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Abstract

We present a finite volume scheme for solving elliptic boundary value problems with
solutions that have one or a few small regions with high activity. The scheme results from
combining the local defect correction method (LDC), introduced in [11], with standard
finite volume discretizations on a global coarse and on local fine uniform grids. The
iterative discretization method that is obtained in this way yields a discrete approximation
of the continuous solution on a composite grid.

For the LDC method in its standard form, the discrete conservation property, which is
one of the main attractive features of a finite volume method, is lost for the composite
grid approximation. For the modified LDC method we present here, discrete conservation
holds for the composite grid solution, too.

AMS Subject Classifications: 65N22, 65N50.
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1 Introduction

Many boundary value problems produce solutions that have highly localized properties. In
this paper we consider elliptic boundary value problems with solutions that have one or a few
small regions with high activity.

We study a finite volume discretization method based on a combination of standard finite
volume discretizations on several uniform grids with different grid sizes that cover different
parts of the domain. At least one grid should cover the entire domain; the meshsize of this
global coarse grid is chosen in agreement with the relatively smooth behavior of the solution
outside the high activity regions. Apart from this global coarse grid, one or several local grids
are used which are also uniform. Each of these local grids covers only a (small) part of the
domain and contains a high activity region. The meshsizes of the local grids are chosen in
agreement with the behavior of the solution in the corresponding high activity region. In this
way, every part of the domain can be covered by a (locally) uniform grid with a meshsize that
is in agreement with the behavior of the continuous solution in that part of the domain. This
refinement strategy is known as locally uniform grid refinement. The solution is approximated
on the composite grid, which is the union of the uniform subgrids. Note that such composite
grids are highly structured and hence very simple data structures can be used.

In [11], Hackbusch introduced the local defect correction method (LDC) for approximating the
continuous solution of elliptic boundary value problems on a composite grid. In this method,
which is an iterative process, a basic global discretization is improved by local discretizations



defined in the subdomains. This update of the coarse grid solution is achieved by putting a
defect correction term in the right hand side of the coarse grid problem. At each iteration
step, the process yields a discrete approximation of the continuous solution on the composite
grid. The discrete problem that is actually being solved is an implicit result of the iterative
process. Therefore, the LDC method is both an iterative discretization and solution method.
An analysis of the LDC technique in combination with finite difference discretizations is
presented in [5-7].

In this paper, we consider the integral formulation of a two-dimensional convection-diffusion
problem, and combine the LDC technique with standard finite volume discretizations of this
problem on the global coarse and local fine grids. In the LDC method as in [5-7,11], the
discrete conservation property, which is one of the main attractive features of a finite volume
method, does not hold for the composite grid approximation. Here, we present a modified
LDC method, which is based on a special form of the defect correction term used in the right
hand side of the coarse grid problem. Due to this finite volume adapted defect correction
term, the conservation property is preserved in the discretization on the composite grid.

Attractive features of the finite volume based LDC method presented here are:

— the method yields a discretization on locally refined grids;

— a discrete conservation property holds for the discretization on the composite grid;

— the method is simple: it only uses standard finite volume discretizations on uniform
(global coarse and local fine) grids.

Discretization methods on composite grids have been discussed by other authors too. Mc-
Cormick presents the finite volume element (FVE) method, which is used in the fast adaptive
composite grid (FAC) method (cf. [15-17]). Ewing et al. [3,4] give an analysis of a finite vol-
ume based local refinement technique with composite grids. In both approaches, an ezplicit
discretization scheme for the composite grid is proposed, in which special difference stars
near the composite grid interfaces are used. The resulting discrete system is then solved by
an iterative method (e.g. FAC) which may take advantage of the composite grid structure.
This is a crucial difference with the LDC method, which combines standard discretizations
on uniform grids only and does not use an a priori given composite grid discretization.

This paper is organized as follows. In Section 2, we formulate a stationary convection-diffusion
problem, and discuss a standard vertex-centered finite volume technique for discretizing this
problem on a uniform grid. In Section 3, we briefly recall the concept of composite grids, and
derive a finite volume adapted LDC method. For the resulting composite grid discretization,
we prove a discrete conservation property. In Section 4, we show results of a few numerical
experiments.

2 Problem formulation and finite volume discretization on a
uniform grid

We consider a stationary convection-diffusion problem in the domain Q = (0,1) x (0, 1) with
Dirichlet boundary conditions ¢ = 1 on 0. By V C Q we denote a generic Lipschitz
subdomain of 2. The outward unit normal vector to OV is denoted by n. We assume given
functions T' = I'(x,y) > Tmin > 0 (diffusion coefficient), v = (v1(x, %), v2(z,y))T (mass flux),



and s = s(z,y) (source term). Introducing the flux vector

f, = (f,9)" = v —TVe, (1)

the problem we consider can be represented in integral formulation as: determine ¢ € H'(Q)
with ¢|,, = 1 (in the sense of traces), such that

7{ f, -ndy= / sdS}, forall V. (2)
v v

Here we used standard notation for the Sobolev space H'(£2). In this paper, we study a finite
volume discretization technique based on a combination of finite volume discretizations on sev-
eral uniform grids with different meshsizes. For the discretization of the convection-diffusion
problem on the uniform grids, we consider a standard vertez-centered finite volume discretiza-
tion method. The technique we present may be generalized, however, to cell-centered methods
and to so-called structured boundary conforming grids (cf. [19]) or to logically rectangular
grids, cf. Remarks 3 and 8.

The finite volume discretizations on the uniform grids are standard and can be found in many
textbooks; the presentation, however, is adapted to the generalization to composite grids.
We use a meshsize parameter H = 1/(N + 1), N € IN, and grid points (z;,y;) := (¢H, jH),
(Tig1/2,Y5) = ((i+1/2)H, jH), (i, yj11/2) := (iH, (j+1/2)H), i,j € IN. In a vertex-centered
approach one uses a computational grid Qf defined by

QF = {(z,y)} N Q, o0 .= Qf noQ, Q.= Qf\ 001,
and a control volume V;; around each grid point in ot

Vij = (Ti—1/2: Tiy1/2) X (Yj—1/2:Yjr1/2)- (3)

The midpoints of the interfaces of these volumes form a dual grid

VI = ({(@ig1/2,97)} U {(@i,yj41/2)}) N,

on which we will define discrete fluxes. The spaces of grid functions on Qf, Qf VH are
denoted by G(Q), G(QH), G(VH), respectively. For grid functions we use boldface notation;
for F7 € G(Qf), we write F¥ = (F)1<; j<n with Fg = FH(z;,y;). We use a similar
notation for elements in G(Q), G(V). We introduce, for F¥ € G(V), central difference
operators VI Vf . G(VHE) = G(QH) by

H @l H H HpH H H
(Vg F7)ij = Fi+1/2,j - Fz'71/2,j7 (Vy F%)ij = Fz',j+1/2 - Fi,j71/2'

We define the continuous flur F(p) € G(V) as follows (cf. (1)):

Yjt+1/2 Tit1/2
Fii105 = / f(@it1/2,m) dn, Fiji12 = / 9(&,Yj11/2) dE. (4)
Y T

j—1/2 i—-1/2

Note that this is the continuous flux over the interfaces of the control volumes V;; as in (3).
Finally, we define S € G(Q) by

Sij = /V s dS). (5)

7,



Applying the conservation law in (2) with V' = V;; yields:

(VI F(p),; + (Vy F(®)),, = Sij- (6)

ij

In finite volume discretizations the continuous fluxes in (4), which depend on the continuous
solution ¢, are approximated using a finite difference scheme. For & € G(Q), we introduce
a discrete flur grid function FZ(¢) € G(V). Here we use a general setting and we will not
be specific about the particular finite difference scheme that is used. We only assume that
the difference scheme F (¢) is local and linear in &, i.e.,

H
Fily0,;(8) = > iy k,jrm itk j+m (7)
k=0,1, m=—1,0,1

with given coefficients o, € IR. We use a similar approximation FH In practice, the

i,j+1/2°
integral in (5) is approximated by a quadrature rule. The resulting approximation of S is

denoted by S*.

Example 1 If we apply the midpoint rule to approximate the integrals in (4), (5), and use
central differences to approximate the fluxes at midpoints of volume faces, we obtain for F# (&)
and S#

Fitiyeg = fliveg By Fijaap = ignp By S = s(@wsy) HY,
where
filil/Qyj = Ul($i+1/2ayj) % - F($i+1/2ayj) &H’;I &J
gg+1/2 = v2(%i, Yj11/2) S S +2&’j+1 — (i, Yj41/2) &’H}{ &]
In the above, & € G(QT), FH(¢) € G(VH), and 8T € G(QH). O

In (6), we replace the continuous fluxes F by approximate fluxes F¥ as in (7) and S;; by Sg .
We then obtain a finite volume discretization which can be represented as:

find o™ € G(Q) such that:

HgH(  H HyH( Hy _ qH

Vi FU(e™) +V, Fl (") =87, (8)
H — 4 on 0QH.

This discretization yields N? equations for the N? unknown values of ¢’ on Q.

3 An iterative finite volume discretization on composite grids

In this section, we will present a finite volume method for approximating the continuous
solution ¢ on a composite grid. In Section 3.1, we explain how a composite grid is formed
by combining two or more uniform grids with different meshsizes. In Section 3.2, we adapt
the general Local Defect Correction (LDC) method from [11] to a finite volume setting. The
LDC method is an iterative method, hence we obtain an iterative finite volume discretization
method. In Section 3.3, we derive some properties of the method. In particular it is shown
that a conservation property holds on the composite grid.
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Figure 1: A composite, global coarse and local fine grid; H = 1/6, N = 5, and the refinement
factor o equals 3. Grid points, control volumes, and fluxes are denoted by little circles, large
squares, and arrows, respectively. The shaded region is €;; the points of T'# are marked by
filled circles.

3.1 Composite grid

In this section we recall the concept of composite grids and introduce some notation. Com-
posite grids can be found in e.g. [1-3,8-10,15]. The grids we consider result from a uniform
basis grid with meshsize H, cf. Section 2, that is extended with a region of locally uniform
refinement 2, which is such that it contains the part(s) of € in which relatively high resolu-
tion is needed. In Section 4, an example of an interface problem is given, where it is a priori
clear that in a (small) part of the domain  a much higher resolution is required than in the
remaining part. Further examples can be found in [5,7, 11].

The uniform basis grid, denoted by Q, is called the global coarse grid. We assume that
Q; C Q is chosen such that

(xi,yj) e QH NnQ — Wij C (9)
holds with
Wij = (Ti-1, Tit1) X (Yj-1,Yj41)- (10)

Note that V;; C W;;, so that W;; C € implies Vi; C €. Also, € is not a union of control
volumes V;;. In ; we apply, as in €2, a vertex-centered finite volume method, i.e., we first
introduce a uniform computational grid with meshsize h < H. This grid, which is denoted
by Q?, is called the local fine grid. To make sure that grid points in QZH = Q' N Q; are
grid points of Q{’, and that boundaries of control volumes in the local fine grid coincide with
boundaries of control volumes in the global coarse grid, we assume the refinement factor

o:=H/h

to be an odd integer. We emphasize that a refinement factor o > 1 is allowed, i.e., we can
use a global coarse grid and a local fine grid with different resolution properties. In Figure 1,
an example of a composite grid is shown (cf. also Section 4).

The interface between the global coarse grid and the local fine grid will be denoted by I' :=
o8\ 9. We will call the set of coarse grid points on this boundary I'¥, so T'# := ' n Q.
The composite grid is denoted by Q" .= QH U Q?, Qfh .= QH U Q?



3.2 A Local Defect Correction finite volume discretization

Basically, the LDC iteration in [11] consists of the following steps:

1. Solve a global coarse grid problem with given right hand side.
2. Solve a local fine grid problem with artificial boundary conditions on the interface I'.

3. Compute a defect correction term for the right hand side of the coarse grid problem,
and go to 1.

Below, we discuss these three steps, resulting in the algorithm in (23)-(25). For adapting the
general LDC method from [11] to a finite volume setting, the key point is a defect correction
(Step 3) which is based on discretization error estimates for the numerical fluzes.

Global coarse grid problem

We compute an initial approximation ¢ on the global coarse grid using the standard finite
volume discretization of Section 2, i.e., ¢! is the solution of the discrete problem (8).

Local fine grid problem

We formulate a boundary value problem on the local domain €2;, using the coarse grid approx-
imation to define artificial Dirichlet boundary conditions on the interface I'. To determine
the artificial boundary conditions, we use an interpolation operator p : I'! — I'; obvious
choices for p are the linear and the quadratic interpolation operator. Due to the fact that
is, by construction, a union of sets W;;, a linear interpolation p : 'l - T can be defined in a
straightforward manner. If a point z on a vertical (horizontal) part of I' has (at least) three
neighboring points in T'# which lie on a vertical (horizontal) line, a quadratic interpolation
at = can be defined in a natural way. At 0 N 02 we use the given Dirichlet boundary
conditions.

We are thus led to an analogon of problem (2) on the subdomain €2; with artificial boundary
conditions on the interface I'. We discretize this problem on the uniform local grid Qg‘ using
the method described in Section 2. We use a notation in which local fine grid quantities are
denoted by a subscript [ and a superscript h, e.g.: th (computational grid on €;), Vlh (dual
grid on ), G(V}") (grid functions on V}") and, for & € G(Q}), F}(€) € G(V;"*) (discrete flux
on Vlh) These quantities related to €2; are defined in exactly the same way as their analogons
in Section 2 which are related to €.

Using this notation the discrete local fine grid problem can be formulated as:

find ] € G(QF) such that:
ViF!(e]) + V F(¢]) = ST, (11)
@l =1 on QI N 0N, ol =p(pf|pu) on OQF NT.

The discrete solutions @ and cplh yield an approximation of ¢ at all points of the composite

grid. We denote this composite grid approzimation by @ and take the newest values in
grid points belonging to both the coarse grid and the fine grid, viz.

h h
(pHJL — { (Pl ? on Ql bl (12)
e, on O\ Q.



Defect correction

We now derive the third step in the algorithm, in which we use the (more accurate) approx-
imation found on the local fine grid to compute a correction for the right hand side of the
global coarse grid problem.

Substitution of the continuous solution ¢ in (8) yields a defect

d" = VIF (plgu) + VIF (plgu) - S7. (13)
Combination of (6) and (13) yields:
d" = V! (F" (¢lgn) — F(®) + V, (F (¢lgu) = F(p)) — (8" =) (14)

This expression for the coarse grid defect is used to derive an approximation for d? by
estimating the flux discretization error F¥ (¢|qx) — F(p) and the source term discretization
error S — 8.

After solving the global coarse and local fine grid problems, the following approximations are
available for an arbitrary horizontal flux F /5 ;(¢):

);

1. the coarse grid approximation of the flux, F£1 /2 j(cp

2. a coarse grid approximation of the flux based on the most recently calculated approxi-
mation for ¢, i.e., Fgl/z’j(cpH’hmH);

3. a sum of fine grid approximations of fluxes,

(0-1)/2

Ft o i(00) = Y Fliyjei(el): (15)
k=—(oc—1)/2

This third approximation only exists, if (z;11/2,y;) € €, i.e., if the cell face (z;11/2,Y;-1/2) X
(Zit1/2,Yj+1/2) lies in the area of refinement.

Note that both in the second and third approximation, we use the solution go? of the discrete
local fine grid problem (11). In the second approximation, however, only a coarse grid flux dis-
cretization F'¥ is used, whereas in the third approximation, a fine grid flux discretization Flh
is used, too. These three approximations are considered to be listed in order of increas-
ing accuracy. Because similar approximations are available for the other fluxes, F; ; /27]‘((,0),
Fijt172(0), Fij_1/2(), too, we can define a coarse grid flux vector which uses information

from the local fine grid solution: FP®t (") € G(V!) is defined by:

F{'™ (), on VA Ny (as in (15)),
ety =g (16)
FH(pth|5,),  elsewhere.
We use this flux vector to give the following flux discretization error estimate

F(plgn) — F(p) = F(M"gn) — FP (") =: dii (™). (17)

Analogously, we have the following approximations for an arbitrary source term Sj;:

1. the coarse grid approximation of the source term, Sg ;



2. a sum of fine grid approximations of source terms,

(o0—1)/2 (e—1)/2
ST (@i, y5) = Z Z Sh(z; + kh, yj +mbh). (18)
k=—(0c-1)/2 m=—(0—1)/2

This second approximation only exists, if (z;,y;) € €Y, i.e., if the control volume V;; lies
in the area of refinement.

Again, the last approximation is considered to be most accurate, and we define SP** € G(Q*)
by

syum on Q7 (as in (18)),
Sbest ::{ l l ( ( )) (19)

SH. elsewhere.
We use this source term vector to give the following source term discretization error estimate

S _ g~ st —gbest —. q¥, (20)

Using (17) and (20) to estimate d” in (14), we propose
Vi i (o) + vy dif (") — df (21)

as a defect correction term in the right hand side of the coarse grid problem. Hence, we
introduce the following notation for " € G(QH:"):

81 (p™"") = 8" + Vi A (¢™") + Vy/ d (™) — di. (22)

Formulation of the LDC algorithm

Using the updated right hand side (22), we can repeat the procedure described above, i.e.,
solve a coarse grid problem, define artificial boundary conditions on I', solve a local fine grid
problem, etc. This results in the following Local Defect Correction iterative method.

LDC algorithm

Initialization
Solve the basic coarse grid problem (8) for pfl € G(QH).
Solve the local fine grid problem (11) for cpﬁo € G(Q).

Define the composite grid approximation cpgl’h € G(QHN) as in (12).

Iteration, k =1,2,...
Compute an updated right hand side SH(cpf_’]ﬁ) as in (22).
Solve the global coarse grid problem

find o € G(QH) such that:
VIR (pff) + Vi B (o) = 8" (), (23)
cpkH =1 on OQH.



Solve the local fine grid problem
find ¢f'), € G() such that:
VEF!(e)) + VEF! (o)) = ST, (24)
cplh,k = 1) on 00 N 9N, cplh,k = p(pH|px) on 00 NT.

Define the composite grid approximation

h h
Hh { Pk on €2,

_ 25
BT ol o0\ af )

This is the LDC method as presented in [11], but now adapted to a setting with finite volume
discretization. In particular, the form of the updated right hand side S¥ (cpf_’};) is new. Here,
the correction term is chosen such that in the limit (k¥ — oo0) the resulting composite grid
discretization is still conservative; this is discussed in Section 3.3.

The computation of S (cpkHLhI) can be simplified using the results in the following lemma.

Lemma 2 For SH(cpkH_’hl) as used in (23), we have, with QI = Q" \ (@ yTH):

SH( Hh) { (VHFH(‘Pk 1|QH)+VHFH(‘Pk 1|QH))J for (xi,yj)EQlH,
k 1

Sg, for (zi,y;) € QF.

(26)
Proof Consider a grid point (z;,y;) € Q7. Adding the fine grid equations in (24) for all fine

grid points in the coarse grid control volume V;;, we find the following conservation property
over this control volume:

(VI FP™ (o) + VI F ) = ST ).
Using the notation in (16), (17), and (20) we now have for (z;,y;) € Q/:
(s™@i), = s + (Vi () + V) afl(9) = (S =St (i 0y)
= (VR (@ o) + Vi B (9 o), +
i i, 5) — (V2 FP™(plim) + V) B )
Ya)

= (VEFH (o[ qu) + VIR

which proves the first part of (26).

From the definitions in (16) and (17), we obtain that dg(cpkH_’hl) equals zero on VN (Q\ Q)),
and hence the difference operators VZ and Vf applied to this grid function yield zero on Q.
This gives the second part of (26). O

Note that in (26) we have formulas for SH(cpk 1) for (z;,y;) € QT UQE = QH\TH in which

9



the sum of fine grid fluxes F?um(cp?yk_l) is not needed. Such sums of fine grid fluxes have
to be computed on faces of control volumes V;; with (z;,y;) € ' only. Also note that the
term S§"™ can be avoided in the computation of S7 (cpf_’i)

Remark 3 The method presented in this section has a straightforward generalization to log-
ically rectangular grids. Also, for the method to be applicable to three-dimensional problems,
only minor modifications are needed. O

3.3 Properties of the LDC method

The LDC algorithm that is described in Section 3.2 is an iterative process, which implicitly
gives a discretization of the convection-diffusion problem on a composite grid. In this section,
we discuss a few properties of this discretization. Throughout this section, we will assume
that the LDC iteration converges. Numerical experiments (cf. Section 4) and theoretical
results in [5, 6, 11] support this assumption. A sufficient condition for the iterative process to
be convergent is

er =l (k= o), (27)

because this implies @7 |z — @I (K — o), and therefore <pf‘7k — <pf‘7* (k — o0).
From these two limit solutions ¢ € G(QH) and cplh,* € G(), we define a composite grid

approximation " € G(Q#") as in (25). In Lemma 4 below, it is shown that the coarse
grid solution ¢ and the local fine grid solution cplh,* coincide in Q{{ .

Lemma 4 Assume that the local coarse grid homogeneous system
{ VHEFH (v) 4 \% FH(v) =0 on QF, (28)

v=20 onaf_lfl

has only the zero solution in G(QUT). Then the limit solution (@I, cp?,*) of the LDC iteration
satisfies

SO*H|Q{1 = 90;7;*|fo (29)
Proof From (23) and (26), we obtain, for (z;,y;) € Q,

H,h H,h
(VER! (o) + VEF (o)), = (VEEH (0 n) + VI B (01 00))
Note that ¢f’h($z,y]) = Sof(xwy]) for (xlayj) Eﬁ FH and Sofl’h(xlayj) = SOZ*(QUz;yJ) for
(zi,y;) € Q. Hence, v := ol — cp*H’h|Q{{ € G(QF) satisfies the system (28). From the
assumption it follows that this system only has the zero solution, hence v =0 on Qfl , which
is equivalent to (29). O

We will now discuss the conservation property which holds for the limit solution @f’h on

the composite grid. Summation of the conservation laws for individual control volumes V;;,
cf. (6), leads to a conservation law on the union of these control volumes. This holds, because

10



fluxes over internal faces cancel. Consider, e.g., control volumes V;;, Vi1 j with (z;,y;) € o
(zit1,yj) € Q. We have

jl{ fw-nd7+j{ fw-nd'y:j{ f, - ndy, (30)
Vi OVig1, O(VijUVig1,5)

which implies, that summation of the conservation laws on V;; and V1 j leads to (2) with V' =
VijUViq1,;. The finite volume discretization on a uniform grid as described in Section 2 satisfies
the discrete equivalent of (30) as is easily seen by adding the discrete conservation laws in (8).
Therefore, discrete conservation holds for any subdomain of Q which can be covered with
control volumes V;;. A similar result holds for the limit solution cpf " on the composite grid,
as is shown in the following theorem.

Theorem 5 Under the assumption of Lemma 4, the limit solution <pf’h € G(Q) satisfies
the following system of discrete conservation laws:

Vf FbeSt(cpf’h) + V;;I FbeSt(cpf’h) — Sbest’ (31)

with B (2 ") defined as in (16) and S** defined as in (19).
Proof Using (22) and (23), we find

VIR 1) 4 9] E 1)
= 8% (p"") = 8" + vl dff (") + v, di (ei"") — df. (32)
For dg(cpf’h), we have, using (17) and Lemma 4,
dif (") = B (0" gu) — F* (plhh) = FH (plf) — Bt (o1, (33)
Substitution of (33) in (32) yields
v H phest (oHh) | Vf Foest (o) — gH _ qff — gbest,

which proves the theorem. O

11
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Figure 2: The discretization on the composite grid given by the LDC algorithm with the stan-
dard choice for the correction term (left figure) and with the finite volume adapted correction
term (right figure).

Using Theorem 5, it is easily verified, that the discretization given by the LDC algorithm
as described in Section 3.2 satisfies a discrete equivalent of (30), too. Therefore, discrete
conservation holds for any subdomain of 2 which can be covered with control volumes V;;.

Remark 6 For (z;,y;) € Qf, the conservation laws in (31) reduce to

(VI FP(eh) + VL)) = 81 ) (34)
This is the same conservation property one would obtain by adding the conservation laws
that hold on the o2 fine grid control volumes that partition V;;, cf. (24).

For (z,y;) € Q7 \ (QF UT!), the components of (31) reduce to

(Ve F () + v, Fl(pl)) = 8" (wi,y5),

which corresponds to the conservation laws of the finite volume discretization on the global
coarse grid, cf. (8).

For (z;,y;) € T, the limit discretization of the finite volume adapted LDC algorithm is such,
that the discrete influx into V;; out of a control volume Vi, (zx, ym) € 7, matches the total
discrete outflux from Vj,, into V;;. This is illustrated in the right part of Figure 2.

If we would use the standard choice for the correction term in the LDC algorithm, the limit
discretization would be the same on all control volumes V;; with (z;,y;) € QFUQH = QE\TH,
The discretization would be different, however, on control volumes V;; with (z;,y;) € I'"!;
these volumes would be treated in the same way as volumes V;; with (z;,y;) € Q.

The difference between the discretizations given by the two LDC algorithms is clearified in
Figure 2; its consequences are demonstrated by a numerical experiment in Section 4.2. O

Remark 7 The system of discrete conservation laws in Theorem 5 holds for the fully con-
verged composite grid solution cpf b, However, in practice, often one or two LDC iterations

12
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Figure 3: One-dimensional composite, global coarse and local fine grids on (0,1) when a cell-
centered method is used on the global coarse grid, and when the refinement factor o is odd
(left figure) and even (right figure).

will suffice to obtain a satisfactory approximation of ¢ on Q" due to the high rate of con-
vergence of the method. Typically, one has an error reduction by a factor 10 up to 1000 in
each iteration step (cf. the results in Section 4 and in [6, 11]). O

Remark 8 In Section 3.2, a vertex-centered finite volume method has been used for both
the discretization on the global coarse grid and on the local fine grid.

If we would use a cell-centered method on the global coarse grid, we can cover all of Q
with control volumes, which yields global discrete conservation. This approach has been
followed in the examples of Section 4. Note that, as a consequence, boundary conditions for
the local fine grid problem have to be treated as in a vertex-centered method (the artificial
boundary conditions) or as in a cell-centered method (the natural boundary conditions). This
is illustrated in the left part of Figure 3.

It is also possible to apply a cell-centered finite volume method in 2; by choosing the refine-
ment factor 0 = H/h to be an even integer. See the right part of Figure 3. As before, a
refined coarse grid control volume is the union of fine grid control volumes, so that we can
define a source term discretization error estimate in a straightforward way. However, the
points in Qfl = QM N Q are no longer grid points of Q?, so that we need to introduce a
restriction R : G(Q) — G(QH) to define flux term discretization error estimates. O

4 Numerical experiments

In this section, we consider two simple numerical experiments: an interface problem in the
unit square and a one-dimensional convection-diffusion problem. It should be noted, that the
technique presented in Section 3 is capable of computing phenomena in more complicated
geometries than treated here. The experiments have deliberately been kept simple though,
while still showing the main features of the (modified) LDC algorithm. These features are:
— the method yields a discretization on a locally refined grid with an error of the same
order of magnitude as a discretization on a globally refined grid (Section 4.1);
— a discrete conservation property holds on the composite grid (Section 4.2).

4.1 A two-dimensional interface problem

We consider a two-dimensional interface problem. We choose the mass flux v equal to zero,
and take a diffusion coefficient I that is discontinuous across a curve in Q@ = (0,1) x (0,1)

13
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Figure 4: Source term (left figure) and exact solution (right figure) of the two-dimensional
interface problem.

and has a small value in part of the domain, viz.

R for (z,y) € Uk,
[(z,y) := { 1, for (z,y) € Q\ U,

where 0 < § < 1, Uz := (1/2 —¢,1/24+¢) x (1/2 —¢,1/24+¢€), 0 < ¢ < 1/2. The boundary
conditions 1) and right hand side s are chosen such that the solution to the continuous problem
is known and has a high activity region in U,. If we define the auxiliary function a : IR — IR
by

a(z) := exp (—(x — 1/2)2) — exp(—€?),

and set

P(x,y) = a(z) aly), (z,y) € 09,
s(z,y) == —a"(z) aly) —a(z)a"(y), (z,9) €9,

we have the following expression for the solution ¢ of the continuous problem:

[ 5 ta(z)aly), for (z,y) € Us,
go(:c,y)—{ a(z) a(y), for (z,y) € @\ U..

Note that ¢ and s depend on & but not on . In the experiment below, we take § = 1078,
e = 2/81. The source term s and the exact solution ¢ with these values of 0 and € are shown
in Figure 4.

Because of the different resolutions needed to represent ¢ in U, and Q \ U, we will use the
LDC method with the finite volume adapted correction term as described in Section 3.2 to
discretize the boundary value problem for ¢ on a composite grid. We take €, := (1/2 —
1/27,1/2+1/27) x (1/2—1/27,1/2 4+ 1/27). For the global coarse grid, meshsizes H = 1/33,
H =1/3% and H = 1/3% have been used; the refinement factor o has been chosen equal to
o0 =3,0 =32 and o = 33. In this model problem, the location of the physical interface (9U.)
is such that for H = 1/3¥, k > 3, and o = 3™, m > 1, this interface is on grid lines in Q?
Therefore, a simple central difference flux approximation scheme, as in Example 1, can be
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H=1/3® H=1/3" H=1/%
Unknowns Error Unknowns Error Unknowns Error
h=1/33 729 | 1.7-1010
h=1/3% 778 | 1.1-107* 6561 | 7.4-107°
h=1/3° 1090 | 1.6 - 107° 6922 | 8.3-107° 59049 | 8.3 1076
h=1/3° 3754 | 1.2-10°° 9586 | 1.5-10°° 62074 | 9.3 1077

Table 1: Numerical results for the two-dimensional interface problem computed using the
LDC algorithm with finite volume adapted correction term on a composite grid. The global
coarse grid has meshsize H; the local fine grid has meshsize h.

used (see [18] for a more detailed discussion of this topic). In a setting where this favorable
interface-grid alignment does not hold, other, more advanced, finite volume discretization
schemes should be used. The LDC method, however, remains the same.

Since the main topic of this paper is to study the performance of the LDC (outer) iteration,
the linear systems arising in the LDC algorithm have been solved to high accuracy using CG
iteration with incomplete Cholesky factorization as a preconditioner. The properties shown
below still hold, however, if we use low, but “reasonable”, accuracy in the inner iterations.
The numerical results of the LDC method are presented in Table 1. Listed are the number
of unknowns in the computation and the discretization error in the scaled Euclidean norm
H ol — cp*HH2 /N, where N is such that N? is the number of grid points in Q. Note that
diagonal elements in the table correspond to uniform grids. From Table 1, we conclude that
the LDC algorithm can reduce the discretization error on the global coarse grid (meshsize H)
to an error that is of the same order of magnitude as the error on a global uniform grid
with meshsize h, using considerably less grid points than a computation on a global uniform
grid with meshsize h would require. This is, e.g., illustrated by the computation on the
composite grid with meshsizes H = 1/ 3 h=1 /3%, which uses only 6922 grid points to find
an approximation with the same error as a computation on a uniform grid with meshsize H =
1/3°, which involves 59049 unknowns. Note that even the error in the result on the composite
grid with H =1/33, h = 1/35, which has only 1090 grid points, is already of the same order
of magnitude.

Finally, we remark that the uniform grid with meshsize H = 1/3% completely misses the high
activity region U, causing a very large discretization error. This error is reduced by a factor
of order 10* by refining the high activity zone with a factor o of only 3 (introducing just 49
new grid points).

The excellent rate of convergence of the LDC method is illustrated by the fact that the results
in Table 1 are already found after just one LDC correction step. In other words, a table listing
the discretization error H |lor — <p{IH2 /N, would be the same as Table 1.

If in this experiment, we use the standard correction term as in [11] instead of the new
correction term S (") as in (22), we obtain similar results. This is not surprising, since
the conservation property is crucial across the physical interface AU, but of minor importance
across the artificial interface I'. Hence, using a finite volume discretization for the local
fine grid problem is of major importance, but using the new correction term, which yields
conservation across I, is of minor importance.
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4.2 A one-dimensional time dependent convection-diffusion problem

In this section, we treat a very simple one-dimensional problem, in which global conservation
is crucial. For this problem, the results of the classical LDC algorithm as in [6, 7, 11] are very
poor, whereas the finite volume adapted algorithm yields satisfactory results.

We counsider a time dependent convection-diffusion problem, which is a model for the behavior
of water held inside a basin by two levies. We choose the following values for the parameters
in the problem. The diffusion coefficient I" equals one in © = (0,1). The mass flux is time
dependent: v(z,t) := 10 + 25sin(20¢), € Q, t > 0. There is no production or consumption
in the domain, hence s(x) := 0, 2 € Q. This leads to the following partial differential equation
for ¢ in Q:

Jdp 0 op

— 4+ — =0 = - —

8t +8$ (flp) ) f(P vy 8$7
which expresses the tendency of the water level ¢ to follow the wind v, and to level out. We
choose flux boundary conditions, viz. f,(0,) =0, f,(1,) = 0, which model the two levies
that prevent the water from flowing in or out of the basin. The initial condition is ¢(z,0) = 1.
Integration of the partial differential equation over €2 yields the global conservation law

1
%/0 o(x,t) dz = 0. (35)

We first applied the Euler Backward method for the time discretization. In each Euler step,
a continuous two-point boundary value problem has to be solved. Because of boundary layer
effects, the water level varies most in the outer parts of the spatial domain, i.e., in (0,J)
and in (1 — d,1). For this reason we will use a composite grid for space discretization. The
composite grid used consists of a global coarse grid with meshsize H = 1/20 in © and two
local fine grids, both with meshsize h = 1/100, in €;; := (0,1/8) and in Q9 := (7/8,1). We
present results for both the LDC method with the standard choice for the correction term
and the LDC method with the finite volume adapted correction term. The results are shown
in Figure 5.

Clearly, the LDC method with the standard choice for the correction term leads to an unreal-
istic and decreasing water level through “numerical evaporation”. The LDC method with the
finite volume adapted correction term satisfies a discrete equivalent of the global conservation
law (35), and preserves the water level.
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