
A Finite Volume Sheme for Solving ElliptiBoundary Value Problems on Composite GridsM.J.H. Anthonissen, B. van 't Hof, Eindhoven, and A.A. Reusken, AahenAbstratWe present a �nite volume sheme for solving ellipti boundary value problems withsolutions that have one or a few small regions with high ativity. The sheme results fromombining the loal defet orretion method (LDC), introdued in [11℄, with standard�nite volume disretizations on a global oarse and on loal �ne uniform grids. Theiterative disretization method that is obtained in this way yields a disrete approximationof the ontinuous solution on a omposite grid.For the LDC method in its standard form, the disrete onservation property, whih isone of the main attrative features of a �nite volume method, is lost for the ompositegrid approximation. For the modi�ed LDC method we present here, disrete onservationholds for the omposite grid solution, too.AMS Subjet Classi�ations: 65N22, 65N50.Key words: Ellipti problems, �nite volume methods, loal defet orretion, ompositegrids.1 IntrodutionMany boundary value problems produe solutions that have highly loalized properties. Inthis paper we onsider ellipti boundary value problems with solutions that have one or a fewsmall regions with high ativity.We study a �nite volume disretization method based on a ombination of standard �nitevolume disretizations on several uniform grids with di�erent grid sizes that over di�erentparts of the domain. At least one grid should over the entire domain; the meshsize of thisglobal oarse grid is hosen in agreement with the relatively smooth behavior of the solutionoutside the high ativity regions. Apart from this global oarse grid, one or several loal gridsare used whih are also uniform. Eah of these loal grids overs only a (small) part of thedomain and ontains a high ativity region. The meshsizes of the loal grids are hosen inagreement with the behavior of the solution in the orresponding high ativity region. In thisway, every part of the domain an be overed by a (loally) uniform grid with a meshsize thatis in agreement with the behavior of the ontinuous solution in that part of the domain. Thisre�nement strategy is known as loally uniform grid re�nement. The solution is approximatedon the omposite grid, whih is the union of the uniform subgrids. Note that suh ompositegrids are highly strutured and hene very simple data strutures an be used.In [11℄, Hakbush introdued the loal defet orretion method (LDC) for approximating theontinuous solution of ellipti boundary value problems on a omposite grid. In this method,whih is an iterative proess, a basi global disretization is improved by loal disretizations1



de�ned in the subdomains. This update of the oarse grid solution is ahieved by putting adefet orretion term in the right hand side of the oarse grid problem. At eah iterationstep, the proess yields a disrete approximation of the ontinuous solution on the ompositegrid. The disrete problem that is atually being solved is an impliit result of the iterativeproess. Therefore, the LDC method is both an iterative disretization and solution method.An analysis of the LDC tehnique in ombination with �nite di�erene disretizations ispresented in [5{7℄.In this paper, we onsider the integral formulation of a two-dimensional onvetion-di�usionproblem, and ombine the LDC tehnique with standard �nite volume disretizations of thisproblem on the global oarse and loal �ne grids. In the LDC method as in [5{7, 11℄, thedisrete onservation property, whih is one of the main attrative features of a �nite volumemethod, does not hold for the omposite grid approximation. Here, we present a modi�edLDC method, whih is based on a speial form of the defet orretion term used in the righthand side of the oarse grid problem. Due to this �nite volume adapted defet orretionterm, the onservation property is preserved in the disretization on the omposite grid.Attrative features of the �nite volume based LDC method presented here are:{ the method yields a disretization on loally re�ned grids;{ a disrete onservation property holds for the disretization on the omposite grid;{ the method is simple: it only uses standard �nite volume disretizations on uniform(global oarse and loal �ne) grids.Disretization methods on omposite grids have been disussed by other authors too. M-Cormik presents the �nite volume element (FVE) method, whih is used in the fast adaptiveomposite grid (FAC) method (f. [15{17℄). Ewing et al. [3, 4℄ give an analysis of a �nite vol-ume based loal re�nement tehnique with omposite grids. In both approahes, an expliitdisretization sheme for the omposite grid is proposed, in whih speial di�erene starsnear the omposite grid interfaes are used. The resulting disrete system is then solved byan iterative method (e.g. FAC) whih may take advantage of the omposite grid struture.This is a ruial di�erene with the LDC method, whih ombines standard disretizationson uniform grids only and does not use an a priori given omposite grid disretization.This paper is organized as follows. In Setion 2, we formulate a stationary onvetion-di�usionproblem, and disuss a standard vertex-entered �nite volume tehnique for disretizing thisproblem on a uniform grid. In Setion 3, we briey reall the onept of omposite grids, andderive a �nite volume adapted LDC method. For the resulting omposite grid disretization,we prove a disrete onservation property. In Setion 4, we show results of a few numerialexperiments.2 Problem formulation and �nite volume disretization on auniform gridWe onsider a stationary onvetion-di�usion problem in the domain 
 = (0; 1)� (0; 1) withDirihlet boundary onditions ' =  on �
. By V � 
 we denote a generi Lipshitzsubdomain of 
. The outward unit normal vetor to �V is denoted by n. We assume givenfuntions � = �(x; y) � �min > 0 (di�usion oeÆient), v = (v1(x; y); v2(x; y))T (mass ux),2



and s = s(x; y) (soure term). Introduing the ux vetorf' = (f; g)T = v'� �r'; (1)the problem we onsider an be represented in integral formulation as: determine ' 2 H1(
)with 'j�
 =  (in the sense of traes), suh thatI�V f' � n d = ZV s d
; for all V . (2)Here we used standard notation for the Sobolev spae H1(
). In this paper, we study a �nitevolume disretization tehnique based on a ombination of �nite volume disretizations on sev-eral uniform grids with di�erent meshsizes. For the disretization of the onvetion-di�usionproblem on the uniform grids, we onsider a standard vertex-entered �nite volume disretiza-tion method. The tehnique we present may be generalized, however, to ell-entered methodsand to so-alled strutured boundary onforming grids (f. [19℄) or to logially retangulargrids, f. Remarks 3 and 8.The �nite volume disretizations on the uniform grids are standard and an be found in manytextbooks; the presentation, however, is adapted to the generalization to omposite grids.We use a meshsize parameter H = 1=(N + 1), N 2 IN , and grid points (xi; yj) := (iH; jH),(xi+1=2; yj) := ((i+1=2)H; jH), (xi; yj+1=2) := (iH; (j+1=2)H), i; j 2 IN . In a vertex-enteredapproah one uses a omputational grid 
H de�ned by�
H := f(xi; yj)g \ �
; � �
H := �
H \ �
; 
H := �
H n � �
H ;and a ontrol volume Vij around eah grid point in 
HVij := (xi�1=2; xi+1=2)� (yj�1=2; yj+1=2): (3)The midpoints of the interfaes of these volumes form a dual gridV H := �f(xi+1=2; yj)g [ f(xi; yj+1=2)g� \ 
;on whih we will de�ne disrete uxes. The spaes of grid funtions on 
H , �
H , V H aredenoted by G(
H), G(�
H), G(V H), respetively. For grid funtions we use boldfae notation;for FH 2 G(
H), we write FH = (FHij )1�i;j�N with FHij := FH(xi; yj). We use a similarnotation for elements in G(�
H), G(V H). We introdue, for FH 2 G(V H), entral di�ereneoperators rHx , rHy : G(V H)! G(
H) by(rHx FH)ij := FHi+1=2;j � FHi�1=2;j ; (rHy FH)ij := FHi;j+1=2 � FHi;j�1=2:We de�ne the ontinuous ux F(') 2 G(V H) as follows (f. (1)):Fi+1=2;j := Z yj+1=2yj�1=2 f(xi+1=2; �) d�; Fi;j+1=2 := Z xi+1=2xi�1=2 g(�; yj+1=2) d�: (4)Note that this is the ontinuous ux over the interfaes of the ontrol volumes Vij as in (3).Finally, we de�ne S 2 G(
H) bySij := ZVij s d
: (5)3



Applying the onservation law in (2) with V = Vij yields:�rHx F(')�ij + �rHy F(')�ij = Sij: (6)In �nite volume disretizations the ontinuous uxes in (4), whih depend on the ontinuoussolution ', are approximated using a �nite di�erene sheme. For � 2 G(�
H), we introduea disrete ux grid funtion FH(�) 2 G(V H). Here we use a general setting and we will notbe spei� about the partiular �nite di�erene sheme that is used. We only assume thatthe di�erene sheme FH(�) is loal and linear in �, i.e.,FHi+1=2;j(�) = Xk=0;1; m=�1;0;1�i+k;j+m �i+k;j+m; (7)with given oeÆients �pq 2 IR. We use a similar approximation FHi;j+1=2. In pratie, theintegral in (5) is approximated by a quadrature rule. The resulting approximation of S isdenoted by SH .Example 1 If we apply the midpoint rule to approximate the integrals in (4), (5), and useentral di�erenes to approximate the uxes at midpoints of volume faes, we obtain for FH(�)and SHFHi+1=2;j = fHi+1=2;jH; FHi;j+1=2 = gHi;j+1=2H; SHij = s(xi; yj)H2;wherefHi+1=2;j = v1(xi+1=2; yj) �ij + �i+1;j2 � �(xi+1=2; yj) �i+1;j � �ijH ;gHi;j+1=2 = v2(xi; yj+1=2) �ij + �i;j+12 � �(xi; yj+1=2) �i;j+1 � �ijH :In the above, � 2 G(�
H), FH(�) 2 G(V H), and SH 2 G(
H).In (6), we replae the ontinuous uxes F by approximate uxes FH as in (7) and Sij by SHij .We then obtain a �nite volume disretization whih an be represented as:8>><>>: �nd 'H 2 G(�
H) suh that:rHx FH('H) +rHy FH('H) = SH ;'H =  on � �
H : (8)This disretization yields N2 equations for the N2 unknown values of 'H on 
H .3 An iterative �nite volume disretization on omposite gridsIn this setion, we will present a �nite volume method for approximating the ontinuoussolution ' on a omposite grid. In Setion 3.1, we explain how a omposite grid is formedby ombining two or more uniform grids with di�erent meshsizes. In Setion 3.2, we adaptthe general Loal Defet Corretion (LDC) method from [11℄ to a �nite volume setting. TheLDC method is an iterative method, hene we obtain an iterative �nite volume disretizationmethod. In Setion 3.3, we derive some properties of the method. In partiular it is shownthat a onservation property holds on the omposite grid.4



Figure 1: A omposite, global oarse and loal �ne grid; H = 1=6, N = 5, and the re�nementfator � equals 3. Grid points, ontrol volumes, and uxes are denoted by little irles, largesquares, and arrows, respetively. The shaded region is 
l; the points of �H are marked by�lled irles.3.1 Composite gridIn this setion we reall the onept of omposite grids and introdue some notation. Com-posite grids an be found in e.g. [1{3, 8{10, 15℄. The grids we onsider result from a uniformbasis grid with meshsize H, f. Setion 2, that is extended with a region of loally uniformre�nement 
l, whih is suh that it ontains the part(s) of 
 in whih relatively high resolu-tion is needed. In Setion 4, an example of an interfae problem is given, where it is a priorilear that in a (small) part of the domain 
 a muh higher resolution is required than in theremaining part. Further examples an be found in [5, 7, 11℄.The uniform basis grid, denoted by 
H , is alled the global oarse grid. We assume that
l � 
 is hosen suh that(xi; yj) 2 
H \ 
l () Wij � 
l (9)holds withWij := (xi�1; xi+1)� (yj�1; yj+1): (10)Note that Vij � Wij, so that Wij � 
l implies Vij � 
l. Also, 
l is not a union of ontrolvolumes Vij. In 
l we apply, as in 
, a vertex-entered �nite volume method, i.e., we �rstintrodue a uniform omputational grid with meshsize h < H. This grid, whih is denotedby 
hl , is alled the loal �ne grid. To make sure that grid points in 
Hl := 
H \ 
l aregrid points of 
hl , and that boundaries of ontrol volumes in the loal �ne grid oinide withboundaries of ontrol volumes in the global oarse grid, we assume the re�nement fator� := H=hto be an odd integer. We emphasize that a re�nement fator � � 1 is allowed, i.e., we anuse a global oarse grid and a loal �ne grid with di�erent resolution properties. In Figure 1,an example of a omposite grid is shown (f. also Setion 4).The interfae between the global oarse grid and the loal �ne grid will be denoted by � :=�
l n �
. We will all the set of oarse grid points on this boundary �H , so �H := � \ 
H .The omposite grid is denoted by 
H;h := 
H [ 
hl , �
H;h := �
H [ 
hl .5



3.2 A Loal Defet Corretion �nite volume disretizationBasially, the LDC iteration in [11℄ onsists of the following steps:1. Solve a global oarse grid problem with given right hand side.2. Solve a loal �ne grid problem with arti�ial boundary onditions on the interfae �.3. Compute a defet orretion term for the right hand side of the oarse grid problem,and go to 1.Below, we disuss these three steps, resulting in the algorithm in (23){(25). For adapting thegeneral LDC method from [11℄ to a �nite volume setting, the key point is a defet orretion(Step 3) whih is based on disretization error estimates for the numerial uxes.Global oarse grid problemWe ompute an initial approximation 'H on the global oarse grid using the standard �nitevolume disretization of Setion 2, i.e., 'H is the solution of the disrete problem (8).Loal �ne grid problemWe formulate a boundary value problem on the loal domain 
l, using the oarse grid approx-imation to de�ne arti�ial Dirihlet boundary onditions on the interfae �. To determinethe arti�ial boundary onditions, we use an interpolation operator p : �H ! �; obvioushoies for p are the linear and the quadrati interpolation operator. Due to the fat that 
lis, by onstrution, a union of sets Wij , a linear interpolation p : �H ! � an be de�ned in astraightforward manner. If a point x on a vertial (horizontal) part of � has (at least) threeneighboring points in �H whih lie on a vertial (horizontal) line, a quadrati interpolationat x an be de�ned in a natural way. At �
l \ �
 we use the given Dirihlet boundaryonditions.We are thus led to an analogon of problem (2) on the subdomain 
l with arti�ial boundaryonditions on the interfae �. We disretize this problem on the uniform loal grid 
hl usingthe method desribed in Setion 2. We use a notation in whih loal �ne grid quantities aredenoted by a subsript l and a supersript h, e.g.: 
hl (omputational grid on 
l), V hl (dualgrid on 
l), G(V hl ) (grid funtions on V hl ) and, for � 2 G(�
hl ), Fhl (�) 2 G(V hl ) (disrete uxon V hl ). These quantities related to 
l are de�ned in exatly the same way as their analogonsin Setion 2 whih are related to 
.Using this notation the disrete loal �ne grid problem an be formulated as:8>><>>: �nd 'hl 2 G(�
hl ) suh that:rhxFhl ('hl ) +rhy Fhl ('hl ) = Shl ;'hl =  on � �
hl \ �
; 'hl = p('H j�H ) on � �
hl \ �: (11)The disrete solutions 'H and 'hl yield an approximation of ' at all points of the ompositegrid. We denote this omposite grid approximation by 'H;h, and take the newest values ingrid points belonging to both the oarse grid and the �ne grid, viz.'H;h := ( 'hl ; on 
hl ,'H ; on �
H n 
Hl . (12)6



Defet orretionWe now derive the third step in the algorithm, in whih we use the (more aurate) approx-imation found on the loal �ne grid to ompute a orretion for the right hand side of theglobal oarse grid problem.Substitution of the ontinuous solution ' in (8) yields a defetdH := rHx FH('j�
H ) +rHy FH('j�
H )� SH : (13)Combination of (6) and (13) yields:dH = rHx (FH('j�
H )�F(')) +rHy (FH('j�
H )� F(')) � (SH � S): (14)This expression for the oarse grid defet is used to derive an approximation for dH byestimating the ux disretization error FH('j�
H )� F(') and the soure term disretizationerror SH � S.After solving the global oarse and loal �ne grid problems, the following approximations areavailable for an arbitrary horizontal ux Fi+1=2;j('):1. the oarse grid approximation of the ux, FHi+1=2;j('H);2. a oarse grid approximation of the ux based on the most reently alulated approxi-mation for ', i.e., FHi+1=2;j('H;hj�
H );3. a sum of �ne grid approximations of uxes,F suml;i+1=2;j('hl ) := (��1)=2Xk=�(��1)=2F hl;i+1=2;j+k('hl ): (15)This third approximation only exists, if (xi+1=2; yj) 2 
l, i.e., if the ell fae (xi+1=2; yj�1=2)�(xi+1=2; yj+1=2) lies in the area of re�nement.Note that both in the seond and third approximation, we use the solution 'hl of the disreteloal �ne grid problem (11). In the seond approximation, however, only a oarse grid ux dis-retization FH is used, whereas in the third approximation, a �ne grid ux disretization F hlis used, too. These three approximations are onsidered to be listed in order of inreas-ing auray. Beause similar approximations are available for the other uxes, Fi�1=2;j('),Fi;j+1=2('), Fi;j�1=2('), too, we an de�ne a oarse grid ux vetor whih uses informationfrom the loal �ne grid solution: Fbest('H;h) 2 G(V H) is de�ned by:Fbest('H;h) := ( Fsuml ('hl ); on V H \ 
l (as in (15)),FH('H;hj�
H ); elsewhere. (16)We use this ux vetor to give the following ux disretization error estimateFH('j�
H )� F(') � FH('H;hj�
H )� Fbest('H;h) =: dHF ('H;h): (17)Analogously, we have the following approximations for an arbitrary soure term Sij:1. the oarse grid approximation of the soure term, SHij ;7



2. a sum of �ne grid approximations of soure terms,Ssuml (xi; yj) := (��1)=2Xk=�(��1)=2 (��1)=2Xm=�(��1)=2 Shl (xi + kh; yj +mh): (18)This seond approximation only exists, if (xi; yj) 2 
l, i.e., if the ontrol volume Vij liesin the area of re�nement.Again, the last approximation is onsidered to be most aurate, and we de�ne Sbest 2 G(
H)by Sbest := ( Ssuml ; on 
Hl (as in (18)),SH ; elsewhere. (19)We use this soure term vetor to give the following soure term disretization error estimateSH � S � SH � Sbest =: dHS : (20)Using (17) and (20) to estimate dH in (14), we proposerHx dHF ('H;h) +rHy dHF ('H;h)� dHS (21)as a defet orretion term in the right hand side of the oarse grid problem. Hene, weintrodue the following notation for 'H;h 2 G(�
H;h):SH('H;h) := SH +rHx dHF ('H;h) +rHy dHF ('H;h)� dHS : (22)Formulation of the LDC algorithmUsing the updated right hand side (22), we an repeat the proedure desribed above, i.e.,solve a oarse grid problem, de�ne arti�ial boundary onditions on �, solve a loal �ne gridproblem, et. This results in the following Loal Defet Corretion iterative method.LDC algorithmInitializationSolve the basi oarse grid problem (8) for 'H0 2 G(�
H).Solve the loal �ne grid problem (11) for 'hl;0 2 G(�
hl ).De�ne the omposite grid approximation 'H;h0 2 G(�
H;h) as in (12).Iteration, k = 1; 2; : : :Compute an updated right hand side SH('H;hk�1) as in (22).Solve the global oarse grid problem8>><>>: �nd 'Hk 2 G(�
H) suh that:rHx FH('Hk ) +rHy FH('Hk ) = SH('H;hk�1);'Hk =  on � �
H : (23)
8



Solve the loal �ne grid problem8>><>>: �nd 'hl;k 2 G(�
hl ) suh that:rhx Fhl ('hl;k) +rhy Fhl ('hl;k) = Shl ;'hl;k =  on � �
hl \ �
; 'hl;k = p('Hk j�H ) on � �
hl \ �: (24)De�ne the omposite grid approximation'H;hk := ( 'hl;k; on 
hl ,'Hk ; on �
H n 
Hl . (25)This is the LDC method as presented in [11℄, but now adapted to a setting with �nite volumedisretization. In partiular, the form of the updated right hand side SH('H;hk�1) is new. Here,the orretion term is hosen suh that in the limit (k ! 1) the resulting omposite griddisretization is still onservative; this is disussed in Setion 3.3.The omputation of SH('H;hk�1) an be simpli�ed using the results in the following lemma.Lemma 2 For SH('H;hk�1) as used in (23), we have, with 
H = 
H n (
Hl [ �H):SHij ('H;hk�1) = ( �rHx FH('H;hk�1j�
H ) +rHy FH('H;hk�1j�
H )�ij ; for (xi; yj) 2 
Hl ,SHij ; for (xi; yj) 2 
H . (26)Proof Consider a grid point (xi; yj) 2 
Hl . Adding the �ne grid equations in (24) for all �negrid points in the oarse grid ontrol volume Vij , we �nd the following onservation propertyover this ontrol volume:�rHx Fsuml ('hl;k�1) +rHy Fsuml ('hl;k�1)�ij = Ssuml (xi; yj):Using the notation in (16), (17), and (20) we now have for (xi; yj) 2 
Hl :�SH('H;hk�1)�ij = SHij + �rHx dHF ('H;hk�1) +rHy dHF ('H;hk�1)�ij � �SHij � Ssuml (xi; yj)�= �rHx FH('H;hk�1j�
H ) +rHy FH('H;hk�1j�
H )�ij +Ssuml (xi; yj)� �rHx Fsuml ('hl;k�1) +rHy Fsuml ('hl;k�1)�ij= �rHx FH('H;hk�1j�
H ) +rHy FH('H;hk�1j�
H )�ij ;whih proves the �rst part of (26).From the de�nitions in (16) and (17), we obtain that dHF ('H;hk�1) equals zero on V H \ (
 n
l),and hene the di�erene operators rHx and rHy applied to this grid funtion yield zero on 
H .This gives the seond part of (26).Note that in (26) we have formulas for SH('H;hk�1) for (xi; yj) 2 
Hl [
H = 
H n�H in whih9



the sum of �ne grid uxes Fsuml ('hl;k�1) is not needed. Suh sums of �ne grid uxes haveto be omputed on faes of ontrol volumes Vij with (xi; yj) 2 �H only. Also note that theterm Ssuml an be avoided in the omputation of SH('H;hk�1).Remark 3 The method presented in this setion has a straightforward generalization to log-ially retangular grids. Also, for the method to be appliable to three-dimensional problems,only minor modi�ations are needed.3.3 Properties of the LDC methodThe LDC algorithm that is desribed in Setion 3.2 is an iterative proess, whih impliitlygives a disretization of the onvetion-di�usion problem on a omposite grid. In this setion,we disuss a few properties of this disretization. Throughout this setion, we will assumethat the LDC iteration onverges. Numerial experiments (f. Setion 4) and theoretialresults in [5, 6, 11℄ support this assumption. A suÆient ondition for the iterative proess tobe onvergent is'Hk ! 'H� (k !1); (27)beause this implies 'Hk j�H ! 'H� j�H (k ! 1), and therefore 'hl;k ! 'hl;� (k ! 1).From these two limit solutions 'H� 2 G(�
H) and 'hl;� 2 G(�
hl ), we de�ne a omposite gridapproximation 'H;h� 2 G(�
H;h) as in (25). In Lemma 4 below, it is shown that the oarsegrid solution 'H� and the loal �ne grid solution 'hl;� oinide in 
Hl .Lemma 4 Assume that the loal oarse grid homogeneous system( rHx FH(v) +rHy FH(v) = 0 on 
Hl ;v = 0 on � �
Hl (28)has only the zero solution in G(�
Hl ). Then the limit solution ('H� ;'hl;�) of the LDC iterationsatis�es'H� j
Hl = 'hl;�j
Hl : (29)Proof From (23) and (26), we obtain, for (xi; yj) 2 
Hl ,�rHx FH('H� ) +rHy FH('H� )�ij = �rHx FH('H;h� j�
H ) +rHy FH('H;h� j�
H )�ij :Note that 'H;h� (xi; yj) = 'H� (xi; yj) for (xi; yj) 2 �H and 'H;h� (xi; yj) = 'hl;�(xi; yj) for(xi; yj) 2 
Hl . Hene, v := 'H� � 'H;h� j�
Hl 2 G(�
Hl ) satis�es the system (28). From theassumption it follows that this system only has the zero solution, hene v = 0 on 
Hl , whihis equivalent to (29).We will now disuss the onservation property whih holds for the limit solution 'H;h� onthe omposite grid. Summation of the onservation laws for individual ontrol volumes Vij ,f. (6), leads to a onservation law on the union of these ontrol volumes. This holds, beause10



uxes over internal faes anel. Consider, e.g., ontrol volumes Vij, Vi+1;j with (xi; yj) 2 
H ,(xi+1; yj) 2 
H . We haveI�Vij f' � n d + I�Vi+1;j f' � n d = I�(Vij[Vi+1;j) f' � n d; (30)whih implies, that summation of the onservation laws on Vij and Vi+1;j leads to (2) with V =Vij[Vi+1;j. The �nite volume disretization on a uniform grid as desribed in Setion 2 satis�esthe disrete equivalent of (30) as is easily seen by adding the disrete onservation laws in (8).Therefore, disrete onservation holds for any subdomain of 
 whih an be overed withontrol volumes Vij . A similar result holds for the limit solution 'H;h� on the omposite grid,as is shown in the following theorem.Theorem 5 Under the assumption of Lemma 4, the limit solution 'H;h� 2 G(�
H;h) satis�esthe following system of disrete onservation laws:rHx Fbest('H;h� ) +rHy Fbest('H;h� ) = Sbest; (31)with Fbest('H;h� ) de�ned as in (16) and Sbest de�ned as in (19).Proof Using (22) and (23), we �ndrHx FH('H� ) +rHy FH('H� )= SH('H;h� ) = SH +rHx dHF ('H;h� ) +rHy dHF ('H;h� )� dHS : (32)For dHF ('H;h� ), we have, using (17) and Lemma 4,dHF ('H;h� ) = FH('H;h� j�
H )� Fbest('H;h� ) = FH('H� )� Fbest('H;h� ): (33)Substitution of (33) in (32) yieldsrHx Fbest('H;h� ) +rHy Fbest('H;h� ) = SH � dHS = Sbest;whih proves the theorem.

11



Figure 2: The disretization on the omposite grid given by the LDC algorithm with the stan-dard hoie for the orretion term (left �gure) and with the �nite volume adapted orretionterm (right �gure).Using Theorem 5, it is easily veri�ed, that the disretization given by the LDC algorithmas desribed in Setion 3.2 satis�es a disrete equivalent of (30), too. Therefore, disreteonservation holds for any subdomain of 
 whih an be overed with ontrol volumes Vij.Remark 6 For (xi; yj) 2 
Hl , the onservation laws in (31) redue to�rHx Fsuml ('hl;�) +rHy Fsuml ('hl;�)�ij = Ssuml (xi; yj): (34)This is the same onservation property one would obtain by adding the onservation lawsthat hold on the �2 �ne grid ontrol volumes that partition Vij , f. (24).For (xi; yj) 2 
H n (
Hl [ �H), the omponents of (31) redue to�rHx FH('H� ) +rHy FH('H� )�ij = SH(xi; yj);whih orresponds to the onservation laws of the �nite volume disretization on the globaloarse grid, f. (8).For (xi; yj) 2 �H , the limit disretization of the �nite volume adapted LDC algorithm is suh,that the disrete inux into Vij out of a ontrol volume Vkm, (xk; ym) 2 
Hl , mathes the totaldisrete outux from Vkm into Vij . This is illustrated in the right part of Figure 2.If we would use the standard hoie for the orretion term in the LDC algorithm, the limitdisretization would be the same on all ontrol volumes Vij with (xi; yj) 2 
Hl [
H = 
Hn�H .The disretization would be di�erent, however, on ontrol volumes Vij with (xi; yj) 2 �H ;these volumes would be treated in the same way as volumes Vij with (xi; yj) 2 
H .The di�erene between the disretizations given by the two LDC algorithms is leari�ed inFigure 2; its onsequenes are demonstrated by a numerial experiment in Setion 4.2.Remark 7 The system of disrete onservation laws in Theorem 5 holds for the fully on-verged omposite grid solution 'H;h� . However, in pratie, often one or two LDC iterations12



x=0 x=1x=1/2 x=0 x=1x=1/2Figure 3: One-dimensional omposite, global oarse and loal �ne grids on (0; 1) when a ell-entered method is used on the global oarse grid, and when the re�nement fator � is odd(left �gure) and even (right �gure).will suÆe to obtain a satisfatory approximation of ' on 
H;h due to the high rate of on-vergene of the method. Typially, one has an error redution by a fator 10 up to 1000 ineah iteration step (f. the results in Setion 4 and in [6, 11℄).Remark 8 In Setion 3.2, a vertex-entered �nite volume method has been used for boththe disretization on the global oarse grid and on the loal �ne grid.If we would use a ell-entered method on the global oarse grid, we an over all of 
with ontrol volumes, whih yields global disrete onservation. This approah has beenfollowed in the examples of Setion 4. Note that, as a onsequene, boundary onditions forthe loal �ne grid problem have to be treated as in a vertex-entered method (the arti�ialboundary onditions) or as in a ell-entered method (the natural boundary onditions). Thisis illustrated in the left part of Figure 3.It is also possible to apply a ell-entered �nite volume method in 
l by hoosing the re�ne-ment fator � = H=h to be an even integer. See the right part of Figure 3. As before, are�ned oarse grid ontrol volume is the union of �ne grid ontrol volumes, so that we ande�ne a soure term disretization error estimate in a straightforward way. However, thepoints in 
Hl := 
H \ 
l are no longer grid points of 
hl , so that we need to introdue arestrition R : G(
hl )! G(
Hl ) to de�ne ux term disretization error estimates.4 Numerial experimentsIn this setion, we onsider two simple numerial experiments: an interfae problem in theunit square and a one-dimensional onvetion-di�usion problem. It should be noted, that thetehnique presented in Setion 3 is apable of omputing phenomena in more ompliatedgeometries than treated here. The experiments have deliberately been kept simple though,while still showing the main features of the (modi�ed) LDC algorithm. These features are:{ the method yields a disretization on a loally re�ned grid with an error of the sameorder of magnitude as a disretization on a globally re�ned grid (Setion 4.1);{ a disrete onservation property holds on the omposite grid (Setion 4.2).4.1 A two-dimensional interfae problemWe onsider a two-dimensional interfae problem. We hoose the mass ux v equal to zero,and take a di�usion oeÆient � that is disontinuous aross a urve in 
 = (0; 1) � (0; 1)13
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Figure 4: Soure term (left �gure) and exat solution (right �gure) of the two-dimensionalinterfae problem.and has a small value in part of the domain, viz.�(x; y) := � Æ; for (x; y) 2 U",1; for (x; y) 2 
 n U",where 0 < Æ � 1, U" := (1=2 � "; 1=2 + ") � (1=2 � "; 1=2 + "), 0 < " < 1=2. The boundaryonditions  and right hand side s are hosen suh that the solution to the ontinuous problemis known and has a high ativity region in U". If we de�ne the auxiliary funtion a : IR! IRby a(x) := exp ��(x� 1=2)2�� exp(�"2);and set (x; y) := a(x) a(y); (x; y) 2 �
;s(x; y) := �a00(x) a(y) � a(x) a00(y); (x; y) 2 
;we have the following expression for the solution ' of the ontinuous problem:'(x; y) = � Æ�1 a(x) a(y); for (x; y) 2 U",a(x) a(y); for (x; y) 2 
 n U".Note that  and s depend on " but not on Æ. In the experiment below, we take Æ = 10�8," = 2=81. The soure term s and the exat solution ' with these values of Æ and " are shownin Figure 4.Beause of the di�erent resolutions needed to represent ' in U" and 
 n U", we will use theLDC method with the �nite volume adapted orretion term as desribed in Setion 3.2 todisretize the boundary value problem for ' on a omposite grid. We take 
l := (1=2 �1=27; 1=2 +1=27)� (1=2� 1=27; 1=2 +1=27). For the global oarse grid, meshsizes H = 1=33,H = 1=34, and H = 1=35 have been used; the re�nement fator � has been hosen equal to� = 3, � = 32, and � = 33. In this model problem, the loation of the physial interfae (�U")is suh that for H = 1=3k, k � 3, and � = 3m, m � 1, this interfae is on grid lines in 
hl .Therefore, a simple entral di�erene ux approximation sheme, as in Example 1, an be14



H = 1=33 H = 1=34 H = 1=35Unknowns Error Unknowns Error Unknowns Errorh = 1=33 729 1:7 � 10+0h = 1=34 778 1:1 � 10�4 6561 7:4 � 10�5h = 1=35 1090 1:6 � 10�5 6922 8:3 � 10�6 59049 8:3 � 10�6h = 1=36 3754 1:2 � 10�5 9586 1:5 � 10�6 62074 9:3 � 10�7Table 1: Numerial results for the two-dimensional interfae problem omputed using theLDC algorithm with �nite volume adapted orretion term on a omposite grid. The globaloarse grid has meshsize H; the loal �ne grid has meshsize h.used (see [18℄ for a more detailed disussion of this topi). In a setting where this favorableinterfae-grid alignment does not hold, other, more advaned, �nite volume disretizationshemes should be used. The LDC method, however, remains the same.Sine the main topi of this paper is to study the performane of the LDC (outer) iteration,the linear systems arising in the LDC algorithm have been solved to high auray using CGiteration with inomplete Cholesky fatorization as a preonditioner. The properties shownbelow still hold, however, if we use low, but \reasonable", auray in the inner iterations.The numerial results of the LDC method are presented in Table 1. Listed are the numberof unknowns in the omputation and the disretization error in the saled Eulidean norm'j
H �'H� 2 =N , where N is suh that N2 is the number of grid points in 
H . Note thatdiagonal elements in the table orrespond to uniform grids. From Table 1, we onlude thatthe LDC algorithm an redue the disretization error on the global oarse grid (meshsize H)to an error that is of the same order of magnitude as the error on a global uniform gridwith meshsize h, using onsiderably less grid points than a omputation on a global uniformgrid with meshsize h would require. This is, e.g., illustrated by the omputation on theomposite grid with meshsizes H = 1=34, h = 1=35, whih uses only 6922 grid points to �ndan approximation with the same error as a omputation on a uniform grid with meshsize H =1=35, whih involves 59049 unknowns. Note that even the error in the result on the ompositegrid with H = 1=33, h = 1=35, whih has only 1090 grid points, is already of the same orderof magnitude.Finally, we remark that the uniform grid with meshsize H = 1=33 ompletely misses the highativity region U", ausing a very large disretization error. This error is redued by a fatorof order 104 by re�ning the high ativity zone with a fator � of only 3 (introduing just 49new grid points).The exellent rate of onvergene of the LDC method is illustrated by the fat that the resultsin Table 1 are already found after just one LDC orretion step. In other words, a table listingthe disretization error 'j
H �'H1 2 =N , would be the same as Table 1.If in this experiment, we use the standard orretion term as in [11℄ instead of the neworretion term SH('H;h) as in (22), we obtain similar results. This is not surprising, sinethe onservation property is ruial aross the physial interfae �U", but of minor importaneaross the arti�ial interfae �. Hene, using a �nite volume disretization for the loal�ne grid problem is of major importane, but using the new orretion term, whih yieldsonservation aross �, is of minor importane.15



4.2 A one-dimensional time dependent onvetion-di�usion problemIn this setion, we treat a very simple one-dimensional problem, in whih global onservationis ruial. For this problem, the results of the lassial LDC algorithm as in [6, 7, 11℄ are verypoor, whereas the �nite volume adapted algorithm yields satisfatory results.We onsider a time dependent onvetion-di�usion problem, whih is a model for the behaviorof water held inside a basin by two levies. We hoose the following values for the parametersin the problem. The di�usion oeÆient � equals one in 
 = (0; 1). The mass ux is timedependent: v(x; t) := 10 + 25 sin(20 t), x 2 �
, t � 0. There is no prodution or onsumptionin the domain, hene s(x) := 0, x 2 
. This leads to the following partial di�erential equationfor ' in 
:�'�t + ��x (f') = 0; f' := v'� �'�x ;whih expresses the tendeny of the water level ' to follow the wind v, and to level out. Wehoose ux boundary onditions, viz. f'(0; t) = 0, f'(1; t) = 0, whih model the two leviesthat prevent the water from owing in or out of the basin. The initial ondition is '(x; 0) = 1.Integration of the partial di�erential equation over 
 yields the global onservation law��t Z 10 '(x; t) dx = 0: (35)We �rst applied the Euler Bakward method for the time disretization. In eah Euler step,a ontinuous two-point boundary value problem has to be solved. Beause of boundary layere�ets, the water level varies most in the outer parts of the spatial domain, i.e., in (0; Æ)and in (1 � Æ; 1). For this reason we will use a omposite grid for spae disretization. Theomposite grid used onsists of a global oarse grid with meshsize H = 1=20 in 
 and twoloal �ne grids, both with meshsize h = 1=100, in 
l;1 := (0; 1=8) and in 
l;2 := (7=8; 1). Wepresent results for both the LDC method with the standard hoie for the orretion termand the LDC method with the �nite volume adapted orretion term. The results are shownin Figure 5.Clearly, the LDC method with the standard hoie for the orretion term leads to an unreal-isti and dereasing water level through \numerial evaporation". The LDC method with the�nite volume adapted orretion term satis�es a disrete equivalent of the global onservationlaw (35), and preserves the water level.Referenes[1℄ Arney, D.C. and J.E. Flaherty, An adaptive loal mesh re�nement method for timedependent partial di�erential equations, Appl. Numer. Math., 5 (1989), pp. 257{274.[2℄ Berger, M.J. and P. Colella, Loal adaptive mesh re�nement for shok hydrodynamis,J. Comput. Phys., 82 (1989), pp. 64{84.[3℄ Ewing, R.E., Adaptive grid re�nements for transient ow problems, in: Adaptive Methodsfor Partial Di�erential Equations, J.E. Flaherty, P.J. Paslow, M.S. Shephard and J.D.Vasilakis (eds.), pp. 194{205, SIAM, Philadelphia (1989).[4℄ Ewing, R.E., R.D. Lazarov and P.S. Vassilevski, Loal re�nement tehniques for elliptiproblems on ell-entered grids. I: error analysis, Math. Comp., 56 (1991), pp. 437{461.16
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