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Abstract. We present a preconditioning method for the iterative solution of large sparse
systems of equations. The preconditioner is based on ideas both from ILU preconditioning
and from multigrid. The resulting preconditioning technique requires the matrix only. A
multilevel structure is obtained by using maximal independent sets for graph coarsening. A
Schur complement approximation is constructed using a sequence of point Gaussian elimi-
nation steps. The resulting preconditioner has a transparant modular structure similar to
the algoritmic structure of a multigrid V-cycle.
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1 Introduction

Multigrid methods are very efficient iterative solvers for the large systems of equations
resulting from discretizing partial differential equations (cf. [18], [34] and the references
therein). An important principle of multigrid is that a basic iterative method which yields
appropriate local corrections is applied on a hierarchy of discretizations with different char-
acteristic mesh sizes. This multilevel structure is of main importance for the efficiency of
multigrid.

Another class of efficient iterative solvers consists of Krylov subspace methods combined
with ILU preconditioning (cf. [8], [27] and the references therein). These methods only
need the matrix and are in general easier to implement than multigrid methods. Also the
Krylov subspace methods are better suitable for a ”black-box” approach. On the other
hand, for discretized partial differential equations the Krylov methods with ILU precondi-
tioning are often less efficient than multigrid methods.

In the multigrid field there have been developed methods which have a multilevel structure
but require only the matrix of the linear system. These are called algebraic multigrid meth-
ods. Approaches towards algebraic multigrid are presented in [7], [13], [16], [26], [33]. In all
these methods one tries to mimic the multigrid principle. First one introduces a ”reason-
able” coarse ”grid” space. Then a prolongation operator is chosen and for the restriction



one usually takes the adjoint of the prolongation. The operator on the coarse grid space is
defined by a Galerkin approach. With these components, a standard multigrid approach
(smoothing + coarse grid correction) is applied. These algebraic multigrid methods can
be used in situations where a grid (hierarchy) is not available. Also these methods can be
used for developing black-box solvers.

Recently there have been developed ILU type of preconditioners with a multilevel structure,
cf. [5], [6], [23], [28], [29]. The multilevel structure is induced by a level wise numbering of
the unknowns.

Recently, in [3], [4], [25] a few new hybrid methods have been presented, which use ideas
both from ILU (incomplete Gaussian elimination) and from multigrid. In [3] a multigraph
variant of the well-known HBMG (cf. [1]) is presented, based on the interpretation of the
HBMG as an incomplete factorization method. In this method a recursive definition (typi-
cal for multigrid methods) and the concept of levels are avoided. The method in [4] is based
on an incomplete Gaussian elimination process using levels, combined with smoothing in all
the unknowns on each level (i.e. an algebraic variant of classical multigrid). A multilevel
incomplete Gaussian elimination process, with an algorithmic structure which very similar
to the structure of the HBMG (i.e. using levels and with smoothing on the newly added
nodes only) is presented in [25]. In the present paper we reconsider the method in [25]. The
presentation of the method differs from the presentation used in [25] in a few important
aspects. In particular, the technique for Schur complement approximation, which is cru-
cial for the efficiency of the method, is put in a more general setting. In this more general
setting it is possible, at least for the two-level case, to prove interesting properties with
respect to stability and approximation quality. Such theoretical results are not given in
[25]. This theoretical background gives a further explanation of why this multilevel incom-
plete Gaussian elimination technique might result in an efficient and robust preconditioner.

The preconditoner that we present in this paper is based on the recursive application
of a two-level method, as in cyclic reduction or in a multigrid V-cycle method. For the
definition of a two level structure we use two important concepts: a reduced graph and a
maximal independent set. For a given matrix graph G4(V, E) (V: vertices; E: edges) the
reduced graph G4(V, E;), with E; C E, is obtained by deleting all ”weak” edges in the
given graph. Such a graph reduction is motivated by a multigrid heuristic (cf. [26], [33]):
if a simple (point) smoother is used then, for enhancing robustness, one should coarsen in
the direction of the ”strong” connections. A red-black (”fine-coarse” in multigrid) parti-
tioning of the vertex set V' is constructed by computing a maximal independent set M of
the reduced graph G4(V, Ey). Related coarsening techniques using maximal independent
sets are presented in [9], [10], [14], [28], [25]. We note that in [25] the set of coarse graph
vertices is given by M, whereas in the present paper the set of coarse graph vertices is
equal to V' '\ M. In experiments we observed that for the efficency of the preconditioner
this difference is of minor importance. However, for the choice that is used in this paper
the resulting preconditioner appears to be easier to analyze. The red-black partitioning



yields a corresponding block-representation of the given matrix A:

Ay Ay,
PAPT = , (1)
Arb Arr

with P a suitable permutation matrix. The construction of the red-black partitioning is
such that, under reasonable assumptions on A, the A, block is guaranteed to be strongly
diagonally dominant. Hence, the systems with matrix A,, which occur in the (approx-
imate) block UL-decomposition (cf. (4)) can be solved accurately with low costs, using
a basic iterative solver. A main topic in this paper is the construction of a reasonable
approximation gbb of the Schur complement Sy, := Ay, — AypA,lA,,. This approxima-
tion is obtained by replacing the block Gaussian elimination which results in the Schur
complement (cf. (4)) by a sequence of point Gaussian elimination steps. We will prove
some interesting stability and approximation properties of this Schur complement approx-
imation. We also give a rather detailed presentation of how the preconditioner can be
implemented. We will explain that if one starts with a particular implementation of the
classical cyclic reduction method for a tridiagonal matrix then an implementation of the ap-
proximate cyclic reduction preconditioner can be obtained with only little additional effort.

The rest of this paper is organized as follows. In Section 2 we recall the classical cyclic
reduction method for a tridiagonal matrix. In Section 3 we discuss how one can generalize
this simple cyclic reduction technique such that it is applicable in a much more general
setting. For this we present and analyze a general red-black partitioning method and a
Schur complement approximation technique. The presentation and analysis is done in a
linear algebra framework. In Section 4 we apply the general results of Section 3 to a few
typical examples from the field of discretized partial differential equations. In Section 5
we present the approximate cyclic reduction preconditioner and in Section 6 we discuss
some implementation issues related to this preconditioner. Finally, in Section 7 we present
results of a few numerical experiments.

2 Cyeclic reduction for a tridiagonal matrix

We recall the classical method of cyclic reduction. This method can be used, for example,
for solving a linear system with a tridiagonal matrix or with a special block tridiagonal
matrix (cf. [17], [20], [30], [32]). We explain the cyclic reduction principle by considering
an n X n linear system with a tridiagonal matrix:

by ;
1 ay by 0
Ax=Db, A= , a; #0 forall 7. (2)
0 . . by,
L Cn—1 Qp




Reordering the unknowns based on an obvious red-black (or ”odd-even”) structure results
in a permuted system with a matrix of the form

Ay Ay,
PAPT = : (3)

Arb Arr

in which [Ay, Ay,] represents the equations in the unknowns with a black label and
[A;s A,.] represents the equations in the unknowns with a red label. Note that, because
A is tridiagonal, the diagonal blocks A, A, are diagonal matrices. Gaussian elimination
in the red points results in a reduced system with dimension (approximately) %n In matrix
notation this corresponds to block UL-decomposition:

I AbrAr_rl Seww 0
PAP! = . Se = Apw — ApALA (4)
(Z) I Arb Arr

The reduced system has a matrix Sy, (Schur complement) which is tridiagonal, and thus
the same approach can be applied to Sy,. So the basic cyclic reduction idea is to reduce sig-
nificantly the dimension of the problem repeatedly until one has a relatively small problem
that can be solved easily. This small system is then solved and the previously eliminated
(red) unknowns are found by a simple back-substitution process. Note that cyclic reduc-
tion is equivalent to Gaussian elimination applied to a permuted system of equations and
that different implementations are possible (cf. [17], [32]).

When solving a system as in (2) with cyclic reduction, one usually adapts the righthand
side in the reduction phase. For example, in the first reduction step the original system is

transformed to
Sep 0 I —A,A
Px = Pb . (5)
Arb Arr @ I

In such a situation we do not need to store the coefficients of Ay.. In our approach (cf.
Section 5), however, we will need both the upper and the lower triangular part of the
UL-decomposition (as in ILU preconditioners). Thus we consider a cyclic reduction algo-
rithm in which the block UL-decomposition as in (4) is computed. This UL-decomposition
is then used to solve the system with a backward-forward elimination process. For the
generalization of this simple cyclic reduction method to linear systems with general (non
tridiagonal) sparse matrices we need a technique which yields reasonable sparse Schur
complement approximations. Such a technique will be presented in the next section.

3 Schur complement approximation

We consider large sparse matrices which typically arise from discretization of partial differ-
ential equations. In this section we present and analyze a technique for constructing Schur
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complement approximations of such matrices. This technique is used in the preconditioner
that is presented in Section 5.

Let A be a given regular n x n-matrix (cf. examples in Section 7 ). For the analysis
below we assume stability of A in the sense that

A is a weakly diagonally dominant M-matrix, (6)

i.e. A is an M-matrix and 3, ; |a;j| < ay for all . The matrix A induces an ordered
directed graph G 4(V, E), consisting of an ordered set of vertices V' = {1,2,...,n} and a
set E of ordered pairs of vertices called arcs . This set E consists of all pairs (¢, ) for
which a;; # 0. A directed graph will also be called a digraph.

We briefly recall a few notions from graph theory. If (7, j) is an element of E then i is said
to be adjacent to j and j is said to be adjacent from i. Two vertices ¢ # j are said to be
independent if (i, 7)¢E and (j,7)¢E. A subset M of V is called an independent set if every
two vertices in M are independent. M is called a mazimal independent set of vertices if
M is independent but no proper superset of M is independent. Note that a maximal inde-
pendent set is in general not unique. For a vertex ¢ € V', its neighbourhood N (i) is defined
by N(i) ={j €V |j#iand (i,j) € E}. Fori € V its degree , deg(i), is the number
of elements in the neighbourhood of i, that is, deg(i) = |N(i)|. A vertex ¢ is called an
isolated vertex if deg(i) = 0. Note that an isolated vertex can be adjacent from other ver-
ticesin V. By A(G4) we denote the maximum degree, i.e. A(G4) = max{ deg(v) |v € V}.

We will construct a red-black partitioning of the vertex set V:
V=V.uV, , V,nV,={0},
which then induces a block representation of A (cf. (3)):

Ay Ay,
PAPT = : (7)
Arb Arr
with Schur complement Sy, = (PAP”)/A,, = Ay, — Ay A A,,. Our goal is to construct
a partitioning and a Schur complement approximation Sy, of Sy, such that:
- systems with matrix A, can be solved with relatively low costs,
- Sbb is a stable matrix (e.g. M-matrix),

- Spp has a (sparsity) structure comparable to that of A,
- cond(S,,'Syy) is "small”.

In Section 3.1 we discuss the construction of the red-black vertex partitioning. In Sec-
tion 3.2 we treat the Schur complement approximation.

3.1 Red-black partitioning

As in algebraic multigrid methods (cf. [26], [33]), for the graph coarsening we distinguish
"strong” and ”"weak” arcs in the digraph. The underlying multigrid heuristic is that if
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one uses simple (point) smoothers then, to enhance robustness, one should coarsen in the
direction of the ”strong” connections.

Every loop in FE, i.e. an arc of the form (i), is labeled strong. For every nonisolated
vertex ¢ € V an arc (i,j) € E with j # ¢ is labeled strong if for the corresponding matrix
entry a;; we have:

o = 3 max Jays| (8)
with 0 < 3 < 1 a given parameter. An arc is labeled weak if it is not strong. Note that
for every nonisolated vertex ¢ there is at least one strong arc (7,j) with j # i. Thus we
obtain a partitioning £ = E; U E,, of the arcs into strong (E;) and weak (E,,) arcs. The
directed graph consisting of the vertex set V and the set of strong arcs F; is called the
reduced digraph and is denoted by G4(V, E;). Let M be a maximal independent set of
this reduced digraph G4 (V, Ey). In Section 6 we discuss a simple algorithm for computing
M with low computational costs. A vertex i € V is assigned a red (black) label if i € M
(i¢ M). The resulting red-black partitioning induces a block representation of A as in (7).
For the analysis of this (matrix) partitioning we introduce some further notation:

D,, = diag(A,,;) , I,: identity matrix of dimension |M], (9)

B:()iwa:{@}, B= sup 935

———————— otherwise. (10)
(i,§)€ Ew AX5e N (i) |a'ij|

Note that, by definition, 0 < B < B < 1. The construction of the red-black partitioning
is such that the submatrix A,, is strongly diagonally dominant. This is quantified in the
following theorem:

Theorem 3.1 We consider the red-black partitioning as described above and assume that

(6) holds. Then the following holds:

(A(Ga) — 1)
(A(G4)—1)3+1"

Proof . Let V, = {v € V | label(v) =red } , V;, = V \ V. We renumber the vertices
in V such that the red vertices are numbered first. Hence V, can be represented as V, =
{1,2,...,|M|}. Let 1 be the |M|-vector with all entries equal to 1. Then, with y :=
(I, — D,,'A,,)1 we have

||Ir - Dr_rlArrHoo < (11)

1L — D;rlArr||oo = [|¥foo -

Consider an arbitrary entry y; of y (k € V). If k corresponds to an isolated red vertex
then y, = 0. We assume that k£ corresponds to a nonisolated red vertex. Then, with
We:=N(k)NV, :

|
|yk| = Z—

leWy, Akk



ZlEWk |akl| (USG (6))
ien (k) lax]

Siew, lar] + Xievwynw) lar|

IN

We use the notation my := max{ |ay| | € N(k) }. Note that for k € V, | | € W, the arc
(k,l) is weak. Because k corresponds to a nonisolated vertex, there is at least one strong
arc (k,0), [ # k, and thus we have |W| < A(G.) — 1. Hence, using (10) we obtain

> lanl < (A(Ga) = 1)Bmy .
IEW,
Using this in (12) yields
(A(Ga) = 1)my
(A(G4) — 1)Bmy + my
and proves the estimate (11). O

ye| <

Remark 3.2 Note that if we take # = 0 then the reduced digraph is equal to the original
digraph and A,, is diagonal. Hence the Schur complement Sy, = Ay, — Ay A LA, can be
computed exactly. This may seem a favourable situation. However, it is well-known that
in general such an exact elimination step yields a Schur complement with a significantly
less favourable sparsity structure. Already after a few (one or two) recursive steps we
obtain unacceptable (w.r.t. efficiency) fill-in, cf. [28]. In our method (cf. Section T7)
we take 3 € (0.5, 1). Then, in general the reduced digraph contains significantly less
arcs than the original one. Due to this the maximal independent set, i.e. the set of red
vertices, is much larger than for the case # = 0. Moreover, the graph coarsening is done
mainly in the ”direction” of strong connections. This makes it possible (cf. Section 3.2)
to construct fairly accurate Schur complement approximations with a sparsity structure
which is comparable to that of A.

3.2 Schur complement approximation

We consider A such that (6) holds and apply the red-black partitioning of the previous
section, resulting in
Ay, Ay
PAP' = =AY (13)
Arb Arr

Define D, of dimension |M| as in (9) and let 1 be the [M|-vector with all entries equal to
1. Let D,, be the |M| x |M| diagonal matrix which satisfies

D, 1=A,1. (14)

The result of Theorem 3.1 implies that DTT is nonsingular. We use the notation I, and I,
for the | M |-dimensional and (n— |M])-dimensional identity matrix, respectively. The exact

7



Schur complement Sy, = Ay, — Ap-A, LA,y is the result of a block-Gaussian elimination:

I, —Ay Ar_rl Stp 0
A = : (15)
@ IT Arb Arr

Note that for any (n — |M]) x |M] real matrix By, a left transformation of the form

I, —By Ay — BirAyy Ay — By A,y .
A0 — = A
D1, A A,

does not affect the Schur complement, i.e. Sy, = A® /A, = A/Arr. For the construction
of a sparse approximation of the decomposition in (15) we consider a sequence of such left
transformations with blocks By, of the form By, = A, E,,., with E,.. diagonal. An obvious
choice is E,, = D!, For consistency reasons (discussed below) we also use E,, = ]ND;rl.
Left transformations using these choices for E,, can be considered as point-Gaussian type
of elimination steps. More precisely, for k£ € IN we define sequences

k k A (k X (k
o [A AP TAD Ay
Arb Arr Arb Arr

as follows, with A(® as in (13) :

(1, —A¥ VD, ]
AR = A=Y for E>1, (16)
0 I
(1, —AY D]
AW = AFD for k>1. (17)
0 I

For all % the Schur complements of A® and of A® are equal to Sp: A(k)/A,,,, =
A® /A, =Sy, The definitions in (16), (17) yield:

A((;’;) = Abr(IT - D;rlArr)k ) (18)

AP = A, (I, —DI'A,)FNI, - DA, (19)

The result of Theorem 3.1 implies that the blocks A,(Jf) and A,(Jf) are "small” for & sufficiently

large and that, for k£ large enough, the diagonal blocks A,E’Z) and A,()]Z) might be reasonable
approximations of Sy,. In the remainder of this section we analyze these Schur complement
. (k) A (K) . . < (2) .
approximations A,;” and A;,’. In our preconditioner we will use A;,” as an approximation
for the Schur complement Sy, (cf. Remark 3.5 and Section 5). For the analysis we consider

arbitrary k£ > 1.



Theorem 3.3 We consider the red-black partitioning as described in Section 3.1 and as-
sume (6). For A,(J]Z) defined in (16) the following holds:

A,(,]Z)is a weakly diagonally dominant M-matriz for all k, (20)
Sy = A,()’;) — RWis a regular splitting for all k, (21)
: (k) _

Proof. From (6) it follows that Sy, is a weakly diagonally dominant M-matrix and that
A, <0, Ay < 0 (componentwise inequalities). We introduce A, := I, — D !A,, and
note that A, > 0 and, due to Theorem 3.1, p(A,,) < 1. Hence we have the representation

oo
Sep = App — Ay, Z Al DA, .
=0
Using induction and the result in (18) one easily obtains the identity

k-1

Al = Ay — A, S ALD A, (23)
j=0
Hence: -
Sy =AW —R® | R®.=A, S A/ DA, . (24)

i=k

Note that R*) > 0 and thus A,()]Z) > Spp. Since in Ay, all off-diagonal entries are nonposi-

tive and Ay, V-0 AJ.D.PA,, > 0 it follows from (23) that all off-diagonal entries of A,()]Z)
are nonpositive. We conclude that A,(,’Z) is an M-matrix and that the splitting in (24) is
regular. From A,(,’Z) > Syp and Syy(1,1,...,1)" > 0 it follows that A,()]Z) is weakly diagonally
dominant. Finally, from (24) we obtain that limy_, R® = 0 and thus limy_, o, A,(,]Z) = Spp.
]

We conclude that A,()]Z) is a stable approximation of S,, with p(I, — (A,E’;))*ls,,,,) < 1.
However, in typical examples from the pde field one observes that the convergence in (22)
is very slow on a certain subspace. In our applications this is a subspace corresponding to
”smooth” gridfunctions. In other words, for low values of k, the approximation of Sy,v by
A,()’,f)v is very poor if v corresponds to such a smooth gridfunction. This is similar to the
phenomenom which causes the slow convergence of basic iterative methods (cf. [19]). In
practice we should not use large values of k, since for increasing k£ the approximation Ablz
suffers from serious fill-in.

To improve the approximation quality for low values of £ we use a point-Gaussian elim-
ination with matrix D,, which satisfies the consistency condition (14). This motivates
the process in (17) which results in Schur complement approximations A,()]Z)
these approximations are given in Theorem 3.4.

. Properties of
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Theorem 3.4 We consider the red-black partitioning as described in Section 3.1 and as-
sume (6). For A,(J]Z) defined in (17) the following holds:

A,(J]Z) has only nonpositive off-diagonal entries for all k, (25)
A,()]Z) is weakly diagonally dominant for all k, (26)
if Aé’;) is nonsingular then it is an M-matriz, (27)
A,()]Z) is an M-matriz for k sufficiently large, (28)
s A R)
klggo Ay’ = Spp - (29)
if w satisfies Apyw = —A,.1, then A(()’Z)W = Spyw forall k , (30)
~ _ _ 1A ~ 4| I
Ib - AI(J]Z)S()()I = Abr(Ir - DrrlArr)k lDrrI[ Arb Drr ](A(O)) ! [ Q;) ] (31)
Proof. By definition we have
Ay = Ay Y —ALTUDA,, (32)

Note that A% is an M-matrix (Theorem 3.3), A" < 0 (cf. (18)), D! > 0 and
A,, < 0. Hence the result in (25) holds.
We introduce the n-vector 1, = (1,1,...,1)" and its red-black partitioning 1, = [ ib ]
From (16) it follows that

A(()];)].b + Al(;]ﬁ)]-r = A(()];_l)].b + Al()f,_l)].r - Agﬁ_l)D_l(Arblb + Arrlr) ,

rr

which yields A,()’;)lgJ + A,()’;)lr > 0 for all k. The consistency condition (14) results in

A1, + D, 1, = A1, + Al > 0 and thus D 'A,1, > —1,. Using this in (32) we
obtain the result in (26):

AP1, = Al Y1, - AFYDIIA L, > ANV, + A1, >0

For the proof of (27) we use one of the many characterizations of M-matrices (cf. Theorem
5.1 in [15]): if B is a real square matrix with only nonpositive off-diagonal entries, then

B is an M-matrix if and only if every real eigenvalue of B is positive. Using (26) and

)

Gershgorin’s theorem we conclude that every real eigenvalue of A,()]Z is nonnegative. If

A,E’Z) is nonsingular then 0 cannot be an eigenvalue. Hence all real eigenvalues are positive
and (27) holds.

From (31) and Theorem 3.1 we obtain that p(I, — A,(,’Z)S;bl) < 1 for k sufficiently large and

thus A\ is nonsingular for k sufficiently large. Using (27) we obtain the result in (28).
From (32), (24) and (18) we obtain:

A —Sy = ALY —Su—AUD A,
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= A, Y (I, —D;'A,)D;'A, — A VDA,
j=k—1
r_rlArr)k_lAr_rlArb - A((;’;_l)f)r_rlArb

— Abr(Ir
Ay AN —DMAL)AC A, (33)

-D
= I.-D

br

Combination of the results in (33) and in Theorem 3.1 yields the result in (29).
For w as in (30) we have

(I, - D,'A,)A A ,w=—(I,-D_'A,,)1 =0
and thus, using (33), we obtain the result in (30).
From (33) we obtain
I, - AlYS, = —A, (I, - D.'A,,)" "D (D,, — A,,)A'A,.S;, . (34)
From the identity
S ! 0 I, —AyAl
(A(O))—l _ bb b b
—ALARS, AL 0 L
we obtain
R e e
Hence

Using this in (34) we obtain the result (31). O

UZ) has favourable

The results in (25)-(28) show that the Schur complement approximation A,
stability properties, comparable to those of A,()]Z) and of A.

Remark 3.5 For k = 2 we can represent A,(J]Z) as

. I
A =1, —A,D,} |A® l DA b ] , (35)
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which can be compared to the representation
I I
- _ -1 ) | o | — (0) b
Sbb—[Ib AbrArr]A [*]—[Ib *]A [—AwlArb]7
with * arbitrary. Hence, in multigrid terminology, the coarse graph approximation A,(,,%)

of Sy, is obtained using a Galerkin approach with matrix-dependent prongation py =
[ _]37:«[_:71Arb ] and restriction ra = [ I, —A, D} ] Note that paw = l _A;Arb ] W
for w as in (30). The resulting coarse graph approximation is stable (in the sense of The-
orem 3.4) and satisfies the consistency condition as in (30). If we replace D,, by D,, in
(35) we obtain a representation for A,(),z)). From numerical experiments with discretized
partial differential equations it follows that the use of different diagonal approximations of

A,, (f),,,, and D,,) in the matrix-dependent prolongation and restriction is of main impor-

tance. If we use D, in both pa and ra (i.e. A,(J,QJ)) then we obtain a stable approximation,

however, the approximation is very poor on a subspace of smooth grid functions (lack of
consistency). If we use ]~Drr in both pa and rp then for certain problems (e.g. convection-
diffusion problems with strong convection) the approximation is poor due to instabilities.
We note that the use of different diagonal approximations D,, # D,, (hence pa # ra),
which guarantees a consistency and stability property, has a drawback with respect to
symmetry. If the original matrix is symmetric then the Schur complement approximations
A,E’Z) will be nonsymmetric.
Certain multigrid approaches are based on Schur complement approximation using suitable
basis transformations (cf. [1], [2]). For k = 2 the coarse graph matrix A,(),z)) is, in a natural
way, related to the hierarchical basis transformation
Ib _AbTDr_rl Ib @ A((;i) _Abr (Ir - Dr_rlArr)
A0 _
(Z) Ir _Dr_rlArb IT (Ir - Aer;rl)Arb Arr

(36)
Note that this involves matrix-dependent basis transformations (as in [2]).
The multigrid convergence analysis of Hackbusch (cf. [18]) is based on the approximation
property and the smoothing property. The approximation property is of main importance
for a proper reduction by the multigrid method of smooth error components. In [12], [18]
it is shown that this approximation property is closely related to a regularity property,
which holds for a certain class of elliptic pde’s. Below, in Theorem 3.6, we introduce a sort
of algebraic regularity term.
For the formulation of Theorem 3.6 we first introduce norm notations. The number of red
vertices is given by |M| and the number of black vertices is given by m := n — |M|. On
IR", R™ and IR™ we assume norms denoted by || - |, || - || and || - ||s, respectively. In the
general setting of this section we do not specify these norms. We assume that these norms
are compatible in the sense that

W], = || l 3’ ] | forall we RMI s Wl = || l ‘g ] | forall we R™. (37)
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|M]

For ease of notation we drop the r, bin || - ||, || - ||s, i-e. all three norms on IR", IR™' and

IR™ are denoted by || - ||. We also use associated matrix norms denoted by || - ||.

Theorem 3.6 We consider the red-black partitioning as described in Section 3.1 and as-
sume (6) . For A,()]Z) defined in (17) the following holds:

L — AYSyH| < [|Au(I — DA DY [ Ay Dy J(AO)H . (38)

Proof. From (31) we obtain

AL Sy - -1y~ - L1
Ib N A((”;)Sbbl - Abr (IT - DrrlAW)k IDM‘I[ Arb DW‘ ](A(O)) 1 [ ®b ] .
The assumption (37) yields || [ Ié) ] || = 1. Combination of these results yields (38). O

Remark 3.7 We briefly comment on a relationship to the discrete regularity theory in
multigrid convergence analyses. In general, the first term in the righthand side of (38)
can be controlled using linear algebra arguments only (cf. diagonal dominance result in
Theorem 3.1). This is similar to the analysis of the smoothing property in multigrid
convergence theory, which is also based on linear algebra arguments only (cf. [18]). For an
interpretation of the term

IlAw Dy J(AD) Y| (39)

in the righthand side of (38) we define the seminorm |w|:= ||| A,y D,y Jwl|| for w € IR".
Bounds for |[(A@)7!|, i.e. (AO)=1: (R",[|-||) — (IR",]|-]), correspond to the classical
notion of stability. A bound for (39) is equivalent to a bound for

(A (R |- = (B’ ]- ] (40)

In our applications the matrix [ A, D,, | corresponds to a difference operator which
is similar to the underlying differential operator and the norm | - | measures differences
(smoothness). In multigrid convergence theory one can find results (cf. [18], Chapter 6) in
which, for discretized elliptic boundary value problems, bounds for (A(®)~" as an operator
between spaces with different smoothness properties (as in (40) ) are derived. Such results
can be considered as discrete counterparts of results in regularity theory for continuous
elliptic boundary value problems, in which for an operator L : H}(Q) — H™Y(Q)
boundedness of L= : H='T — H'YS(Q)NH(Q) with s > 0 is analyzed. If, for example,
L corresponds to the Laplacian on the unit square with zero Dirichlet boundary conditions,
then the boundedness of L™ : L*(Q) — H*(Q) N H(Q) is a classical regularity result.
A corresponding discrete regularity result is presented in [18] Section 6.3.2.

Related to the robustness of our preconditioning technique (cf. experiments in Section 7) it
is important to note that the seminorm |- | is strongly problem dependent. In Section 4 we
will indicate that due to this, for certain interesting problems which have poor regularity
in the classical multigrid sense, one can still expect a small bound for (40). We emphasize
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that, in general, one can not expect to derive reasonable bounds for (40) using linear algebra
arguments only. As in multigrid analyses, in this derivation we need that the matrix A is
the discrete analogon of a differential operator.

Remark 3.8 In our implementation we use A,(,IQ,) as a Schur complement approximation.
As explained above, this approximation has favourable stability and consistency properties.
By construction this approximation is sparse. However, due to the occurence of some fill-
in, A,()b) is in general less sparse than A. Recursive application of the same technique may
result in relatively dense Schur complement approximations on very coarse graphs. Our
applications (pde’s) are such that fill-in between two vertices which have a long mutual
distance in the graph is very small compared to the corresponding diagonal entry. Hence
we introduce a parameter MSIZE € IN. Typically, MSIZE € (2A(A), 3A(A)). If a certain

vertex in the digraph of A,(j) has degree d > MSIZE then we modify the corresponding

row of A,()i) using a common lumping technique: we add the d— MSIZE in absolute value
smallest off-diagonal entries to the diagonal entry and then replace these off-diagonal entries
by zeros. Using this modification we obtain Schur complement approximations (on all
coarser graphs) for which the corresponding digraph has a maximum degree that is bounded
by MSIZE.

Assume that (6) holds. Then for A,(j) we have the (stability) properties (25), (26). The
lumping technique that we use preserves these properties. In the generic case the Schur
complement approximation after lumping is (still) nonsingular and then (cf. proof of (27))
this Schur complement approximation is a sparse weakly diagonally dominant M-matrix.
Hence the method and the analysis of this section can be applied recursively.

4 Examples

In this section we analyze a few model problems from the pde field for which we can
quantify the bound in Theorem 3.6 (cf. Remark 3.7) We consider a diffusion equation, an
anisotropic diffusion equation and a convection-diffusion equation. In all three examples
below we treat a standard finite difference discretization of a constant coefficient problem
on a square domain = (0,1)%. We use a square mesh with mesh size denoted by h and
assume periodic boundary conditions.

We analyze the bound (38) in the Euclidean norm || - ||2, i.e. we consider the two terms
||Abr(1r - DrirlArr)kilﬁ;rl||2 (41)
and .
Il A% Dy J(AP) ;. (42)

The analysis of the first term is based on simple linear algebra arguments (e.g. Gershgorin
theorem). For this analysis the restriction to constant coefficient problems with periodic
boundary conditions is not relevant. A similar analysis can be applied for other problems
(e.g. varying coefficients). For a simple treatment of the second term (42) the standard
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Fourier analysis is applied. For this the restriction to constant coefficient problems with
periodic boundary conditions is crucial.

We note that for the first example (Poisson equation) the case with homogeneous Dirichlet
boundary conditions can be analyzed along the same lines. The results for this Dirichlet
case are essentially the same as for the case with periodic boundary conditions.

For the parameter 3 used in the red-black partitioning (cf. (8)) we take § = 0.7.

Ezample 1 (Poisson equation). We consider the standard five-point discretization of the
Poisson equation with stencil

Al==|-1 4 -1]. (43)

In this situation all edges in the digraph are labeled strong and the reduced graph is equal
to the original graph. One possible maximal independent set is obtained from standard
red-black coloring of the grid. Then A,, is diagonal and D,, = D,, = A,,. The Schur
complement approximation is exact (i.e. A,(Jb) = A,(Jb) = Sy, for all k) and results in a Schur
complement with stencil

-1 —
6 _
-1 _%

1
Sl =51z |~

— ol

(44)

Wi = e

We now define A := S;, and apply one further coarsening step to this Schur complement
matrix. The edges in the digraph corresponding to the matrix entries —1 are labeled weak.
Hence the reduced digraph has a structure which corresponds to the five-point stencil
*
x % « | and, as in the case of the five-point stencil in (43), one possible maximal
*
independent set (of the reduced digraph) is obtained by standard red-black coloring of the
grid. This then results in stencils

T 1 -1 | -1
A.,l=— Al =— | —1 -1, [Ap]=—1| -1 -1
3 3 - -
__ _6 _
Hence D,, = 551, D,, = 2hZI

We first consider the term (41). Using [|Ay||3 < [|Ap[l1[|Abr oo < 7or) 1D, ||z = % and a
Gershgorin theorem, we obtain

~ g
1A (L = DA DLl < IL — DAL [l < (3"
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With respect to the term (42) we note that [ A, D, (At =[¢ I, ]AA®) 1,
where A and A have stencils
A= — | —1 T A0 = L
 2h2 q ’  2h2 L1 s

A straightforward Fourier analysis yields ||| A,, D J[(A@)71], < 1.

Theorem 3.6 now yields

(k) q— I
I, — AR'Sy'le < ()"

We conclude that, already for k = 2, A,()’,f) is a good preconditioner for Sy, uniformly in h.
One easily verifies that in this example a similar bound, which is independent of h, does
not hold for A,(),z)).

Ezample 2 (Anisotropic diffusion equation). We consider the five-point discretization of
an anisotropic diffusion equation with stencil

1 < 1
[A]:ﬁ —1 2+2 -1 |, with 0<e<g. (45)
—&

The edges in the digraph corresponding to the matrix entries —e are labeled weak. Hence
the reduced digraph has a structure which corresponds to the three-point stencil [ * * x* |.
One possible maximal independent set (of the reduced digraph) is obtained by standard
semi-coarsening (i.e. coarsening by a factor 2 in the z-direction only) of the grid. This
then results in stencils

1 —c 1 1
[A,,]:ﬁ 242 |, [Arb]:ﬁ[—l —1], [Abr]:ﬁ[—l : —1].
—€

Hence D,, = 2;;2251,«, ]NDW = %I,«. Along the same lines as in Example 1 we obtain for the
term (41):

|Au (L, = DA ) D < L - D A5 < (=)
€

Related to the term (42) we note that
(A Dy JA) =0 L JAAO),

where A and A© have stencils

1 ’ 1 -
A= | -1 (2) -1 1, [A(U)]:ﬁ -1 2+2 -1
—&
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Note that the algebraic regularity is measured using the difference operator A which con-
tains differences only in the direction of the strong edges (cf. Remark 3.7). In the classical
multigrid convergence analysis there is a severe deterioration of regularity for € | 0 (cf.
[31]). Here , however, due to the problem dependent measure of regularity, a Fourier
analysis yields .

Il As Dy J(AO) T < 1.

From Theorem 3.6 we obtain

L, — ALSpt e < (——)F.

e+1

We conclude that, already for k£ = 2, A,()]Z) is a good preconditioner for Sy, uniformly in e
and h.

Remark 4.1 Note that A(A®)~!is bounded uniformly in the parameters h, ¢ (?algebraic
regularity”), but that (A®)A~! is not uniformly bounded. If we define Sy, to be the
Schur complement on A, one easily verifies that also Sbbgb’bl is not uniformly bounded.
Hence, this example shows that simply taking the Schur complement of the reduced matrix
(obtained by lumping all small off-diagonal entries to the diagonal) as a Schur complement

approximation, is not a satisfactory approach.

Ezample 3 (Convection-diffusion equation). We consider the five-point discretization of a
convection-diffusion equation with stencil

—€
1
[A]:% —1—¢ 1+4e —¢ |, with 0<e<2. (46)
—€

Note that if £ > g then all edges are labeled strong and graph coarsening is done as for the
pure diffusion stencil (43) of Example 1. For the case 0 < ¢ < 2, i.e. strong convection,
the edges in the digraph corresponding to the matrix entries —¢ are labeled weak. Hence
the reduced digraph has a structure which corresponds to the two-point stencil [ « - |.
One possible maximal independent set (of the reduced digraph) is obtained by standard
semi-coarsening (i.e. coarsening by a factor 2 in the z-direction only) of the grid. This
then results in stencils

1 —&
[Arr] = % 1+ 4e ) [Arb] =

—&

[—1—5 . —5], [Ay] = [—1—6 - —€

S
SRS

Hence D,, = 41, D,, = 221, As in the previous two examples, we obtain:

N 2e
Ay, (I, —DPA VD, < |II, = DA, |5 < k=1
|| b ( rr ) rr ||2— || rr ||2 = (48+1)
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Related to the term (42) we note that
(A D JA) =0 L JAAO)T,

where A and A© have stencils

- 1 0 1 —€
[A]:E —1—¢ 142 —¢ |, [A(O)]:E —1—¢ 144 —¢
0 —£

As in Example 2, the regularity is measured using a difference operator which contains
differences only in the direction of the strong edges. A simple Fourier eigenvalue analysis
yields

IAAO) <1,

and hence [[[ A, D, J(A@)7!, < 1. Thus we obtain

(k) q— 26 g
I — ARS3 2 < (=)

We conclude that, already for k£ = 2, A,()]Z) is a good preconditioner for Sy, uniformly in e
and h.

5 Approximate cyclic reduction preconditioner

In this section we present the approximate cyclic reduction preconditioner. In the presenta-
tion we distinguish two phases: a decomposition phase (construction of the preconditioner)
and a solution phase (application of the preconditioner). In the decomposition phase we
only need the matrix A € IR"*". In the solution phase we need the right hand side b and
the decomposition resulting from the decomposition phase.

Decomposition phase. We assume a sparse matrix A € IR"™™. The corresponding
ordered digraph has a vertex set that is represented as {1,2,...,n}. Dimbound, with
1 < Dimbound < n is a given integer (used in D5 below). Set i := 1, A; := A, my := n.

D1. Red-black partitioning of the vertex set. Given the digraph of A; we make a red-
black partitioning of the vertices. We use the method of Section 3.1. In this method we
use a parameter 3, with 0 < 4 < 1. This results in n; vertices with label red and m;
vertices with label black. Note: m; + n; = m;_1.

D2. Determine permutation. We determine a symmetric permutation p; : {1,2,...,m;_1}

— {1,2,...,m; 1} such that applying this permutation to the set of vertices results in an
ordering in which all vertices with label red have index j € (m;, m; ] and all vertices with
label black have index j € [1,m;]. Note that since we only have to permute between the sets
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{j | 7 > m; and label(j) = black} and {j | j < m; and label(j) = red}, such a permutation
can be fully characterized by a permutation p; : {m; +1,m; +2,....,m; 1} — {1,2,...,m;}.

D3. Determine permuted matriz. The symmetric matrix corresponding to the permu-
tation p; of D2 is denoted by P;. We determine P;A;P;. This matrix has a 2 x 2-block
representation:

Rl
PzAsz - ' '
A ar]

with A" € R, A e R™XMi AT € R Al € R

(47)

D4. Compute Schur complement approximation. Compute an approximation A;.; €
IR™*™i of the Schur complement P;A;P;/Al". We use the approximation resulting after
two point-Gaussian type of elimination steps as explained in Remark 3.8. We use a pa-
rameter MSIZE.

D5. Store. Save my,p;, A", AT A If m; < Dimbound then save A;,; (stop the re-
duction process) else i := i + 1 and goto D1.

If this decomposition process stops with ¢ = 7,5, we obtain integers my; > my > ... > m;_,_,
permutation vectors p; (1 < i < iyax), sparse matrices A7 AT A (1 < i < i) and
the approximate Schur complement on the highest level A; . 1. We use the following ter-
minology: p; is called the permutation operator on level 7, Al" is called the solve operator
on level 7, AT is called the collect operator on level i, A is called the distribute operator
on level .

The red vertices on all levels, together with the black vertices on the final level induce a
direct sum decomposition IR" = IR @ IR"* @ ...® IR"mx @ IR™max, The vertices on level
© with label red are assigned the level number 7, and the vertices on level i,,,, with label
black are assigned level number iy, + 1. The vertices (unknowns) with level number j
are called the level j vertices (unknowns). Note that every vertex has a unique level number.

Solution phase. For a clear description of the solution phase we introduce permute,
collect, distribute and solve operations. These operations use the corresponding operators
which are available from the decomposition phase. We give a description in a pseudo-
programming language.

procedure permuteoperation(i: integer; var x € IR™"*) (x uses p;)
for j ;== m; +1 to m;_; do
if j # pi(j) then interchange z; and xp,(;;
procedure collectoperation(i: integer; var x € IR™; g € IR™) (* uses Al’x)

compute x := x — A’g;
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procedure distributeoperation(i: integer; var x € IR™; g € IR™) (* uses Al x)
compute x := x — Al'g;

procedure solveoperation(i: integer; var x € IR") (* uses Al"x)
solve Al"w = x approximately. We use v Gauss-Seidel iterations with starting vector
(diag(A"))1x. The result is written in x.

procedure highestlevelsolve(var x € IR™max) (% uses A; . 11%)
solve A; = 11W =X; X : =W,

Using these procedures it is easy to formulate the backward and forward substitution
process, i.e. the solution phase, of the approximate cyclic reduction preconditioner. On
each level i (1 < i < ipax + 1) we define ULsolve as follows:

procedure ULsolve(i: integer; var f € IR™-1);
var f.q € IR";
begin
if i = imax + 1 then highestlevelsolve(f) else
begin
permuteoperation(, f);
partition f = < ?’ ) with f. € R"™, f, € R™;
T
make a copy feq = f;
solveoperation(i, freq);
distributeoperation(i,f,, fieq);
ULsolve(i + 1, £);
collectoperation(i,f,,f;);
solveoperation(i, f,.);
permuteoperation(, f);
end
end;

An approximate solution of Ax = b results from the call ULsolve(1,b). The structure of
ULsolve is similar to the structure of the multigrid V-cycle algorithm as presented in [18].
The distribute and collect operations correspond to the multigrid restriction and prolon-
gation respectively. The solve operation corresponds to the smoother in multigrid. Note,
however, that in ULsolve we do not use any grid information and that every unknown is
involved in the solve operations of precisely one level (as in hierarchical basis multigrid, cf.
1).

If in the decomposition phase all Schur complement approximations (which are computed
in step D4) are stored, then an algebraic version of the classical multigrid method can be
implemented. This version then uses smoothing in all fine grid points and the convergence
rate will be improved. In this approach we can also use a W-cycle instead of a V-cycle.
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Note that for this version, in view of efficiency, the "rate of coarsening” has to be controlled.
In our opinion the preconditioner as presented in this section is much easier to implement
than the algebraic version of classical multigrid, due to the fact that in the former method
every unknown is on precisely one level.

6 Implementation issues

In Section 5 we presented the approximate cyclic reduction preconditioner. In Section 7 we
use this preconditioner in a standard Krylov subspace method. In this section we briefly
discuss a few implementation aspects of the preconditioner.

For the implementation of the preconditioner we first consider the standard cyclic re-
duction method for a tridiagonal matrix (cf. Section 2). This method can be implemented
along the lines as explained in Section 5. Hence we first make an implementation of the
decomposition phase consisting of the procedures D1-D5. However, for the tridiagonal
case, in D1 we use the natural odd-even numbering and in D4 we compute the Schur com-
plement ezactly (apart from rounding errors), because A, is diagonal. We implement the
procedures D2, D3, D5 as explained in Section 5. For the solution phase we implement
the procedure ULsolve as explained in Section 5. In the subroutine solveoperation we
can take v = 0 because A" is diagonal and thus the solution of A]"w = x is given by
w = (diag(AZ"))"1x. This then yields an implementation of the classical cyclic reduction
method for a tridiagonal matrix. The implementation of this direct solver uses an arbitrary
sparse matrix format (e.g. Compressed Row Storage or Ellpack-Itpack format) and can
be tested by applying it to tridiagonal matrices. Note that this implementation of cyclic
reduction, for a tridiagonal matrix, has a clear modular structure.

The cyclic reduction preconditioner for a general sparse matriz is obtained by modifying
a few subroutines in this implementation: in D1 we use a more general red-black parti-
tioning technique (as in Section 3.1), in D4 we use a suitable sparse Schur complement
approximation approach and in the subroutine solveoperation we use v > 0 Gauss-
Seidel iterations. We emphasize that all other components in the implementation of the
classical cyclic reduction method and also the sparse matrix data structure are not altered.
In this sense, the implementation of the classical cyclic reduction solver (for a tridiagonal
matrix) yields an implementation of the approximate cyclic reduction preconditioner (for
a general sparse matrix) with only little additional effort.

The implementation of a Gauss-Seidel method (or any other basic iterative method) in the
subroutine solveoperation is straightforward. Below we briefly comment on the imple-
mentation of the modifications in step D1 and step D4 of the decomposition phase.

In step D1 we first have to label the edges in the digraph with ”strong” or "weak”. Using
the criterion (8) this is straightforward. Then we consider the reduced digraph G 4(V, Ej)
as explained in Section 3.1 and we want to compute a maximal independent set M of
this reduced digraph. Different techniques for constructing a maximal independent set
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are known. Several possible algorithms are given in [14], [28]. We sketch our method for
constructing a maximal independent set M. The algorithm consists of a graph traversal,
i.e. visiting all the vertices of G 4(V, Ey) in a systematic way, and a labeling method. One
well-known algorithm for graph traversal is the breadth first search (BFS), cf. [21]. The
BFS algorithm starts with a vertex v € V and marks it as visited. Unvisited vertices
adjacent from v are visited next. Then unvisited vertices adjacent from these vertices are
visited and so on. This approach is applied to every connected component of G 4(V, Ey).
A detailed description can be found in [21].

For the labeling method we initialize with label(v) := white for all v € V. Let vy be the
currently visited vertex in the BFS algorithm. If vy is an isolated vertex, i.e. there are
no vertices adjacent from vy and label(vy) =white we define label(vg) :=red. If vy is not
isolated then we apply:

if label(vp) = white then
if label(w) € {white, black} for all w adjacent from vy then
label(vg) := red;
label(w) := black for all w adjacent from vy
endif else
label(vg) := black
endif.

This results in a red-black partitioning of the vertex set V' and the set of red vertices
is a maximal independent set of the reduced digraph G 4(V, E).

In the modification of step D4 we approximate the Schur complement using the point
Gaussian type of elimination technique as explained in Section 3.2. In the preconditioner
considered here we use A,()i) as a sparse approximation of Sy,. In Remark 3.5 it is explained
that we can represent this Schur complement approximation using a Galerkin approach
with matrix dependent prolongation and restriction. One could use an implementation
based on this representation. Here we discuss another implementation based on a point
Gaussian elimination technique as formulated, in linear algebra terms, in (16), (17). In
this implementation we distinguish two steps. In the first step we compute A() defined in
(16) and in the second step we compute A,()i) using (17).

We use the notation V;, = { v € V | label(v) = red }, V}, = { v € V' | label(v) = black }
and N(v) := N(v) U {v}, v € V. Given the matrix A = (ay,) , u € V, v € N(u) we
describe the implementation of the basic transformation

I —Aerr_rl
A = A, (48)
0 I,

used in (16). As indicated in (48), instead of using an iteration index (k in (16)) we over-
write the matrix with new results. Hence Ay, and Ay, are overwritten by Ay, — Ay, DA,
and Ay, — Ay, D, LA, respectively. For storage of intermediate results we need a sparse
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matrix Ty = (tyy) , u € Vi, v € V,. In Ty, we store Ay, D, ;'A,,.. A transformation as in
(48), can be implemented as follows:

VueV, Yoe (Nu)NV,) : ty =0forall we (N(v)NV,) (initialization).
for all u € V}, do
for all v € (N(u)N'V;) do
for all w € N(v) do
if w € Vj, then

Ay 1= Qygy — P22 (compute Ay, — Ay, DZIAL,) (%)
else
tuw 1= ey — O (compute Ay D 'A,,)
endif
endfor
endfor
endfor

Vu € V, Yv € (N(u)NV,) ¢ uw i= Guw—tuw forallw € (N(v)NV,)  (overwrite Ay,)

This describes the first step for the computation of the approximate Schur complement.
Note that increasing k in (16) corresponds to repeating this procedure, using the updated
matrix A as the input for the next step. In our preconditioner, however, in view of the
increase of fill-in we apply this procedure only once (k =1 in (16)). In the second step of
the computation of the approximate Schur complement we implement the point Gaussian
elimination step (17) with k = 2, resulting in Al = Al — A{VD_1A,,. Since in the
first step we have overwritten the given matrix A by the matrix A®) we use the notation
AIE? = Ay — Abrf);rlArb. Let &u , u € V. be the vector which correponds to the diagonal
of D,,. Using this notation the second step, i.e. the computation of A,(,IQ,) from AW, can
be implemented similar to () above:

for all w € V}, do
for all v € (N(u) N'V,) do
for all w € (N(v)N'V}) do

. a a
Ay = Ay — udngw
endfor
endfor

endfor

Note that here N(u) (N(v)) corresponds to the neighbourhood of u (v) in the digraph
of the matrix A = A® which resulted from the first step.

As a final implementation issue, we briefly discuss the storage of information. The decom-

position phase yields 7,,,x+ 1 levels and every vertex has a unique level number. The matrix
A, .. 1 (approximate Schur complement on the highest level) can be stored by assigning
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to each level iyay + 1 vertex one row of A; 1. All the information in p;, AI", AT Abr
(1 < i < imax) can be stored by assigning to each level i vertex the corresponding p; entry,
one row of A", one row of AT and one column of A’. The amount of information thus
stored at a level ¢ vertex is fully determined by the sparsity of the matrix A;. On level
¢ = 1 this sparsity is given and on level ¢ > 1 it is controlled by the parameter MSIZE as

explained in Remark 3.8.

Remark 6.1 The approximate cyclic reduction preconditioner has a clear modular struc-
ture. This makes it easy to implement modified versions, in which, for example, we use
other red-black partitioning techniques (in D1), another Schur complement approximation
(in D4) or other basic iterative solvers (in solveoperation ). In this paper we restrict
ourselves to the basic form as presented in Section 5 and we do not consider modified ver-
sions. However, as a result of further research certain modifications might be recommended
for certain problem classes.

In the preconditioner we use the parameters: 3, MSIZE, Dimbound and v. We do not con-
sider optimization of the efficiency of the preconditioner with respect to these parameters,
but use (reasonable) fixed default values (cf. Section 7).

7 Numerical experiments

In this section we show results of a few numerical experiments with the approximate
cyclic reduction preconditioner. We use its basic form as presented in Section 5. For the
parameters we use the following default values in all experiments: 3 = 0.7, MSIZE= 14,
Dimbound = 50 and v = 2.

In all experiments we use a righthand side b = 0 and a starting vector x = (1,1, ..., 1)T.
We consider two methods:

e GMRES(5): standard GMRES method with restart after 5 iterations.

e GMRES(5)+ preconditioning: standard left-preconditioned GMRES(5); we use the
approximate cyclic reduction preconditioner.

Since we are mainly interested in the performance of the preconditioner, we present results
only for GMRES(5), although for certain problems below the use of other outer iterations
(e.g. CG) might have been more efficient. In all figures below the unit on the horizontal
axis is one (preconditioned) GMRES(5) iteration, which consists of 5 standard (precondi-
tioned) GMRES iterations.

Experiment 1. We consider the convection-diffusion equation:

—eAu + a(z,y)u, + b(x,y)u, = f in Q=(0,1)%,
u=0 on 0f) .
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The functions a, b are defined by: a(z,y) = 0.1 if (z,y) € (0.5,0.8)? and a(z,y) = 100
otherwise; b(z,y) = 0.2 if (z,y) € (0.5,0.8)? and b(z, y) = 200 otherwise.

We use a uniform square mesh with mesh size h and a finite difference discretization with
stencil

L 7 _1 0 0 0
[A] . £ i 6 i i 1 a2 a2 +ab+b> 0
20| 1y 1| R W

2 2 a+b a+b

The discretization of the convection term is as in [22]. We consider h = 1/96 (i.e. 9025
unknowns). The resulting linear system is solved approximately using GMRES(5) (+ pre-
conditioner). For several values of ¢/h the convergence behaviour of GMRES(5) is shown
in Figure la. As expected, we observe slow convergence and an undesirable dependence
of the convergence behaviour on the parameter ¢/h. In Figure 1b we show the results
for GMRES(5) with approximate cyclic reduction preconditioner. In the preconditioned
case we observe a smoother and much faster convergence behaviour. Note that, although
the problem appears to be more difficult for smaller values of £/h, the convergence rate
improves significantly if ¢ /h decreases. For €/h = 1 the coarsening strategy yields 11 levels
with m; = 9025, 4513, 2534, 1381, 777, 437, 255, 140, 80, 50, 32 for:=0,1,...,10.
For £/h = 10 and £/h = 10~ we obtain similar results for the coarse graph orders m;.

convection—diffusion . convection—diffusion
5
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Ezperiment 2. We consider a rotated anisotropic equation (cf. [34]):

—(ec® 4 $*)ugy — 2(e — 1)csugy — (es* + Auy, = f in Q= (0,1)%,
u=0 on 0.

with 0 <& <1, ¢=cos¢, s =sin¢. For the angle ¢ = ¢(z,y) we take ¢ = T if 2 < § and
¢=—Fifx> % We use a standard finite difference discretization on a uniform square
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mesh with mesh size h, resulting in a discrete operator with stencils

1 e—-1) - 0 1 0 - 3(e—-1)
[A] = = —€ 3e+1 —€ . [A] = o —e 3e +1 —€
0 —e  3(e-1) se—1) —e 0

on the left half (z < ) and the right half (z > %) of the domain, respectively. Note that
for £ <« 1 there are strong anisotropies in different directions. We take h = 1/96. For
several values of ¢ the results for GMRES(5) with and without preconditioning are shown
in Figure 2b and Figure 2a, respectively. For ¢ = 0.01 the coarsening strategy yields 10
levels with m; = 9025, , 4467, 2214, 1142, 586, 306, 173, 101, 57, 30, for+=10,1,...,09.

) rotated anisotropic diffusion 5 rotated anisotropic diffusion
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Figure 2a Figure 2b

Experiment 3. We take SHERMAN3 from the Harwell-Boeing collection. This is a sym-
metric matrix of order 5005 with 20033 nonzero entries. The convergence for GMRES(5)
with and without preconditioning is shown in Figure 3b and Figure 3a, respectively.
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10° T T T T

10° \

norm of residual
norm of residual
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I I 8 I I I
50 100 150 0 1 2 3 4 5 6
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Figure 3a Figure 3b

Remark 7.1 To give an indication of the arithmetic costs of the preconditioner we con-
sider two typical examples: Experiment 1 with £ =1 and Experiment 3. We only consider
the costs for the evaluation of the preconditioner, i.e. one call of ULsolve(1l,b). In these
(typical) examples the arithmetic work needed for the construction of the preconditioner
is less than the work needed in one call of ULsolve(1l,b). As a unit of arithmetic work
we use a MATVEC, which is the work needed for one matrix-vector multiplication with
the given matrix A. In Experiment 1 with £ =1 the matrix A contains approximately
81000 nonzero entries. The union of the A]" matrices over all levels contains approximately
53000 nonzero entries. Hence the application of 4 Gauss-Seidel iterations (2 in each call of
solveoperation) is roughly equivalent to 2.6 MATVEC. The union of the AT (A) over
all levels contains approximately 55000 (54000) nonzero entries. Hence the total costs for
the application of the collect and distribute operations in ULsolve(1,b) is comparable to
1.3 MATVEC. Thus, in this example, the total costs in one evaluation of the preconditioner
is approximately 3.9 MATVEC. Note that for the preconditioner we have to store 162000
reals, which is comparable to 2 times the amount of storage needed for A. In Experiment
3 we have a matrix A with ~ 20000 nonzero entries. In the union of the A" we have
approximately 16000 nonzero entries. Hence the 4 Gauss-Seidel iterations have costs ~ 3.2
MATVEC. In the union of the A’ (A!) there are ~ 15000 (15000) nonzeros. Hence the
collect and distribute operations have total costs ~ 1.5 MATVEC. The total costs, in this
example, for one call of ULsolve(l,b) are roughly 4.7 MATVEC. The space needed for
storage of the preconditioner is comparable to 2.3 times the memory space needed for A.
We note that in all other experiments presented above, the costs of one ULsolve evaluation
are between 3 and 5 MATVEC.

Ezxperiment 4. We take ORSREG1 from the Harwell-Boeing collection. This is a non-
symmetric matrix from oil reservoir simulation of order 2205 with 14133 nonzero en-
tries. The results for GMRES(5) with and without preconditioning are shown in Fig-
ure 4b and Figure 4a, respectively. For the coarsening strategy yields 7 levels with
m; = 2205, 882, 441, 220, 94, 58, 32, fort=0,1,...,6.
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Remark 7.2 In this paper we have analyzed an approximate cyclic reduction precondi-
tioning technique. In the numerical experiments we considered a basic variant with fixed
default parameter values. Clearly there are many possible other variants. Here we men-
tion one particular variant in which we allow the parameter MSIZE (cf. Remark 3.8) to
be level dependent. In numerical experiments we observed that allowing more fill-in on
higher levels (increasing MSIZE if the level number i increases ) may yield a significant
improvement in the efficiency of the preconditioner. A systematic study of this and other
variants is left for future research.
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