
On the Approximate Cyli Redution PreonditionerbyArnold ReuskenInstitut f�ur Geometrie und Praktishe MathematikRWTH AahenTemplergraben 55D-52056 Aahen, Germanye-mail: reuskenigpm.rwth-aahen.deAbstrat. We present a preonditioning method for the iterative solution of large sparsesystems of equations. The preonditioner is based on ideas both from ILU preonditioningand from multigrid. The resulting preonditioning tehnique requires the matrix only. Amultilevel struture is obtained by using maximal independent sets for graph oarsening. AShur omplement approximation is onstruted using a sequene of point Gaussian elimi-nation steps. The resulting preonditioner has a transparant modular struture similar tothe algoritmi struture of a multigrid V -yle.Key words. algebrai multigrid, yli redution, Shur omplement approximation, in-dependent set orderings.AMS subjet lassi�ation. 65F10, 65N20.1 IntrodutionMultigrid methods are very eÆient iterative solvers for the large systems of equationsresulting from disretizing partial di�erential equations (f. [18℄, [34℄ and the referenestherein). An important priniple of multigrid is that a basi iterative method whih yieldsappropriate loal orretions is applied on a hierarhy of disretizations with di�erent har-ateristi mesh sizes. This multilevel struture is of main importane for the eÆieny ofmultigrid.Another lass of eÆient iterative solvers onsists of Krylov subspae methods ombinedwith ILU preonditioning (f. [8℄, [27℄ and the referenes therein). These methods onlyneed the matrix and are in general easier to implement than multigrid methods. Also theKrylov subspae methods are better suitable for a "blak-box" approah. On the otherhand, for disretized partial di�erential equations the Krylov methods with ILU preondi-tioning are often less eÆient than multigrid methods.In the multigrid �eld there have been developed methods whih have a multilevel struturebut require only the matrix of the linear system. These are alled algebrai multigrid meth-ods. Approahes towards algebrai multigrid are presented in [7℄, [13℄, [16℄, [26℄, [33℄. In allthese methods one tries to mimi the multigrid priniple. First one introdues a "reason-able" oarse "grid" spae. Then a prolongation operator is hosen and for the restrition1



one usually takes the adjoint of the prolongation. The operator on the oarse grid spae isde�ned by a Galerkin approah. With these omponents, a standard multigrid approah(smoothing + oarse grid orretion) is applied. These algebrai multigrid methods anbe used in situations where a grid (hierarhy) is not available. Also these methods an beused for developing blak-box solvers.Reently there have been developed ILU type of preonditioners with a multilevel struture,f. [5℄, [6℄, [23℄, [28℄, [29℄. The multilevel struture is indued by a level wise numbering ofthe unknowns.Reently, in [3℄, [4℄, [25℄ a few new hybrid methods have been presented, whih use ideasboth from ILU (inomplete Gaussian elimination) and from multigrid. In [3℄ a multigraphvariant of the well-known HBMG (f. [1℄) is presented, based on the interpretation of theHBMG as an inomplete fatorization method. In this method a reursive de�nition (typi-al for multigrid methods) and the onept of levels are avoided. The method in [4℄ is basedon an inomplete Gaussian elimination proess using levels, ombined with smoothing in allthe unknowns on eah level (i.e. an algebrai variant of lassial multigrid). A multilevelinomplete Gaussian elimination proess, with an algorithmi struture whih very similarto the struture of the HBMG (i.e. using levels and with smoothing on the newly addednodes only) is presented in [25℄. In the present paper we reonsider the method in [25℄. Thepresentation of the method di�ers from the presentation used in [25℄ in a few importantaspets. In partiular, the tehnique for Shur omplement approximation, whih is ru-ial for the eÆieny of the method, is put in a more general setting. In this more generalsetting it is possible, at least for the two-level ase, to prove interesting properties withrespet to stability and approximation quality. Suh theoretial results are not given in[25℄. This theoretial bakground gives a further explanation of why this multilevel inom-plete Gaussian elimination tehnique might result in an eÆient and robust preonditioner.The preonditoner that we present in this paper is based on the reursive appliationof a two-level method, as in yli redution or in a multigrid V-yle method. For thede�nition of a two level struture we use two important onepts: a redued graph and amaximal independent set. For a given matrix graph GA(V;E) (V : verties; E: edges) theredued graph GA(V;Es), with Es � E, is obtained by deleting all "weak" edges in thegiven graph. Suh a graph redution is motivated by a multigrid heuristi (f. [26℄, [33℄):if a simple (point) smoother is used then, for enhaning robustness, one should oarsen inthe diretion of the "strong" onnetions. A red-blak ("�ne-oarse" in multigrid) parti-tioning of the vertex set V is onstruted by omputing a maximal independent set M ofthe redued graph GA(V;Es). Related oarsening tehniques using maximal independentsets are presented in [9℄, [10℄, [14℄, [28℄, [25℄. We note that in [25℄ the set of oarse graphverties is given by M , whereas in the present paper the set of oarse graph verties isequal to V nM . In experiments we observed that for the eÆeny of the preonditionerthis di�erene is of minor importane. However, for the hoie that is used in this paperthe resulting preonditioner appears to be easier to analyze. The red-blak partitioning2



yields a orresponding blok-representation of the given matrix A:PAPT = 264 Abb AbrArb Arr 375 ; (1)with P a suitable permutation matrix. The onstrution of the red-blak partitioning issuh that, under reasonable assumptions on A, the Arr blok is guaranteed to be stronglydiagonally dominant. Hene, the systems with matrix Arr whih our in the (approx-imate) blok UL-deomposition (f. (4)) an be solved aurately with low osts, usinga basi iterative solver. A main topi in this paper is the onstrution of a reasonableapproximation ~Sbb of the Shur omplement Sbb := Abb � AbrA�1rr Arb. This approxima-tion is obtained by replaing the blok Gaussian elimination whih results in the Shuromplement (f. (4)) by a sequene of point Gaussian elimination steps. We will provesome interesting stability and approximation properties of this Shur omplement approx-imation. We also give a rather detailed presentation of how the preonditioner an beimplemented. We will explain that if one starts with a partiular implementation of thelassial yli redution method for a tridiagonal matrix then an implementation of the ap-proximate yli redution preonditioner an be obtained with only little additional e�ort.The rest of this paper is organized as follows. In Setion 2 we reall the lassial yliredution method for a tridiagonal matrix. In Setion 3 we disuss how one an generalizethis simple yli redution tehnique suh that it is appliable in a muh more generalsetting. For this we present and analyze a general red-blak partitioning method and aShur omplement approximation tehnique. The presentation and analysis is done in alinear algebra framework. In Setion 4 we apply the general results of Setion 3 to a fewtypial examples from the �eld of disretized partial di�erential equations. In Setion 5we present the approximate yli redution preonditioner and in Setion 6 we disusssome implementation issues related to this preonditioner. Finally, in Setion 7 we presentresults of a few numerial experiments.2 Cyli redution for a tridiagonal matrixWe reall the lassial method of yli redution. This method an be used, for example,for solving a linear system with a tridiagonal matrix or with a speial blok tridiagonalmatrix (f. [17℄, [20℄, [30℄, [32℄). We explain the yli redution priniple by onsideringan n� n linear system with a tridiagonal matrix:Ax = b; A = 266666664 a1 b11 a2 b2 ;. . . . . . . . .; . . . . . . bn�1n�1 an
377777775 ; ai 6= 0 for all i : (2)
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Reordering the unknowns based on an obvious red-blak (or "odd-even") struture resultsin a permuted system with a matrix of the formPAPT = 264 Abb AbrArb Arr 375 ; (3)in whih [Abb Abr℄ represents the equations in the unknowns with a blak label and[Arb Arr℄ represents the equations in the unknowns with a red label. Note that, beauseA is tridiagonal, the diagonal bloks Abb;Arr are diagonal matries. Gaussian eliminationin the red points results in a redued system with dimension (approximately) 12n. In matrixnotation this orresponds to blok UL-deomposition:PAPT = 264 I AbrA�1rr; I 375 264 Sbb ;Arb Arr 375 ; Sbb := Abb �AbrA�1rr Arb : (4)The redued system has a matrix Sbb (Shur omplement) whih is tridiagonal, and thusthe same approah an be applied to Sbb. So the basi yli redution idea is to redue sig-ni�antly the dimension of the problem repeatedly until one has a relatively small problemthat an be solved easily. This small system is then solved and the previously eliminated(red) unknowns are found by a simple bak-substitution proess. Note that yli redu-tion is equivalent to Gaussian elimination applied to a permuted system of equations andthat di�erent implementations are possible (f. [17℄, [32℄).When solving a system as in (2) with yli redution, one usually adapts the righthandside in the redution phase. For example, in the �rst redution step the original system istransformed to 264 Sbb ;Arb Arr 375Px = 264 I �AbrA�1rr; I 375Pb : (5)In suh a situation we do not need to store the oeÆients of Abr. In our approah (f.Setion 5), however, we will need both the upper and the lower triangular part of theUL-deomposition (as in ILU preonditioners). Thus we onsider a yli redution algo-rithm in whih the blok UL-deomposition as in (4) is omputed. This UL-deompositionis then used to solve the system with a bakward-forward elimination proess. For thegeneralization of this simple yli redution method to linear systems with general (nontridiagonal) sparse matries we need a tehnique whih yields reasonable sparse Shuromplement approximations. Suh a tehnique will be presented in the next setion.3 Shur omplement approximationWe onsider large sparse matries whih typially arise from disretization of partial di�er-ential equations. In this setion we present and analyze a tehnique for onstruting Shur4



omplement approximations of suh matries. This tehnique is used in the preonditionerthat is presented in Setion 5.Let A be a given regular n � n-matrix (f. examples in Setion 7 ). For the analysisbelow we assume stability of A in the sense thatA is a weakly diagonally dominant M-matrix; (6)i.e. A is an M-matrix and Pj 6=i jaijj � aii for all i. The matrix A indues an ordereddireted graph GA(V;E), onsisting of an ordered set of verties V = f1; 2; : : : ; ng and aset E of ordered pairs of verties alled ars . This set E onsists of all pairs (i; j) forwhih aij 6= 0. A direted graph will also be alled a digraph.We briey reall a few notions from graph theory. If (i; j) is an element of E then i is saidto be adjaent to j and j is said to be adjaent from i. Two verties i 6= j are said to beindependent if (i; j)=2E and (j; i)=2E. A subset M of V is alled an independent set if everytwo verties in M are independent. M is alled a maximal independent set of verties ifM is independent but no proper superset of M is independent. Note that a maximal inde-pendent set is in general not unique. For a vertex i 2 V , its neighbourhood N(i) is de�nedby N(i) = fj 2 V j j 6= i and (i; j) 2 Eg. For i 2 V its degree , deg(i), is the numberof elements in the neighbourhood of i, that is, deg(i) = jN(i)j. A vertex i is alled anisolated vertex if deg(i) = 0. Note that an isolated vertex an be adjaent from other ver-ties in V . By �(GA) we denote the maximum degree, i.e. �(GA) = maxf deg(v) j v 2 V g.We will onstrut a red-blak partitioning of the vertex set V :V = Vr [ Vb ; Vr \ Vb = f;g ;whih then indues a blok representation of A (f. (3)):PAPT = 264 Abb AbrArb Arr 375 ; (7)with Shur omplement Sbb = (PAPT )=Arr = Abb �AbrA�1rr Arb. Our goal is to onstruta partitioning and a Shur omplement approximation ~Sbb of Sbb suh that:- systems with matrix Arr an be solved with relatively low osts,- ~Sbb is a stable matrix (e.g. M-matrix),- ~Sbb has a (sparsity) struture omparable to that of A,- ond(~S�1bb Sbb) is "small".In Setion 3.1 we disuss the onstrution of the red-blak vertex partitioning. In Se-tion 3.2 we treat the Shur omplement approximation.3.1 Red-blak partitioningAs in algebrai multigrid methods (f. [26℄, [33℄), for the graph oarsening we distinguish"strong" and "weak" ars in the digraph. The underlying multigrid heuristi is that if5



one uses simple (point) smoothers then, to enhane robustness, one should oarsen in thediretion of the "strong" onnetions.Every loop in E, i.e. an ar of the form (i; i), is labeled strong. For every nonisolatedvertex i 2 V an ar (i; j) 2 E with j 6= i is labeled strong if for the orresponding matrixentry aij we have: jaijj � � maxj2N(i) jaijj ; (8)with 0 � � < 1 a given parameter. An ar is labeled weak if it is not strong. Note thatfor every nonisolated vertex i there is at least one strong ar (i; j) with j 6= i. Thus weobtain a partitioning E = Es [ Ew of the ars into strong (Es) and weak (Ew) ars. Thedireted graph onsisting of the vertex set V and the set of strong ars Es is alled theredued digraph and is denoted by GA(V;Es). Let M be a maximal independent set ofthis redued digraph GA(V;Es). In Setion 6 we disuss a simple algorithm for omputingM with low omputational osts. A vertex i 2 V is assigned a red (blak) label if i 2 M(i=2M). The resulting red-blak partitioning indues a blok representation of A as in (7).For the analysis of this (matrix) partitioning we introdue some further notation:Drr = diag(Arr) ; Ir : identity matrix of dimension jM j; (9)�̂ = 0 if Ew = f;g ; �̂ = sup(i;j)2Ew jaijjmaxj2N(i) jaijj otherwise: (10)Note that, by de�nition, 0 � �̂ � � < 1. The onstrution of the red-blak partitioningis suh that the submatrix Arr is strongly diagonally dominant. This is quanti�ed in thefollowing theorem:Theorem 3.1 We onsider the red-blak partitioning as desribed above and assume that(6) holds. Then the following holds:kIr �D�1rr Arrk1 � (�(GA)� 1)�̂(�(GA)� 1)�̂ + 1 : (11)Proof . Let Vr = fv 2 V j label(v) = red g ; Vb = V n Vr. We renumber the vertiesin V suh that the red verties are numbered �rst. Hene Vr an be represented as Vr =f1; 2; : : : ; jM jg. Let 1 be the jM j-vetor with all entries equal to 1. Then, with y :=(Ir �D�1rr Arr)1 we have kIr �D�1rr Arrk1 = kyk1 :Consider an arbitrary entry yk of y (k 2 Vr). If k orresponds to an isolated red vertexthen yk = 0. We assume that k orresponds to a nonisolated red vertex. Then, withWk := N(k) \ Vr : jykj = Xl2Wk jakljakk 6



� Pl2Wk jakljPl2N(k) jaklj (use (6))= Pl2Wk jakljPl2Wk jaklj+Pl2(N(k)\Vb) jaklj : (12)We use the notation mk := maxf jaklj j l 2 N(k) g. Note that for k 2 Vr ; l 2 Wk the ar(k; l) is weak. Beause k orresponds to a nonisolated vertex, there is at least one strongar (k; l), l 6= k, and thus we have jWkj � �(GA)� 1. Hene, using (10) we obtainXl2Wk jaklj � (�(GA)� 1)�̂mk :Using this in (12) yields jykj � (�(GA)� 1)�̂mk(�(GA)� 1)�̂mk +mkand proves the estimate (11). 2Remark 3.2 Note that if we take � = 0 then the redued digraph is equal to the originaldigraph and Arr is diagonal. Hene the Shur omplement Sbb = Abb�AbrA�1rr Arb an beomputed exatly. This may seem a favourable situation. However, it is well-known thatin general suh an exat elimination step yields a Shur omplement with a signi�antlyless favourable sparsity struture. Already after a few (one or two) reursive steps weobtain unaeptable (w.r.t. eÆieny) �ll-in, f. [28℄. In our method (f. Setion 7)we take � 2 (0:5; 1). Then, in general the redued digraph ontains signi�antly lessars than the original one. Due to this the maximal independent set, i.e. the set of redverties, is muh larger than for the ase � = 0. Moreover, the graph oarsening is donemainly in the "diretion" of strong onnetions. This makes it possible (f. Setion 3.2)to onstrut fairly aurate Shur omplement approximations with a sparsity struturewhih is omparable to that of A.3.2 Shur omplement approximationWe onsider A suh that (6) holds and apply the red-blak partitioning of the previoussetion, resulting in PAPT = 264 Abb AbrArb Arr 375 =: A(0) : (13)De�ne Drr of dimension jM j as in (9) and let 1 be the jM j-vetor with all entries equal to1. Let ~Drr be the jM j � jM j diagonal matrix whih satis�es~Drr1 = Arr1 : (14)The result of Theorem 3.1 implies that ~Drr is nonsingular. We use the notation Ir and Ibfor the jM j-dimensional and (n�jM j)-dimensional identity matrix, respetively. The exat7



Shur omplement Sbb = Abb �AbrA�1rr Arb is the result of a blok-Gaussian elimination:264 Ib �AbrA�1rr; Ir 375A(0) = 264 Sbb ;Arb Arr 375 : (15)Note that for any (n� jM j)� jM j real matrix Bbr a left transformation of the form264 Ib �Bbr; Ir 375A(0) = 264 Abb �BbrArb Abr �BbrArrArb Arr 375 =: Âdoes not a�et the Shur omplement, i.e. Sbb = A(0)=Arr = Â=Arr. For the onstrutionof a sparse approximation of the deomposition in (15) we onsider a sequene of suh lefttransformations with bloks Bbr of the form Bbr = AbrErr, with Err diagonal. An obvioushoie is Err = D�1rr . For onsisteny reasons (disussed below) we also use Err = ~D�1rr .Left transformations using these hoies for Err an be onsidered as point-Gaussian typeof elimination steps. More preisely, for k 2 IN we de�ne sequenesA(k) = 264 A(k)bb A(k)brArb Arr 375 ; ~A(k) = 264 ~A(k)bb ~A(k)brArb Arr 375 ;as follows, with A(0) as in (13) :A(k) = 264 Ib �A(k�1)br D�1rr; Ir 375A(k�1) for k � 1 ; (16)~A(k) = 264 Ib �A(k�1)br ~D�1rr; Ir 375A(k�1) for k � 1 : (17)For all k the Shur omplements of A(k) and of ~A(k) are equal to Sbb: A(k)=Arr =~A(k)=Arr = Sbb. The de�nitions in (16), (17) yield:A(k)br = Abr(Ir �D�1rr Arr)k ; (18)~A(k)br = Abr(Ir �D�1rr Arr)k�1(Ir � ~D�1rr Arr) : (19)The result of Theorem 3.1 implies that the bloksA(k)br and ~A(k)br are "small" for k suÆientlylarge and that, for k large enough, the diagonal bloks A(k)bb and ~A(k)bb might be reasonableapproximations of Sbb. In the remainder of this setion we analyze these Shur omplementapproximations A(k)bb and ~A(k)bb . In our preonditioner we will use ~A(2)bb as an approximationfor the Shur omplement Sbb (f. Remark 3.5 and Setion 5). For the analysis we onsiderarbitrary k � 1. 8



Theorem 3.3 We onsider the red-blak partitioning as desribed in Setion 3.1 and as-sume (6). For A(k)bb de�ned in (16) the following holds:A(k)bb is a weakly diagonally dominant M-matrix for all k; (20)Sbb = A(k)bb �R(k)is a regular splitting for all k; (21)limk!1A(k)bb = Sbb : (22)Proof. From (6) it follows that Sbb is a weakly diagonally dominant M-matrix and thatArb � 0, Abr � 0 (omponentwise inequalities). We introdue �rr := Ir � D�1rr Arr andnote that�rr � 0 and, due to Theorem 3.1, �(�rr) < 1. Hene we have the representationSbb = Abb �Abr 1Xj=0�jrrD�1rr Arb :Using indution and the result in (18) one easily obtains the identityA(k)bb = Abb �Abr k�1Xj=0�jrrD�1rr Arb : (23)Hene: Sbb = A(k)bb �R(k) ; R(k) := Abr 1Xj=k�jrrD�1rr Arb : (24)Note that R(k) � 0 and thus A(k)bb � Sbb. Sine in Abb all o�-diagonal entries are nonposi-tive and AbrPk�1j=0 �jrrD�1rr Arb � 0 it follows from (23) that all o�-diagonal entries of A(k)bbare nonpositive. We onlude that A(k)bb is an M-matrix and that the splitting in (24) isregular. From A(k)bb � Sbb and Sbb(1; 1; : : : ; 1)T � 0 it follows that A(k)bb is weakly diagonallydominant. Finally, from (24) we obtain that limk!1R(k) = 0 and thus limk!1A(k)bb = Sbb.2We onlude that A(k)bb is a stable approximation of Sbb with �(Ib � (A(k)bb )�1Sbb) < 1.However, in typial examples from the pde �eld one observes that the onvergene in (22)is very slow on a ertain subspae. In our appliations this is a subspae orresponding to"smooth" gridfuntions. In other words, for low values of k, the approximation of Sbbv byA(k)bb v is very poor if v orresponds to suh a smooth gridfuntion. This is similar to thephenomenom whih auses the slow onvergene of basi iterative methods (f. [19℄). Inpratie we should not use large values of k, sine for inreasing k the approximation A(k)bbsu�ers from serious �ll-in.To improve the approximation quality for low values of k we use a point-Gaussian elim-ination with matrix ~Drr whih satis�es the onsisteny ondition (14). This motivatesthe proess in (17) whih results in Shur omplement approximations ~A(k)bb . Properties ofthese approximations are given in Theorem 3.4.9



Theorem 3.4 We onsider the red-blak partitioning as desribed in Setion 3.1 and as-sume (6). For ~A(k)bb de�ned in (17) the following holds:~A(k)bb has only nonpositive o�-diagonal entries for all k; (25)~A(k)bb is weakly diagonally dominant for all k; (26)if ~A(k)bb is nonsingular then it is an M-matrix; (27)~A(k)bb is an M-matrix for k suÆiently large; (28)limk!1 ~A(k)bb = Sbb : (29)if w satis�es Arbw = �Arr1 ; then ~A(k)bb w = Sbbw for all k ; (30)Ib � ~A(k)bb S�1bb = Abr(Ir �D�1rr Arr)k�1 ~D�1rr [ Arb ~Drr ℄(A(0))�1 " Ib; # (31)Proof . By de�nition we have~A(k)bb = A(k�1)bb �A(k�1)br ~D�1rr Arb : (32)Note that A(k�1)bb is an M-matrix (Theorem 3.3), A(k�1)br � 0 (f. (18)), ~D�1rr � 0 andArb � 0. Hene the result in (25) holds.We introdue the n-vetor 1n = (1; 1; : : : ; 1)T and its red-blak partitioning 1n = " 1b1r #.From (16) it follows thatA(k)bb 1b +A(k)br 1r = A(k�1)bb 1b +A(k�1)br 1r �A(k�1)br D�1rr (Arb1b +Arr1r) ;whih yields A(k)bb 1b + A(k)br 1r � 0 for all k. The onsisteny ondition (14) results inArb1b + ~Drr1r = Arb1b + Arr1r � 0 and thus ~D�1rr Arb1b � �1r. Using this in (32) weobtain the result in (26):~A(k)bb 1b = A(k�1)bb 1b �A(k�1)br ~D�1rr Arb1b � A(k�1)bb 1b +A(k�1)br 1r � 0 :For the proof of (27) we use one of the many haraterizations of M-matries (f. Theorem5.1 in [15℄): if B is a real square matrix with only nonpositive o�-diagonal entries, thenB is an M-matrix if and only if every real eigenvalue of B is positive. Using (26) andGershgorin's theorem we onlude that every real eigenvalue of ~A(k)bb is nonnegative. If~A(k)bb is nonsingular then 0 annot be an eigenvalue. Hene all real eigenvalues are positiveand (27) holds.From (31) and Theorem 3.1 we obtain that �(Ib� ~A(k)bb S�1bb ) < 1 for k suÆiently large andthus ~A(k)bb is nonsingular for k suÆiently large. Using (27) we obtain the result in (28).From (32), (24) and (18) we obtain:~A(k)bb � Sbb = A(k�1)bb � Sbb �A(k�1)br ~D�1rr Arb10



= Abr 1Xj=k�1(Ir �D�1rr Arr)jD�1rr Arb �A(k�1)br ~D�1rr Arb= Abr(Ir �D�1rr Arr)k�1A�1rr Arb �A(k�1)br ~D�1rr Arb= Abr(Ir �D�1rr Arr)k�1(Ir � ~D�1rr Arr)A�1rr Arb : (33)Combination of the results in (33) and in Theorem 3.1 yields the result in (29).For w as in (30) we have(Ir � ~D�1rr Arr)A�1rr Arbw = �(Ir � ~D�1rr Arr)1 = 0and thus, using (33), we obtain the result in (30).From (33) we obtainIb � ~A(k)bb S�1bb = �Abr(Ir �D�1rr Arr)k�1 ~D�1rr ( ~Drr �Arr)A�1rr ArbS�1bb : (34)From the identity (A(0))�1 = 264 S�1bb ;�A�1rr ArbS�1bb A�1rr 375 264 Ib �AbrA�1rr; Ir 375we obtain [ ; Ir ℄(A(0))�1 " Ib; # = �A�1rr ArbS�1bb :Hene�( ~Drr �Arr)A�1rr ArbS�1bb = ( ~Drr �Arr)[ ; Ir ℄(A(0))�1 " Ib; #= [ Abr ~Drr ℄(A(0))�1 " Ib; #� [ ; Ir ℄A(0)(A(0))�1 " Ib; #= [ Abr ~Drr ℄(A(0))�1 " Ib; # :Using this in (34) we obtain the result (31). 2The results in (25)-(28) show that the Shur omplement approximation ~A(k)bb has favourablestability properties, omparable to those of A(k)bb and of A.Remark 3.5 For k = 2 we an represent ~A(k)bb as~A(2)bb = h Ib �AbrD�1rr iA(0) " Ib� ~D�1rr Arb # ; (35)11



whih an be ompared to the representationSbb = h Ib �AbrA�1rr iA(0) " Ib� # = h Ib � iA(0) " Ib�A�1rr Arb # ;with � arbitrary. Hene, in multigrid terminology, the oarse graph approximation ~A(2)bbof Sbb is obtained using a Galerkin approah with matrix-dependent prongation pA =" Ib� ~D�1rr Arb # and restrition rA = h Ib �AbrD�1rr i. Note that pAw = " Ib�A�1rr Arb #wfor w as in (30). The resulting oarse graph approximation is stable (in the sense of The-orem 3.4) and satis�es the onsisteny ondition as in (30). If we replae ~Drr by Drr in(35) we obtain a representation for A(2)bb . From numerial experiments with disretizedpartial di�erential equations it follows that the use of di�erent diagonal approximations ofArr ( ~Drr and Drr) in the matrix-dependent prolongation and restrition is of main impor-tane. If we use Drr in both pA and rA (i.e. A(2)bb ) then we obtain a stable approximation,however, the approximation is very poor on a subspae of smooth grid funtions (lak ofonsisteny). If we use ~Drr in both pA and rA then for ertain problems (e.g. onvetion-di�usion problems with strong onvetion) the approximation is poor due to instabilities.We note that the use of di�erent diagonal approximations ~Drr 6= Drr (hene pA 6= rA),whih guarantees a onsisteny and stability property, has a drawbak with respet tosymmetry. If the original matrix is symmetri then the Shur omplement approximations~A(k)bb will be nonsymmetri.Certain multigrid approahes are based on Shur omplement approximation using suitablebasis transformations (f. [1℄, [2℄). For k = 2 the oarse graph matrix ~A(2)bb is, in a naturalway, related to the hierarhial basis transformation264 Ib �AbrD�1rr; Ir 375A(0) 264 Ib ;� ~D�1rr Arb Ir 375 = 264 ~A(2)bb �Abr(Ir �D�1rr Arr)(Ir �Arr ~D�1rr )Arb Arr 375 :(36)Note that this involves matrix-dependent basis transformations (as in [2℄).The multigrid onvergene analysis of Hakbush (f. [18℄) is based on the approximationproperty and the smoothing property. The approximation property is of main importanefor a proper redution by the multigrid method of smooth error omponents. In [12℄, [18℄it is shown that this approximation property is losely related to a regularity property,whih holds for a ertain lass of ellipti pde's. Below, in Theorem 3.6, we introdue a sortof algebrai regularity term.For the formulation of Theorem 3.6 we �rst introdue norm notations. The number of redverties is given by jM j and the number of blak verties is given by m := n � jM j. OnIRn, IRjM j and IRm we assume norms denoted by k � k, k � kr and k � kb, respetively. In thegeneral setting of this setion we do not speify these norms. We assume that these normsare ompatible in the sense thatkwkr = k " 0w # k for all w 2 IRjM j ; kwkb = k " w0 # k for all w 2 IRm : (37)12



For ease of notation we drop the r; b in k � kr; k � kb, i.e. all three norms on IRn, IRjM j andIRm are denoted by k � k. We also use assoiated matrix norms denoted by k � k.Theorem 3.6 We onsider the red-blak partitioning as desribed in Setion 3.1 and as-sume (6) . For ~A(k)bb de�ned in (17) the following holds:kIb � ~A(k)bb S�1bb k � kAbr(Ir �D�1rr Arr)k�1 ~D�1rr k k[ Arb ~Drr ℄(A(0))�1k : (38)Proof . From (31) we obtainIb � ~A(k)bb S�1bb = Abr(Ir �D�1rr Arr)k�1 ~D�1rr [ Arb ~Drr ℄(A(0))�1 " Ib; # :The assumption (37) yields k " Ib; # k = 1 . Combination of these results yields (38). 2Remark 3.7 We briey omment on a relationship to the disrete regularity theory inmultigrid onvergene analyses. In general, the �rst term in the righthand side of (38)an be ontrolled using linear algebra arguments only (f. diagonal dominane result inTheorem 3.1). This is similar to the analysis of the smoothing property in multigridonvergene theory, whih is also based on linear algebra arguments only (f. [18℄). For aninterpretation of the term k[ Arb ~Drr ℄(A(0))�1k (39)in the righthand side of (38) we de�ne the seminorm jwj := k[ Arb ~Drr ℄wk for w 2 IRn.Bounds for k(A(0))�1k, i.e. (A(0))�1 : (IRn; k �k) ! (IRn; k �k), orrespond to the lassialnotion of stability. A bound for (39) is equivalent to a bound for(A(0))�1 : (IRn; k � k) ! (IRn; j � j): (40)In our appliations the matrix [ Arb ~Drr ℄ orresponds to a di�erene operator whihis similar to the underlying di�erential operator and the norm j � j measures di�erenes(smoothness). In multigrid onvergene theory one an �nd results (f. [18℄, Chapter 6) inwhih, for disretized ellipti boundary value problems, bounds for (A(0))�1 as an operatorbetween spaes with di�erent smoothness properties (as in (40) ) are derived. Suh resultsan be onsidered as disrete ounterparts of results in regularity theory for ontinuousellipti boundary value problems, in whih for an operator L : H10 (
) ! H�1(
)boundedness of L�1 : H�1+s ! H1+s(
)\H10 (
) with s > 0 is analyzed. If, for example,L orresponds to the Laplaian on the unit square with zero Dirihlet boundary onditions,then the boundedness of L�1 : L2(
) ! H2(
) \H10 (
) is a lassial regularity result.A orresponding disrete regularity result is presented in [18℄ Setion 6.3.2.Related to the robustness of our preonditioning tehnique (f. experiments in Setion 7) itis important to note that the seminorm j � j is strongly problem dependent. In Setion 4 wewill indiate that due to this, for ertain interesting problems whih have poor regularityin the lassial multigrid sense, one an still expet a small bound for (40). We emphasize13



that, in general, one an not expet to derive reasonable bounds for (40) using linear algebraarguments only. As in multigrid analyses, in this derivation we need that the matrix A isthe disrete analogon of a di�erential operator.Remark 3.8 In our implementation we use ~A(2)bb as a Shur omplement approximation.As explained above, this approximation has favourable stability and onsisteny properties.By onstrution this approximation is sparse. However, due to the ourene of some �ll-in, ~A(2)bb is in general less sparse than A. Reursive appliation of the same tehnique mayresult in relatively dense Shur omplement approximations on very oarse graphs. Ourappliations (pde's) are suh that �ll-in between two verties whih have a long mutualdistane in the graph is very small ompared to the orresponding diagonal entry. Henewe introdue a parameter MSIZE 2 IN . Typially, MSIZE 2 (2�(A); 3�(A)). If a ertainvertex in the digraph of ~A(2)bb has degree d > MSIZE then we modify the orrespondingrow of ~A(2)bb using a ommon lumping tehnique: we add the d� MSIZE in absolute valuesmallest o�-diagonal entries to the diagonal entry and then replae these o�-diagonal entriesby zeros. Using this modi�ation we obtain Shur omplement approximations (on alloarser graphs) for whih the orresponding digraph has a maximum degree that is boundedby MSIZE.Assume that (6) holds. Then for ~A(2)bb we have the (stability) properties (25), (26). Thelumping tehnique that we use preserves these properties. In the generi ase the Shuromplement approximation after lumping is (still) nonsingular and then (f. proof of (27))this Shur omplement approximation is a sparse weakly diagonally dominant M-matrix.Hene the method and the analysis of this setion an be applied reursively.4 ExamplesIn this setion we analyze a few model problems from the pde �eld for whih we anquantify the bound in Theorem 3.6 (f. Remark 3.7) We onsider a di�usion equation, ananisotropi di�usion equation and a onvetion-di�usion equation. In all three examplesbelow we treat a standard �nite di�erene disretization of a onstant oeÆient problemon a square domain 
 = (0; 1)2. We use a square mesh with mesh size denoted by h andassume periodi boundary onditions.We analyze the bound (38) in the Eulidean norm k � k2, i.e. we onsider the two termskAbr(Ir �D�1rr Arr)k�1 ~D�1rr k2 (41)and k[ Arb ~Drr ℄(A(0))�1k2 : (42)The analysis of the �rst term is based on simple linear algebra arguments (e.g. Gershgorintheorem). For this analysis the restrition to onstant oeÆient problems with periodiboundary onditions is not relevant. A similar analysis an be applied for other problems(e.g. varying oeÆients). For a simple treatment of the seond term (42) the standard14



Fourier analysis is applied. For this the restrition to onstant oeÆient problems withperiodi boundary onditions is ruial.We note that for the �rst example (Poisson equation) the ase with homogeneous Dirihletboundary onditions an be analyzed along the same lines. The results for this Dirihletase are essentially the same as for the ase with periodi boundary onditions.For the parameter � used in the red-blak partitioning (f. (8)) we take � = 0:7.Example 1 (Poisson equation). We onsider the standard �ve-point disretization of thePoisson equation with stenil [A℄ = 1h2 264 �1�1 4 �1�1 375 : (43)In this situation all edges in the digraph are labeled strong and the redued graph is equalto the original graph. One possible maximal independent set is obtained from standardred-blak oloring of the grid. Then Arr is diagonal and Drr = ~Drr = Arr. The Shuromplement approximation is exat (i.e. A(k)bb = ~A(k)bb = Sbb for all k) and results in a Shuromplement with stenil [Sbb℄ = 12h2 264 � 12 �1 � 12�1 6 �1� 12 �1 � 12 375 : (44)We now de�ne A := Sbb and apply one further oarsening step to this Shur omplementmatrix. The edges in the digraph orresponding to the matrix entries � 12 are labeled weak.Hene the redued digraph has a struture whih orresponds to the �ve-point stenil264 �� � �� 375 and, as in the ase of the �ve-point stenil in (43), one possible maximalindependent set (of the redued digraph) is obtained by standard red-blak oloring of thegrid. This then results in stenils[Arr℄ = 12h2 264 � 12 � 126� 12 � 12 375 ; [Arb℄ = 12h2 264 �1�1 �1�1 375 ; [Abr℄ = 12h2 264 �1�1 �1�1 375 :Hene Drr = 62h2 Ir, ~Drr = 42h2 Ir.We �rst onsider the term (41). Using kAbrk22 � kAbrk1kAbrk1 � 164h4 , k ~Drrk2 = 2h2 and aGershgorin theorem, we obtainkAbr(Ir �D�1rr Arr)k�1 ~D�1rr k2 � kIr �D�1rr Arrkk�12 � (13)k�1:
15



With respet to the term (42) we note that [ Arb ~Drr ℄(A(0))�1 = [ ; Ir ℄ ~A(A(0))�1,where ~A and A(0) have stenils[ ~A℄ = 12h2 264 �1�1 4 �1�1 375 ; [A(0)℄ = 12h2 264 � 12 �1 � 12�1 6 �1� 12 �1 � 12 375 :A straightforward Fourier analysis yields k[ Arb ~Drr ℄(A(0))�1k2 � 1.Theorem 3.6 now yields kIb � ~A(k)bb S�1bb k2 � (13)k�1 :We onlude that, already for k = 2, ~A(k)bb is a good preonditioner for Sbb uniformly in h.One easily veri�es that in this example a similar bound, whih is independent of h, doesnot hold for A(2)bb .Example 2 (Anisotropi di�usion equation). We onsider the �ve-point disretization ofan anisotropi di�usion equation with stenil[A℄ = 1h2 264 �"�1 2 + 2" �1�" 375 ; with 0 < " < 12 : (45)The edges in the digraph orresponding to the matrix entries �" are labeled weak. Henethe redued digraph has a struture whih orresponds to the three-point stenil [ � � � ℄.One possible maximal independent set (of the redued digraph) is obtained by standardsemi-oarsening (i.e. oarsening by a fator 2 in the x-diretion only) of the grid. Thisthen results in stenils[Arr℄ = 1h2 264 �"2 + 2"�" 375 ; [Arb℄ = 1h2 h �1 � �1 i ; [Abr℄ = 1h2 h �1 � �1 i :Hene Drr = 2+2"h2 Ir, ~Drr = 2h2 Ir. Along the same lines as in Example 1 we obtain for theterm (41): kAbr(Ir �D�1rr Arr)k�1 ~D�1rr k2 � kIr �D�1rr Arrkk�12 � ( ""+ 1)k�1:Related to the term (42) we note that[ Arb ~Drr ℄(A(0))�1 = [ ; Ir ℄ ~A(A(0))�1 ;where ~A and A(0) have stenils[ ~A℄ = 1h2 264 0�1 2 �10 375 ; [A(0)℄ = 1h2 264 �"�1 2 + 2" �1�" 375 :16



Note that the algebrai regularity is measured using the di�erene operator ~A whih on-tains di�erenes only in the diretion of the strong edges (f. Remark 3.7). In the lassialmultigrid onvergene analysis there is a severe deterioration of regularity for " # 0 (f.[31℄). Here , however, due to the problem dependent measure of regularity, a Fourieranalysis yields k[ Arb ~Drr ℄(A(0))�1k2 � 1:From Theorem 3.6 we obtain kIb � ~A(k)bb S�1bb k2 � ( ""+ 1)k�1 :We onlude that, already for k = 2, ~A(k)bb is a good preonditioner for Sbb, uniformly in "and h.Remark 4.1 Note that ~A(A(0))�1 is bounded uniformly in the parameters h; " ("algebrairegularity"), but that (A(0)) ~A�1 is not uniformly bounded. If we de�ne ~Sbb to be theShur omplement on ~A, one easily veri�es that also Sbb~S�1bb is not uniformly bounded.Hene, this example shows that simply taking the Shur omplement of the redued matrix(obtained by lumping all small o�-diagonal entries to the diagonal) as a Shur omplementapproximation, is not a satisfatory approah.Example 3 (Convetion-di�usion equation). We onsider the �ve-point disretization of aonvetion-di�usion equation with stenil[A℄ = 1h 264 �"�1� " 1 + 4" �"�" 375 ; with 0 < " < 2 : (46)Note that if " > 73 then all edges are labeled strong and graph oarsening is done as for thepure di�usion stenil (43) of Example 1. For the ase 0 < " < 2, i.e. strong onvetion,the edges in the digraph orresponding to the matrix entries �" are labeled weak. Henethe redued digraph has a struture whih orresponds to the two-point stenil [ � � � ℄.One possible maximal independent set (of the redued digraph) is obtained by standardsemi-oarsening (i.e. oarsening by a fator 2 in the x-diretion only) of the grid. Thisthen results in stenils[Arr℄ = 1h 264 �"1 + 4"�" 375 ; [Arb℄ = 1h h �1� " � �" i ; [Abr℄ = 1h h �1� " � �" i :Hene Drr = 1+4"h Ir, ~Drr = 1+2"h Ir. As in the previous two examples, we obtain:kAbr(Ir �D�1rr Arr)k�1 ~D�1rr k2 � kIr �D�1rr Arrkk�12 � ( 2"4"+ 1)k�1:17



Related to the term (42) we note that[ Arb ~Drr ℄(A(0))�1 = [ ; Ir ℄ ~A(A(0))�1 ;where ~A and A(0) have stenils[ ~A℄ = 1h 264 0�1� " 1 + 2" �"0 375 ; [A(0)℄ = 1h 264 �"�1� " 1 + 4" �"�" 375 :As in Example 2, the regularity is measured using a di�erene operator whih ontainsdi�erenes only in the diretion of the strong edges. A simple Fourier eigenvalue analysisyields k ~A(A(0))�1k2 � 1 ;and hene k[ Arb ~Drr ℄(A(0))�1k2 � 1 . Thus we obtainkIb � ~A(k)bb S�1bb k2 � ( 2"4"+ 1)k�1 :We onlude that, already for k = 2, ~A(k)bb is a good preonditioner for Sbb, uniformly in "and h.5 Approximate yli redution preonditionerIn this setion we present the approximate yli redution preonditioner. In the presenta-tion we distinguish two phases: a deomposition phase (onstrution of the preonditioner)and a solution phase (appliation of the preonditioner). In the deomposition phase weonly need the matrix A 2 IRn�n. In the solution phase we need the right hand side b andthe deomposition resulting from the deomposition phase.Deomposition phase. We assume a sparse matrix A 2 IRn�n. The orrespondingordered digraph has a vertex set that is represented as f1; 2; : : : ; ng. Dimbound, with1 < Dimbound < n is a given integer (used in D5 below). Set i := 1, A1 := A, m0 := n.D1. Red-blak partitioning of the vertex set . Given the digraph of Ai we make a red-blak partitioning of the verties. We use the method of Setion 3.1. In this method weuse a parameter �, with 0 � � < 1. This results in ni verties with label red and miverties with label blak. Note: mi + ni = mi�1.D2. Determine permutation. We determine a symmetri permutation pi : f1; 2; :::; mi�1g! f1; 2; :::; mi�1g suh that applying this permutation to the set of verties results in anordering in whih all verties with label red have index j 2 (mi; mi�1℄ and all verties withlabel blak have index j 2 [1; mi℄. Note that sine we only have to permute between the sets18



fj j j > mi and label(j) = blakg and fj j j � mi and label(j) = redg, suh a permutationan be fully haraterized by a permutation p̂i : fmi + 1; mi + 2; :::; mi�1g ! f1; 2; :::; mig.D3. Determine permuted matrix . The symmetri matrix orresponding to the permu-tation pi of D2 is denoted by Pi. We determine PiAiPi. This matrix has a 2 � 2-blokrepresentation: PiAiPi = 24 Abbi AbriArbi Arri 35 ; (47)with Arri 2 IRni�ni, Abbi 2 IRmi�mi , Arbi 2 IRni�mi , Abri 2 IRmi�ni.D4. Compute Shur omplement approximation. Compute an approximation Ai+1 2IRmi�mi of the Shur omplement PiAiPi=Arri . We use the approximation resulting aftertwo point-Gaussian type of elimination steps as explained in Remark 3.8. We use a pa-rameter MSIZE.D5. Store. Save mi; p̂i;Arri ;Arbi ;Abri . If mi < Dimbound then save Ai+1 (stop the re-dution proess) else i := i + 1 and goto D1.If this deomposition proess stops with i = imax, we obtain integersm1 > m2 > ::: > mimax ,permutation vetors p̂i (1 � i � imax), sparse matries Arri ;Arbi ;Abri (1 � i � imax) andthe approximate Shur omplement on the highest level Aimax+1. We use the following ter-minology: p̂i is alled the permutation operator on level i, Arri is alled the solve operatoron level i, Arbi is alled the ollet operator on level i, Abri is alled the distribute operatoron level i.The red verties on all levels, together with the blak verties on the �nal level indue adiret sum deomposition IRn = IRn1 � IRn2 � : : :� IRnimax � IRmimax . The verties on leveli with label red are assigned the level number i, and the verties on level imax with labelblak are assigned level number imax + 1. The verties (unknowns) with level number jare alled the level j verties (unknowns). Note that every vertex has a unique level number.Solution phase. For a lear desription of the solution phase we introdue permute,ollet, distribute and solve operations. These operations use the orresponding operatorswhih are available from the deomposition phase. We give a desription in a pseudo-programming language.proedure permuteoperation(i: integer; var x 2 IRmi�1) (� uses p̂i�)for j := mi + 1 to mi�1 doif j 6= p̂i(j) then interhange xj and xp̂i(j);proedure olletoperation(i: integer; var x 2 IRni; g 2 IRmi) (� uses Arbi �)ompute x := x�Arbi g; 19



proedure distributeoperation(i: integer; var x 2 IRmi ; g 2 IRni) (� uses Abri �)ompute x := x�Abri g;proedure solveoperation(i: integer; var x 2 IRni) (� uses Arri �)solve Arri w = x approximately. We use � Gauss-Seidel iterations with starting vetor(diag(Arri ))�1x. The result is written in x.proedure highestlevelsolve(var x 2 IRmimax ) (� uses Aimax+1�)solve Aimax+1w = x; x := w;Using these proedures it is easy to formulate the bakward and forward substitutionproess, i.e. the solution phase, of the approximate yli redution preonditioner. Oneah level i (1 � i � imax + 1) we de�ne ULsolve as follows:proedure ULsolve(i: integer; var f 2 IRmi�1);var fred 2 IRni;beginif i = imax + 1 then highestlevelsolve(f) elsebeginpermuteoperation(i; f);partition f =  fbfr ! with fr 2 IRni, fb 2 IRmi ;make a opy fred := fr;solveoperation(i; fred);distributeoperation(i; fb ; fred);ULsolve(i + 1; fb);olletoperation(i; fr ; fb);solveoperation(i; fr);permuteoperation(i; f);endend;An approximate solution of Ax = b results from the all ULsolve(1;b). The struture ofULsolve is similar to the struture of the multigrid V -yle algorithm as presented in [18℄.The distribute and ollet operations orrespond to the multigrid restrition and prolon-gation respetively. The solve operation orresponds to the smoother in multigrid. Note,however, that in ULsolve we do not use any grid information and that every unknown isinvolved in the solve operations of preisely one level (as in hierarhial basis multigrid, f.[1℄).If in the deomposition phase all Shur omplement approximations (whih are omputedin step D4) are stored, then an algebrai version of the lassial multigrid method an beimplemented. This version then uses smoothing in all �ne grid points and the onvergenerate will be improved. In this approah we an also use a W-yle instead of a V-yle.20



Note that for this version, in view of eÆieny, the "rate of oarsening" has to be ontrolled.In our opinion the preonditioner as presented in this setion is muh easier to implementthan the algebrai version of lassial multigrid, due to the fat that in the former methodevery unknown is on preisely one level.6 Implementation issuesIn Setion 5 we presented the approximate yli redution preonditioner. In Setion 7 weuse this preonditioner in a standard Krylov subspae method. In this setion we brieydisuss a few implementation aspets of the preonditioner.For the implementation of the preonditioner we �rst onsider the standard yli re-dution method for a tridiagonal matrix (f. Setion 2). This method an be implementedalong the lines as explained in Setion 5. Hene we �rst make an implementation of thedeomposition phase onsisting of the proedures D1-D5. However, for the tridiagonalase, in D1 we use the natural odd-even numbering and in D4 we ompute the Shur om-plement exatly (apart from rounding errors), beause Arr is diagonal. We implement theproedures D2, D3, D5 as explained in Setion 5. For the solution phase we implementthe proedure ULsolve as explained in Setion 5. In the subroutine solveoperation wean take � = 0 beause Arri is diagonal and thus the solution of Arri w = x is given byw = (diag(Arri ))�1x. This then yields an implementation of the lassial yli redutionmethod for a tridiagonal matrix. The implementation of this diret solver uses an arbitrarysparse matrix format (e.g. Compressed Row Storage or Ellpak-Itpak format) and anbe tested by applying it to tridiagonal matries. Note that this implementation of yliredution, for a tridiagonal matrix, has a lear modular struture.The yli redution preonditioner for a general sparse matrix is obtained by modifyinga few subroutines in this implementation: in D1 we use a more general red-blak parti-tioning tehnique (as in Setion 3.1), in D4 we use a suitable sparse Shur omplementapproximation approah and in the subroutine solveoperation we use � > 0 Gauss-Seidel iterations. We emphasize that all other omponents in the implementation of thelassial yli redution method and also the sparse matrix data struture are not altered.In this sense, the implementation of the lassial yli redution solver (for a tridiagonalmatrix) yields an implementation of the approximate yli redution preonditioner (fora general sparse matrix) with only little additional e�ort.The implementation of a Gauss-Seidel method (or any other basi iterative method) in thesubroutine solveoperation is straightforward. Below we briey omment on the imple-mentation of the modi�ations in step D1 and step D4 of the deomposition phase.In step D1 we �rst have to label the edges in the digraph with "strong" or "weak". Usingthe riterion (8) this is straightforward. Then we onsider the redued digraph GA(V;Es)as explained in Setion 3.1 and we want to ompute a maximal independent set M ofthis redued digraph. Di�erent tehniques for onstruting a maximal independent set21



are known. Several possible algorithms are given in [14℄, [28℄. We sketh our method foronstruting a maximal independent set M . The algorithm onsists of a graph traversal,i.e. visiting all the verties of GA(V;Es) in a systemati way, and a labeling method. Onewell-known algorithm for graph traversal is the breadth �rst searh (BFS), f. [21℄. TheBFS algorithm starts with a vertex v 2 V and marks it as visited. Unvisited vertiesadjaent from v are visited next. Then unvisited verties adjaent from these verties arevisited and so on. This approah is applied to every onneted omponent of GA(V;Es).A detailed desription an be found in [21℄.For the labeling method we initialize with label(v) := white for all v 2 V . Let v0 be theurrently visited vertex in the BFS algorithm. If v0 is an isolated vertex, i.e. there areno verties adjaent from v0 and label(v0) =white we de�ne label(v0) :=red. If v0 is notisolated then we apply:if label(v0) = white thenif label(w) 2 fwhite, blakg for all w adjaent from v0 thenlabel(v0) := red;label(w) := blak for all w adjaent from v0endif elselabel(v0) := blakendif.This results in a red-blak partitioning of the vertex set V and the set of red vertiesis a maximal independent set of the redued digraph GA(V;Es).In the modi�ation of step D4 we approximate the Shur omplement using the pointGaussian type of elimination tehnique as explained in Setion 3.2. In the preonditioneronsidered here we use ~A(2)bb as a sparse approximation of Sbb. In Remark 3.5 it is explainedthat we an represent this Shur omplement approximation using a Galerkin approahwith matrix dependent prolongation and restrition. One ould use an implementationbased on this representation. Here we disuss another implementation based on a pointGaussian elimination tehnique as formulated, in linear algebra terms, in (16), (17). Inthis implementation we distinguish two steps. In the �rst step we ompute A(1) de�ned in(16) and in the seond step we ompute ~A(2)bb using (17).We use the notation Vr = f v 2 V j label(v) = red g; Vb = f v 2 V j label(v) = blak gand N(v) := N(v) [ fvg ; v 2 V . Given the matrix A = (auv) ; u 2 V; v 2 N(u) wedesribe the implementation of the basi transformationA := 264 Ib �AbrD�1rr; Ir 375A ; (48)used in (16). As indiated in (48), instead of using an iteration index (k in (16)) we over-write the matrix with new results. Hene Abb and Abr are overwritten by Abb�AbrD�1rr Arband Abr �AbrD�1rr Arr, respetively. For storage of intermediate results we need a sparse22



matrix Tbr = (tuv) ; u 2 Vb; v 2 Vr. In Tbr we store AbrD�1rr Arr. A transformation as in(48), an be implemented as follows:8u 2 Vb 8v 2 (N(u) \ Vr) : tuw = 0 for all w 2 (N(v) \ Vr) (initialization).for all u 2 Vb dofor all v 2 (N(u) \ Vr) dofor all w 2 N(v) doif w 2 Vb thenauw := auw � auvavwavv (ompute Abb �AbrD�1rr Arb) (�)elsetuw := tuw � auvavwavv (ompute AbrD�1rr Arr)endifendforendforendfor8u 2 Vb 8v 2 (N(u)\Vr) : auw := auw�tuw for allw 2 (N(v)\Vr) (overwriteAbr)This desribes the �rst step for the omputation of the approximate Shur omplement.Note that inreasing k in (16) orresponds to repeating this proedure, using the updatedmatrix A as the input for the next step. In our preonditioner, however, in view of theinrease of �ll-in we apply this proedure only one (k = 1 in (16)). In the seond step ofthe omputation of the approximate Shur omplement we implement the point Gaussianelimination step (17) with k = 2, resulting in ~A(2)bb = A(1)bb � A(1)br ~D�1rr Arb. Sine in the�rst step we have overwritten the given matrix A by the matrix A(1) we use the notation~A(2)bb = Abb �Abr ~D�1rr Arb. Let ~du ; u 2 Vr be the vetor whih orreponds to the diagonalof ~Drr. Using this notation the seond step, i.e. the omputation of ~A(2)bb from A(1), anbe implemented similar to (�) above:for all u 2 Vb dofor all v 2 (N(u) \ Vr) dofor all w 2 (N(v) \ Vb) doauw := auw � auvavw~dvvendforendforendforNote that here N(u) (N(v)) orresponds to the neighbourhood of u (v) in the digraphof the matrix A = A(1) whih resulted from the �rst step.As a �nal implementation issue, we briey disuss the storage of information. The deom-position phase yields imax+1 levels and every vertex has a unique level number. The matrixAimax+1 (approximate Shur omplement on the highest level) an be stored by assigning23



to eah level imax + 1 vertex one row of Aimax+1. All the information in p̂i;Arri ;Arbi ;Abri(1 � i � imax) an be stored by assigning to eah level i vertex the orresponding p̂i entry ,one row of Arri , one row of Arbi and one olumn of Abri . The amount of information thusstored at a level i vertex is fully determined by the sparsity of the matrix Ai. On leveli = 1 this sparsity is given and on level i > 1 it is ontrolled by the parameter MSIZE asexplained in Remark 3.8.Remark 6.1 The approximate yli redution preonditioner has a lear modular stru-ture. This makes it easy to implement modi�ed versions, in whih, for example, we useother red-blak partitioning tehniques (in D1), another Shur omplement approximation(in D4) or other basi iterative solvers (in solveoperation ). In this paper we restritourselves to the basi form as presented in Setion 5 and we do not onsider modi�ed ver-sions. However, as a result of further researh ertain modi�ations might be reommendedfor ertain problem lasses.In the preonditioner we use the parameters: �, MSIZE, Dimbound and �. We do not on-sider optimization of the eÆieny of the preonditioner with respet to these parameters,but use (reasonable) �xed default values (f. Setion 7).7 Numerial experimentsIn this setion we show results of a few numerial experiments with the approximateyli redution preonditioner. We use its basi form as presented in Setion 5. For theparameters we use the following default values in all experiments: � = 0:7, MSIZE= 14,Dimbound = 50 and � = 2.In all experiments we use a righthand side b � 0 and a starting vetor x = (1; 1; :::; 1)T .We onsider two methods:� GMRES(5): standard GMRES method with restart after 5 iterations.� GMRES(5)+ preonditioning: standard left-preonditioned GMRES(5); we use theapproximate yli redution preonditioner.Sine we are mainly interested in the performane of the preonditioner, we present resultsonly for GMRES(5), although for ertain problems below the use of other outer iterations(e.g. CG) might have been more eÆient. In all �gures below the unit on the horizontalaxis is one (preonditioned) GMRES(5) iteration, whih onsists of 5 standard (preondi-tioned) GMRES iterations.Experiment 1. We onsider the onvetion-di�usion equation:8<: �"�u+ a(x; y)ux + b(x; y)uy = f in 
 = (0; 1)2 ;u = 0 on �
 :24



The funtions a; b are de�ned by: a(x; y) = 0:1 if (x; y) 2 (0:5; 0:8)2 and a(x; y) = 100otherwise; b(x; y) = 0:2 if (x; y) 2 (0:5; 0:8)2 and b(x; y) = 200 otherwise.We use a uniform square mesh with mesh size h and a �nite di�erene disretization withstenil [A℄ = "2h2 264 �12 �1 �12�1 6 �1�12 �1 �12 375 + 1h 2664 0 0 0� a2a+b a2+ab+b2a+b 0� aba+b �b2a+b 0 3775 :The disretization of the onvetion term is as in [22℄. We onsider h = 1=96 (i.e. 9025unknowns). The resulting linear system is solved approximately using GMRES(5) (+ pre-onditioner). For several values of "=h the onvergene behaviour of GMRES(5) is shownin Figure 1a. As expeted, we observe slow onvergene and an undesirable dependeneof the onvergene behaviour on the parameter "=h. In Figure 1b we show the resultsfor GMRES(5) with approximate yli redution preonditioner. In the preonditionedase we observe a smoother and muh faster onvergene behaviour. Note that, althoughthe problem appears to be more diÆult for smaller values of "=h, the onvergene rateimproves signi�antly if "=h dereases. For "=h = 1 the oarsening strategy yields 11 levelswith mi = 9025; 4513; 2534; 1381; 777; 437; 255; 140; 80; 50; 32 for i = 0; 1; : : : ; 10.For "=h = 103 and "=h = 10�3 we obtain similar results for the oarse graph orders mi.
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Figure 1a Figure 1bExperiment 2. We onsider a rotated anisotropi equation (f. [34℄):8<: �("2 + s2)uxx � 2("� 1)suxy � ("s2 + 2)uyy = f in 
 = (0; 1)2 ;u = 0 on �
 :with 0 < " < 1,  = os�; s = sin�. For the angle � = �(x; y) we take � = �4 if x � 12 and� = ��4 if x > 12 . We use a standard �nite di�erene disretization on a uniform square25



mesh with mesh size h, resulting in a disrete operator with stenils[A℄ = 1h2 264 12("� 1) �" 0�" 3"+ 1 �"0 �" 12("� 1) 375 ; [A℄ = 1h2 264 0 �" 12("� 1)�" 3"+ 1 �"12("� 1) �" 0 375on the left half (x � 12) and the right half (x > 12) of the domain, respetively. Note thatfor " � 1 there are strong anisotropies in di�erent diretions. We take h = 1=96. Forseveral values of " the results for GMRES(5) with and without preonditioning are shownin Figure 2b and Figure 2a, respetively. For " = 0:01 the oarsening strategy yields 10levels with mi = 9025; ; 4467; 2214; 1142; 586; 306; 173; 101; 57; 30; for i = 0; 1; : : : ; 9.
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Figure 2a Figure 2bExperiment 3 . We take SHERMAN3 from the Harwell-Boeing olletion. This is a sym-metri matrix of order 5005 with 20033 nonzero entries. The onvergene for GMRES(5)with and without preonditioning is shown in Figure 3b and Figure 3a, respetively.
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Figure 3a Figure 3bRemark 7.1 To give an indiation of the arithmeti osts of the preonditioner we on-sider two typial examples: Experiment 1 with "h = 1 and Experiment 3. We only onsiderthe osts for the evaluation of the preonditioner, i.e. one all of ULsolve(1;b). In these(typial) examples the arithmeti work needed for the onstrution of the preonditioneris less than the work needed in one all of ULsolve(1;b). As a unit of arithmeti workwe use a MATVEC, whih is the work needed for one matrix-vetor multipliation withthe given matrix A. In Experiment 1 with "h = 1 the matrix A ontains approximately81000 nonzero entries. The union of the Arri matries over all levels ontains approximately53000 nonzero entries. Hene the appliation of 4 Gauss-Seidel iterations (2 in eah all ofsolveoperation) is roughly equivalent to 2.6 MATVEC. The union of the Arbi (Abri ) overall levels ontains approximately 55000 (54000) nonzero entries. Hene the total osts forthe appliation of the ollet and distribute operations in ULsolve(1;b) is omparable to1.3 MATVEC. Thus, in this example, the total osts in one evaluation of the preonditioneris approximately 3.9 MATVEC. Note that for the preonditioner we have to store 162000reals, whih is omparable to 2 times the amount of storage needed for A. In Experiment3 we have a matrix A with � 20000 nonzero entries. In the union of the Arri we haveapproximately 16000 nonzero entries. Hene the 4 Gauss-Seidel iterations have osts � 3.2MATVEC. In the union of the Arbi (Abri ) there are � 15000 (15000) nonzeros. Hene theollet and distribute operations have total osts � 1.5 MATVEC. The total osts, in thisexample, for one all of ULsolve(1;b) are roughly 4.7 MATVEC. The spae needed forstorage of the preonditioner is omparable to 2.3 times the memory spae needed for A.We note that in all other experiments presented above, the osts of one ULsolve evaluationare between 3 and 5 MATVEC.Experiment 4 . We take ORSREG1 from the Harwell-Boeing olletion. This is a non-symmetri matrix from oil reservoir simulation of order 2205 with 14133 nonzero en-tries. The results for GMRES(5) with and without preonditioning are shown in Fig-ure 4b and Figure 4a, respetively. For the oarsening strategy yields 7 levels withmi = 2205; 882; 441; 220; 94; 58; 32; for i = 0; 1; : : : ; 6.
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Figure 4a Figure 4bRemark 7.2 In this paper we have analyzed an approximate yli redution preondi-tioning tehnique. In the numerial experiments we onsidered a basi variant with �xeddefault parameter values. Clearly there are many possible other variants. Here we men-tion one partiular variant in whih we allow the parameter MSIZE (f. Remark 3.8) tobe level dependent. In numerial experiments we observed that allowing more �ll-in onhigher levels (inreasing MSIZE if the level number i inreases ) may yield a signi�antimprovement in the eÆieny of the preonditioner. A systemati study of this and othervariants is left for future researh.Referenes[1℄ R.E. Bank, T.F. Dupont and H. Yserentant, The hierarhial basis multigrid method,Numer. Math., 52 (1988), pp. 427-458.[2℄ R.E. Bank and S. Gutsh, Hierarhial basis for the onvetion-di�usion equationon unstrutured meshes, to appear in the Proeedings of the Ninth InternationalSymposium on Domain Deomposition Methods for Partial Di�erential Equations(P. Bj�orstad, M. Espedal and D. Keyes, eds.), Wiley, New York.[3℄ R.E. Bank and R.K. Smith, The hierarhial basis multigraph algorithm , report De-partment of Mathematis, University of California at San Diego, 1997.[4℄ R.E. Bank and C. Wagner, Multilevel ILU Deomposition , report Department ofMathematis, University of California at San Diego, 1997.[5℄ E.F.F. Botta and A. van der Ploeg, Preonditioning tehniques for matries with arbi-trary sparsity patterns, in Proeedings of the Ninth International Conferene on FiniteElements in Fluids, New Trends and Appliations, 1995, pp. 989-998.28



[6℄ E.F.F. Botta and W. Wubs, MRILU: it's the preonditioning that ounts , report W-9703, Department of Mathematis, University of Groningen, The Netherlands, 1997.[7℄ D. Braess, Towards algebrai multigrid for ellipti problems of seond order, Comput-ing, 55 (1995), pp. 379-393.[8℄ A.M. Bruaset, A survey of preonditioned iterative methods, Pitman Researh Notesin Mathematis, vol. 328, Longman 1995.[9℄ T.F. Chan, S. Go and J. Zou, Multilevel domain deomposition and multigrid methodsfor unstrutured meshes: algorithms and theory, Tehnial Report 95-24, Departmentof Mathematis, University of California at Los Angeles, 1996.[10℄ T.F. Chan and B. Smith, Domain deomposition and multigrid methods for elliptiproblems on unstrutured meshes, in: Domain Deomposition Methods in Sieneand Engineering, Proeedings of the Seventh International Conferene on DomainDeomposition, D. Keyes and J. Xu, eds., AMS, Providene, 1994, pp. 175-189.[11℄ C. Chartrand and L. Lesniak, Graphs & digraphs, Chapman & Hall, London, thirdedition, 1996.[12℄ N.H. Deker, J. Mandel and S.V. Parter, On the Role of Regularity in Multigrid Meth-ods , in: Multigrid Methods, Proeedings of the 3rd Copper Mountain Conferene, S.MCormik, J. Dendy, J. Mandel, S. Parter and J. Ruge, eds., Marel Dekker, NewYork 1988, pp. 143-156.[13℄ J.E. Dendy, Blak box multigrid , J. Comput. Phys., 48 (1982), pp. 366-386.[14℄ R. van Driesshe and D. Roose, A graph ontration algorithm for the fast alulationof the Fiedler vetor of a graph, in: Proeedings of the Seventh SIAM Conferene onParallel Proessing for Sienti� Computing, D.H. Bailey, P.E. Bj�rstad, J.R. Gilbert,M.V. Masagni, R.S. Shreiber, H.D. Simon, V.J. Torzon, L.T. Watson, eds., SIAM,Philadelphia, 1995, pp. 621-626.[15℄ M. Fiedler, Speial matries and their appliations in numerial mathematis, Marti-nus nijho� Publishers, Dordreht 1986.[16℄ J. Fuhrmann, Zur Verwendung von Mehrgitterverfahren bei der numerishen Behand-lung elliptisher partieller Di�erentialgleihungen zweiter Ordnung mit variablen Koef-�zienten, PhD thesis, Tehnishe Universit�at Chemnitz-Zwikau, 1994. Verlag Shaker,Aahen 1995.[17℄ G.H. Golub and C. van Loan, Matrix Computations, Johns Hopkins University Press,seond edition, 1989.[18℄ W. Hakbush, Multigrid Methods and Appliations, Springer, Berlin, Heidelberg, NewYork, 1985. 29



[19℄ W. Hakbush, Iterative Solution of Large Sparse Systems of Equations, Springer, NewYork 1994.[20℄ D. Heller, Some aspets of the yli redution algorithm for blok tridiagonal linearsystems, SIAM J. Numer. Anal., 13 (1976), pp. 484-496.[21℄ E. Horowitz and S. Sahni, Fundamentals of data strutures in Pasal, Pitman, London,1984.[22℄ W. Layton, On the prinipal axes of di�usion in di�erene shemes for 2D transportproblems, J. Comput. Phys., 90 (1990), pp. 336-347.[23℄ A. van der Ploeg, Preonditioning for sparse matries with appliations, PhD thesis,University of Groningen, 1994.[24℄ A. Reusken, A multigrid method based on inomplete Gaussian elimination, Numer.Linear Algebra Appl., 3 (1996), pp. 369-390.[25℄ A. Reusken, Approximate yli redution preonditioning , to appear in Proeedingsof the Fifth European Multigrid onferene (W. Hakbush and G. Wittum, eds.).[26℄ J.W. Ruge and K. St�uben, Algebrai multigrid, in Multigrid Methods, S.F. M-Cormik, ed., SIAM, Philadelphia, 1987, pp. 73-130.[27℄ Y. Saad, Iterative methods for sparse linear systems, PWS Publishing Company,Boston 1996.[28℄ Y. Saad, ILUM: a multi-elimination ILU preonditioner for general sparse matries,SIAM J. Si. Comput., 17 (1996), pp. 830{847.[29℄ Y. Saad and J. Zhang, BILUM: Blok Versions of Multi-Elimination and Multi-LevelILU Preonditioner for General Sparse Linear Systems , report UMSI 97/126, De-partment of Computer Siene, University of Minnesota, 1997.[30℄ J. Shr�oder and U. Trottenberg, Reduktionsverfahren f�ur Di�erenzengleihungen beiRandwertaufgaben I, Numer. Math., 22 (1973), pp. 37-68.[31℄ R. Stevenson, Robustness of multi-grid applied to anisotropi equations on onvexdomains and on domains with re-entrant orners, Numer. Math., 66 (1993), pp. 373-398.[32℄ P.N. Swarztrauber, The methods of yli redution, Fourier analysis and the FACRalgorithm for the disrete solution of Poisson's equation on a retangle, SIAM Review,19 (1977), pp. 490-501.[33℄ P. Vanek, J. Mandel and M. Brezina, Algebrai multigrid by smoothed aggregation forseond and fourth order ellipti problems, Computing, 56 (1996), pp. 179-196.[34℄ P. Wesseling, An introdution to Multigrid Methods, Wiley, Chihester, 1992.30


