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he Mathematik, RWTH Aa
hen,Templergraben 55, D-52056 Aa
hen, GermanyAbstra
t. We present a pre
onditioning method for the iterative solution of large sparse systems of equa-tions. The pre
onditioner is based on ideas both from ILU pre
onditioning and from multigrid. The result-ing pre
onditioning te
hnique requires the matrix only. A multilevel stru
ture is obtained by 
onstru
tinga maximal independent set of the graph of a redu
ed matrix. The 
omputation of a S
hur 
omplementapproximation is based on a Galerkin approa
h with a matrix dependent prolongation and restri
tion.The resulting pre
onditioner has a transparant modular stru
ture similar to the algorithmi
 stru
ture of amultigrid V -
y
le. The method is applied to symmetri
 positive de�nite and inde�nite Helmholtz problems.The multilevel pre
onditioner is 
ompared with standard ILU pre
onditioning methods.1 Introdu
tionMultigrid methods are very eÆ
ient iterative solvers for the large systems of equations result-ing from dis
retization of partial di�erential equations (
f. [11,26℄ and the referen
es therein). Animportant prin
iple of multigrid is that a basi
 iterative method, whi
h yields appropriate lo
al
orre
tions, is applied on a hierar
hy of dis
retizations with di�erent 
hara
teristi
 mesh sizes. Thismultilevel stru
ture is of main importan
e for the eÆ
ien
y of multigrid.Another 
lass of eÆ
ient iterative solvers 
onsists of Krylov subspa
e methods 
ombined with ILUpre
onditioning (
f. [8,20℄ and the referen
es therein). These methods only need the matrix andare in general easier to implement than multigrid methods. Also the Krylov subspa
e methodsare better suitable for a "bla
k-box" approa
h. On the other hand, for dis
retized partial di�eren-tial equations the Krylov methods with ILU pre
onditioning are often less eÆ
ient than multigridmethods.In the multigrid �eld there have been developed methods whi
h have a multilevel stru
ture butrequire only the matrix of the linear system. These are 
alled algebrai
 multigrid methods. Ap-proa
hes towards algebrai
 multigrid are presented in, e.g. [7,9,19,23,25℄. In all these methods onetries to mimi
 the multigrid prin
iple. First one introdu
es a reasonable 
oarse "grid" spa
e. Thena prolongation operator is 
hosen and for the restri
tion one usually takes the adjoint of the pro-longation. The operator on the 
oarse grid spa
e is de�ned by a Galerkin approa
h. With these
omponents, a standard multigrid approa
h (smoothing + 
oarse grid 
orre
tion) is applied. Thesealgebrai
 multigrid methods 
an be used in situations where a grid (hierar
hy) is not available.Also these methods 
an be used for developing bla
k-box solvers.Re
ently there have been developed ILU type of pre
onditioners with a multilevel stru
ture, 
f.[5,6,16,21,22℄. The multilevel stru
ture is indu
ed by a level wise numbering of the unknowns. In[2,3,17,18℄, new hybrid methods have been presented, whi
h use ideas both from ILU (in
ompleteGaussian elimination) and from multigrid.In the present paper we re
onsider the approximate 
y
li
 redu
tion pre
onditioner of [17,18℄.This method is based on the re
ursive appli
ation of a two-level method, as in 
y
li
 redu
tion orin a multigrid V-
y
le method. For the de�nition of a two level stru
ture we use two important
on
epts: a redu
ed graph and a maximal independent set. The partitioning of the set of unknowns,denoted by the labels "red " and "bla
k", yields a 
orresponding blo
k-representation of the given



2 Arnold Reuskenmatrix A: PAPT = 24Abb AbrArb Arr 35 ; (1)with P a suitable permutation matrix. The 
onstru
tion of the red-bla
k partitioning is su
hthat, under reasonable assumptions on A, the Arr blo
k is guaranteed to be strongly diagonallydominant. In [18℄ one 
an �nd a te
hnique for 
onstru
ting a sparse approximation ~Sbb of theS
hur 
omplement Sbb := Abb � AbrA�1rr Arb. This approximation is obtained by repla
ing theblo
k Gaussian elimination whi
h results in the S
hur 
omplement (
f. (4)) by a sequen
e of pointGaussian elimination steps.In [18℄ the approximate 
y
li
 redu
tion pre
onditioner is presented and analyzed in a generalframework and applied to 
onve
tion-di�usion and anisotropi
 di�usion problems. In the presentpaper we explain a simple variant of the 
y
li
 redu
tion pre
onditioner whi
h is then applied to adis
retization of the Helmholtz equation ��u� �u = f (� � 0 a 
onstant) on the unit square. InSe
t. 4 we 
onsider � = 0 (Poisson equation) and � = 19:73 (SPD, 
lose to singular) and 
ompareCG + approximate 
y
li
 redu
tion pre
onditioning with the standard ICCG method. In Se
t. 5 we
onsider the inde�nite 
ase (� = 100, � = 200) and 
ompare the GMRES(5)+ ILU pre
onditioning(using droptoleran
es) with GMRES(5) + approximate 
y
li
 redu
tion pre
onditioning.2 The Cy
li
 Redu
tion Prin
ipleWe re
all the 
lassi
al method of 
y
li
 redu
tion. This method 
an be used, for example, forsolving a linear system with a tridiagonal matrix or with a spe
ial blo
k tridiagonal matrix (
f.[10,13,24℄). We explain the 
y
li
 redu
tion prin
iple by 
onsidering an n� n linear system with atridiagonal matrix:Ax = b; A = 26666664a1 b1
1 a2 b2 ;. . . . . . . . .; . . . . . . bn�1
n�1 an
37777775 ; ai 6= 0 for all i : (2)Reordering the unknowns based on an obvious red-bla
k (or "odd-even") stru
ture results in apermuted system with a matrix of the formPAPT = 24Abb AbrArb Arr 35 ; (3)in whi
h [Abb Abr℄ represents the equations in the unknowns with a bla
k label and [Arb Arr℄represents the equations in the unknowns with a red label. Note that, be
ause A is tridiagonal,the diagonal blo
ks Abb;Arr are diagonal matri
es. Gaussian elimination in the red points resultsin a redu
ed system with dimension (approximately) 12n. In matrix notation this 
orresponds toblo
k UL-de
omposition:PAPT = 24 I AbrA�1rr; I 3524 Sbb ;Arb Arr 35 ; Sbb := Abb �AbrA�1rr Arb : (4)



An Algebrai
 Multilevel Pre
onditioner 3The redu
ed system has a matrix Sbb (S
hur 
omplement) whi
h is tridiagonal, and thus the sameapproa
h 
an be applied to Sbb. So the basi
 
y
li
 redu
tion idea is to redu
e signi�
antly thedimension of the problem repeatedly until one has a relatively small problem that 
an be solvedeasily. After this de
omposition phase a blo
k UL-de
omposition of the matrix A is available andthe linear system in (2) 
an be solved using a simple ba
kward{forward substitution pro
ess. Inthis pro
ess the systems with matrix Arr are trivial to solve, be
ause Arr is diagonal.In Se
t. 3 we will modify this simple dire
t method, resulting in a pre
onditioner for sparse matri-
es whi
h are not ne
essarily tridiagonal. For a better understanding of this pre
onditioner we �rstgive a rather detailed des
ription of a parti
ular implementation of the 
y
li
 redu
tion methodfor a tridiagonal matrix, whi
h 
onsists of a de
omposition phase and a solution phase.De
omposition phase. We assume a tridiagonal matrix A 2 IRn�n. Dimbound, with 1 <Dimbound� n is a given integer (used in D5 below). Set i := 1, A1 := A, m0 := n.D1. Red-bla
k partitioning . Given the tridiagonal matrix Ai we 
onstru
t a red-bla
k (odd-even)partitioning of the unknowns. This results in ni verti
es with label red and mi verti
es with labelbla
k. Note: mi + ni = mi�1.D2.Determine permutation. We determine a symmetri
 permutation pi : f1; 2; :::;mi�1g ! f1; 2; :::;mi�1gsu
h that applying this permutation to the index set of the unknowns results in an ordering inwhi
h all unknowns with label red have index j 2 (mi;mi�1℄ and all unknowns with label bla
khave index j 2 [1;mi℄. Note that sin
e we only have to permute between the sets fj j j > miand label(j) = bla
kg and fj j j � mi and label(j) = redg, su
h a permutation 
an be fully
hara
terized by a permutation p̂i : fmi + 1;mi + 2; :::;mi�1g ! f1; 2; :::;mig.D3. Determine permuted matrix . The symmetri
 matrix 
orresponding to the permutation pi ofD2 is denoted by Pi. We determine PiAiPi. This matrix has a 2� 2-blo
k representation:PiAiPi = "Abbi AbriArbi Arri # ; (5)with Arri 2 IRni�ni , Abbi 2 IRmi�mi , Arbi 2 IRni�mi , Abri 2 IRmi�ni .D4. Compute S
hur 
omplement . Compute the S
hur 
omplement Ai+1 := PiAiPi=Arri :=Abbi �Abri (Arri )�1Arbi .D5. Store. Save mi; p̂i;Arri ;Arbi ;Abri . If mi < Dimbound then save Ai+1 (stop the redu
tionpro
ess) else i := i+ 1 and goto D1.Remark 1. The algorithm used in the de
omposition phase is well-de�ned i� the diagonal matri
esArri are nonsingular. The latter property holds if the matrix A is symmetri
 positive de�nite oran M-matrix. This follows from the fa
t that the S
hur 
omplement of an SPD-matrix (M-matrix)is an SPD-matrix (M-matrix), 
f. [12℄.If the above de
omposition pro
ess stops with i = imax, we obtain integers m1 > m2 > ::: > mimax ,permutation ve
tors p̂i (1 � i � imax), sparse matri
es Arri ;Arbi ;Abri (1 � i � imax) and theapproximate S
hur 
omplement on the highest level Aimax+1. We use the following terminology:p̂i is 
alled the permutation operator on level i, Arri is 
alled the solve operator on level i, Arbi is
alled the 
olle
t operator on level i, Abri is 
alled the distribute operator on level i.



4 Arnold ReuskenThe red unknowns on all levels, together with the bla
k unknowns on the �nal level indu
e a dire
tsum de
omposition IRn = IRn1 � IRn2 � : : :� IRnimax � IRmimax . The unknowns on level i with labelred are assigned the level number i, and the verti
es on level imax with label bla
k are assignedlevel number imax + 1. The unknowns with level number j are 
alled the level j unknowns. Notethat every unknown has a unique level number.Solution phase. For a 
lear des
ription of the solution phase we introdu
e permute, 
olle
t,distribute and solve operations. These operations use the 
orresponding operators whi
h are avail-able from the de
omposition phase. We give a des
ription in a pseudo-programming language.pro
edure permuteoperation(i: int; var x 2 IRmi�1) (� uses p̂i�)for j := mi + 1 to mi�1 doif j 6= p̂i(j) then inter
hange xj and xp̂i(j);pro
edure 
olle
toperation(i: int;var x 2 IRni ; g 2 IRmi) (� uses Arbi �)
ompute x := x�Arbi g;pro
edure distributeoperation(i: int;var x 2 IRmi ;g 2 IRni) (� uses Abri �)
ompute x := x�Abri g;pro
edure solveoperation(i: int; var x 2 IRni) (� uses Arri �)solve Arri w = x. The result is written in x.pro
edure highestlevelsolve(var x 2 IRmimax ) (� uses Aimax+1�)solve Aimax+1w = x; x := w;Using these pro
edures it is easy to formulate the ba
kward and forward substitution pro
ess,i.e. the solution phase, of the approximate 
y
li
 redu
tion pre
onditioner. On ea
h level i (1 �i � imax + 1) we de�ne ULsolve as follows:pro
edure ULsolve(i: int; var f 2 IRmi�1);var fred 2 IRni ;beginif i = imax + 1 then highestlevelsolve(f) elsebeginpermuteoperation(i; f);partition f = � fbfr� with fr 2 IRni , fb 2 IRmi ;make a 
opy fred := fr;solveoperation(i; fred);distributeoperation(i; fb; fred);ULsolve(i+ 1; fb);
olle
toperation(i; fr; fb);solveoperation(i; fr);permuteoperation(i; f);endend;The solution of Ax = b results from the 
all ULsolve(1;b). The stru
ture of ULsolve is simi-lar to the stru
ture of the multigrid V -
y
le algorithm as presented in [11℄. The distribute and
olle
t operations 
orrespond to the multigrid restri
tion and prolongation, respe
tively. The solve



An Algebrai
 Multilevel Pre
onditioner 5operation 
orresponds to the smoother in multigrid. Note, however, that in ULsolve we do not useany grid information and that every unknown is involved in the solve operations of pre
isely onelevel (as in hierar
hi
al basis multigrid, 
f. [1℄).3 Approximate Cy
li
 Redu
tion Pre
onditioningIn this se
tion we introdu
e an approximate 
y
li
 redu
tion pre
onditioner. For this we re
all afew notions from graph theory.A matrix A 2 IRn�n indu
es an ordered dire
ted graph GA(V;E), 
onsisting of an orderedset of verti
es V = f1; 2; : : : ; ng and a set E of ordered pairs of verti
es 
alled edges . This setE 
onsists of all pairs (i; j) for whi
h aij 6= 0. A dire
ted graph will also be 
alled a digraph. If(i; j) is an element of E then i is said to be adja
ent to j and j is said to be adja
ent from i.Two verti
es i 6= j are said to be independent if (i; j) =2 E and (j; i) =2 E. A subset M of Vis 
alled an independent set if every two verti
es in M are independent. M is 
alled a maximalindependent set of verti
es if M is independent but no proper superset of M in V is independent.Note that a maximal independent set is in general not unique. For a vertex i 2 V , its neighbour-hood N(i) is de�ned by N(i) = fj 2 V j j 6= i and (i; j) 2 Eg. For i 2 V its degree , deg(i), isthe number of elements in the neighbourhood of i, that is, deg(i) = jN(i)j. A vertex i is 
alled anisolated vertex if deg(i) = 0. Note that an isolated vertex 
an be adja
ent from other verti
es in V .In the 
lassi
al 
y
li
 redu
tion method, as des
ribed in Se
t. 2, a red-bla
k partitioning V =Vr [ Vb; Vr \ Vb = f;g of the vertex set V 
orresponding to a tridiagonal matrix is 
onstru
tedsu
h that Vr is a maximal independent subset of V . Sin
e the verti
es in Vr are independent, thematrix Arr is diagonal. Moreover, the red-bla
k partitioning yields a maximal independent set Vrfor whi
h the 
orresponding S
hur 
omplement A=Arr is tridiagonal and has mu
h smaller dimen-sion than the original matrix. For a general sparse matrix A it is easy to 
onstru
t a partitioningV = Vr [ Vb; Vr \ Vb = f;g of the vertex set of the graph GA(V;E) su
h that Vr is a maximalindependent subset of V . Hen
e the same approa
h as in 
y
li
 redu
tion, i.e. 
ompute the S
hur
omplement and apply the same te
hnique re
ursively, 
an be applied. However, it is well-knownthat almost always one gets an una

eptable amount of �ll-in in the S
hur 
omplement after onlya few re
ursive steps. Thus this dire
t (!) method is not satisfa
tory. In the approximate 
y
li
redu
tion pre
onditioner we 
onstru
t a partitioning V = Vr [ Vb; Vr \ Vb = f;g su
h that Arr isstrongly diagonally dominant . Furthermore an approximate S
hur 
omplement is used and systemswith matrix Arr are solved only approximately . The pre
onditioner has the following stru
ture,whi
h is very similar to the 
y
li
 redu
tion method of Se
t. 2.De
omposition phase. We assume a sparse matrixA 2 IRn�n.Dimbound, with 1 < Dimbound�n is a given integer (used in D5 below). Set i := 1, A1 := A, m0 := n.D1. Partitioning of the vertex set . Compute a partitioning Vi = V ri [ V bi ; V ri \ V bi = f;g ofthe vertex set Vi of the graph 
orresponding to Ai su
h that the matrix Arri is strongly diago-nally dominant. This results in ni verti
es with label red and mi verti
es with label bla
k. Note:mi + ni = mi�1.D2 = D2. (as in Se
t. 2)D3 = D3.D4. Compute approximate S
hur 
omplement . Compute a sparse approximation Ai+1 2 IRmi�miof the S
hur 
omplement PiAiPi=Arri .D5. Store. Save mi; p̂i;Arri ;Arbi ;Abri . If mi < Dimbound or mi > 0:8mi�1 then save Ai+1 (stopthe redu
tion pro
ess) else i := i+ 1 and goto D1.



6 Arnold ReuskenThe methods used in D1; D4 will be explained below. In D5 we introdu
ed an additional stopping
riterion to avoid a stagnation in the problem size redu
tion.Solution phase. We apply the pro
edure ULsolve of Se
t. 2 in whi
h all pro
edures are un-
hanged ex
ept for the pro
edure solveoperation whi
h is repla
ed bypro
edure solveoperation(i: int; var x 2 IRni)solve Arri w = x approximately , using a few iterations of a basi
iterative method. The result is written in x.For the 
hoi
e of the basi
 iterative method in solveoperation there are obvious possibilities:Ja
obi, Gauss-Seidel, ILU. Note that the 
onstru
tion in the de
omposition phase is su
h that thematri
es Arri are strongly diagonally dominant, hen
e these basi
 iterative methods have a high
onvergen
e rate for these systems. In this paper we use a method of Ja
obi type. The solution ofthe system Arri w = x is approximated by w3, whi
h results from:w1 = (Drri )�1x (start)w2 = w1 � ( ~Drri )�1(Arri w1 � x) (modi�ed Ja
obi)w3 = w2 � (Drri )�1(Arri w2 � x) (Ja
obi); (6)with Drri = diag(Arri ), ~Drri the diagonal matrix whi
h satis�es ~Drri 1l = Arri 1l, 1l := (1; 1; : : : ; 1)T .Using M = I � (Drri )�1Arri , ~M = I � ( ~Drri )�1Arri , a simple 
omputation yields that w3 =(I�M ~MM)(Arri )�1x. If Arri is symmetri
 positive de�nite then the matrix (I�M ~MM)(Arri )�1is symmetri
. This 
onservation of symmetry is important for the CG method in Se
t. 4. In generalthe rate of 
onvergen
e of the Ja
obi method (iteration matrix M) is higher than the rate of
onvergen
e of the modi�ed Ja
obi method (iteration matrix ~M). However, for the modi�ed Ja
obimethod the (
onsisten
y) property ~M1l = 0 holds, whi
h is favourable for Poisson type of problems(
f. [15℄). This motivates our 
hoi
e for a symmetri
 
ombination of the Ja
obi and the modi�edJa
obi method.This pro
edure solveoperation is used both in Se
t. 4 and in Se
t. 5.We now explain methods whi
h 
an be used in in D1 and D4. Numeri
al experiments basedon these methods are presented in Se
t. 4 and Se
t. 5.Partitioning of the vertex set. The partitioning method 
onsists of three steps, where thethird one is optional (
f. Se
t. 4 and 5).P1. Compute a redu
ed digraph. As in algebrai
 multigrid methods (
f. [19,25℄), for the graph
oarsening we distinguish "strong" and "weak" edges in the digraph. The underlying multigridheuristi
 is that if one wants to use simple (point) smoothers then one should 
oarsen in the dire
-tion of the "strong" 
onne
tions.Every loop in E, i.e. an edge of the form (i; i), is labeled strong. For every nonisolated vertex i 2 Van edge (i; j) 2 E with j 6= i is labeled strong if for the 
orresponding matrix entry aij we have:jaij j � � maxj2N(i) jaij j ; (7)with 0 � � < 1 a given parameter (typi
ally 0:4 � � � 0:6). An edge is labeled weak if it is notstrong. Note that for every nonisolated vertex i there is at least one strong edge (i; j) with j 6= i.Thus we obtain a partitioning E = Es[Ew of the edges into strong (Es) and weak (Ew) edges. Thedire
ted graph 
onsisting of the vertex set V and the set of strong edges Es is 
alled the redu
eddigraph and is denoted by GA(V;Es).



An Algebrai
 Multilevel Pre
onditioner 7P2. Compute a maximal independent set of the redu
ed digraph. We 
ompute a maximal inde-pendent set M of the redu
ed digraph GA(V;Es). This 
an be realized with low 
omputational
osts using a simple breath �rst sear
h te
hnique (
f. [14,18℄). A vertex i 2 V is assigned a red(bla
k) label if i 2M (i =2 M).P3.(optional) Che
k for diagonal dominan
e. The vertex set partitioning 
onstru
ted in P1, P2results in a 
orresponding blo
k partitioning of the matrix A as in (1). We now 
he
k diagonaldominan
e of the Arr blo
k. If for a given parameter value �Xj j(Arr)i;j j > � j(Arr)i;ij (8)for some red vertex i, then the red label of this vertex is 
hanged to bla
k. In our appli
ations weuse � = 1:5.Approximate S
hur 
omplement. In [18℄ on 
an �nd a te
hnique for approximating the S
hur
omplement whi
h is based on repla
ing the blo
k Gaussian elimination (
f. (4)) by a sequen
e ofpoint Gaussian elimination steps. In the present paper we use a simple variant of this te
hniquethat 
an be interpreted as a Galerkin approa
h with matrix dependent prolongation and restri
tion.Note that for a matrix of the form A(0) = 24Abb AbrArb Arr 35 ;the S
hur 
omplement Sbb = A(0)=Arr 
an be represented asSbb = � Ib �AbrA�1rr �A(0) � Ib� � = � Ib � �A(0) � Ib�A�1rr Arb � ; (9)with � arbitrary. LetDrr = diag(Arr) and ~Drr be the diagonal matrix whi
h satis�es ~Drr1l = Arr1land let ~pA = � Ib� ~D�1rr Arb � ; ~rA = � Ib �Abr ~D�1rr � ;rA = � Ib �AbrD�1rr � ; rinj = � Ib ; � :For the approximation of the S
hur 
omplement in (9) we will use one of the following two Galerkinoperators: S1: Galerkin approximation Ŝ(1)bb = ~rAA(0)~pA; Ŝ(2)bb = rAA(0)~pA: (10)The approximation Ŝ(1)bb is spd if A(0) is spd. From the analysis in [18℄ it follows that the approx-imation Ŝ(1)bb has better 
onsisten
y properties than Ŝ(2)bb , whereas the latter has better stabilityproperties.To redu
e the amount of �ll-in in the approximate S
hur 
omplement Ŝ(k)bb we use standardte
hniques: Restri
tion to a pres
ribed pattern (S2) and thresholding (S3). In the appli
ations inSe
t. 4, 5 we always use S2, whereas S3 is optional.S2. Restri
tion to pres
ribed pattern~S(k)bb := �Ŝ(k)bb �jgraph(rinjA(0) ~pA) ; k = 1; 2: (11)



8 Arnold ReuskenHere we use (with C;B 2 IRn�n) the notation (Cjgraph(B))i;j = Ci;j if i 6= j and (i; j) 2 graph(B),(Cjgraph(B))i;j = 0 if i 6= j and (i; j) =2 graph(B) and diag(Cjgraph(B)) su
h that Cjgraph(B)1l = C1l(i.e. entries outside the pattern are added to the diagonal).S3. Thresholding. We use a threshold paremeter "t > 0. Let ~Sbb 2 IRm�m be an approximateS
hur 
omplement. For 1 � i � m, let ki > 0 be the number of nonzero entries in the ith row of~Sbb. In row i every entry (~Sbb)i;j withj(~Sbb)i;j j < "t 1ki Xj j(~Sbb)i;j j (12)is repla
ed by zero. This is done for all rows i = 1; 2; : : : ;m.4 Appli
ation to a SPD Helmholtz ProblemIn this se
tion we show results of a few numeri
al experiments with the approximate 
y
li
 re-du
tion (CR) pre
onditioner. We 
onsider the standard 5-point �nite di�eren
e dis
retization ofthe Helmholtz problem ��u � �u = f on (0; 1)2 with zero Diri
hlet boundary 
onditions ona uniform grid with mesh size h. The smallest eigenvalue of the dis
rete operator is �min =8h�2 sin2( 12�h) � � = 2�2 � � + O(h2) = 19:73921 � � + O(h2). We take � = 0, i.e. the Pois-son equation, and � = 19:73. In both 
ases the dis
rete problem is symmetri
 positive de�nite. Wewill 
ompare the CG method with CR pre
onditioning (CR-CG) with the standard ICCG method.The implementation is done in MATLAB and we used the MATLAB fun
tion CHOLINC. We
onsider mesh sizes h = 160 (symbol '+' in the �gures), h = 1120 (symbol '�') and h = 1240 (symbol'o'). In all experiments we take the righthand side su
h that the dis
rete solution is given by 1l=k1lk2and we use zero as the starting ve
tor.Experiment 1. We take � = 0. We 
hoose the parameter value Dimbound = 50 in the de
ompo-sition phase. In the CR-pre
onditioner we use in step D1 in the de
omposition phase the methodP1, P2 des
ribed in Se
t. 3. We take � = 0:6 in (7). For this problem we do not need the 
he
kfor diagonal dominan
e in P3 (this follows from the analysis in [18℄ and is 
on�rmed by numeri
alexperiments). In step D4 in the de
omposition phase we use the method as in S1, S2 (i.e. (10),(11)) with k = 1, i.e. the symmetri
 variant. We do not use the thresholding strategy des
ribedin S3. Numeri
al results for the ICCG and CR-CG methods are shown in Fig. 1 and Fig. 2. InFig. 1 one 
an observe the well-known dependen
e of the 
onvergen
e rate of the ICCG methodon the mesh size h. When h is halved then, in order to obtain a �xed error redu
tion, one needsapproximately twi
e as many ICCG iterations. This h dependen
e is mu
h weaker for the CR-CGmethod (although there still seems to be a mild h-dependen
e). Also note that the ICCG methodshows relatively slow 
onvergen
e in the �rst phase of the solution pro
ess (superlinear 
onvergen
ebehaviour), whereas the CR-CG method has an almost linear 
onvergen
e behaviour. For h = 1240 ,to redu
e the starting error with a fa
tor 100 one needs about 70 ICCG iterations but only 2CR-CG iterations.Remark 2. We give an indi
ation of the storage needed for the methods in Experiment 1 for the
ase h = 1240 , i.e. n = 2392. For the symmetri
 matrix A storage for approximately 2 12n entries isneeded. The blo
ks Arr1 ; Abr1 ; Arb1 , 
onstru
ted in the �rst step (i.e. i = 1) of the de
ompositionphase of the CR-pre
onditioner, are blo
ks from the matrix A, after a suitable permutation. Hen
eone does not need additional storage for these blo
ks. The union of the blo
ks Abri = (Arbi )T overall levels i > 1 
ontains approximately 2:4n nonzero entries. For the union of the symmetri
 blo
ksArri over all levels i > 1 we need storage for approximately 1:3n entries. The storage needed for
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Fig. 2. CR-CGthe approximate S
hur 
omplement on the highest level is negligible. It follows that for the CR-pre
onditioner (additional) storage for approximately 3:7n entries is needed. For the in
ompleteCholeski pre
onditioner storage for approximately 3n entries is needed. Hen
e, for this problem,the CR-pre
onditioner needs only 20{30 per
ent more storage than the IC-pre
onditioner. Thenumeri
al experiments show that this statement also holds for the 
ases h = 160 and h = 1120 inExperiment 1.We brie
y dis
uss the arithmeti
 work, for h = 1240 , needed for one evaluation of the CRpre
onditioner (i.e. one 
all of ULsolve(1;b)). As a unit of arithmeti
 work we use one matrix-ve
tor multipli
ation with the given matrix A, denoted by MATVEC. The total arithmeti
 workneeded in the distributeoperation and 
olle
toperation over all levels i � 1 is approximately2 MATVEC. In the two 
alls of solveoperation on level i we need arithmeti
 work 
omparableto 4 Ja
obi iterations applied to a system with matrix Arri . Adding these 
osts over all levelsi � 1 results in approximately 2 12 MATVEC arithmeti
 work. The 
osts for highestlevelsolveare negligible. It follows that the arithmeti
 
osts for one CR-CG iteration are approximately 2 12times the 
osts of one ICCG iteration. The same statement holds for the 
ases h = 160 and h = 1120in Experiment 1.Experiment 2. We 
onsider � = 19:73. Appli
ation of the MATLAB fun
tion CHOLINC yields awell-de�ned in
omplete Choleski fa
torization of the matrix A. The results for the ICCG methodare shown in Fig. 3. We take all 
omponents and all parameter values in the CR algortihm as inExperiment 1. The results for the CR-CG method are given in Fig. 4. It turns out that, both withrespe
t to storage and with respe
t to 
omputational 
osts per iteration, results very similar tothose formulated in Remark 2 hold. Note that the CR-CG algorithm is mu
h more eÆ
ient thanthe ICCG method, but both methods have a large stagnation phase at the beginning.5 Appli
ation to an Inde�nite Helmholtz ProblemIn this se
tion we 
onsider a dis
rete Helmholtz problem as in Se
t. 4 (with h = 160 ; 1120 ; 1240 )but now for � = 100; � = 200. In these 
ases the problem is inde�nite. In all three 
ases,h = 160 ; 1120 ; 1240 , the dis
rete operator has 6 negative eigenvalues (
ounted with multipli
ity) if� = 100 and 13 negative eigenvalues if � = 200. The CG method is no longer appli
able. The MIN-RES method 
ould be used for this type of problem. If, however, one wants to 
ombine this methodwith pre
onditioning then one needs a symmetri
 positive de�nite pre
onditioner. It is not 
lear
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Fig. 4. CR-CGhow to 
onstru
t an eÆ
ient spd pre
onditioner for this problem. We will use a (pre
onditioned)GMRES method with restart after 5 iterations (GMRES(5)) as a solver. For the pre
onditionerwe use standard ILU te
hniques and the approximate CR method. For the ILU pre
onditionerthe MATLAB fun
tion LUINC is applied whi
h 
an be used for 
omputing the standard ILU(0)fa
torization and for 
omputing an ILU fa
torization based on droptoleran
es (ILU(eps), whereeps denotes the drop toleran
e). The righthand side and starting ve
tor are as in Se
t. 4.Experiment 3. We take � = 100. The ILU(0) and ILU(eps) fa
torizations are 
omputed usingthe MATLAB fun
tion LUINC. In Table 5 we give the number of nonzero entries in the pre
on-ditioner (where we do not make use of symmetry). The 
onvergen
e behaviour of the GMRES(5)method with ILU left pre
onditioning (ILU-GMRES(5)) is shown for h = 160 ; h = 1120 in Fig. 5 andFig. 6, respe
tively. In these �gures we use the following symbols: '+' for ILU(0), 'x' for ILU(0.01),'o' for ILU(0.005), '�' for ILU(0.002). Note that the unit on the horizontal axis is one pre
ondi-tioned GMRES(5) iteration, whi
h 
onsists of 5 pre
onditioned GMRES iterations. In Fig. 5 andFig. 6 we see slow 
onvergen
e and stagnation phases. Moreover, the dependen
e of the pre
on-ditioner on the threshold parameter eps is unpredi
table. For example, for h = 1120 the result foreps = 0:002 is signi�
antly better than for eps = 0:005 (after 100 GMRES(5) iterations), whereasfor h = 160 it is the other way round. Numeri
al experiments for the 
ase with � = 200 show aTable 1. Number of nonzero entries in ILU pre
onditionerILU(0) ILU(0.01) ILU(0.005) ILU(0.002)h = 160 17169 36828 54833 86659h = 1120 70329 152583 218851 324555similar unsatisfa
tory behaviour of GMRES(5) with ILU pre
onditioning.Experiment 4 . We 
onsider the inde�nite problem with � = 100, � = 200 and apply GMRES(5)with CR pre
onditioning. If in the de
omposition phase we use the same 
omponents and param-eter values as in Experiments 1 and 2 then the resulting pre
onditoner is not satisfa
tory. Themain 
ause for this poor behaviour lies in the fa
t that if we only use the method P1, P2 in thepartitioning step D1 then for inde�nite problems (strong) diagonal dominan
e of the Arr is not
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Fig. 6. ILU-GMRES(5), h = 1120guaranteeed. Hen
e, in addition to P1, P2 we now also use the optional method in P3. This yieldsa signi�
ant improvement of the performan
e of the pre
onditoner. In view of the better stabilityproperties, we take the S
hur 
omplement approximation Ŝ(2)bb in S1, (10). A signi�
ant furtherimprovement 
an be obtained if we allow more �ll-in in the pre
onditioner. For this we simplylower the value of the parameter � in (7). This 
auses slower 
oarsening and more �ll-in. Based onnumeri
al experiments for an inde�nite problem (� = 200) of relatively low dimension (h = 140 )we 
hoose the parameter value � = 0:4. The in
rease of �ll-in, due this 
hoi
e of �, 
an be
omevery large if one goes to higher levels. However, many �ll-in entries turn out to be very small.Hen
e we now also use the optional thresholding step S3. Based on numeri
al experiments for alow dimensional problem we take the threshold parameter "t = 0:001 in (12). Summarizing, in thede
omposition phase we use P1, P2, P3 (in D1), S1 (with Ŝ(2)bb ), S2, S3 (in D4) with parametervalues Dimbound = 50; � = 0:4; "t = 0:001. The results of the GMRES(5) method with CR pre-
onditioner are shown in Fig. 7 (� = 100) and Fig. 8 (� = 200). The use of the symbols '+','�','o'is as in Se
t. 4.We give an indi
ation of the storage and arithmeti
 work needed for the CR pre
onditioner (
f. Re-
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12 Arnold Reuskenmark 2). We 
onsider the 
ase h = 1240 ; � = 200, i.e. n = 2392. Due to the use of the nonsymmetri
S
hur 
omplement pre
onditoner Ŝ(2)bb in (10) the pre
onditioner is in general not symmetri
. Theunion of the blo
ks Abri ; Arbi over all levels i > 1 
ontains approximately 25n nonzeros entries.Theunion of the blo
ks Arri over all levels i > 1 
ontains approximately 5n nonzeros entries. It followsthat for this pre
onditioner the storage needed is approximately 6 times as high as for the matrixA (if we do not make use of symmetry). Hen
e these storage 
osts are quite high (
f. Remark 3).The total arithmeti
 work needed in the 
olle
toperation and in thedistributeoperation over all levels i � 1 is approximately 5 12 MATVEC. In the two 
alls ofsolveoperation over all levels i � 1 we need arithmeti
 work 
omparable to 5 MATVEC.Similar results, both with respe
t to storage and with respe
t to arithmeti
 work , hold for theother 
ases (h = 160 ; 1120 ; � = 100). For this type of inde�nite problem the storage and arith-meti
 
osts appear to be high. Note, however, that these problems are known to be very hard forother iterative solvers like geometri
 multigrid and Krylov methods with ILU pre
onditioning (
f.Experiment 3). From Fig. 8 we see that, for the 
ase h = 1240 , after 7 CR-GMRES(5) iterationsthe error has been redu
ed with a fa
tor 107, i.e. a fa
tor 10 per CR-GMRES(5) iteration, whi
h
orresponds to a fa
tor 1:6 per pre
onditioned GMRES iteration.Remark 3. Note that, opposite to ILU pre
onditioners, the solution phase of the CR pre
onditioneris easy to parallelize. This parallelization 
an be realized along the same lines as for a geometri
multigrid V-
y
le (
f. [4℄). The graph partitioning method in P2 
an be repla
ed by a similarmethod whi
h is suitable for parallelization. Using su
h a variant, the de
omposition phase in theCR pre
onditioner is also easy to parallelize.Referen
es1. Bank, R.E., Dupont, T.F., Yserentant, H.: The hierar
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