, so that Wij � 
l implies Vij � 
l. Also, 
l is not a union of 
ontrolvolumes Vij. In 
l we apply, as in 
, a vertex-
entered �nite volume method, i.e., we �rstintrodu
e a uniform 
omputational grid with meshsize h < H. This grid, whi
h is denotedby 
hl , is 
alled the lo
al �ne grid. To make sure that grid points in 
Hl := 
H \ 
l aregrid points of 
hl , and that boundaries of 
ontrol volumes in the lo
al �ne grid 
oin
ide withboundaries of 
ontrol volumes in the global 
oarse grid, we assume the re�nement fa
tor� := H=hto be an odd integer. We emphasize that a re�nement fa
tor � � 1 is allowed, i.e., we 
anuse a global 
oarse grid and a lo
al �ne grid with di�erent resolution properties. In Figure 1,an example of a 
omposite grid is shown (
f. also Se
tion 4).The interfa
e between the global 
oarse grid and the lo
al �ne grid will be denoted by � :=�
l n �
. We will 
all the set of 
oarse grid points on this boundary �H , so �H := � \ 
H .The 
omposite grid is denoted by 
H;h := 
H [ 
hl , �
H;h := �
H [ 
hl .5



3.2 A Lo
al Defe
t Corre
tion �nite volume dis
retizationBasi
ally, the LDC iteration in [11℄ 
onsists of the following steps:1. Solve a global 
oarse grid problem with given right hand side.2. Solve a lo
al �ne grid problem with arti�
ial boundary 
onditions on the interfa
e �.3. Compute a defe
t 
orre
tion term for the right hand side of the 
oarse grid problem,and go to 1.Below, we dis
uss these three steps, resulting in the algorithm in (23){(25). For adapting thegeneral LDC method from [11℄ to a �nite volume setting, the key point is a defe
t 
orre
tion(Step 3) whi
h is based on dis
retization error estimates for the numeri
al 
uxes.Global 
oarse grid problemWe 
ompute an initial approximation 'H on the global 
oarse grid using the standard �nitevolume dis
retization of Se
tion 2, i.e., 'H is the solution of the dis
rete problem (8).Lo
al �ne grid problemWe formulate a boundary value problem on the lo
al domain 
l, using the 
oarse grid approx-imation to de�ne arti�
ial Diri
hlet boundary 
onditions on the interfa
e �. To determinethe arti�
ial boundary 
onditions, we use an interpolation operator p : �H ! �; obvious
hoi
es for p are the linear and the quadrati
 interpolation operator. Due to the fa
t that 
lis, by 
onstru
tion, a union of sets Wij , a linear interpolation p : �H ! � 
an be de�ned in astraightforward manner. If a point x on a verti
al (horizontal) part of � has (at least) threeneighboring points in �H whi
h lie on a verti
al (horizontal) line, a quadrati
 interpolationat x 
an be de�ned in a natural way. At �
l \ �
 we use the given Diri
hlet boundary
onditions.We are thus led to an analogon of problem (2) on the subdomain 
l with arti�
ial boundary
onditions on the interfa
e �. We dis
retize this problem on the uniform lo
al grid 
hl usingthe method des
ribed in Se
tion 2. We use a notation in whi
h lo
al �ne grid quantities aredenoted by a subs
ript l and a supers
ript h, e.g.: 
hl (
omputational grid on 
l), V hl (dualgrid on 
l), G(V hl ) (grid fun
tions on V hl ) and, for � 2 G(�
hl ), Fhl (�) 2 G(V hl ) (dis
rete 
uxon V hl ). These quantities related to 
l are de�ned in exa
tly the same way as their analogonsin Se
tion 2 whi
h are related to 
.Using this notation the dis
rete lo
al �ne grid problem 
an be formulated as:8>><>>: �nd 'hl 2 G(�
hl ) su
h that:rhxFhl ('hl ) +rhy Fhl ('hl ) = Shl ;'hl =  on � �
hl \ �
; 'hl = p('H j�H ) on � �
hl \ �: (11)The dis
rete solutions 'H and 'hl yield an approximation of ' at all points of the 
ompositegrid. We denote this 
omposite grid approximation by 'H;h, and take the newest values ingrid points belonging to both the 
oarse grid and the �ne grid, viz.'H;h := ( 'hl ; on 
hl ,'H ; on �
H n 
Hl . (12)6



Defe
t 
orre
tionWe now derive the third step in the algorithm, in whi
h we use the (more a

urate) approx-imation found on the lo
al �ne grid to 
ompute a 
orre
tion for the right hand side of theglobal 
oarse grid problem.Substitution of the 
ontinuous solution ' in (8) yields a defe
tdH := rHx FH('j�
H ) +rHy FH('j�
H )� SH : (13)Combination of (6) and (13) yields:dH = rHx (FH('j�
H )�F(')) +rHy (FH('j�
H )� F(')) � (SH � S): (14)This expression for the 
oarse grid defe
t is used to derive an approximation for dH byestimating the 
ux dis
retization error FH('j�
H )� F(') and the sour
e term dis
retizationerror SH � S.After solving the global 
oarse and lo
al �ne grid problems, the following approximations areavailable for an arbitrary horizontal 
ux Fi+1=2;j('):1. the 
oarse grid approximation of the 
ux, FHi+1=2;j('H);2. a 
oarse grid approximation of the 
ux based on the most re
ently 
al
ulated approxi-mation for ', i.e., FHi+1=2;j('H;hj�
H );3. a sum of �ne grid approximations of 
uxes,F suml;i+1=2;j('hl ) := (��1)=2Xk=�(��1)=2F hl;i+1=2;j+k('hl ): (15)This third approximation only exists, if (xi+1=2; yj) 2 
l, i.e., if the 
ell fa
e (xi+1=2; yj�1=2)�(xi+1=2; yj+1=2) lies in the area of re�nement.Note that both in the se
ond and third approximation, we use the solution 'hl of the dis
retelo
al �ne grid problem (11). In the se
ond approximation, however, only a 
oarse grid 
ux dis-
retization FH is used, whereas in the third approximation, a �ne grid 
ux dis
retization F hlis used, too. These three approximations are 
onsidered to be listed in order of in
reas-ing a

ura
y. Be
ause similar approximations are available for the other 
uxes, Fi�1=2;j('),Fi;j+1=2('), Fi;j�1=2('), too, we 
an de�ne a 
oarse grid 
ux ve
tor whi
h uses informationfrom the lo
al �ne grid solution: Fbest('H;h) 2 G(V H) is de�ned by:Fbest('H;h) := ( Fsuml ('hl ); on V H \ 
l (as in (15)),FH('H;hj�
H ); elsewhere. (16)We use this 
ux ve
tor to give the following 
ux dis
retization error estimateFH('j�
H )� F(') � FH('H;hj�
H )� Fbest('H;h) =: dHF ('H;h): (17)Analogously, we have the following approximations for an arbitrary sour
e term Sij:1. the 
oarse grid approximation of the sour
e term, SHij ;7



2. a sum of �ne grid approximations of sour
e terms,Ssuml (xi; yj) := (��1)=2Xk=�(��1)=2 (��1)=2Xm=�(��1)=2 Shl (xi + kh; yj +mh): (18)This se
ond approximation only exists, if (xi; yj) 2 
l, i.e., if the 
ontrol volume Vij liesin the area of re�nement.Again, the last approximation is 
onsidered to be most a

urate, and we de�ne Sbest 2 G(
H)by Sbest := ( Ssuml ; on 
Hl (as in (18)),SH ; elsewhere. (19)We use this sour
e term ve
tor to give the following sour
e term dis
retization error estimateSH � S � SH � Sbest =: dHS : (20)Using (17) and (20) to estimate dH in (14), we proposerHx dHF ('H;h) +rHy dHF ('H;h)� dHS (21)as a defe
t 
orre
tion term in the right hand side of the 
oarse grid problem. Hen
e, weintrodu
e the following notation for 'H;h 2 G(�
H;h):SH('H;h) := SH +rHx dHF ('H;h) +rHy dHF ('H;h)� dHS : (22)Formulation of the LDC algorithmUsing the updated right hand side (22), we 
an repeat the pro
edure des
ribed above, i.e.,solve a 
oarse grid problem, de�ne arti�
ial boundary 
onditions on �, solve a lo
al �ne gridproblem, et
. This results in the following Lo
al Defe
t Corre
tion iterative method.LDC algorithmInitializationSolve the basi
 
oarse grid problem (8) for 'H0 2 G(�
H).Solve the lo
al �ne grid problem (11) for 'hl;0 2 G(�
hl ).De�ne the 
omposite grid approximation 'H;h0 2 G(�
H;h) as in (12).Iteration, k = 1; 2; : : :Compute an updated right hand side SH('H;hk�1) as in (22).Solve the global 
oarse grid problem8>><>>: �nd 'Hk 2 G(�
H) su
h that:rHx FH('Hk ) +rHy FH('Hk ) = SH('H;hk�1);'Hk =  on � �
H : (23)
8



Solve the lo
al �ne grid problem8>><>>: �nd 'hl;k 2 G(�
hl ) su
h that:rhx Fhl ('hl;k) +rhy Fhl ('hl;k) = Shl ;'hl;k =  on � �
hl \ �
; 'hl;k = p('Hk j�H ) on � �
hl \ �: (24)De�ne the 
omposite grid approximation'H;hk := ( 'hl;k; on 
hl ,'Hk ; on �
H n 
Hl . (25)This is the LDC method as presented in [11℄, but now adapted to a setting with �nite volumedis
retization. In parti
ular, the form of the updated right hand side SH('H;hk�1) is new. Here,the 
orre
tion term is 
hosen su
h that in the limit (k ! 1) the resulting 
omposite griddis
retization is still 
onservative; this is dis
ussed in Se
tion 3.3.The 
omputation of SH('H;hk�1) 
an be simpli�ed using the results in the following lemma.Lemma 2 For SH('H;hk�1) as used in (23), we have, with 
H
 = 
H n (
Hl [ �H):SHij ('H;hk�1) = ( �rHx FH('H;hk�1j�
H ) +rHy FH('H;hk�1j�
H )�ij ; for (xi; yj) 2 
Hl ,SHij ; for (xi; yj) 2 
H
 . (26)Proof Consider a grid point (xi; yj) 2 
Hl . Adding the �ne grid equations in (24) for all �negrid points in the 
oarse grid 
ontrol volume Vij , we �nd the following 
onservation propertyover this 
ontrol volume:�rHx Fsuml ('hl;k�1) +rHy Fsuml ('hl;k�1)�ij = Ssuml (xi; yj):Using the notation in (16), (17), and (20) we now have for (xi; yj) 2 
Hl :�SH('H;hk�1)�ij = SHij + �rHx dHF ('H;hk�1) +rHy dHF ('H;hk�1)�ij � �SHij � Ssuml (xi; yj)�= �rHx FH('H;hk�1j�
H ) +rHy FH('H;hk�1j�
H )�ij +Ssuml (xi; yj)� �rHx Fsuml ('hl;k�1) +rHy Fsuml ('hl;k�1)�ij= �rHx FH('H;hk�1j�
H ) +rHy FH('H;hk�1j�
H )�ij ;whi
h proves the �rst part of (26).From the de�nitions in (16) and (17), we obtain that dHF ('H;hk�1) equals zero on V H \ (
 n
l),and hen
e the di�eren
e operators rHx and rHy applied to this grid fun
tion yield zero on 
H
 .This gives the se
ond part of (26).Note that in (26) we have formulas for SH('H;hk�1) for (xi; yj) 2 
Hl [
H
 = 
H n�H in whi
h9



the sum of �ne grid 
uxes Fsuml ('hl;k�1) is not needed. Su
h sums of �ne grid 
uxes haveto be 
omputed on fa
es of 
ontrol volumes Vij with (xi; yj) 2 �H only. Also note that theterm Ssuml 
an be avoided in the 
omputation of SH('H;hk�1).Remark 3 The method presented in this se
tion has a straightforward generalization to log-i
ally re
tangular grids. Also, for the method to be appli
able to three-dimensional problems,only minor modi�
ations are needed.3.3 Properties of the LDC methodThe LDC algorithm that is des
ribed in Se
tion 3.2 is an iterative pro
ess, whi
h impli
itlygives a dis
retization of the 
onve
tion-di�usion problem on a 
omposite grid. In this se
tion,we dis
uss a few properties of this dis
retization. Throughout this se
tion, we will assumethat the LDC iteration 
onverges. Numeri
al experiments (
f. Se
tion 4) and theoreti
alresults in [5, 6, 11℄ support this assumption. A suÆ
ient 
ondition for the iterative pro
ess tobe 
onvergent is'Hk ! 'H� (k !1); (27)be
ause this implies 'Hk j�H ! 'H� j�H (k ! 1), and therefore 'hl;k ! 'hl;� (k ! 1).From these two limit solutions 'H� 2 G(�
H) and 'hl;� 2 G(�
hl ), we de�ne a 
omposite gridapproximation 'H;h� 2 G(�
H;h) as in (25). In Lemma 4 below, it is shown that the 
oarsegrid solution 'H� and the lo
al �ne grid solution 'hl;� 
oin
ide in 
Hl .Lemma 4 Assume that the lo
al 
oarse grid homogeneous system( rHx FH(v) +rHy FH(v) = 0 on 
Hl ;v = 0 on � �
Hl (28)has only the zero solution in G(�
Hl ). Then the limit solution ('H� ;'hl;�) of the LDC iterationsatis�es'H� j
Hl = 'hl;�j
Hl : (29)Proof From (23) and (26), we obtain, for (xi; yj) 2 
Hl ,�rHx FH('H� ) +rHy FH('H� )�ij = �rHx FH('H;h� j�
H ) +rHy FH('H;h� j�
H )�ij :Note that 'H;h� (xi; yj) = 'H� (xi; yj) for (xi; yj) 2 �H and 'H;h� (xi; yj) = 'hl;�(xi; yj) for(xi; yj) 2 
Hl . Hen
e, v := 'H� � 'H;h� j�
Hl 2 G(�
Hl ) satis�es the system (28). From theassumption it follows that this system only has the zero solution, hen
e v = 0 on 
Hl , whi
his equivalent to (29).We will now dis
uss the 
onservation property whi
h holds for the limit solution 'H;h� onthe 
omposite grid. Summation of the 
onservation laws for individual 
ontrol volumes Vij ,
f. (6), leads to a 
onservation law on the union of these 
ontrol volumes. This holds, be
ause10




uxes over internal fa
es 
an
el. Consider, e.g., 
ontrol volumes Vij, Vi+1;j with (xi; yj) 2 
H ,(xi+1; yj) 2 
H . We haveI�Vij f' � n d
 + I�Vi+1;j f' � n d
 = I�(Vij[Vi+1;j) f' � n d
; (30)whi
h implies, that summation of the 
onservation laws on Vij and Vi+1;j leads to (2) with V =Vij[Vi+1;j. The �nite volume dis
retization on a uniform grid as des
ribed in Se
tion 2 satis�esthe dis
rete equivalent of (30) as is easily seen by adding the dis
rete 
onservation laws in (8).Therefore, dis
rete 
onservation holds for any subdomain of 
 whi
h 
an be 
overed with
ontrol volumes Vij . A similar result holds for the limit solution 'H;h� on the 
omposite grid,as is shown in the following theorem.Theorem 5 Under the assumption of Lemma 4, the limit solution 'H;h� 2 G(�
H;h) satis�esthe following system of dis
rete 
onservation laws:rHx Fbest('H;h� ) +rHy Fbest('H;h� ) = Sbest; (31)with Fbest('H;h� ) de�ned as in (16) and Sbest de�ned as in (19).Proof Using (22) and (23), we �ndrHx FH('H� ) +rHy FH('H� )= SH('H;h� ) = SH +rHx dHF ('H;h� ) +rHy dHF ('H;h� )� dHS : (32)For dHF ('H;h� ), we have, using (17) and Lemma 4,dHF ('H;h� ) = FH('H;h� j�
H )� Fbest('H;h� ) = FH('H� )� Fbest('H;h� ): (33)Substitution of (33) in (32) yieldsrHx Fbest('H;h� ) +rHy Fbest('H;h� ) = SH � dHS = Sbest;whi
h proves the theorem.
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Figure 2: The dis
retization on the 
omposite grid given by the LDC algorithm with the stan-dard 
hoi
e for the 
orre
tion term (left �gure) and with the �nite volume adapted 
orre
tionterm (right �gure).Using Theorem 5, it is easily veri�ed, that the dis
retization given by the LDC algorithmas des
ribed in Se
tion 3.2 satis�es a dis
rete equivalent of (30), too. Therefore, dis
rete
onservation holds for any subdomain of 
 whi
h 
an be 
overed with 
ontrol volumes Vij.Remark 6 For (xi; yj) 2 
Hl , the 
onservation laws in (31) redu
e to�rHx Fsuml ('hl;�) +rHy Fsuml ('hl;�)�ij = Ssuml (xi; yj): (34)This is the same 
onservation property one would obtain by adding the 
onservation lawsthat hold on the �2 �ne grid 
ontrol volumes that partition Vij , 
f. (24).For (xi; yj) 2 
H n (
Hl [ �H), the 
omponents of (31) redu
e to�rHx FH('H� ) +rHy FH('H� )�ij = SH(xi; yj);whi
h 
orresponds to the 
onservation laws of the �nite volume dis
retization on the global
oarse grid, 
f. (8).For (xi; yj) 2 �H , the limit dis
retization of the �nite volume adapted LDC algorithm is su
h,that the dis
rete in
ux into Vij out of a 
ontrol volume Vkm, (xk; ym) 2 
Hl , mat
hes the totaldis
rete out
ux from Vkm into Vij . This is illustrated in the right part of Figure 2.If we would use the standard 
hoi
e for the 
orre
tion term in the LDC algorithm, the limitdis
retization would be the same on all 
ontrol volumes Vij with (xi; yj) 2 
Hl [
H
 = 
Hn�H .The dis
retization would be di�erent, however, on 
ontrol volumes Vij with (xi; yj) 2 �H ;these volumes would be treated in the same way as volumes Vij with (xi; yj) 2 
H
 .The di�eren
e between the dis
retizations given by the two LDC algorithms is 
leari�ed inFigure 2; its 
onsequen
es are demonstrated by a numeri
al experiment in Se
tion 4.2.Remark 7 The system of dis
rete 
onservation laws in Theorem 5 holds for the fully 
on-verged 
omposite grid solution 'H;h� . However, in pra
ti
e, often one or two LDC iterations12



x=0 x=1x=1/2 x=0 x=1x=1/2Figure 3: One-dimensional 
omposite, global 
oarse and lo
al �ne grids on (0; 1) when a 
ell-
entered method is used on the global 
oarse grid, and when the re�nement fa
tor � is odd(left �gure) and even (right �gure).will suÆ
e to obtain a satisfa
tory approximation of ' on 
H;h due to the high rate of 
on-vergen
e of the method. Typi
ally, one has an error redu
tion by a fa
tor 10 up to 1000 inea
h iteration step (
f. the results in Se
tion 4 and in [6, 11℄).Remark 8 In Se
tion 3.2, a vertex-
entered �nite volume method has been used for boththe dis
retization on the global 
oarse grid and on the lo
al �ne grid.If we would use a 
ell-
entered method on the global 
oarse grid, we 
an 
over all of 
with 
ontrol volumes, whi
h yields global dis
rete 
onservation. This approa
h has beenfollowed in the examples of Se
tion 4. Note that, as a 
onsequen
e, boundary 
onditions forthe lo
al �ne grid problem have to be treated as in a vertex-
entered method (the arti�
ialboundary 
onditions) or as in a 
ell-
entered method (the natural boundary 
onditions). Thisis illustrated in the left part of Figure 3.It is also possible to apply a 
ell-
entered �nite volume method in 
l by 
hoosing the re�ne-ment fa
tor � = H=h to be an even integer. See the right part of Figure 3. As before, are�ned 
oarse grid 
ontrol volume is the union of �ne grid 
ontrol volumes, so that we 
ande�ne a sour
e term dis
retization error estimate in a straightforward way. However, thepoints in 
Hl := 
H \ 
l are no longer grid points of 
hl , so that we need to introdu
e arestri
tion R : G(
hl )! G(
Hl ) to de�ne 
ux term dis
retization error estimates.4 Numeri
al experimentsIn this se
tion, we 
onsider two simple numeri
al experiments: an interfa
e problem in theunit square and a one-dimensional 
onve
tion-di�usion problem. It should be noted, that thete
hnique presented in Se
tion 3 is 
apable of 
omputing phenomena in more 
ompli
atedgeometries than treated here. The experiments have deliberately been kept simple though,while still showing the main features of the (modi�ed) LDC algorithm. These features are:{ the method yields a dis
retization on a lo
ally re�ned grid with an error of the sameorder of magnitude as a dis
retization on a globally re�ned grid (Se
tion 4.1);{ a dis
rete 
onservation property holds on the 
omposite grid (Se
tion 4.2).4.1 A two-dimensional interfa
e problemWe 
onsider a two-dimensional interfa
e problem. We 
hoose the mass 
ux v equal to zero,and take a di�usion 
oeÆ
ient � that is dis
ontinuous a
ross a 
urve in 
 = (0; 1) � (0; 1)13
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Figure 4: Sour
e term (left �gure) and exa
t solution (right �gure) of the two-dimensionalinterfa
e problem.and has a small value in part of the domain, viz.�(x; y) := � Æ; for (x; y) 2 U",1; for (x; y) 2 
 n U",where 0 < Æ � 1, U" := (1=2 � "; 1=2 + ") � (1=2 � "; 1=2 + "), 0 < " < 1=2. The boundary
onditions  and right hand side s are 
hosen su
h that the solution to the 
ontinuous problemis known and has a high a
tivity region in U". If we de�ne the auxiliary fun
tion a : IR! IRby a(x) := exp ��(x� 1=2)2�� exp(�"2);and set (x; y) := a(x) a(y); (x; y) 2 �
;s(x; y) := �a00(x) a(y) � a(x) a00(y); (x; y) 2 
;we have the following expression for the solution ' of the 
ontinuous problem:'(x; y) = � Æ�1 a(x) a(y); for (x; y) 2 U",a(x) a(y); for (x; y) 2 
 n U".Note that  and s depend on " but not on Æ. In the experiment below, we take Æ = 10�8," = 2=81. The sour
e term s and the exa
t solution ' with these values of Æ and " are shownin Figure 4.Be
ause of the di�erent resolutions needed to represent ' in U" and 
 n U", we will use theLDC method with the �nite volume adapted 
orre
tion term as des
ribed in Se
tion 3.2 todis
retize the boundary value problem for ' on a 
omposite grid. We take 
l := (1=2 �1=27; 1=2 +1=27)� (1=2� 1=27; 1=2 +1=27). For the global 
oarse grid, meshsizes H = 1=33,H = 1=34, and H = 1=35 have been used; the re�nement fa
tor � has been 
hosen equal to� = 3, � = 32, and � = 33. In this model problem, the lo
ation of the physi
al interfa
e (�U")is su
h that for H = 1=3k, k � 3, and � = 3m, m � 1, this interfa
e is on grid lines in 
hl .Therefore, a simple 
entral di�eren
e 
ux approximation s
heme, as in Example 1, 
an be14



H = 1=33 H = 1=34 H = 1=35Unknowns Error Unknowns Error Unknowns Errorh = 1=33 729 1:7 � 10+0h = 1=34 778 1:1 � 10�4 6561 7:4 � 10�5h = 1=35 1090 1:6 � 10�5 6922 8:3 � 10�6 59049 8:3 � 10�6h = 1=36 3754 1:2 � 10�5 9586 1:5 � 10�6 62074 9:3 � 10�7Table 1: Numeri
al results for the two-dimensional interfa
e problem 
omputed using theLDC algorithm with �nite volume adapted 
orre
tion term on a 
omposite grid. The global
oarse grid has meshsize H; the lo
al �ne grid has meshsize h.used (see [18℄ for a more detailed dis
ussion of this topi
). In a setting where this favorableinterfa
e-grid alignment does not hold, other, more advan
ed, �nite volume dis
retizations
hemes should be used. The LDC method, however, remains the same.Sin
e the main topi
 of this paper is to study the performan
e of the LDC (outer) iteration,the linear systems arising in the LDC algorithm have been solved to high a

ura
y using CGiteration with in
omplete Cholesky fa
torization as a pre
onditioner. The properties shownbelow still hold, however, if we use low, but \reasonable", a

ura
y in the inner iterations.The numeri
al results of the LDC method are presented in Table 1. Listed are the numberof unknowns in the 
omputation and the dis
retization error in the s
aled Eu
lidean norm

'j
H �'H� 

2 =N , where N is su
h that N2 is the number of grid points in 
H . Note thatdiagonal elements in the table 
orrespond to uniform grids. From Table 1, we 
on
lude thatthe LDC algorithm 
an redu
e the dis
retization error on the global 
oarse grid (meshsize H)to an error that is of the same order of magnitude as the error on a global uniform gridwith meshsize h, using 
onsiderably less grid points than a 
omputation on a global uniformgrid with meshsize h would require. This is, e.g., illustrated by the 
omputation on the
omposite grid with meshsizes H = 1=34, h = 1=35, whi
h uses only 6922 grid points to �ndan approximation with the same error as a 
omputation on a uniform grid with meshsize H =1=35, whi
h involves 59049 unknowns. Note that even the error in the result on the 
ompositegrid with H = 1=33, h = 1=35, whi
h has only 1090 grid points, is already of the same orderof magnitude.Finally, we remark that the uniform grid with meshsize H = 1=33 
ompletely misses the higha
tivity region U", 
ausing a very large dis
retization error. This error is redu
ed by a fa
torof order 104 by re�ning the high a
tivity zone with a fa
tor � of only 3 (introdu
ing just 49new grid points).The ex
ellent rate of 
onvergen
e of the LDC method is illustrated by the fa
t that the resultsin Table 1 are already found after just one LDC 
orre
tion step. In other words, a table listingthe dis
retization error 

'j
H �'H1 

2 =N , would be the same as Table 1.If in this experiment, we use the standard 
orre
tion term as in [11℄ instead of the new
orre
tion term SH('H;h) as in (22), we obtain similar results. This is not surprising, sin
ethe 
onservation property is 
ru
ial a
ross the physi
al interfa
e �U", but of minor importan
ea
ross the arti�
ial interfa
e �. Hen
e, using a �nite volume dis
retization for the lo
al�ne grid problem is of major importan
e, but using the new 
orre
tion term, whi
h yields
onservation a
ross �, is of minor importan
e.15



4.2 A one-dimensional time dependent 
onve
tion-di�usion problemIn this se
tion, we treat a very simple one-dimensional problem, in whi
h global 
onservationis 
ru
ial. For this problem, the results of the 
lassi
al LDC algorithm as in [6, 7, 11℄ are verypoor, whereas the �nite volume adapted algorithm yields satisfa
tory results.We 
onsider a time dependent 
onve
tion-di�usion problem, whi
h is a model for the behaviorof water held inside a basin by two levies. We 
hoose the following values for the parametersin the problem. The di�usion 
oeÆ
ient � equals one in 
 = (0; 1). The mass 
ux is timedependent: v(x; t) := 10 + 25 sin(20 t), x 2 �
, t � 0. There is no produ
tion or 
onsumptionin the domain, hen
e s(x) := 0, x 2 
. This leads to the following partial di�erential equationfor ' in 
:�'�t + ��x (f') = 0; f' := v'� �'�x ;whi
h expresses the tenden
y of the water level ' to follow the wind v, and to level out. We
hoose 
ux boundary 
onditions, viz. f'(0; t) = 0, f'(1; t) = 0, whi
h model the two leviesthat prevent the water from 
owing in or out of the basin. The initial 
ondition is '(x; 0) = 1.Integration of the partial di�erential equation over 
 yields the global 
onservation law��t Z 10 '(x; t) dx = 0: (35)We �rst applied the Euler Ba
kward method for the time dis
retization. In ea
h Euler step,a 
ontinuous two-point boundary value problem has to be solved. Be
ause of boundary layere�e
ts, the water level varies most in the outer parts of the spatial domain, i.e., in (0; Æ)and in (1 � Æ; 1). For this reason we will use a 
omposite grid for spa
e dis
retization. The
omposite grid used 
onsists of a global 
oarse grid with meshsize H = 1=20 in 
 and twolo
al �ne grids, both with meshsize h = 1=100, in 
l;1 := (0; 1=8) and in 
l;2 := (7=8; 1). Wepresent results for both the LDC method with the standard 
hoi
e for the 
orre
tion termand the LDC method with the �nite volume adapted 
orre
tion term. The results are shownin Figure 5.Clearly, the LDC method with the standard 
hoi
e for the 
orre
tion term leads to an unreal-isti
 and de
reasing water level through \numeri
al evaporation". The LDC method with the�nite volume adapted 
orre
tion term satis�es a dis
rete equivalent of the global 
onservationlaw (35), and preserves the water level.Referen
es[1℄ Arney, D.C. and J.E. Flaherty, An adaptive lo
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