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t. We present a pre
onditioning method for the iterative solution of large sparsesystems of equations. The pre
onditioner is based on ideas both from ILU pre
onditioningand from multigrid. The resulting pre
onditioning te
hnique requires the matrix only. Amultilevel stru
ture is obtained by using maximal independent sets for graph 
oarsening. AS
hur 
omplement approximation is 
onstru
ted using a sequen
e of point Gaussian elimi-nation steps. The resulting pre
onditioner has a transparant modular stru
ture similar tothe algoritmi
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ture of a multigrid V -
y
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ation. 65F10, 65N20.1 Introdu
tionMultigrid methods are very eÆ
ient iterative solvers for the large systems of equationsresulting from dis
retizing partial di�erential equations (
f. [18℄, [34℄ and the referen
estherein). An important prin
iple of multigrid is that a basi
 iterative method whi
h yieldsappropriate lo
al 
orre
tions is applied on a hierar
hy of dis
retizations with di�erent 
har-a
teristi
 mesh sizes. This multilevel stru
ture is of main importan
e for the eÆ
ien
y ofmultigrid.Another 
lass of eÆ
ient iterative solvers 
onsists of Krylov subspa
e methods 
ombinedwith ILU pre
onditioning (
f. [8℄, [27℄ and the referen
es therein). These methods onlyneed the matrix and are in general easier to implement than multigrid methods. Also theKrylov subspa
e methods are better suitable for a "bla
k-box" approa
h. On the otherhand, for dis
retized partial di�erential equations the Krylov methods with ILU pre
ondi-tioning are often less eÆ
ient than multigrid methods.In the multigrid �eld there have been developed methods whi
h have a multilevel stru
turebut require only the matrix of the linear system. These are 
alled algebrai
 multigrid meth-ods. Approa
hes towards algebrai
 multigrid are presented in [7℄, [13℄, [16℄, [26℄, [33℄. In allthese methods one tries to mimi
 the multigrid prin
iple. First one introdu
es a "reason-able" 
oarse "grid" spa
e. Then a prolongation operator is 
hosen and for the restri
tion1



one usually takes the adjoint of the prolongation. The operator on the 
oarse grid spa
e isde�ned by a Galerkin approa
h. With these 
omponents, a standard multigrid approa
h(smoothing + 
oarse grid 
orre
tion) is applied. These algebrai
 multigrid methods 
anbe used in situations where a grid (hierar
hy) is not available. Also these methods 
an beused for developing bla
k-box solvers.Re
ently there have been developed ILU type of pre
onditioners with a multilevel stru
ture,
f. [5℄, [6℄, [23℄, [28℄, [29℄. The multilevel stru
ture is indu
ed by a level wise numbering ofthe unknowns.Re
ently, in [3℄, [4℄, [25℄ a few new hybrid methods have been presented, whi
h use ideasboth from ILU (in
omplete Gaussian elimination) and from multigrid. In [3℄ a multigraphvariant of the well-known HBMG (
f. [1℄) is presented, based on the interpretation of theHBMG as an in
omplete fa
torization method. In this method a re
ursive de�nition (typi-
al for multigrid methods) and the 
on
ept of levels are avoided. The method in [4℄ is basedon an in
omplete Gaussian elimination pro
ess using levels, 
ombined with smoothing in allthe unknowns on ea
h level (i.e. an algebrai
 variant of 
lassi
al multigrid). A multilevelin
omplete Gaussian elimination pro
ess, with an algorithmi
 stru
ture whi
h very similarto the stru
ture of the HBMG (i.e. using levels and with smoothing on the newly addednodes only) is presented in [25℄. In the present paper we re
onsider the method in [25℄. Thepresentation of the method di�ers from the presentation used in [25℄ in a few importantaspe
ts. In parti
ular, the te
hnique for S
hur 
omplement approximation, whi
h is 
ru-
ial for the eÆ
ien
y of the method, is put in a more general setting. In this more generalsetting it is possible, at least for the two-level 
ase, to prove interesting properties withrespe
t to stability and approximation quality. Su
h theoreti
al results are not given in[25℄. This theoreti
al ba
kground gives a further explanation of why this multilevel in
om-plete Gaussian elimination te
hnique might result in an eÆ
ient and robust pre
onditioner.The pre
onditoner that we present in this paper is based on the re
ursive appli
ationof a two-level method, as in 
y
li
 redu
tion or in a multigrid V-
y
le method. For thede�nition of a two level stru
ture we use two important 
on
epts: a redu
ed graph and amaximal independent set. For a given matrix graph GA(V;E) (V : verti
es; E: edges) theredu
ed graph GA(V;Es), with Es � E, is obtained by deleting all "weak" edges in thegiven graph. Su
h a graph redu
tion is motivated by a multigrid heuristi
 (
f. [26℄, [33℄):if a simple (point) smoother is used then, for enhan
ing robustness, one should 
oarsen inthe dire
tion of the "strong" 
onne
tions. A red-bla
k ("�ne-
oarse" in multigrid) parti-tioning of the vertex set V is 
onstru
ted by 
omputing a maximal independent set M ofthe redu
ed graph GA(V;Es). Related 
oarsening te
hniques using maximal independentsets are presented in [9℄, [10℄, [14℄, [28℄, [25℄. We note that in [25℄ the set of 
oarse graphverti
es is given by M , whereas in the present paper the set of 
oarse graph verti
es isequal to V nM . In experiments we observed that for the eÆ
en
y of the pre
onditionerthis di�eren
e is of minor importan
e. However, for the 
hoi
e that is used in this paperthe resulting pre
onditioner appears to be easier to analyze. The red-bla
k partitioning2



yields a 
orresponding blo
k-representation of the given matrix A:PAPT = 264 Abb AbrArb Arr 375 ; (1)with P a suitable permutation matrix. The 
onstru
tion of the red-bla
k partitioning issu
h that, under reasonable assumptions on A, the Arr blo
k is guaranteed to be stronglydiagonally dominant. Hen
e, the systems with matrix Arr whi
h o

ur in the (approx-imate) blo
k UL-de
omposition (
f. (4)) 
an be solved a

urately with low 
osts, usinga basi
 iterative solver. A main topi
 in this paper is the 
onstru
tion of a reasonableapproximation ~Sbb of the S
hur 
omplement Sbb := Abb � AbrA�1rr Arb. This approxima-tion is obtained by repla
ing the blo
k Gaussian elimination whi
h results in the S
hur
omplement (
f. (4)) by a sequen
e of point Gaussian elimination steps. We will provesome interesting stability and approximation properties of this S
hur 
omplement approx-imation. We also give a rather detailed presentation of how the pre
onditioner 
an beimplemented. We will explain that if one starts with a parti
ular implementation of the
lassi
al 
y
li
 redu
tion method for a tridiagonal matrix then an implementation of the ap-proximate 
y
li
 redu
tion pre
onditioner 
an be obtained with only little additional e�ort.The rest of this paper is organized as follows. In Se
tion 2 we re
all the 
lassi
al 
y
li
redu
tion method for a tridiagonal matrix. In Se
tion 3 we dis
uss how one 
an generalizethis simple 
y
li
 redu
tion te
hnique su
h that it is appli
able in a mu
h more generalsetting. For this we present and analyze a general red-bla
k partitioning method and aS
hur 
omplement approximation te
hnique. The presentation and analysis is done in alinear algebra framework. In Se
tion 4 we apply the general results of Se
tion 3 to a fewtypi
al examples from the �eld of dis
retized partial di�erential equations. In Se
tion 5we present the approximate 
y
li
 redu
tion pre
onditioner and in Se
tion 6 we dis
usssome implementation issues related to this pre
onditioner. Finally, in Se
tion 7 we presentresults of a few numeri
al experiments.2 Cy
li
 redu
tion for a tridiagonal matrixWe re
all the 
lassi
al method of 
y
li
 redu
tion. This method 
an be used, for example,for solving a linear system with a tridiagonal matrix or with a spe
ial blo
k tridiagonalmatrix (
f. [17℄, [20℄, [30℄, [32℄). We explain the 
y
li
 redu
tion prin
iple by 
onsideringan n� n linear system with a tridiagonal matrix:Ax = b; A = 266666664 a1 b1
1 a2 b2 ;. . . . . . . . .; . . . . . . bn�1
n�1 an
377777775 ; ai 6= 0 for all i : (2)

3



Reordering the unknowns based on an obvious red-bla
k (or "odd-even") stru
ture resultsin a permuted system with a matrix of the formPAPT = 264 Abb AbrArb Arr 375 ; (3)in whi
h [Abb Abr℄ represents the equations in the unknowns with a bla
k label and[Arb Arr℄ represents the equations in the unknowns with a red label. Note that, be
auseA is tridiagonal, the diagonal blo
ks Abb;Arr are diagonal matri
es. Gaussian eliminationin the red points results in a redu
ed system with dimension (approximately) 12n. In matrixnotation this 
orresponds to blo
k UL-de
omposition:PAPT = 264 I AbrA�1rr; I 375 264 Sbb ;Arb Arr 375 ; Sbb := Abb �AbrA�1rr Arb : (4)The redu
ed system has a matrix Sbb (S
hur 
omplement) whi
h is tridiagonal, and thusthe same approa
h 
an be applied to Sbb. So the basi
 
y
li
 redu
tion idea is to redu
e sig-ni�
antly the dimension of the problem repeatedly until one has a relatively small problemthat 
an be solved easily. This small system is then solved and the previously eliminated(red) unknowns are found by a simple ba
k-substitution pro
ess. Note that 
y
li
 redu
-tion is equivalent to Gaussian elimination applied to a permuted system of equations andthat di�erent implementations are possible (
f. [17℄, [32℄).When solving a system as in (2) with 
y
li
 redu
tion, one usually adapts the righthandside in the redu
tion phase. For example, in the �rst redu
tion step the original system istransformed to 264 Sbb ;Arb Arr 375Px = 264 I �AbrA�1rr; I 375Pb : (5)In su
h a situation we do not need to store the 
oeÆ
ients of Abr. In our approa
h (
f.Se
tion 5), however, we will need both the upper and the lower triangular part of theUL-de
omposition (as in ILU pre
onditioners). Thus we 
onsider a 
y
li
 redu
tion algo-rithm in whi
h the blo
k UL-de
omposition as in (4) is 
omputed. This UL-de
ompositionis then used to solve the system with a ba
kward-forward elimination pro
ess. For thegeneralization of this simple 
y
li
 redu
tion method to linear systems with general (nontridiagonal) sparse matri
es we need a te
hnique whi
h yields reasonable sparse S
hur
omplement approximations. Su
h a te
hnique will be presented in the next se
tion.3 S
hur 
omplement approximationWe 
onsider large sparse matri
es whi
h typi
ally arise from dis
retization of partial di�er-ential equations. In this se
tion we present and analyze a te
hnique for 
onstru
ting S
hur4




omplement approximations of su
h matri
es. This te
hnique is used in the pre
onditionerthat is presented in Se
tion 5.Let A be a given regular n � n-matrix (
f. examples in Se
tion 7 ). For the analysisbelow we assume stability of A in the sense thatA is a weakly diagonally dominant M-matrix; (6)i.e. A is an M-matrix and Pj 6=i jaijj � aii for all i. The matrix A indu
es an ordereddire
ted graph GA(V;E), 
onsisting of an ordered set of verti
es V = f1; 2; : : : ; ng and aset E of ordered pairs of verti
es 
alled ar
s . This set E 
onsists of all pairs (i; j) forwhi
h aij 6= 0. A dire
ted graph will also be 
alled a digraph.We brie
y re
all a few notions from graph theory. If (i; j) is an element of E then i is saidto be adja
ent to j and j is said to be adja
ent from i. Two verti
es i 6= j are said to beindependent if (i; j)=2E and (j; i)=2E. A subset M of V is 
alled an independent set if everytwo verti
es in M are independent. M is 
alled a maximal independent set of verti
es ifM is independent but no proper superset of M is independent. Note that a maximal inde-pendent set is in general not unique. For a vertex i 2 V , its neighbourhood N(i) is de�nedby N(i) = fj 2 V j j 6= i and (i; j) 2 Eg. For i 2 V its degree , deg(i), is the numberof elements in the neighbourhood of i, that is, deg(i) = jN(i)j. A vertex i is 
alled anisolated vertex if deg(i) = 0. Note that an isolated vertex 
an be adja
ent from other ver-ti
es in V . By �(GA) we denote the maximum degree, i.e. �(GA) = maxf deg(v) j v 2 V g.We will 
onstru
t a red-bla
k partitioning of the vertex set V :V = Vr [ Vb ; Vr \ Vb = f;g ;whi
h then indu
es a blo
k representation of A (
f. (3)):PAPT = 264 Abb AbrArb Arr 375 ; (7)with S
hur 
omplement Sbb = (PAPT )=Arr = Abb �AbrA�1rr Arb. Our goal is to 
onstru
ta partitioning and a S
hur 
omplement approximation ~Sbb of Sbb su
h that:- systems with matrix Arr 
an be solved with relatively low 
osts,- ~Sbb is a stable matrix (e.g. M-matrix),- ~Sbb has a (sparsity) stru
ture 
omparable to that of A,- 
ond(~S�1bb Sbb) is "small".In Se
tion 3.1 we dis
uss the 
onstru
tion of the red-bla
k vertex partitioning. In Se
-tion 3.2 we treat the S
hur 
omplement approximation.3.1 Red-bla
k partitioningAs in algebrai
 multigrid methods (
f. [26℄, [33℄), for the graph 
oarsening we distinguish"strong" and "weak" ar
s in the digraph. The underlying multigrid heuristi
 is that if5



one uses simple (point) smoothers then, to enhan
e robustness, one should 
oarsen in thedire
tion of the "strong" 
onne
tions.Every loop in E, i.e. an ar
 of the form (i; i), is labeled strong. For every nonisolatedvertex i 2 V an ar
 (i; j) 2 E with j 6= i is labeled strong if for the 
orresponding matrixentry aij we have: jaijj � � maxj2N(i) jaijj ; (8)with 0 � � < 1 a given parameter. An ar
 is labeled weak if it is not strong. Note thatfor every nonisolated vertex i there is at least one strong ar
 (i; j) with j 6= i. Thus weobtain a partitioning E = Es [ Ew of the ar
s into strong (Es) and weak (Ew) ar
s. Thedire
ted graph 
onsisting of the vertex set V and the set of strong ar
s Es is 
alled theredu
ed digraph and is denoted by GA(V;Es). Let M be a maximal independent set ofthis redu
ed digraph GA(V;Es). In Se
tion 6 we dis
uss a simple algorithm for 
omputingM with low 
omputational 
osts. A vertex i 2 V is assigned a red (bla
k) label if i 2 M(i=2M). The resulting red-bla
k partitioning indu
es a blo
k representation of A as in (7).For the analysis of this (matrix) partitioning we introdu
e some further notation:Drr = diag(Arr) ; Ir : identity matrix of dimension jM j; (9)�̂ = 0 if Ew = f;g ; �̂ = sup(i;j)2Ew jaijjmaxj2N(i) jaijj otherwise: (10)Note that, by de�nition, 0 � �̂ � � < 1. The 
onstru
tion of the red-bla
k partitioningis su
h that the submatrix Arr is strongly diagonally dominant. This is quanti�ed in thefollowing theorem:Theorem 3.1 We 
onsider the red-bla
k partitioning as des
ribed above and assume that(6) holds. Then the following holds:kIr �D�1rr Arrk1 � (�(GA)� 1)�̂(�(GA)� 1)�̂ + 1 : (11)Proof . Let Vr = fv 2 V j label(v) = red g ; Vb = V n Vr. We renumber the verti
esin V su
h that the red verti
es are numbered �rst. Hen
e Vr 
an be represented as Vr =f1; 2; : : : ; jM jg. Let 1 be the jM j-ve
tor with all entries equal to 1. Then, with y :=(Ir �D�1rr Arr)1 we have kIr �D�1rr Arrk1 = kyk1 :Consider an arbitrary entry yk of y (k 2 Vr). If k 
orresponds to an isolated red vertexthen yk = 0. We assume that k 
orresponds to a nonisolated red vertex. Then, withWk := N(k) \ Vr : jykj = Xl2Wk jakljakk 6



� Pl2Wk jakljPl2N(k) jaklj (use (6))= Pl2Wk jakljPl2Wk jaklj+Pl2(N(k)\Vb) jaklj : (12)We use the notation mk := maxf jaklj j l 2 N(k) g. Note that for k 2 Vr ; l 2 Wk the ar
(k; l) is weak. Be
ause k 
orresponds to a nonisolated vertex, there is at least one strongar
 (k; l), l 6= k, and thus we have jWkj � �(GA)� 1. Hen
e, using (10) we obtainXl2Wk jaklj � (�(GA)� 1)�̂mk :Using this in (12) yields jykj � (�(GA)� 1)�̂mk(�(GA)� 1)�̂mk +mkand proves the estimate (11). 2Remark 3.2 Note that if we take � = 0 then the redu
ed digraph is equal to the originaldigraph and Arr is diagonal. Hen
e the S
hur 
omplement Sbb = Abb�AbrA�1rr Arb 
an be
omputed exa
tly. This may seem a favourable situation. However, it is well-known thatin general su
h an exa
t elimination step yields a S
hur 
omplement with a signi�
antlyless favourable sparsity stru
ture. Already after a few (one or two) re
ursive steps weobtain una

eptable (w.r.t. eÆ
ien
y) �ll-in, 
f. [28℄. In our method (
f. Se
tion 7)we take � 2 (0:5; 1). Then, in general the redu
ed digraph 
ontains signi�
antly lessar
s than the original one. Due to this the maximal independent set, i.e. the set of redverti
es, is mu
h larger than for the 
ase � = 0. Moreover, the graph 
oarsening is donemainly in the "dire
tion" of strong 
onne
tions. This makes it possible (
f. Se
tion 3.2)to 
onstru
t fairly a

urate S
hur 
omplement approximations with a sparsity stru
turewhi
h is 
omparable to that of A.3.2 S
hur 
omplement approximationWe 
onsider A su
h that (6) holds and apply the red-bla
k partitioning of the previousse
tion, resulting in PAPT = 264 Abb AbrArb Arr 375 =: A(0) : (13)De�ne Drr of dimension jM j as in (9) and let 1 be the jM j-ve
tor with all entries equal to1. Let ~Drr be the jM j � jM j diagonal matrix whi
h satis�es~Drr1 = Arr1 : (14)The result of Theorem 3.1 implies that ~Drr is nonsingular. We use the notation Ir and Ibfor the jM j-dimensional and (n�jM j)-dimensional identity matrix, respe
tively. The exa
t7



S
hur 
omplement Sbb = Abb �AbrA�1rr Arb is the result of a blo
k-Gaussian elimination:264 Ib �AbrA�1rr; Ir 375A(0) = 264 Sbb ;Arb Arr 375 : (15)Note that for any (n� jM j)� jM j real matrix Bbr a left transformation of the form264 Ib �Bbr; Ir 375A(0) = 264 Abb �BbrArb Abr �BbrArrArb Arr 375 =: Âdoes not a�e
t the S
hur 
omplement, i.e. Sbb = A(0)=Arr = Â=Arr. For the 
onstru
tionof a sparse approximation of the de
omposition in (15) we 
onsider a sequen
e of su
h lefttransformations with blo
ks Bbr of the form Bbr = AbrErr, with Err diagonal. An obvious
hoi
e is Err = D�1rr . For 
onsisten
y reasons (dis
ussed below) we also use Err = ~D�1rr .Left transformations using these 
hoi
es for Err 
an be 
onsidered as point-Gaussian typeof elimination steps. More pre
isely, for k 2 IN we de�ne sequen
esA(k) = 264 A(k)bb A(k)brArb Arr 375 ; ~A(k) = 264 ~A(k)bb ~A(k)brArb Arr 375 ;as follows, with A(0) as in (13) :A(k) = 264 Ib �A(k�1)br D�1rr; Ir 375A(k�1) for k � 1 ; (16)~A(k) = 264 Ib �A(k�1)br ~D�1rr; Ir 375A(k�1) for k � 1 : (17)For all k the S
hur 
omplements of A(k) and of ~A(k) are equal to Sbb: A(k)=Arr =~A(k)=Arr = Sbb. The de�nitions in (16), (17) yield:A(k)br = Abr(Ir �D�1rr Arr)k ; (18)~A(k)br = Abr(Ir �D�1rr Arr)k�1(Ir � ~D�1rr Arr) : (19)The result of Theorem 3.1 implies that the blo
ksA(k)br and ~A(k)br are "small" for k suÆ
ientlylarge and that, for k large enough, the diagonal blo
ks A(k)bb and ~A(k)bb might be reasonableapproximations of Sbb. In the remainder of this se
tion we analyze these S
hur 
omplementapproximations A(k)bb and ~A(k)bb . In our pre
onditioner we will use ~A(2)bb as an approximationfor the S
hur 
omplement Sbb (
f. Remark 3.5 and Se
tion 5). For the analysis we 
onsiderarbitrary k � 1. 8



Theorem 3.3 We 
onsider the red-bla
k partitioning as des
ribed in Se
tion 3.1 and as-sume (6). For A(k)bb de�ned in (16) the following holds:A(k)bb is a weakly diagonally dominant M-matrix for all k; (20)Sbb = A(k)bb �R(k)is a regular splitting for all k; (21)limk!1A(k)bb = Sbb : (22)Proof. From (6) it follows that Sbb is a weakly diagonally dominant M-matrix and thatArb � 0, Abr � 0 (
omponentwise inequalities). We introdu
e �rr := Ir � D�1rr Arr andnote that�rr � 0 and, due to Theorem 3.1, �(�rr) < 1. Hen
e we have the representationSbb = Abb �Abr 1Xj=0�jrrD�1rr Arb :Using indu
tion and the result in (18) one easily obtains the identityA(k)bb = Abb �Abr k�1Xj=0�jrrD�1rr Arb : (23)Hen
e: Sbb = A(k)bb �R(k) ; R(k) := Abr 1Xj=k�jrrD�1rr Arb : (24)Note that R(k) � 0 and thus A(k)bb � Sbb. Sin
e in Abb all o�-diagonal entries are nonposi-tive and AbrPk�1j=0 �jrrD�1rr Arb � 0 it follows from (23) that all o�-diagonal entries of A(k)bbare nonpositive. We 
on
lude that A(k)bb is an M-matrix and that the splitting in (24) isregular. From A(k)bb � Sbb and Sbb(1; 1; : : : ; 1)T � 0 it follows that A(k)bb is weakly diagonallydominant. Finally, from (24) we obtain that limk!1R(k) = 0 and thus limk!1A(k)bb = Sbb.2We 
on
lude that A(k)bb is a stable approximation of Sbb with �(Ib � (A(k)bb )�1Sbb) < 1.However, in typi
al examples from the pde �eld one observes that the 
onvergen
e in (22)is very slow on a 
ertain subspa
e. In our appli
ations this is a subspa
e 
orresponding to"smooth" gridfun
tions. In other words, for low values of k, the approximation of Sbbv byA(k)bb v is very poor if v 
orresponds to su
h a smooth gridfun
tion. This is similar to thephenomenom whi
h 
auses the slow 
onvergen
e of basi
 iterative methods (
f. [19℄). Inpra
ti
e we should not use large values of k, sin
e for in
reasing k the approximation A(k)bbsu�ers from serious �ll-in.To improve the approximation quality for low values of k we use a point-Gaussian elim-ination with matrix ~Drr whi
h satis�es the 
onsisten
y 
ondition (14). This motivatesthe pro
ess in (17) whi
h results in S
hur 
omplement approximations ~A(k)bb . Properties ofthese approximations are given in Theorem 3.4.9



Theorem 3.4 We 
onsider the red-bla
k partitioning as des
ribed in Se
tion 3.1 and as-sume (6). For ~A(k)bb de�ned in (17) the following holds:~A(k)bb has only nonpositive o�-diagonal entries for all k; (25)~A(k)bb is weakly diagonally dominant for all k; (26)if ~A(k)bb is nonsingular then it is an M-matrix; (27)~A(k)bb is an M-matrix for k suÆ
iently large; (28)limk!1 ~A(k)bb = Sbb : (29)if w satis�es Arbw = �Arr1 ; then ~A(k)bb w = Sbbw for all k ; (30)Ib � ~A(k)bb S�1bb = Abr(Ir �D�1rr Arr)k�1 ~D�1rr [ Arb ~Drr ℄(A(0))�1 " Ib; # (31)Proof . By de�nition we have~A(k)bb = A(k�1)bb �A(k�1)br ~D�1rr Arb : (32)Note that A(k�1)bb is an M-matrix (Theorem 3.3), A(k�1)br � 0 (
f. (18)), ~D�1rr � 0 andArb � 0. Hen
e the result in (25) holds.We introdu
e the n-ve
tor 1n = (1; 1; : : : ; 1)T and its red-bla
k partitioning 1n = " 1b1r #.From (16) it follows thatA(k)bb 1b +A(k)br 1r = A(k�1)bb 1b +A(k�1)br 1r �A(k�1)br D�1rr (Arb1b +Arr1r) ;whi
h yields A(k)bb 1b + A(k)br 1r � 0 for all k. The 
onsisten
y 
ondition (14) results inArb1b + ~Drr1r = Arb1b + Arr1r � 0 and thus ~D�1rr Arb1b � �1r. Using this in (32) weobtain the result in (26):~A(k)bb 1b = A(k�1)bb 1b �A(k�1)br ~D�1rr Arb1b � A(k�1)bb 1b +A(k�1)br 1r � 0 :For the proof of (27) we use one of the many 
hara
terizations of M-matri
es (
f. Theorem5.1 in [15℄): if B is a real square matrix with only nonpositive o�-diagonal entries, thenB is an M-matrix if and only if every real eigenvalue of B is positive. Using (26) andGershgorin's theorem we 
on
lude that every real eigenvalue of ~A(k)bb is nonnegative. If~A(k)bb is nonsingular then 0 
annot be an eigenvalue. Hen
e all real eigenvalues are positiveand (27) holds.From (31) and Theorem 3.1 we obtain that �(Ib� ~A(k)bb S�1bb ) < 1 for k suÆ
iently large andthus ~A(k)bb is nonsingular for k suÆ
iently large. Using (27) we obtain the result in (28).From (32), (24) and (18) we obtain:~A(k)bb � Sbb = A(k�1)bb � Sbb �A(k�1)br ~D�1rr Arb10



= Abr 1Xj=k�1(Ir �D�1rr Arr)jD�1rr Arb �A(k�1)br ~D�1rr Arb= Abr(Ir �D�1rr Arr)k�1A�1rr Arb �A(k�1)br ~D�1rr Arb= Abr(Ir �D�1rr Arr)k�1(Ir � ~D�1rr Arr)A�1rr Arb : (33)Combination of the results in (33) and in Theorem 3.1 yields the result in (29).For w as in (30) we have(Ir � ~D�1rr Arr)A�1rr Arbw = �(Ir � ~D�1rr Arr)1 = 0and thus, using (33), we obtain the result in (30).From (33) we obtainIb � ~A(k)bb S�1bb = �Abr(Ir �D�1rr Arr)k�1 ~D�1rr ( ~Drr �Arr)A�1rr ArbS�1bb : (34)From the identity (A(0))�1 = 264 S�1bb ;�A�1rr ArbS�1bb A�1rr 375 264 Ib �AbrA�1rr; Ir 375we obtain [ ; Ir ℄(A(0))�1 " Ib; # = �A�1rr ArbS�1bb :Hen
e�( ~Drr �Arr)A�1rr ArbS�1bb = ( ~Drr �Arr)[ ; Ir ℄(A(0))�1 " Ib; #= [ Abr ~Drr ℄(A(0))�1 " Ib; #� [ ; Ir ℄A(0)(A(0))�1 " Ib; #= [ Abr ~Drr ℄(A(0))�1 " Ib; # :Using this in (34) we obtain the result (31). 2The results in (25)-(28) show that the S
hur 
omplement approximation ~A(k)bb has favourablestability properties, 
omparable to those of A(k)bb and of A.Remark 3.5 For k = 2 we 
an represent ~A(k)bb as~A(2)bb = h Ib �AbrD�1rr iA(0) " Ib� ~D�1rr Arb # ; (35)11



whi
h 
an be 
ompared to the representationSbb = h Ib �AbrA�1rr iA(0) " Ib� # = h Ib � iA(0) " Ib�A�1rr Arb # ;with � arbitrary. Hen
e, in multigrid terminology, the 
oarse graph approximation ~A(2)bbof Sbb is obtained using a Galerkin approa
h with matrix-dependent prongation pA =" Ib� ~D�1rr Arb # and restri
tion rA = h Ib �AbrD�1rr i. Note that pAw = " Ib�A�1rr Arb #wfor w as in (30). The resulting 
oarse graph approximation is stable (in the sense of The-orem 3.4) and satis�es the 
onsisten
y 
ondition as in (30). If we repla
e ~Drr by Drr in(35) we obtain a representation for A(2)bb . From numeri
al experiments with dis
retizedpartial di�erential equations it follows that the use of di�erent diagonal approximations ofArr ( ~Drr and Drr) in the matrix-dependent prolongation and restri
tion is of main impor-tan
e. If we use Drr in both pA and rA (i.e. A(2)bb ) then we obtain a stable approximation,however, the approximation is very poor on a subspa
e of smooth grid fun
tions (la
k of
onsisten
y). If we use ~Drr in both pA and rA then for 
ertain problems (e.g. 
onve
tion-di�usion problems with strong 
onve
tion) the approximation is poor due to instabilities.We note that the use of di�erent diagonal approximations ~Drr 6= Drr (hen
e pA 6= rA),whi
h guarantees a 
onsisten
y and stability property, has a drawba
k with respe
t tosymmetry. If the original matrix is symmetri
 then the S
hur 
omplement approximations~A(k)bb will be nonsymmetri
.Certain multigrid approa
hes are based on S
hur 
omplement approximation using suitablebasis transformations (
f. [1℄, [2℄). For k = 2 the 
oarse graph matrix ~A(2)bb is, in a naturalway, related to the hierar
hi
al basis transformation264 Ib �AbrD�1rr; Ir 375A(0) 264 Ib ;� ~D�1rr Arb Ir 375 = 264 ~A(2)bb �Abr(Ir �D�1rr Arr)(Ir �Arr ~D�1rr )Arb Arr 375 :(36)Note that this involves matrix-dependent basis transformations (as in [2℄).The multigrid 
onvergen
e analysis of Ha
kbus
h (
f. [18℄) is based on the approximationproperty and the smoothing property. The approximation property is of main importan
efor a proper redu
tion by the multigrid method of smooth error 
omponents. In [12℄, [18℄it is shown that this approximation property is 
losely related to a regularity property,whi
h holds for a 
ertain 
lass of ellipti
 pde's. Below, in Theorem 3.6, we introdu
e a sortof algebrai
 regularity term.For the formulation of Theorem 3.6 we �rst introdu
e norm notations. The number of redverti
es is given by jM j and the number of bla
k verti
es is given by m := n � jM j. OnIRn, IRjM j and IRm we assume norms denoted by k � k, k � kr and k � kb, respe
tively. In thegeneral setting of this se
tion we do not spe
ify these norms. We assume that these normsare 
ompatible in the sense thatkwkr = k " 0w # k for all w 2 IRjM j ; kwkb = k " w0 # k for all w 2 IRm : (37)12



For ease of notation we drop the r; b in k � kr; k � kb, i.e. all three norms on IRn, IRjM j andIRm are denoted by k � k. We also use asso
iated matrix norms denoted by k � k.Theorem 3.6 We 
onsider the red-bla
k partitioning as des
ribed in Se
tion 3.1 and as-sume (6) . For ~A(k)bb de�ned in (17) the following holds:kIb � ~A(k)bb S�1bb k � kAbr(Ir �D�1rr Arr)k�1 ~D�1rr k k[ Arb ~Drr ℄(A(0))�1k : (38)Proof . From (31) we obtainIb � ~A(k)bb S�1bb = Abr(Ir �D�1rr Arr)k�1 ~D�1rr [ Arb ~Drr ℄(A(0))�1 " Ib; # :The assumption (37) yields k " Ib; # k = 1 . Combination of these results yields (38). 2Remark 3.7 We brie
y 
omment on a relationship to the dis
rete regularity theory inmultigrid 
onvergen
e analyses. In general, the �rst term in the righthand side of (38)
an be 
ontrolled using linear algebra arguments only (
f. diagonal dominan
e result inTheorem 3.1). This is similar to the analysis of the smoothing property in multigrid
onvergen
e theory, whi
h is also based on linear algebra arguments only (
f. [18℄). For aninterpretation of the term k[ Arb ~Drr ℄(A(0))�1k (39)in the righthand side of (38) we de�ne the seminorm jwj := k[ Arb ~Drr ℄wk for w 2 IRn.Bounds for k(A(0))�1k, i.e. (A(0))�1 : (IRn; k �k) ! (IRn; k �k), 
orrespond to the 
lassi
alnotion of stability. A bound for (39) is equivalent to a bound for(A(0))�1 : (IRn; k � k) ! (IRn; j � j): (40)In our appli
ations the matrix [ Arb ~Drr ℄ 
orresponds to a di�eren
e operator whi
his similar to the underlying di�erential operator and the norm j � j measures di�eren
es(smoothness). In multigrid 
onvergen
e theory one 
an �nd results (
f. [18℄, Chapter 6) inwhi
h, for dis
retized ellipti
 boundary value problems, bounds for (A(0))�1 as an operatorbetween spa
es with di�erent smoothness properties (as in (40) ) are derived. Su
h results
an be 
onsidered as dis
rete 
ounterparts of results in regularity theory for 
ontinuousellipti
 boundary value problems, in whi
h for an operator L : H10 (
) ! H�1(
)boundedness of L�1 : H�1+s ! H1+s(
)\H10 (
) with s > 0 is analyzed. If, for example,L 
orresponds to the Lapla
ian on the unit square with zero Diri
hlet boundary 
onditions,then the boundedness of L�1 : L2(
) ! H2(
) \H10 (
) is a 
lassi
al regularity result.A 
orresponding dis
rete regularity result is presented in [18℄ Se
tion 6.3.2.Related to the robustness of our pre
onditioning te
hnique (
f. experiments in Se
tion 7) itis important to note that the seminorm j � j is strongly problem dependent. In Se
tion 4 wewill indi
ate that due to this, for 
ertain interesting problems whi
h have poor regularityin the 
lassi
al multigrid sense, one 
an still expe
t a small bound for (40). We emphasize13



that, in general, one 
an not expe
t to derive reasonable bounds for (40) using linear algebraarguments only. As in multigrid analyses, in this derivation we need that the matrix A isthe dis
rete analogon of a di�erential operator.Remark 3.8 In our implementation we use ~A(2)bb as a S
hur 
omplement approximation.As explained above, this approximation has favourable stability and 
onsisten
y properties.By 
onstru
tion this approximation is sparse. However, due to the o

uren
e of some �ll-in, ~A(2)bb is in general less sparse than A. Re
ursive appli
ation of the same te
hnique mayresult in relatively dense S
hur 
omplement approximations on very 
oarse graphs. Ourappli
ations (pde's) are su
h that �ll-in between two verti
es whi
h have a long mutualdistan
e in the graph is very small 
ompared to the 
orresponding diagonal entry. Hen
ewe introdu
e a parameter MSIZE 2 IN . Typi
ally, MSIZE 2 (2�(A); 3�(A)). If a 
ertainvertex in the digraph of ~A(2)bb has degree d > MSIZE then we modify the 
orrespondingrow of ~A(2)bb using a 
ommon lumping te
hnique: we add the d� MSIZE in absolute valuesmallest o�-diagonal entries to the diagonal entry and then repla
e these o�-diagonal entriesby zeros. Using this modi�
ation we obtain S
hur 
omplement approximations (on all
oarser graphs) for whi
h the 
orresponding digraph has a maximum degree that is boundedby MSIZE.Assume that (6) holds. Then for ~A(2)bb we have the (stability) properties (25), (26). Thelumping te
hnique that we use preserves these properties. In the generi
 
ase the S
hur
omplement approximation after lumping is (still) nonsingular and then (
f. proof of (27))this S
hur 
omplement approximation is a sparse weakly diagonally dominant M-matrix.Hen
e the method and the analysis of this se
tion 
an be applied re
ursively.4 ExamplesIn this se
tion we analyze a few model problems from the pde �eld for whi
h we 
anquantify the bound in Theorem 3.6 (
f. Remark 3.7) We 
onsider a di�usion equation, ananisotropi
 di�usion equation and a 
onve
tion-di�usion equation. In all three examplesbelow we treat a standard �nite di�eren
e dis
retization of a 
onstant 
oeÆ
ient problemon a square domain 
 = (0; 1)2. We use a square mesh with mesh size denoted by h andassume periodi
 boundary 
onditions.We analyze the bound (38) in the Eu
lidean norm k � k2, i.e. we 
onsider the two termskAbr(Ir �D�1rr Arr)k�1 ~D�1rr k2 (41)and k[ Arb ~Drr ℄(A(0))�1k2 : (42)The analysis of the �rst term is based on simple linear algebra arguments (e.g. Gershgorintheorem). For this analysis the restri
tion to 
onstant 
oeÆ
ient problems with periodi
boundary 
onditions is not relevant. A similar analysis 
an be applied for other problems(e.g. varying 
oeÆ
ients). For a simple treatment of the se
ond term (42) the standard14



Fourier analysis is applied. For this the restri
tion to 
onstant 
oeÆ
ient problems withperiodi
 boundary 
onditions is 
ru
ial.We note that for the �rst example (Poisson equation) the 
ase with homogeneous Diri
hletboundary 
onditions 
an be analyzed along the same lines. The results for this Diri
hlet
ase are essentially the same as for the 
ase with periodi
 boundary 
onditions.For the parameter � used in the red-bla
k partitioning (
f. (8)) we take � = 0:7.Example 1 (Poisson equation). We 
onsider the standard �ve-point dis
retization of thePoisson equation with sten
il [A℄ = 1h2 264 �1�1 4 �1�1 375 : (43)In this situation all edges in the digraph are labeled strong and the redu
ed graph is equalto the original graph. One possible maximal independent set is obtained from standardred-bla
k 
oloring of the grid. Then Arr is diagonal and Drr = ~Drr = Arr. The S
hur
omplement approximation is exa
t (i.e. A(k)bb = ~A(k)bb = Sbb for all k) and results in a S
hur
omplement with sten
il [Sbb℄ = 12h2 264 � 12 �1 � 12�1 6 �1� 12 �1 � 12 375 : (44)We now de�ne A := Sbb and apply one further 
oarsening step to this S
hur 
omplementmatrix. The edges in the digraph 
orresponding to the matrix entries � 12 are labeled weak.Hen
e the redu
ed digraph has a stru
ture whi
h 
orresponds to the �ve-point sten
il264 �� � �� 375 and, as in the 
ase of the �ve-point sten
il in (43), one possible maximalindependent set (of the redu
ed digraph) is obtained by standard red-bla
k 
oloring of thegrid. This then results in sten
ils[Arr℄ = 12h2 264 � 12 � 126� 12 � 12 375 ; [Arb℄ = 12h2 264 �1�1 �1�1 375 ; [Abr℄ = 12h2 264 �1�1 �1�1 375 :Hen
e Drr = 62h2 Ir, ~Drr = 42h2 Ir.We �rst 
onsider the term (41). Using kAbrk22 � kAbrk1kAbrk1 � 164h4 , k ~Drrk2 = 2h2 and aGershgorin theorem, we obtainkAbr(Ir �D�1rr Arr)k�1 ~D�1rr k2 � kIr �D�1rr Arrkk�12 � (13)k�1:
15



With respe
t to the term (42) we note that [ Arb ~Drr ℄(A(0))�1 = [ ; Ir ℄ ~A(A(0))�1,where ~A and A(0) have sten
ils[ ~A℄ = 12h2 264 �1�1 4 �1�1 375 ; [A(0)℄ = 12h2 264 � 12 �1 � 12�1 6 �1� 12 �1 � 12 375 :A straightforward Fourier analysis yields k[ Arb ~Drr ℄(A(0))�1k2 � 1.Theorem 3.6 now yields kIb � ~A(k)bb S�1bb k2 � (13)k�1 :We 
on
lude that, already for k = 2, ~A(k)bb is a good pre
onditioner for Sbb uniformly in h.One easily veri�es that in this example a similar bound, whi
h is independent of h, doesnot hold for A(2)bb .Example 2 (Anisotropi
 di�usion equation). We 
onsider the �ve-point dis
retization ofan anisotropi
 di�usion equation with sten
il[A℄ = 1h2 264 �"�1 2 + 2" �1�" 375 ; with 0 < " < 12 : (45)The edges in the digraph 
orresponding to the matrix entries �" are labeled weak. Hen
ethe redu
ed digraph has a stru
ture whi
h 
orresponds to the three-point sten
il [ � � � ℄.One possible maximal independent set (of the redu
ed digraph) is obtained by standardsemi-
oarsening (i.e. 
oarsening by a fa
tor 2 in the x-dire
tion only) of the grid. Thisthen results in sten
ils[Arr℄ = 1h2 264 �"2 + 2"�" 375 ; [Arb℄ = 1h2 h �1 � �1 i ; [Abr℄ = 1h2 h �1 � �1 i :Hen
e Drr = 2+2"h2 Ir, ~Drr = 2h2 Ir. Along the same lines as in Example 1 we obtain for theterm (41): kAbr(Ir �D�1rr Arr)k�1 ~D�1rr k2 � kIr �D�1rr Arrkk�12 � ( ""+ 1)k�1:Related to the term (42) we note that[ Arb ~Drr ℄(A(0))�1 = [ ; Ir ℄ ~A(A(0))�1 ;where ~A and A(0) have sten
ils[ ~A℄ = 1h2 264 0�1 2 �10 375 ; [A(0)℄ = 1h2 264 �"�1 2 + 2" �1�" 375 :16



Note that the algebrai
 regularity is measured using the di�eren
e operator ~A whi
h 
on-tains di�eren
es only in the dire
tion of the strong edges (
f. Remark 3.7). In the 
lassi
almultigrid 
onvergen
e analysis there is a severe deterioration of regularity for " # 0 (
f.[31℄). Here , however, due to the problem dependent measure of regularity, a Fourieranalysis yields k[ Arb ~Drr ℄(A(0))�1k2 � 1:From Theorem 3.6 we obtain kIb � ~A(k)bb S�1bb k2 � ( ""+ 1)k�1 :We 
on
lude that, already for k = 2, ~A(k)bb is a good pre
onditioner for Sbb, uniformly in "and h.Remark 4.1 Note that ~A(A(0))�1 is bounded uniformly in the parameters h; " ("algebrai
regularity"), but that (A(0)) ~A�1 is not uniformly bounded. If we de�ne ~Sbb to be theS
hur 
omplement on ~A, one easily veri�es that also Sbb~S�1bb is not uniformly bounded.Hen
e, this example shows that simply taking the S
hur 
omplement of the redu
ed matrix(obtained by lumping all small o�-diagonal entries to the diagonal) as a S
hur 
omplementapproximation, is not a satisfa
tory approa
h.Example 3 (Conve
tion-di�usion equation). We 
onsider the �ve-point dis
retization of a
onve
tion-di�usion equation with sten
il[A℄ = 1h 264 �"�1� " 1 + 4" �"�" 375 ; with 0 < " < 2 : (46)Note that if " > 73 then all edges are labeled strong and graph 
oarsening is done as for thepure di�usion sten
il (43) of Example 1. For the 
ase 0 < " < 2, i.e. strong 
onve
tion,the edges in the digraph 
orresponding to the matrix entries �" are labeled weak. Hen
ethe redu
ed digraph has a stru
ture whi
h 
orresponds to the two-point sten
il [ � � � ℄.One possible maximal independent set (of the redu
ed digraph) is obtained by standardsemi-
oarsening (i.e. 
oarsening by a fa
tor 2 in the x-dire
tion only) of the grid. Thisthen results in sten
ils[Arr℄ = 1h 264 �"1 + 4"�" 375 ; [Arb℄ = 1h h �1� " � �" i ; [Abr℄ = 1h h �1� " � �" i :Hen
e Drr = 1+4"h Ir, ~Drr = 1+2"h Ir. As in the previous two examples, we obtain:kAbr(Ir �D�1rr Arr)k�1 ~D�1rr k2 � kIr �D�1rr Arrkk�12 � ( 2"4"+ 1)k�1:17



Related to the term (42) we note that[ Arb ~Drr ℄(A(0))�1 = [ ; Ir ℄ ~A(A(0))�1 ;where ~A and A(0) have sten
ils[ ~A℄ = 1h 264 0�1� " 1 + 2" �"0 375 ; [A(0)℄ = 1h 264 �"�1� " 1 + 4" �"�" 375 :As in Example 2, the regularity is measured using a di�eren
e operator whi
h 
ontainsdi�eren
es only in the dire
tion of the strong edges. A simple Fourier eigenvalue analysisyields k ~A(A(0))�1k2 � 1 ;and hen
e k[ Arb ~Drr ℄(A(0))�1k2 � 1 . Thus we obtainkIb � ~A(k)bb S�1bb k2 � ( 2"4"+ 1)k�1 :We 
on
lude that, already for k = 2, ~A(k)bb is a good pre
onditioner for Sbb, uniformly in "and h.5 Approximate 
y
li
 redu
tion pre
onditionerIn this se
tion we present the approximate 
y
li
 redu
tion pre
onditioner. In the presenta-tion we distinguish two phases: a de
omposition phase (
onstru
tion of the pre
onditioner)and a solution phase (appli
ation of the pre
onditioner). In the de
omposition phase weonly need the matrix A 2 IRn�n. In the solution phase we need the right hand side b andthe de
omposition resulting from the de
omposition phase.De
omposition phase. We assume a sparse matrix A 2 IRn�n. The 
orrespondingordered digraph has a vertex set that is represented as f1; 2; : : : ; ng. Dimbound, with1 < Dimbound < n is a given integer (used in D5 below). Set i := 1, A1 := A, m0 := n.D1. Red-bla
k partitioning of the vertex set . Given the digraph of Ai we make a red-bla
k partitioning of the verti
es. We use the method of Se
tion 3.1. In this method weuse a parameter �, with 0 � � < 1. This results in ni verti
es with label red and miverti
es with label bla
k. Note: mi + ni = mi�1.D2. Determine permutation. We determine a symmetri
 permutation pi : f1; 2; :::; mi�1g! f1; 2; :::; mi�1g su
h that applying this permutation to the set of verti
es results in anordering in whi
h all verti
es with label red have index j 2 (mi; mi�1℄ and all verti
es withlabel bla
k have index j 2 [1; mi℄. Note that sin
e we only have to permute between the sets18



fj j j > mi and label(j) = bla
kg and fj j j � mi and label(j) = redg, su
h a permutation
an be fully 
hara
terized by a permutation p̂i : fmi + 1; mi + 2; :::; mi�1g ! f1; 2; :::; mig.D3. Determine permuted matrix . The symmetri
 matrix 
orresponding to the permu-tation pi of D2 is denoted by Pi. We determine PiAiPi. This matrix has a 2 � 2-blo
krepresentation: PiAiPi = 24 Abbi AbriArbi Arri 35 ; (47)with Arri 2 IRni�ni, Abbi 2 IRmi�mi , Arbi 2 IRni�mi , Abri 2 IRmi�ni.D4. Compute S
hur 
omplement approximation. Compute an approximation Ai+1 2IRmi�mi of the S
hur 
omplement PiAiPi=Arri . We use the approximation resulting aftertwo point-Gaussian type of elimination steps as explained in Remark 3.8. We use a pa-rameter MSIZE.D5. Store. Save mi; p̂i;Arri ;Arbi ;Abri . If mi < Dimbound then save Ai+1 (stop the re-du
tion pro
ess) else i := i + 1 and goto D1.If this de
omposition pro
ess stops with i = imax, we obtain integersm1 > m2 > ::: > mimax ,permutation ve
tors p̂i (1 � i � imax), sparse matri
es Arri ;Arbi ;Abri (1 � i � imax) andthe approximate S
hur 
omplement on the highest level Aimax+1. We use the following ter-minology: p̂i is 
alled the permutation operator on level i, Arri is 
alled the solve operatoron level i, Arbi is 
alled the 
olle
t operator on level i, Abri is 
alled the distribute operatoron level i.The red verti
es on all levels, together with the bla
k verti
es on the �nal level indu
e adire
t sum de
omposition IRn = IRn1 � IRn2 � : : :� IRnimax � IRmimax . The verti
es on leveli with label red are assigned the level number i, and the verti
es on level imax with labelbla
k are assigned level number imax + 1. The verti
es (unknowns) with level number jare 
alled the level j verti
es (unknowns). Note that every vertex has a unique level number.Solution phase. For a 
lear des
ription of the solution phase we introdu
e permute,
olle
t, distribute and solve operations. These operations use the 
orresponding operatorswhi
h are available from the de
omposition phase. We give a des
ription in a pseudo-programming language.pro
edure permuteoperation(i: integer; var x 2 IRmi�1) (� uses p̂i�)for j := mi + 1 to mi�1 doif j 6= p̂i(j) then inter
hange xj and xp̂i(j);pro
edure 
olle
toperation(i: integer; var x 2 IRni; g 2 IRmi) (� uses Arbi �)
ompute x := x�Arbi g; 19



pro
edure distributeoperation(i: integer; var x 2 IRmi ; g 2 IRni) (� uses Abri �)
ompute x := x�Abri g;pro
edure solveoperation(i: integer; var x 2 IRni) (� uses Arri �)solve Arri w = x approximately. We use � Gauss-Seidel iterations with starting ve
tor(diag(Arri ))�1x. The result is written in x.pro
edure highestlevelsolve(var x 2 IRmimax ) (� uses Aimax+1�)solve Aimax+1w = x; x := w;Using these pro
edures it is easy to formulate the ba
kward and forward substitutionpro
ess, i.e. the solution phase, of the approximate 
y
li
 redu
tion pre
onditioner. Onea
h level i (1 � i � imax + 1) we de�ne ULsolve as follows:pro
edure ULsolve(i: integer; var f 2 IRmi�1);var fred 2 IRni;beginif i = imax + 1 then highestlevelsolve(f) elsebeginpermuteoperation(i; f);partition f =  fbfr ! with fr 2 IRni, fb 2 IRmi ;make a 
opy fred := fr;solveoperation(i; fred);distributeoperation(i; fb ; fred);ULsolve(i + 1; fb);
olle
toperation(i; fr ; fb);solveoperation(i; fr);permuteoperation(i; f);endend;An approximate solution of Ax = b results from the 
all ULsolve(1;b). The stru
ture ofULsolve is similar to the stru
ture of the multigrid V -
y
le algorithm as presented in [18℄.The distribute and 
olle
t operations 
orrespond to the multigrid restri
tion and prolon-gation respe
tively. The solve operation 
orresponds to the smoother in multigrid. Note,however, that in ULsolve we do not use any grid information and that every unknown isinvolved in the solve operations of pre
isely one level (as in hierar
hi
al basis multigrid, 
f.[1℄).If in the de
omposition phase all S
hur 
omplement approximations (whi
h are 
omputedin step D4) are stored, then an algebrai
 version of the 
lassi
al multigrid method 
an beimplemented. This version then uses smoothing in all �ne grid points and the 
onvergen
erate will be improved. In this approa
h we 
an also use a W-
y
le instead of a V-
y
le.20



Note that for this version, in view of eÆ
ien
y, the "rate of 
oarsening" has to be 
ontrolled.In our opinion the pre
onditioner as presented in this se
tion is mu
h easier to implementthan the algebrai
 version of 
lassi
al multigrid, due to the fa
t that in the former methodevery unknown is on pre
isely one level.6 Implementation issuesIn Se
tion 5 we presented the approximate 
y
li
 redu
tion pre
onditioner. In Se
tion 7 weuse this pre
onditioner in a standard Krylov subspa
e method. In this se
tion we brie
ydis
uss a few implementation aspe
ts of the pre
onditioner.For the implementation of the pre
onditioner we �rst 
onsider the standard 
y
li
 re-du
tion method for a tridiagonal matrix (
f. Se
tion 2). This method 
an be implementedalong the lines as explained in Se
tion 5. Hen
e we �rst make an implementation of thede
omposition phase 
onsisting of the pro
edures D1-D5. However, for the tridiagonal
ase, in D1 we use the natural odd-even numbering and in D4 we 
ompute the S
hur 
om-plement exa
tly (apart from rounding errors), be
ause Arr is diagonal. We implement thepro
edures D2, D3, D5 as explained in Se
tion 5. For the solution phase we implementthe pro
edure ULsolve as explained in Se
tion 5. In the subroutine solveoperation we
an take � = 0 be
ause Arri is diagonal and thus the solution of Arri w = x is given byw = (diag(Arri ))�1x. This then yields an implementation of the 
lassi
al 
y
li
 redu
tionmethod for a tridiagonal matrix. The implementation of this dire
t solver uses an arbitrarysparse matrix format (e.g. Compressed Row Storage or Ellpa
k-Itpa
k format) and 
anbe tested by applying it to tridiagonal matri
es. Note that this implementation of 
y
li
redu
tion, for a tridiagonal matrix, has a 
lear modular stru
ture.The 
y
li
 redu
tion pre
onditioner for a general sparse matrix is obtained by modifyinga few subroutines in this implementation: in D1 we use a more general red-bla
k parti-tioning te
hnique (as in Se
tion 3.1), in D4 we use a suitable sparse S
hur 
omplementapproximation approa
h and in the subroutine solveoperation we use � > 0 Gauss-Seidel iterations. We emphasize that all other 
omponents in the implementation of the
lassi
al 
y
li
 redu
tion method and also the sparse matrix data stru
ture are not altered.In this sense, the implementation of the 
lassi
al 
y
li
 redu
tion solver (for a tridiagonalmatrix) yields an implementation of the approximate 
y
li
 redu
tion pre
onditioner (fora general sparse matrix) with only little additional e�ort.The implementation of a Gauss-Seidel method (or any other basi
 iterative method) in thesubroutine solveoperation is straightforward. Below we brie
y 
omment on the imple-mentation of the modi�
ations in step D1 and step D4 of the de
omposition phase.In step D1 we �rst have to label the edges in the digraph with "strong" or "weak". Usingthe 
riterion (8) this is straightforward. Then we 
onsider the redu
ed digraph GA(V;Es)as explained in Se
tion 3.1 and we want to 
ompute a maximal independent set M ofthis redu
ed digraph. Di�erent te
hniques for 
onstru
ting a maximal independent set21



are known. Several possible algorithms are given in [14℄, [28℄. We sket
h our method for
onstru
ting a maximal independent set M . The algorithm 
onsists of a graph traversal,i.e. visiting all the verti
es of GA(V;Es) in a systemati
 way, and a labeling method. Onewell-known algorithm for graph traversal is the breadth �rst sear
h (BFS), 
f. [21℄. TheBFS algorithm starts with a vertex v 2 V and marks it as visited. Unvisited verti
esadja
ent from v are visited next. Then unvisited verti
es adja
ent from these verti
es arevisited and so on. This approa
h is applied to every 
onne
ted 
omponent of GA(V;Es).A detailed des
ription 
an be found in [21℄.For the labeling method we initialize with label(v) := white for all v 2 V . Let v0 be the
urrently visited vertex in the BFS algorithm. If v0 is an isolated vertex, i.e. there areno verti
es adja
ent from v0 and label(v0) =white we de�ne label(v0) :=red. If v0 is notisolated then we apply:if label(v0) = white thenif label(w) 2 fwhite, bla
kg for all w adja
ent from v0 thenlabel(v0) := red;label(w) := bla
k for all w adja
ent from v0endif elselabel(v0) := bla
kendif.This results in a red-bla
k partitioning of the vertex set V and the set of red verti
esis a maximal independent set of the redu
ed digraph GA(V;Es).In the modi�
ation of step D4 we approximate the S
hur 
omplement using the pointGaussian type of elimination te
hnique as explained in Se
tion 3.2. In the pre
onditioner
onsidered here we use ~A(2)bb as a sparse approximation of Sbb. In Remark 3.5 it is explainedthat we 
an represent this S
hur 
omplement approximation using a Galerkin approa
hwith matrix dependent prolongation and restri
tion. One 
ould use an implementationbased on this representation. Here we dis
uss another implementation based on a pointGaussian elimination te
hnique as formulated, in linear algebra terms, in (16), (17). Inthis implementation we distinguish two steps. In the �rst step we 
ompute A(1) de�ned in(16) and in the se
ond step we 
ompute ~A(2)bb using (17).We use the notation Vr = f v 2 V j label(v) = red g; Vb = f v 2 V j label(v) = bla
k gand N(v) := N(v) [ fvg ; v 2 V . Given the matrix A = (auv) ; u 2 V; v 2 N(u) wedes
ribe the implementation of the basi
 transformationA := 264 Ib �AbrD�1rr; Ir 375A ; (48)used in (16). As indi
ated in (48), instead of using an iteration index (k in (16)) we over-write the matrix with new results. Hen
e Abb and Abr are overwritten by Abb�AbrD�1rr Arband Abr �AbrD�1rr Arr, respe
tively. For storage of intermediate results we need a sparse22



matrix Tbr = (tuv) ; u 2 Vb; v 2 Vr. In Tbr we store AbrD�1rr Arr. A transformation as in(48), 
an be implemented as follows:8u 2 Vb 8v 2 (N(u) \ Vr) : tuw = 0 for all w 2 (N(v) \ Vr) (initialization).for all u 2 Vb dofor all v 2 (N(u) \ Vr) dofor all w 2 N(v) doif w 2 Vb thenauw := auw � auvavwavv (
ompute Abb �AbrD�1rr Arb) (�)elsetuw := tuw � auvavwavv (
ompute AbrD�1rr Arr)endifendforendforendfor8u 2 Vb 8v 2 (N(u)\Vr) : auw := auw�tuw for allw 2 (N(v)\Vr) (overwriteAbr)This des
ribes the �rst step for the 
omputation of the approximate S
hur 
omplement.Note that in
reasing k in (16) 
orresponds to repeating this pro
edure, using the updatedmatrix A as the input for the next step. In our pre
onditioner, however, in view of thein
rease of �ll-in we apply this pro
edure only on
e (k = 1 in (16)). In the se
ond step ofthe 
omputation of the approximate S
hur 
omplement we implement the point Gaussianelimination step (17) with k = 2, resulting in ~A(2)bb = A(1)bb � A(1)br ~D�1rr Arb. Sin
e in the�rst step we have overwritten the given matrix A by the matrix A(1) we use the notation~A(2)bb = Abb �Abr ~D�1rr Arb. Let ~du ; u 2 Vr be the ve
tor whi
h 
orreponds to the diagonalof ~Drr. Using this notation the se
ond step, i.e. the 
omputation of ~A(2)bb from A(1), 
anbe implemented similar to (�) above:for all u 2 Vb dofor all v 2 (N(u) \ Vr) dofor all w 2 (N(v) \ Vb) doauw := auw � auvavw~dvvendforendforendforNote that here N(u) (N(v)) 
orresponds to the neighbourhood of u (v) in the digraphof the matrix A = A(1) whi
h resulted from the �rst step.As a �nal implementation issue, we brie
y dis
uss the storage of information. The de
om-position phase yields imax+1 levels and every vertex has a unique level number. The matrixAimax+1 (approximate S
hur 
omplement on the highest level) 
an be stored by assigning23



to ea
h level imax + 1 vertex one row of Aimax+1. All the information in p̂i;Arri ;Arbi ;Abri(1 � i � imax) 
an be stored by assigning to ea
h level i vertex the 
orresponding p̂i entry ,one row of Arri , one row of Arbi and one 
olumn of Abri . The amount of information thusstored at a level i vertex is fully determined by the sparsity of the matrix Ai. On leveli = 1 this sparsity is given and on level i > 1 it is 
ontrolled by the parameter MSIZE asexplained in Remark 3.8.Remark 6.1 The approximate 
y
li
 redu
tion pre
onditioner has a 
lear modular stru
-ture. This makes it easy to implement modi�ed versions, in whi
h, for example, we useother red-bla
k partitioning te
hniques (in D1), another S
hur 
omplement approximation(in D4) or other basi
 iterative solvers (in solveoperation ). In this paper we restri
tourselves to the basi
 form as presented in Se
tion 5 and we do not 
onsider modi�ed ver-sions. However, as a result of further resear
h 
ertain modi�
ations might be re
ommendedfor 
ertain problem 
lasses.In the pre
onditioner we use the parameters: �, MSIZE, Dimbound and �. We do not 
on-sider optimization of the eÆ
ien
y of the pre
onditioner with respe
t to these parameters,but use (reasonable) �xed default values (
f. Se
tion 7).7 Numeri
al experimentsIn this se
tion we show results of a few numeri
al experiments with the approximate
y
li
 redu
tion pre
onditioner. We use its basi
 form as presented in Se
tion 5. For theparameters we use the following default values in all experiments: � = 0:7, MSIZE= 14,Dimbound = 50 and � = 2.In all experiments we use a righthand side b � 0 and a starting ve
tor x = (1; 1; :::; 1)T .We 
onsider two methods:� GMRES(5): standard GMRES method with restart after 5 iterations.� GMRES(5)+ pre
onditioning: standard left-pre
onditioned GMRES(5); we use theapproximate 
y
li
 redu
tion pre
onditioner.Sin
e we are mainly interested in the performan
e of the pre
onditioner, we present resultsonly for GMRES(5), although for 
ertain problems below the use of other outer iterations(e.g. CG) might have been more eÆ
ient. In all �gures below the unit on the horizontalaxis is one (pre
onditioned) GMRES(5) iteration, whi
h 
onsists of 5 standard (pre
ondi-tioned) GMRES iterations.Experiment 1. We 
onsider the 
onve
tion-di�usion equation:8<: �"�u+ a(x; y)ux + b(x; y)uy = f in 
 = (0; 1)2 ;u = 0 on �
 :24



The fun
tions a; b are de�ned by: a(x; y) = 0:1 if (x; y) 2 (0:5; 0:8)2 and a(x; y) = 100otherwise; b(x; y) = 0:2 if (x; y) 2 (0:5; 0:8)2 and b(x; y) = 200 otherwise.We use a uniform square mesh with mesh size h and a �nite di�eren
e dis
retization withsten
il [A℄ = "2h2 264 �12 �1 �12�1 6 �1�12 �1 �12 375 + 1h 2664 0 0 0� a2a+b a2+ab+b2a+b 0� aba+b �b2a+b 0 3775 :The dis
retization of the 
onve
tion term is as in [22℄. We 
onsider h = 1=96 (i.e. 9025unknowns). The resulting linear system is solved approximately using GMRES(5) (+ pre-
onditioner). For several values of "=h the 
onvergen
e behaviour of GMRES(5) is shownin Figure 1a. As expe
ted, we observe slow 
onvergen
e and an undesirable dependen
eof the 
onvergen
e behaviour on the parameter "=h. In Figure 1b we show the resultsfor GMRES(5) with approximate 
y
li
 redu
tion pre
onditioner. In the pre
onditioned
ase we observe a smoother and mu
h faster 
onvergen
e behaviour. Note that, althoughthe problem appears to be more diÆ
ult for smaller values of "=h, the 
onvergen
e rateimproves signi�
antly if "=h de
reases. For "=h = 1 the 
oarsening strategy yields 11 levelswith mi = 9025; 4513; 2534; 1381; 777; 437; 255; 140; 80; 50; 32 for i = 0; 1; : : : ; 10.For "=h = 103 and "=h = 10�3 we obtain similar results for the 
oarse graph orders mi.
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Figure 1a Figure 1bExperiment 2. We 
onsider a rotated anisotropi
 equation (
f. [34℄):8<: �("
2 + s2)uxx � 2("� 1)
suxy � ("s2 + 
2)uyy = f in 
 = (0; 1)2 ;u = 0 on �
 :with 0 < " < 1, 
 = 
os�; s = sin�. For the angle � = �(x; y) we take � = �4 if x � 12 and� = ��4 if x > 12 . We use a standard �nite di�eren
e dis
retization on a uniform square25



mesh with mesh size h, resulting in a dis
rete operator with sten
ils[A℄ = 1h2 264 12("� 1) �" 0�" 3"+ 1 �"0 �" 12("� 1) 375 ; [A℄ = 1h2 264 0 �" 12("� 1)�" 3"+ 1 �"12("� 1) �" 0 375on the left half (x � 12) and the right half (x > 12) of the domain, respe
tively. Note thatfor " � 1 there are strong anisotropies in di�erent dire
tions. We take h = 1=96. Forseveral values of " the results for GMRES(5) with and without pre
onditioning are shownin Figure 2b and Figure 2a, respe
tively. For " = 0:01 the 
oarsening strategy yields 10levels with mi = 9025; ; 4467; 2214; 1142; 586; 306; 173; 101; 57; 30; for i = 0; 1; : : : ; 9.
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Figure 2a Figure 2bExperiment 3 . We take SHERMAN3 from the Harwell-Boeing 
olle
tion. This is a sym-metri
 matrix of order 5005 with 20033 nonzero entries. The 
onvergen
e for GMRES(5)with and without pre
onditioning is shown in Figure 3b and Figure 3a, respe
tively.
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Figure 3a Figure 3bRemark 7.1 To give an indi
ation of the arithmeti
 
osts of the pre
onditioner we 
on-sider two typi
al examples: Experiment 1 with "h = 1 and Experiment 3. We only 
onsiderthe 
osts for the evaluation of the pre
onditioner, i.e. one 
all of ULsolve(1;b). In these(typi
al) examples the arithmeti
 work needed for the 
onstru
tion of the pre
onditioneris less than the work needed in one 
all of ULsolve(1;b). As a unit of arithmeti
 workwe use a MATVEC, whi
h is the work needed for one matrix-ve
tor multipli
ation withthe given matrix A. In Experiment 1 with "h = 1 the matrix A 
ontains approximately81000 nonzero entries. The union of the Arri matri
es over all levels 
ontains approximately53000 nonzero entries. Hen
e the appli
ation of 4 Gauss-Seidel iterations (2 in ea
h 
all ofsolveoperation) is roughly equivalent to 2.6 MATVEC. The union of the Arbi (Abri ) overall levels 
ontains approximately 55000 (54000) nonzero entries. Hen
e the total 
osts forthe appli
ation of the 
olle
t and distribute operations in ULsolve(1;b) is 
omparable to1.3 MATVEC. Thus, in this example, the total 
osts in one evaluation of the pre
onditioneris approximately 3.9 MATVEC. Note that for the pre
onditioner we have to store 162000reals, whi
h is 
omparable to 2 times the amount of storage needed for A. In Experiment3 we have a matrix A with � 20000 nonzero entries. In the union of the Arri we haveapproximately 16000 nonzero entries. Hen
e the 4 Gauss-Seidel iterations have 
osts � 3.2MATVEC. In the union of the Arbi (Abri ) there are � 15000 (15000) nonzeros. Hen
e the
olle
t and distribute operations have total 
osts � 1.5 MATVEC. The total 
osts, in thisexample, for one 
all of ULsolve(1;b) are roughly 4.7 MATVEC. The spa
e needed forstorage of the pre
onditioner is 
omparable to 2.3 times the memory spa
e needed for A.We note that in all other experiments presented above, the 
osts of one ULsolve evaluationare between 3 and 5 MATVEC.Experiment 4 . We take ORSREG1 from the Harwell-Boeing 
olle
tion. This is a non-symmetri
 matrix from oil reservoir simulation of order 2205 with 14133 nonzero en-tries. The results for GMRES(5) with and without pre
onditioning are shown in Fig-ure 4b and Figure 4a, respe
tively. For the 
oarsening strategy yields 7 levels withmi = 2205; 882; 441; 220; 94; 58; 32; for i = 0; 1; : : : ; 6.
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Figure 4a Figure 4bRemark 7.2 In this paper we have analyzed an approximate 
y
li
 redu
tion pre
ondi-tioning te
hnique. In the numeri
al experiments we 
onsidered a basi
 variant with �xeddefault parameter values. Clearly there are many possible other variants. Here we men-tion one parti
ular variant in whi
h we allow the parameter MSIZE (
f. Remark 3.8) tobe level dependent. In numeri
al experiments we observed that allowing more �ll-in onhigher levels (in
reasing MSIZE if the level number i in
reases ) may yield a signi�
antimprovement in the eÆ
ien
y of the pre
onditioner. A systemati
 study of this and othervariants is left for future resear
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