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1. Introduction

In this paper we study the convergence of basic iterativehlaand Gauss-Seidel type of
methods for solving large sparse linear systems. This iassidal topic which is treated
already in detail in [22,23]. More recent references comicgy this subject are [1,13,18].
In these references one can find convergence analyses dfi dawb Gauss-Seidel type
of methods applied to matrices from certain standard cta§d®ee main classes for which
convergence results are known are: symmetric positiveitle{spd) matrices, M-matrices,
matrices with a diagonal dominance property, and posigfimde matrices (i.e. matrices
with A + AT spd). A rather complete overview of the main known convecgeesults is
givenin [13].
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In this paper we focus on linear systems resulting from diszation of a scalar con-
vection-diffusion problem. If for the discretization onppdies the usudiinite difference
techniques, then in many cases the resulting matrix is and#tixnor satisfies a diagonal
dominance criterion. In these cases known convergencegsasahpply. However, if higher
order finite difference methods are applied, then in gertemlesulting matrix is not an
M-matrix and convergence results for Jacobi or Gauss-&gige of methods are known
only in special cases (see [20], for example). If one disde elemen(FE) orfinite volume
(FV) techniques ominstructured meshethen in general the resulting stiffness matrix does
also not fall into one of the above-mentioned standard melaisses. If the stiffness matrix
resulting from FE or FV discretization on an unstructuregimies in one of the standard
classes, then often rather special assumptions are usedaimple the assumption that the
underlying triangulation is of weakly acute type (which magtice is usually not the case).

If one compares the algebraic properties (with respecgtadiagonal dominance, sym-
metry, sign properties) of the stiffness matrices resglfrom standard FE or FV dis-
cretization methods for convection-diffusion problems#hwthe assumptions that are used
in the known convergence analyses for basic iterative nasthibfollows that often these
do not match. Hence there are still many open problems tetatthe convergence of Ja-
cobi and Gauss-Seidel type of iterative methods applietigsd stiffness matrices. As a
concrete example, consider the upwind triangle finite elgnmeethod of Tabata (explained
in Section 4.3.) applied to a model convection-diffusioolgem. On an unstructured mesh
(not necessarily of weakly acute type) the stiffness magsulting from this method is in
general neither positive definite nor weakly diagonally dwant nor an M-matrix.

Motivated by algebraic properties of stiffness matricesutéing from standard FE or
FV discretization methods we will introduce two nonstamdaratrix classes. The first,
seemingly natural, class consists of all matrices whichlmrepresented as a sum of an
spd matrix and an M-matrix:

SPD.M = {AeR™" | A= Ay + A. with A, spd and4. an M-matrix} .

Under reasonable assumptions it follows that the stiffnesisix resulting from the Tabata
FE method is an element of this matrix class. As far as we kitlogv,convergence of
Jacobi and Gauss-Seidel type of methods has not yet beeyraddbr the matrix class
SPD.M. Hence the question arises whether one can prove convergénlacobi and

Gauss-Seidel type of methods for all matrices in the cl&BD.M. In this paper this

guestion is answered. As a second nonstandard matrix cassnsider

SPD.My :== {A€eR"" | A= Aq+ A, with Ay spdandd. € PDNZ},

whereZ = {A € R"*"|a;; < Oforalli# j} and wherePD denotes the class of
positive definite matrices. We will study convergence ofolbh@and Gauss-Seidel type of
methods for matrices from this class.

In Section 2. we discuss relations between the differentinaasses that are considered
in this paper (M-matricesy PD.M, SPD.My, PD).

In Section 3. we consider the matrix classeBD.M, SPD.M, and PD and derive
convergence properties of Jacobi and Gauss-Seidel typetbfoais when applied to ma-
trices from these classes. It will be shown that both for #ewbi and Gauss-Seidel method
there are matrices if PD.M for which the method (even with optimal damping) is not
convergent. Hence the favourable properties w.r.t. cayarere of the damped Jacobi and
Gauss-Seidel methods which hold in the class of spd matendsin the class of M-
matrices are lost in the class? D.M . For matrices from the classP D.M, we will prove
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a new contraction result for the damped Jacobi method angamnthis result with a re-
sult from the literature concerning convergence of the dainfacobi method for positive
definite matrices. For positive definite matrices we intrgland analyze a hybrid method
(which has features both from the Jacobi and Gauss-Seidébgtein which downwind
numbering technigues on unstructured meshes (cf. [7,1&)grole.

In Section 4. we consider a few known FE and FV discretizatiethods for convection-
diffusion problems. We analyze the resulting stiffnessrimat.r.t. algebraic properties and
show in which of the classes considered in Section 2. and3ntatrix lies.

In our opinion there are still many open problems in this faldonvergence of basic it-
erative methods applied to discretized convection-diffiuequations. We briefly comment
on this in Section 5..

2. Classes of matrices

We introduce the following notation for a few well-known stgs of matrices:

Z:={AcR"" |a;; <Oforalli#j}, (Z-matriy (2.1)
SPD:={AcR™ | A=AT >0}, (symmetric positive definite (2.2)
PD:={AcR™™|A+AT >0}, (positive definitp (2.3)

M:={AeR"" | Ac ZandR¢)\) > 0forall A € 6(A) }. (M-matriX) (2.4)

In (2.4) one of the many characterizations of M-matricessisdu(cf. [5]). We will also use
the matrix class
My := PDNZ. (2.5)

Note that
My C M (26)

holds. The discretization of convection-diffusion prahkoften results in matrices of the
form
A= Ag+ A, 2.7)

whereA; € SPD represents the discrete diffusion term afidresults from a 'stable’
discretization of the convection term (cf. Section 4.). &hen this we introduce two more
classes of matrices:

SPD.M
SPD.M, :

{AeR™™ | A= Ag+ A, with Ay € SPD, A, € M }, (2.8)
{AeR™™ | A= Ag+ A, with Ay € SPD, A. € My }. (2.9)

Remark 2.1. For the matrix classeSPD.M andS PD.M, thestrict inequalities in (2.3)
and (2.4) are not essential. The matrix classes in (2.8) ¢2n also be characterized by

SPD.M = {A=A;+A. e R""|As € SPD, A. € Zand R¢\) > 0, A € o(A.)},
SPD.My = {A=A4+A. € R"*"|Aq € SPD, A, € ZandA, + AT > 0}.
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Lemma 2.1. The following relations hold:

My C M c Z

N n
SPD.My, C SPD.M (2.10)
N
PD

In this diagram all inclusions are strict.

Proof Theresults\y, ¢ M C Z follow from (2.6) and from the definition ot/ in (2.4).
My # M follows from the example

(i),

For A € M, the splittingA = eI + (A —e1) =: A; + A., with ¢ > 0 sufficiently
small, shows thatl, ¢ SPD.M, holds. The same argument yield¢ ¢ SPD.M.
My # SPD.MyandM # SPD.M can be seen from the example

3 2 2 0
a=(53)(12)
ForA=A.+ A; € SPD.My we have

A+ AT =24, +A.+ AT > 0,

sinced, = AT > 0andA, + AT > 0. This provesSPD.M, C PD. Finally, consider

2 0
A_<3 2>€PD

and assume a splitting

A= (ﬁl 0‘>+Ac = A+ A,
a B

with A, € SPD, A. € M,. The off-diagonal entries ofl . are nonpositive and the diag-

onal entries are strictly positive, and thus< 51, 82 < 2, « > 3 must hold. This implies

thatdet A, = 31 B2 — a2, which equals the product of the eigenvaluesiof is negative.

Hence we have a contradiction aRd # SPD.M, holds. [ |
For the class of M-matrices the theory of regular splittiefs[13,22]) yields that both

the Jacobi and the Gauss-Seidel method are convergeititites.a

o(My) < 1, o(Mgs) < 1, (2.11)

whereM ; and Mg are the iteration matrices of the Jacobi and Gauss-Seidélotiere-
spectively. In the case of finite difference discretizagiofconvection-diffusion problems
often the resulting matrix is an M-matrix and the results2ri() apply. In case of finite
element and finite volume discretizations on irregular gritbwever, usually the sign of
off-diagonal entries varies and the resulting matrix is atM-matrix in general. In Sec-
tion 4. it is shown that often these matrices are elementsoflasses PD. My, SPD.M,
or PD. Here we briefly discuss a typical example:
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Example 2.1. We consider an elliptic boundary value problem of the form

—eAu+V-(bu) = f in 2 c R", (2.12)
u = 0 onoxl, (2.13)

with a constant > 0 and a functiorb which is sufficiently smooth. We use a finite ele-
ment or finite volume discretization with piecewise lineasatz functions on a consistent
triangulation of(). In Section 4. it is shown that under certain reasonableitiond on the
functionb the following holds:

(a) the upwind triangle finite element method of Tabata y@eldnatrix
A=A4s+A. € SPD.M.

(b) the finite volume schemes of Bank et al. [2] and Bey [6]di@Imatrix
A=A;+A. € SPD.M.If V-b=0theneverd € SPD.M;, holds.

(c) the streamline diffusion method yields a matdixc PD.

We note that in all these cases, in general the resultingxiatnot an M-matrix. This
M-matrix property can be proved for the cases (a), (b) if s®imes that the triangulation
is of weakly acute typécf. Section 4.). This assumption, however, is usually nditlfed
in practice.

3. Convergence of Jacobi and Gauss-Seidel type of methods

In the subsections below we consider the matrix clagsé® .My, SPD.M, and PD
(cf. diagram (2.10)) and derive convergence propertieaodldi and Gauss-Seidel type of
methods when applied to matrices from these classes.

3.1. Convergence analysis in the matrix cl&93D. M,

We consider
A= A;+ A,

with A; € SPD andA. € My = PD N Z. We use the notation
Dy = diag(Ad), D, = diag(Ac), Dy = dlaq%l) = Dy+ D,..

In the first part of this section we analyze the convergendbetiamped Jacobi method.
We will prove a contraction result with respect to the Euesid norm (Theorem 3.1.). In
the analysis we use the numerical radius (cf. [15])

r(B) := sup{ |;L'*B;L'|; zel", ||z],=1}

for a matrixB € R"*".
We collect a few results concerning the numerical radiusifitee literature (cf. [10,15]):

r(B+C) < r(B)+r(C) (B,C e R™™) (3.1)
r(aB) = |a|r(B) (€ €) (3.2
r(B) = o(B) if B is normal (3.3)
o(B) < r(B) (3.4)
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sIBly, < r(B) <[ Bl,y (3.5)
r(B*¥) < r(B)* (k € IN) (3.6)
r(B) = o(2(B+B")) if B > 0 elementwise (3.7)

Furthermore we use the following convergence result fordéamped Jacobi method ap-
plied to the matrixd,; € SPD (cf. [13]):

2
oI —0D7'4,) < 1 forall 6 ¢ (0, ———— ). (3.8)
(=0 Dq A (% sy
Applying this result to the matri% (A. + AZ) € SPD yields
4
I-2D7YA.+ A7) <1 forall 6 € (0, . (3.9
o1 =5 D2 (A4 4D) (* o amy ) @9
Lemma 3.1. LetA > X\ > 0 be such that
M < D;'D. < AT (3.10)
We define
1 A
TN RN g
and
2 4
0g = —, 0. := min < 1, — . (3.12)
o(D; Ay) { oD (Ae + AT)) }
Then
r(I—0D;"?AD;"?*) <1 forall 0¢€(0,04), (3.12)
where 0.6
O = — 27 3.13
A7 ki 0c+ k204 (3.13)

Proof Note thatD,; > 0 and, due tod, + AT € SPD, alsoD,. > 0. Fora € (0,1) and
0 € (0,04 )we have

(1= 0D AD?) = r(al+ (- a) - 0D;" (40 + A1)
< ar([— ngl/QAdDgl/Q)
+( —a)r([— —1faD;1/2ACD;1/2). (3.14)

We use the notatio® := k; (I + D;'D.), D := ks (I + D;'D,) and note that
I <D, I <D (3.15)
holds. We first consider the terni/ — £ D,'/>A,D;'/?) in (3.14). For the symmetric
positive definite matri>D;1/2AdDgl/2 we obtain (cf. (3.15))
D2A4D,? = (Da+ Do) 2 Ag(Dy+ De)™V/?
= kD V?D;"?4,0;'*D~1? < ky DY A4D;
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Hence,a(DZl/QAdDgl/Q), the spectrum of the matriD;l/QAdDgl/Q, is contained in

the interval( 0, 2 k1 /64 ). It follows that with

k10,
= = l
“ k10c+ ko204 (3.16)
we have g 0. 2k
0 12 ~1/2 ba 2k1\ _
a(aDA AaD; ) c (o, - ) (0,2)
and thus
0 _1/2 “1/2\ _ 0 _1/2 —1/2
r(1-=D3"? A0, )—Q(I—EDA A4D;'?) <1, (3.17)

We now consider the term(I - %D;WACD;W) with « as in (3.16). First note

that due tod. € Z and D, > 0 we haveD,"/*A.D "> € Z. For the diagonal of
D,?A,D;"? we obtain

diag(D;"/*A.D;"*) = D{'D, = (Dg+ D.)"'D, = ky D™

and thus (cf. (3.15))

diag(I—%Dgl/QAcDgl/z) _ diag(I— 19_762 ﬁfl)
2 (1-y) e (-7
= (1-0,)I > 0.

We conclude that — £~ D'/ 4.D;"/* > 0 elementwise and thus (cf. (3.7))

0 12 172\ 10 1 Ty —1/2

The term on the right hand side in (3.18) can be treated atmgame lines as the diffusion

term above. For the symmetric positive definite maix'/*(A, + A7)D;"/* we obtain

Dy (Ac+ AT)DLY? = ky DTVADVR (A, + AT)DZV2 D72
< ke D7V2(A.+ ATYD7Y2
and hence
0 -1/2 T —-1/2 HA —1 T
—— _D;"*(A.+ AT)D A k(DI (A+ A
(g Pa e+ ATIDI) € (0 gt k(D7 (e + A7)
04 2kay
c (012532) = o),
It follows that g
_ —1/2 —1/2
r(I — 0,40, )<1 (3.19)

holds. Combination of the results (3.14), (3.17), (3.19ptetes the proof. [ ]
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Remark 3.1. We briefly comment on the maximal damping paraméier= %

in Lemma 3.1.. The scalars, k2 can be interpreted as a measure for the convection-
diffusion ratio. If, for exampleD,; = a4 I, D. = a. I, then
Qe Qg

PG ,
Qq Qe+ aqg

kQ = 1_k17

and

04 = (klaid-f'(l—kl)e%)_lv

i.e. 64 is a weighted harmonic average &f andd... In this case, ifa./aq << 1 then
k1~ landfj ~ 04, andifa./ay >> 1thenks ~ 1 andf4 ~ 6.
In the general case we hake+ ko € [1,2) and thus

1
3 min{0g,0.} < 04 < max{604,60.}. (3.20)

In our applications we often havg ~ 6. ~ 1, in which case the damping paramefgr
is also of order 1 (cf. Example 3.4.).

Using Lemma 3.1. we obtain a convergence result for the ddd@eobi method:
Theorem 3.1. For 6 € (0,04 ), with84 as in (3.13), define
Cy = r(I—6D;"*AD;"?) < 1.
Then the estimate
| (I—-0D;'A)F ||, < 2v/w(Da)C§, keNN, (3.21)

holds, wherex(D 4) denotes the condition number B4 with respect to the Euclidean
norm.

Proof

| (I —0D7 A" |, I Dy*(1 — 0D, *AD,* DY

Il

< Vu(Da) || (1 =0 D3 2ADL ) |,
< 2 /{(DA)r((I—GDZl/QADzl/Q)k) (cf. (3.5))
< 2k(Da) (r(I—epgl/QADj/Q))k. (cf. (3.6))

[ |
If in our applications we restrict ourselves to boundaryeabroblems with smoothly
varying coefficients, then the tergi«(D 4) is usually harmless. Theorem 3.1. then yields
a contraction in the Euclidean norm for the damped JacobnoaetNote that for many
strongly nonsymmetric problems such a contraction resukiy different from the asymp-
totic convergence result in (2.11).
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Remark 3.2. In Theorem 3.1. convergence of the damped Jacobi methoaiggifor
A. € M. In practice the conditiodl. + A7 > 0 is often too restrictive, for example if the
domain under consideration contains regions where theemion term vanishes. If we
allow A = 0in (3.10) and ifD ! is replaced by the pseudo-inver®g of D, in (3.11),
then Theorem 3.1. still holds for matricels € Z satisfyingA. + AT > 0. This can be
shown by a simple perturbation argument. In Section 4.4.shiown that for problems in
which the convection field is incompressible, i.6V - b = 0, the finite volume schemes of
Bank et al. [2] and Bey [6] yield matrice$ = A, + A. satisfyingAy; € SPD, A. € Z,
andA. + AT > 0.

We now consider the damped Gauss-Seidel method for anasbitratrixA = Ag+ A,
in SPD.M,. The example below shows that, even with optimal dampiregXauss-Seidel
method is not convergent for al € SPD.M,. For the formulation of the Gauss-Seidel
method we use a splitting
A= LA + DA + UA )

with L 4 strictly lower triangular[J 4 strictly upper triangular, anéd 4, = diag(A).

Example 3.1. Definel := (1,1,1,1,1)” and, with I the identity matrix inIR°*° and
e>0:
Ag = 11" eI € SPD.

Foré > 0 we define

c My

-0 O O
_o0 O oo

1
-1
A, =6 0 -
0
0

OO = = O
O~ = OO

andA = A. s by A:= A;+ A, € SPD.My. Then for alléy > 0 sufficiently small there
existssg = €9(4) > 0 such that foralk € (0,e0]:

Q(I—G(LA+DA)*1A) >1 forall & € R\ {0}.

Proof We considerd, with ¢ = 0, i.e. A4; = 117, and use a continuity argument to
obtain a result foe > 0. Let B := § 1A, andw := B~'1 = (1,2, 3,4,5)T. Note that

Loa+Dy=La,+Da,+A. =B '+6B
holds. We first consider the matxA =1 (L4 + Da4) :

SA YL+ Da) 5(]1]1T+5B)*1(B*1+5B)

(1+ wnT) (B™2441)
_ (1 nT wnT)(B +61)
(

I——w]lT)B +0(©)  (5—0).
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The matrixE := (I — &+ w1") B~? has eigenvalues

o(E) = {0, —0.0968 + 0.8122i, 0.2635 + 0.1738i } .

Hence the matrixl—! (L 4+ D 1) has both eigenvalues with positive real part and eigenval-
ues with negative real part &is sufficiently small. Since sigiRe(\)) = sign(Re(A~1))

for A € C, it follows that(L 4 + D 4)~* A has both eigenvalues with positive real part and
eigenvalues with negative real parbifs sufficiently small. This holds fad, = 117 +¢ T

with ¢ = 0. From a continuity argument it follows that fef5) > 0 sufficiently small the
matrix (L4 + D4)~' A has both eigenvalues with positive real part and eigensaktit
negative real part. [ ]

Remark 3.3. It turns out that if we consider dimension < 4 then the matrix used

in the proof of Example 3.1. is positive semidefinifé:+ ET > 0. This explains why
we consider dimension = 5 in Example 3.1.. A straightforward calculation yields that
for every2 x 2 matrix in SPD.M, the Gauss-Seidel method without dampiéig« 1) is
convergent. Hence, for a negative result as in Example 3&heed dimension > 3.

3.2. Convergence analysis in the matrix cl&93D.M

The embedding PD.My C SPD.M and the negative result in Example 3.1. for the class
S PD.M, show that even with optimal damping the Gauss-Seidel mathwat convergent
forall A € SPD.M. In the following example we show that a similar negativeireisolds

for the Jacobi method. We conclude that the favourable pti@gev.r.t. convergence of the
damped Jacobi and Gauss-Seidel methods which hold botle iclassS P D and in the
classM are lost in the clasS PD.M.

Example 3.2. Considerd = Ay + A, with

1 -3 1 -1
Ad::< 5 2)ESPD, AC::( 2>€M\Mg.
-5 25 —50 50

Then
oI —0D'A) > 1 forall 6 € IR\ {0}.

1 1 -3
DAA:( 7 i)

10
has determinant 0. Hence this matrix has two real eigenvalues with opposife.si |

Proof The matrix

3.3. Convergence analysis in the cld3®

The embeddingg PD.My C PD and the negative result in Example 3.1. for the class
SPD.M, imply that even with optimal damping the Gauss-Seidel mgismot conver-
gentforallA € PD.

For the Jacobi method applied to matricéss PD one can find convergence results
in the literature, cf. [13,19] and the references thereiere;lwe present one typical result
([23], Thm. 4.4.16):
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Theorem 3.2. Let A € PD, D, := diag(A4), and0 < A < A, 7 > 0 be constants such
that

ADy < %(AJFAT) < ADy, —7Dy < %(A—AT) <1Ds. (3.22
(3
Then
II-0D3'Al,, = |1-0D;"?AD"* ||, < 1 forall 0 € (0, 6.4),

with 64 defined by

= 2

Proof Givenin [13]. ]

We now compare the damping parametegs(cf. Thm. 3.2.) andd4 (cf. Thm. 3.1.)
which are used for the Jacobi method in the matrix clagdBsand SPD.My, C PD,
respectively. First note that in practical applications ieasy to obtain a reasonable esti-
mate of the parametér (cf. Example 3.4. below). For the paramefgrit is often much
harder to obtain a reasonable estimate. This is caused Bgdtwe \ occurring in the for-
mula ford 4, which is an estimate for tremalleseigenvalue of the matri¥ D' (A+AT).
Also note thatin Thm. 3.2. the damping is very strong if thesyanmetric parg (A—AT)
is "much larger” than the symmetric pajt(A + A7) : 64 << 1if 72 >> \. The ratio
between the size of the symmetric and nonsymmetric partmatgslay an important role
in the damping parametép (cf. Remark 3.1.). To illustrate these phenomena, we censid
two examples:

Example 3.3. Let B € IR"*" be skew-symmetricB” = —B. Consider the matrix
A=¢el+Be€ PD

with & > 0. The matrixD,"/*AD,"* = I + 1 B is normal and a simple calculation
yields

| 1—0D3"?AD;"? |, = oI -0 D;*AD;'?) <1

iff
22

0<b< ——,
g2 + 02

(3.24)

wherep = o(B) denotes the spectral radius Bf Since
1 _ 1 _ )
g DA A ANDY Y =1 DA - AT = B,

for the constants in Thm. 3.2. we can take= A = 1, 7 = p/¢, and we then obtain a
maximal damping parameter
i 2¢2
A= 2 T2

Comparison with (3.24) shows that for this example the tesfurhm. 3.2. is sharp. It is
clear thatifr = p/e >> 1thenfs << 1.
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We note that fop/e > 2 we haved ¢ SPD.My. This can be shown as follows: Assume
that
A=¢el+B = Ag+ A, Ay € SPD, A. € M.

From this we obtain
B:%(AC_AZ), €I:Ad+%(AC+AZ)’

and hence, it follows fromd. + AT > 0 thato(D.) < € and} o(A. + AT) < . For
R, = D, — A., which is> 0 elementwise, we have (cf. (3.1) to (3.7))

r(Re) = go(Re+R.) = |Dc—5(A+AD) |,
< | Delly + 31l Ac+ AL [l = o(De) + 5 o(Ac + A7)
Combination of these results yields
0= o(B) =r(B) = 37(R; = Re) < r(Re) < o(De) + 5 0(Ac + Al)2 < 26.

We conclude that if the skew-symmetric part 4fis large compared to the symmetric
part (o/e >> 1) then we need strong damping and the mattidoes not lie in the class
SPD.Mj.

Example 3.4. We consider the elliptic boundary value problem in Example and as-
sume that the flow fielélis incompressibleV -b = 0. Then the finite volume discretization
described in Section 4.4. yields a matdx= A, + A. € SPD.M (cf. Lemma 4.5.(h)).
We further assume that the corresponding triangulatigrare quasi-uniformandstable
i.e., the elements in each triangulati®n are of comparable size and the elements do not
degenerate fat — 0. Using well-known estimates from the theory of finite eletreeth-
ods (cf. [8,12]) it then follows tha@(D(led) is bounded independently of h and hence,
the parametef; in (3.11) is bounded away from zero independently,0f. Note thatd,;
represents the maximal damping parameter of the Jacobbehatiplied to the matrix ;.
Since the matrix4. is weakly diagonally dominant with respect to its rows anthsmns
(cf. Lemma 4.5.(c),(f)), we obtaifh. = 1in (3.11). Using (3.13), (3.20), and Theorem 3.1.,
we conclude that the damped Jacobi method applied to théxabate A; + A, converges
forf € (0,04 ), where
04

04 > >
is bounded away from zero independently=pb and . On the other hand, if we apply
Theorem 3.2. in this situation then the result is less satfsfy. Assumingb | > 0, for the
parameters, A andr in (3.22) one can show

1
A~ hE O A~L, T~ ———
1+ To[h
Hence, for the maximal damping parametgrin (3.23) we obtain
£ 2
1
(g7 +h)*+1
It follows thatf 4, approaches zero fcﬁ—‘ + h — 0. We conclude that for this example the
damping resulting from Thm. 3.2. is much too strong if bﬁ%lﬂ andh are small.
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Due to the negative result in Example 3.1., convergenceefldmped Gauss-Seidel
method cannot be proved for arbitratlye SPD.M,. On the other hand, for convection-
dominated problems the Gauss-Seidel method with "downwimthbering” (cf. [7,14])
seems to be an efficient solver (smoother) in many practjgaliGtions. In order to fill
partly this gap between theory and practice we consider aidwethod which is moti-
vated by the following result:

Theorem 3.3. For A € PD consider a splitting

A= Ag+A. with A;€SPD, A.+ AT >0. (3.25)
LetW € SPD be such that
2W—-Ag > 0. (3.26)
Then the following holds:
IT—(W+A) " Ally < IT-W 44y, < 1. (3.27)
Proof Note that
[T=W+A) Al = [ T-W+A) H(Aa—=W+W+A) |y

(W +Ao)™ (Ad = W) |l
(I + W™ A)™HT = W Ag) |y
< NT+WTA) w1 T =W Ag [y - (3:28)

Using the notatiodd, := W~/24,W~1/2 for the first term on the right hand side in
(3.28) we have

IT+WA) = 1T+ A)7 ],

o((r+ 40+ 40)7) "

_ _ o 1/2
g((I+AC+AZ+AZAC)—1) < 1. (3.29)

The latter result follows from the fact that bath + A7 andA” A, are symmetric positive
semi-definite. Using the result (3.29) in (3.28) yields

1= (W+A) " Ally, < [ 1= W Aq [ly,
= oI —W24,W—1?) < 1.

The latter inequality results from< W12 4,W~1/2 < 2T (cf. (3.26)). [
Remark 3.4. Itis easy to show that the matrix class
V= {AcR"" | A=A+ A. with Ay € SPD, A.+ AT >0}

equals the class of positive definite matricés= PD.
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We now discuss how for a discretized convection-diffusioobem with matrixA in
the classP D Thm. 3.3. can yield convergence of a feasible method.

As an example we consider the stabilized box method desthilbb®ection 4.4., applied
to the problem (2.12), (2.13). We assume incompressipilgyV - b = 0. Then the re-
sulting discretization has a matrix = A, + A. with A; € SPD, A. + AT > 0 (cf.
Lemma 4.5.). If the directed graph corresponding to the eotiwn matrixA.. is acyclic,
i.e. does not contain any cycles, then using numbering ighgos as in [7,14] one can re-
order the unknowns such that the resulting permuted coiovettatrix is lower triangular.
We takelV := 6 diag(A,) with 8 > 0 such thaR W — A, > 0 holds. For this example the
assumptions of Theorem 3.3. are satisfied and we obtain iblieasethod since systems
with the matrixiV + A, = 6 diag(A4) + A. can be solved with acceptable computational
costs. If the directed graph corresponding to the conveatiatrix A, contains cycles, then
after suitable reordering (cf. [6,14]) the matedy is block-lower triangular. Depending on
the size of the diagonal blocks this may still result in a figl@smethod.

4. Algebraic properties of stiffness matrices resulting fom the discretization
of convection-diffusion problems

Let Q c IR™ be a polyhedral domain with boundaFy We consider elliptic boundary
value problems of the form

—eAu+V-(bu)+cu = f in Q, (4.1)
u = 0 onl. (4.2)

For simplicity we assume that> 0 is constant and that the vector figldaind the scalar
functionse, f are sufficiently smooth, e.¢.€ HL>°(Q)", ¢ € L>=(Q) and f € L*(Q).
If V-b = 0then problem (4.1), (4.2) is calladcompressibleThe weak formulation of
(4.1), (4.2) readsFindu € H}(Q) such that

a(u,v) = /sVu-Vvdx—i—/vV-(bu)dw—i—/
Q Q

cuvdx:/fvdx 4.3)
Q Q

forallv € H(Q). If ¢+ 3V - b > 0 then the bilinear fornu(-, -) is coercive inH{} (),
ie.
a(u,u) > allu 12, u e HLHS), (4.4)

with coercivity constan& > 0 and energy norfj u ||* := [, | Vu|* da for u € H{(9).
In this case it follows from the Lax-Milgram Lemma that (4/8s a unique solution
in H}(Q). Otherwise, ifa(-, -) fails to be coercive, the Fredholm alternative applies and
hence (4.3) has a unique solution iff the homogeneous proffe= 0) has only the trivial
solutionu, = 0 (cf. [9]).

In the subsections below we consider a few discretizatiothaus for the problem (4.1),
(4.2), which are known from the literature. In the settingto$ paper we are interested in
the algebraic properties of the resulting stiffness masic

4.1. Finite element discretization

We first discretize (4.1), (4.2) by piecewise linear finitereents based on the standard
Galerkin approach. Le&f;, be a consistent triangulation 6f letx, . . ., zy be the vertices
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of 75, not lying onT", and letV}, be the corresponding space of continuous piecewise linear
functions which are zero oh. Then the finite element discretization of the continuous
problem (4.3) leads to the discrete probldindu;, € V;, such that

vp b Vuy d:v—f—/(c—i—v-b)uhvh dx
Q

a(up,vp) = /EVuh-Vvh dx—i—/
Q

Q

= /vah dx (4.5)

forallvy, € Vj,. If c+§v-b > 0thena(-, -) is coercive inV}, and (4.5) has a unique solution.
Denoting by®;, := {¢1, ..., ¢n} the standard nodal basis v, (4.5) is equivalent to the
linear system

Az = b (4.6)

with matrix coefficients
Ay = algj @), 1<ij<N. (4.7)

The solutionz of (4.6) is related to the solutiom;, of (4.5) byu;, = Z?’Zl xj ;. Cor-
responding to the left three integrals in (4.5), #téfness matrixA can be split into a

diffusion partA4,, a convection parfi., and a reaction pad,. :
A=A +A.+A,. (4.8)

Often for the reaction term a so callednpingprocedure is used in which the matei.
is approximated by a certain diagonal matrix. To be moreipeetet(2; be the union of
all simplices in7; sharing the vertex;, for1 < i < N. The volume of; is denoted by
| ©2; |. The reaction term in (4.5) can then be approximated by

N

/Q(c+V-b)uhvh v ~ ;in'l (c+V-b)(xs) un(z:) on(zs) . (4.9)

If ¢+ V -b > 0 this lumping procedure results in a nonnegative diagonatimal,
(cf. Lemma 4.2.(f)). Note that the approximation order af fimite element method is not
affected by the lumping procedure.

Before we summarize properties of these matrices, we int®d few definitions:

Definition 4.1. A € RV*Y satisfies the strong (weak) sign conditiondf € Z and
Ay > 0(Ay; > 0)forl <4 < N. The matrixA is called weakly diagonally dominant
W.I.t. its rows (columns) if

JFi 1#£]

Definition 4.2. Let zy41,..., 2 be the vertices off;, which lie onT'. Let Vi O Vi
be the space of continuous piecewise linear functions spareding to7y, i.e. the space
of all functionsv;, € C(Q) such that the restriction of;, to any element’ € 7;, is a
linear polynomial onZ’. We denote by, := {¢, ..., ¢} the standard nodal basis of
V;,, defined by

goi(xj):&j, ].SZ,]SN
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Assume that the coefficients of the mattix IRV <V

form

are defined by an expression of the

Aij = an(pj, i), 1<i,j<N, (4.10)

with some bilinear formu;, (-, -) defined or}, x V4,. ThenA is said to have the zero row
(column) sum property if

N N
Zah(@j,%)ZO for 1<i<N (Zah(%,%):o for 1§j§N).

j=1 i=1

Example 4.1. Let A be the finite element matrix in (4.6), and lébe the matrix resulting

from the finite element discretization of the correspondifemann problem. Clearly,
A satisfies (4.10) withu,(-,-) = a(-,-) (cf. (4.7)). If A has the zero row (column) sum
property, this means that the sum of the entries in each rolurftn) of A vanishes. This

implies that

N N
Y Aiy=0 (ZAU» :o) (4.11)
j=1 i=1

for each row: (columnj) corresponding to a vertex; (x;) which is not connected by
an edge to any boundary vertex. Note, however, that in gefdd) does not hold for
the remaining rows (columns) of. This is due to the fact that "couplings” to boundary
vertices are contained i but not in A.

Definition 4.3. A triangulation7;, in IR™ is of weakly acute type if the maximum angle
between twdn — 1)-subsimplices of any simpl&x e 7;, is bounded byr/2.

In the literature the condition that a triangulation is ofakly acute type is often used
as asufficientcondition for an M-matrix property of the correspondindfagss matrix. A
typical result is given in the following Lemma:

Lemma 4.1. Consider the finite element stiffness matrix correspondiinthe diffusion
part of the bilinear form in (4.5), represented by the symmimgiositive definite matrixd,
in (4.8). If the triangulatiort}, is of weakly acute type thety; € M, holds.

Proof Let V,(T') denote the restriction d¥ ¢; to the element” € 7;,. Note thatV,
is constant on every elemefite 7. Using| T’ | to denote the volume dF, we obtain for
1<i,j<N

Adij = E/ Vi - Vy; dx
Q

ey / Vi Vojde =c Y |T|Vei(T)-Ve,(T). (4.12)
TeT, ’ T TET,

Now consider an arbitrary elemefite 7;,. For any vertex:; of T' let S;(T') be the(n—1)-
subsimplex off" opposite taz,;. For any two such subsimplices(T), S;(T') let a;;(T')
be the angle betwee$},(T") and S;(T) insideT. If 7;, is of weakly acute type, then we
havea;;(T') < 7/2, hencecos a;;(T") > 0 for each such angle;; (T") in 7.
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It is not difficult to see thaWVy;(T') is orthogonal taS;(T"). Moreover,Vy,;(T) points
from there into the direction of the interior @f. It follows that

Vei(T) - Vi (T) = —cos a; < 0 (4.13)

for any two verticese; # «; of 7. On the other hand, if either; or x; is not a vertex of
T, then we have, Vo, - Vi; dz = 0. In combination with (4.12) and (4.13) this proves
Ay € Z. ltis clear thatd; € SPD holds, hence we conclude thdg € M. [ ]

Remark 4.1. Under the assumption th@j, is of weakly acute type, one can show that the
matrix A, is essentially diagonally dominai(tf. [13] for definition). Note that the latter
property in combination with the strong sign condition imeplthe M-matrix property (cf.
Theorem 6.4.10 in [13]).

Theresultsin Lemma4.1. or Remark 4.1. show thats an M-matrix if 7;, is of weakly
acute type. This assumption, however, is unrealistic iti@dar if 7, is generated by an
adaptive refinement processZlf is not of weakly acute type then in geners) ¢ Z and
henced,; ¢ M. Even worseA, in general fails to be inverse monotone, i.e., some entries
of A~! may be negative.

In the remainder of this paper for a few well-known discratian methods we derive
properties of the corresponding stiffness matrix for theecéhatZ;, is not necessarily of
weakly acute type. We start with a few properties of the dififé components of the finite
element matrixA from (4.6) and of the matri¥,. resulting from the lumping procedure
(4.9):

Lemma 4.2. For the matricesdy, A., A, in (4.8) and for the matrixd, we have:

(a) Aq € SPD,
(b) A, has both the zero row sum and zero column sum property,
(c) A, hasthe zero row sum property,

(d) A,, A, are symmetric.
Using additional assumptions, we obtain the following Hesu

(e) if V-b=0thenA, has the zero column sum property,

(f) if c+V-b>0thenA,, A, are positive semi-definite ane 0 elementwise,
(9) ifc+V-b>0thenA;+ A, € SPD, A; + A, € SPD hold,

(h) ifc+ 3V -b>0thenA € PD.

Proof Clearly, A4, A, and A, are symmetric. The coercivity of the diffusion part of the
bilinear formaf(-, -) implies thatA, is positive definite. The zero row and column sum
properties ofA, follow from the fact that the diffusion term vanishes if eith: or v is
constant. A similar argument for the convection term shdwas A . has the zero row sum
property. In case o/ - b = 0 the zero column sum property df. easily follows by partial
integration. The diagonal matrit,., defined by the lumping procedure (4.9), is positive
semi-definite and> 0 elementwise ifc + V - b > 0. If the latter condition is satisfied
thenyp; > 0for1 < j < N implies A, > 0 elementwise. In this case we also have
Jo(c+V -b)v? dz > 0 for arbitraryv € Hy(€2). HenceA, is positive semi-definite. The
properties in (g) follow from (a), (d), and (f). &+ 3V - b > 0 then the coercivity ofi(-, -)
and the relation” (A 4+ A7)z = 227 Az, x € RY, imply A € PD. |
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Unlike A; and A, the convection matrixl. has a skew-symmetric character. This skew-
symmetric character will dominate the total stiffness imat in regions where thenesh
Peclet numberb | h/e is large. It is well known that the discretization (4.5) imgeal is
highly unstable in case of dominating convection and magpece unphysical oscillations
in the discrete solution, in particular if the solution okthontinuous problem contains
internal or boundary layers.

In the 1D case, if the triangulatidh, is equidistant, the discretization of the convection
term in (4.5) corresponds to the use of central finite difiees to approximate the first
order derivative ofuj. In this case the above difficulties can be overcome by usauf-b
ward finite differences instead. Thipwind differencingrocedure preserves the M-matrix
property and hence also the inverse monotonicity prop®mythe other hand, the use of
upwind finite differences results in a loss of accuracy stheemethod is only first order
accurate.

In the following sections we consider some well known stabflon methods for the
higher-dimensional case. We focus on the algebraic priggeot the resulting stiffness
matrices and do not investigate the approximation ordeh@kthemes. A rigorous error
analysis of these upwind methods can be found in [17].

4.2. Artificial diffusion

The artificial diffusion method is probably the simplesttegdimensional upwind scheme.
It is equivalent to application of the standard finite eletrdiscretization (4.5) to a modi-
fied problem with a larger diffusion constaftwhich can defined, for example, by

Ei=c4h|b],. (4.14)

With this modified diffusion constant, the resulting digerproblem readstindu;, € V},
such that

/éVuh-Vvh da:—|—/vhb-Vuhda:—F/(c—i-V-b)uhvhdx = /fvh dr (4.15)
Q Q Q Q

for anyv;, € Vj,. Note that (4.15) differs from (4.5) only by the diffusionrstant. Let now
A2 pe the corresponding stiffness matrix for the artificiafuifon method. We consider
a splitting A% = A, + Agd + A,., that is, the artificial diffusion term is added to the con-
vection matrix while the diffusion and reaction matricesieen unchanged. We summarize
the main properties of this splitting in the following Lemma

Lemma 4.3. All results of Lemma 4.2. hold with and A, replaced byA®? and A%¢,
respectively.

Proof A% — A, is the discretization matrix corresponding to the artifidifusion term.
It follows thatA%? — A, has both the zero row sum and the zero column sum property. Thi
implies thatA?? has the zero row sum or zero column sum property if and only lias the
same property. This proves (c) and (ey:4f1 Vb > 0, thenA®— A4 = A3?— A, € SPD
in combination with Lemma 4.2.(h) prove§? ¢ PD. [ |

A main disadvantage of the artificial diffusion method istttize artificial diffusion
acts in all directions, i.e., the method introduces ar#fidiffusion not only in streamline
direction but also perpendicular to the streamlines, is®nond direction. Below we will
consider upwind schemes which in general produce lesswirassliffusion.
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Remark 4.2. One of the widely used finite element discretization scheforasonvection-
diffusion problems is the streamline diffusion method (&M)j. For a description and
analysis of this method we refer to [17]. In the SDFEM art#idiffusion is added mainly
in the direction of streamlines in such a way that the resgktabilized discretization still
satisfies a favourable consistency condition (cf. [17])gémeral this method has much
better approximation quality than the simple artificialfaion method based on (4.14),
(4.15). However, in the algebraic setting of Section 2 théFEM stiffness matrixAs?
does not seem to have more structure than the stiffnessxutitiof the simple artificial
diffusion method. For the SDFEM as described in [17] a bassalt on discrete coercivity
of the stabilized bilinear form (Lemma 3.28 in [17]) immetgily yields: If c 4+ %V -b>0
thenAs? ¢ PD. AresultA%¢ ¢ S with S one of the other matrix classes in the diagram
(2.10) does not seem to hold under reasonable assumptions.

4.3. The upwind triangle method of Tabata

The upwind triangle method of Tabata introduces, in a aersense, upwind finite dif-
ferences into the finite element method on unstructuredsdéd]. Although originally
formulated for the 2D case, the method can easily be geredatd higher dimensions.
Hence, from now on we use the naoqgwind simplex method

This method works as follows: The diffusion and reactiomigare discretized as in the
finite element method, resulting in the matricés, A,, or A4, A, if lumping is applied.
The approximation of the convection term is based on a shlecping procedure. Each
vertexz; is associated with a simplék, theupwind simplexr theupwind trianglein the
2D case, such that (&); is a vertex ofl; and (ii), the vector-b(x;) points fromz; into T;.
If b(x;) = 0, any simplex with vertex; can be chosen as upwind simplgx Otherwise,
if —b(zx;) points into the direction of an edge, then the upwind sim@ehosen from the
set of simplices sharing that edge.

Now suppose we have chosen exactly one upwind simplefor every vertexz;,
1 <4 < N. Then the convection term is approximated by (cf. (4.5))

| 2 |
n—+1

/ w;b-Vup, do =~ b(z;) Vup|r, (4.16)
Q

foru, € V,, andl <4 < N. The resulting convection matrix is denoted Y . Properties
of AUt A% = Ag+ A + A, andA¥ = A+ A¥ + A, are summarized in the following
Lemma:

Lemma 4.4. The matricesA“, A“* and A** have the following properties:

(a) At satisfies the weak sign condition,

(b) A% has the zero row sum property,

(c) A“ is weakly diagonally dominant w.r.t. its rows,
(d) ifc+V-b>0thenA™ A“ ¢ SPD.M.

Proof First note that on each simpléx € 7;, and for each vertex; of T' the gradient
V, is orthogonal to thén—1)-subsimplex opposite; . Further note thaW ; points from
there into the direction af;. This implies that for any vertex; with upwind simplexZ;
we haveb(z;) - Vy;|7, > 0, and for any other vertex; we haveb(z;) - Vy;|r, < 0if
z; is a vertex ofl; andb(xz;) - V|1, = 0 otherwise. Hencel!! satisfies the weak sign
condition.
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Property (b) follows from the fact that the right hand sid¢4fL.6) vanishes for constant
functionsu,,. Together (a) and (b) imply that“! is weakly diagonally dominant w.r.t.
its rows. Using the Gerschgorin circle theorem we conclide Ré\) > 0 holds for
all A € o(A"). Hence, ifc+ V - b > 0, it follows from Lemma 4.2.(g) and from the
characterization of the matrix classPD.M in Remark 2.1. thatd*t, A“t ¢ SPD.M
holds. [ |

Related to diagram (2.10) the result in Lemma 4.4.(d) isveeie Note that in general
AU does not have the zero column sum property, even ripisitonstant. It is therefore
not clear whether“! is positive semidefinite or ifi“!, A** € PD holdsifc+ V-5 > 0.

Remark 4.3. If 7;, is of weakly acute type, then using the results in Remarkahé.can
prove the following:

o ifc+V-b=0thenA" € M,
o ifc+V-b>0thenA™ ¢ M.

4.4. The box method

A number of upwind schemes can be derived from a certain cffisite volume dis-
cretizations of (4.3). Finite volume methods applied tip&tt equations are often based
on adual box mesleonstructed from a usual finite element triangulafignTo be precise,
let 7, be a consistent triangulation 9fwhose vertices, . .., x5 are numbered such that
71,...,zy lie in the interior of(2 while zx,1,. ..,z belong tol' (cf. Definition 4.2.).
A dual box meslfior 7;, is a partitionB3;, = { By, ..., By} of Q into N closed Lipschitz
setsB; such thaty; € B; andB; C ; holds forl < i < N, cf. [6]. The setsB; are called
boxesand can be constructed in different ways. The two best knoethaus for the con-
struction of dual box meshes are ttenter-of-masmethod (see [6,11], for example) and
the method operpendicular bisectorécf. [2]). In both cases the boxds$ are polyhedra.
Now suppose that a consistent triangulatifgnand a corresponding dual box meSh
are given. Denoting again by, the space of continuous piecewise linear functions cor-
responding td/;, (!) which are zero ofl’, the simplest finite volume discretization of the
continuous problem (4.3) readsindu;, € V}, such that

/ EVuh-dU—i-/ uhb-da—i-/ cuhdarz/ fdx (4.17)
I9B; OB; B; B;

for1 < i < N. Note that the boxeS8x1,..., By, corresponding to boundary vertices
of 75, are not used in (4.17). Taking again the standard nodas Basi= {¢1,...,¢on}
of V4, (4.17) results in a linear system with stiffness mat#* defined by

Afj"‘/‘ = —/ EVgoj-dU—i-/ <pjb-da+/ cp;dr, 1<i,j<N. (4.18)
8B,i P B;

i

We use the splittingd®>* = Aff”” + Abor 4 Abor corresponding to the three integrals
in (4.18). Itis shown in [4,6,11] that the diffusion matnib@” coincides with the diffusion
matrix obtained by the finite element methottgf’” = Ay,

In general, the reaction matri4>°* is non-symmetric and the sign of the non-zero en-
tries in A%°* is determined by the sign of If ¢ > 0 then A%°* contains only non-negative
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entries. Note that in contrast to the finite element case ehetion term does not con-
tain V - b. The reaction term is often discretized using the followlmgping procedure:

/ cup dr =~ | B;|c(x;) un(z;), 1<i<N. (4.19)

i

If ¢ > 0, this results in a non-negative diagonal mattf¥”. Hence, for the case with= 0
andc > 0, the matrixAb* = A, + Abo* is symmetric positive definite, and i is an
M-matrix, thenA®** = A, + Ab°* is an M-matrix, too.

The convection matrixi%°* has the same skew-symmetric character as the convection
matrix of the finite element method. Hence, in case of dorimigatonvection the dis-
cretization (4.17) is in general unstable. The finite voldarenulation, however, gives rise
to a new class of upwind schemes. Such schemes have beentpdeder example, by
Bank et al. [2], and by Bey [6]. These methods only differ bg Wy in which the dual
box mesh is constructed. In [2] the method of perpendicuksedbors is used, which in
practice is restricted to the 2D case. In [6] the center-absrmethod is considered, which
can be applied to triangulations of arbitrary dimension.

We now describe the basic idea of these upwind schemes withaking any assump-
tion on the construction of the dual boxmesh. Hence, the mghwatheme presented below
has both the method in [2] and the one in [6] as special cases.

Forl < i < N let A; be the set of indicese {1, ..., N} such thatz;, «; are endpoints
of a common edge if},. For eachy € A; letT';; := 0B; N 0B; be the common boundary
of B; and B;. With this notation the convection term in (4.17) can be espnted as

upb-do = /u b-do; . (4.20)
/aB " Z r "

JEA;

Here, the index in do; indicates that the outer normalused in the definition of the line
mtegralfr upb-do; == fr up b - 7 ds is the outer normal of the Bo®,;. The total flux

of the convection field from box B; into box B; over the common boundatiy; is given
by the value

bl‘j = / b- dO’i . (421)
r

ij

Note thath;; = —b;; for all i # j. Using theupwind vertices

Tij = { T if b” <0, Z#ja (422)

the integrals on the right hand side of (4.20) can be appratéthby

/ upb-do; ~ ’U,h(l‘ij) b-do; = ’U,h(l‘ij)bij, ] EAZ'. (423)
Tij Tij

We denote the resulting convection matrix A§*?. Some properties of the matrice§"?
and AP = A, + Ab“r + AbT are summarized in the following Lemma:
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Lemma 4.5. The matrixA%“? has the following properties:

(a) Abvr satisfies the weak sign condition,

(b) AP has the zero column sum property,

(c) Abvris weakly diagonally dominant w.r.t. its columns.
(d) if ¢ > 0thenA € SPD.M.

If V -b =0 then in addition we have

(e) Ab“P has zero row sum property,

(f) A% is weakly diagonally dominant w.r.t. its rows,
(g) Ab is positive semidefinited?w? + (A%P)T > 0,
(h) if ¢ > 0thenA? € SPD.M,.

Proof The weak sign condition fad®“? follows from the construction, cf. (4.20) — (4.23).
Forl < j < N we have

D (AP = (AXP)4+ Y (AXP)y = > bt > by = Y (bjitby) = 0.

i ieA; PEA;, PEA, PEA;,
bj; >0 b;j <0 b; ;<0

HenceAb“? has the zero column sum property. Together (a) and (b) inmaly/thatA2»

is weakly diagonally dominant w.r.t. its columns. Using the same arguments as in the
proof of Lemma 4.4. we obtaid®*? ¢ SPD.M. If in additionV - b = 0 then it follows
from

DoAY = (ARP) > (AP = Y b+ Y by

J JEA; JEA,, JEA,,
b; ;>0 bij <0
= E bij = / b- dO’Z‘ =0 5
i€EA; 9B

that A% has the zero row sum property, too. This together with (aldgi¢f). Proper-
ties (c) and (f) imply that that the symmetric matei®“? + (A%»)T is weakly diago-
nally dominant. Using the Gerschgorin cycle theorem we katecthat the eigenvalues of
Abur 4 (AbP)T are nonnegative. Hence we hatg? +(A%?)T > (. This in combination
with the characterization of the matrix claS® D.M, given in Remark 2.1. proves (hm

Remark 4.4. If 7, is of weakly acute type, then using the results in Remarkah#.can
prove that ifc > 0 thenA"*? ¢ M holds, or evem’? ¢ M, if V -b = 0 andc > 0.

5. Concluding remarks

In this paper we obtained a satisfactory contraction résuthe Jacobi method applied to
matrices from the clasSP D.M, (Theorem. 3.1.). On the other hand, for the Gauss-Seidel
method only negative results are presented (ExampleRot the class of positive definite
matrices a hybrid method, which converges without any damgs introduced (Theo-
rem 3.3.). Furthermore, a few well-known finite element anddivolume discretization
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methods are analyzed with respect to algebraic properftigeaesulting stiffness matri-
ces.

In our opinion, there are still quite a few interesting opeolgbems in this field. Here we
mention two of these. The convergence analysis of the Gaeigkel method is an interest-
ing topic for further research. In the literature we did notlfconvergence results for the
Gauss-Seidel method applied to matrice®ib \ M,. A few results for the SOR method
are known ([16]). These results, however, are comparabteeaesult in Theorem 3.2.
(but now for the SOR instead of the Jacobi method) and hentceanp satisfactory when
applied to discrete convection-diffusion problems (cfaBwple 3.4.).

A second question which seems to be of interest is whethecanealefine a suitable
subclass ofP D (different from S PD.M;,) which contains the stiffness matrices result-
ing from popular discretization methods for convectioffugion equations (e.g. SDFEM,
Tabata-scheme, box-scheme) and also allows a satisfaxiownergence analysis of Jacobi
and Gauss-Seidel type of methods. Maybe, in the definiticuol a subclass, a zero row
sum or column sum property as explained in Section 4.1. \él} p role.
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