
An Algebrai Multilevel Preonditioner forSymmetri Positive De�nite and Inde�nite ProblemsArnold ReuskenInstitut f�ur Geometrie und Praktishe Mathematik, RWTH Aahen,Templergraben 55, D-52056 Aahen, GermanyAbstrat. We present a preonditioning method for the iterative solution of large sparse systems of equa-tions. The preonditioner is based on ideas both from ILU preonditioning and from multigrid. The result-ing preonditioning tehnique requires the matrix only. A multilevel struture is obtained by onstrutinga maximal independent set of the graph of a redued matrix. The omputation of a Shur omplementapproximation is based on a Galerkin approah with a matrix dependent prolongation and restrition.The resulting preonditioner has a transparant modular struture similar to the algorithmi struture of amultigrid V -yle. The method is applied to symmetri positive de�nite and inde�nite Helmholtz problems.The multilevel preonditioner is ompared with standard ILU preonditioning methods.1 IntrodutionMultigrid methods are very eÆient iterative solvers for the large systems of equations result-ing from disretization of partial di�erential equations (f. [11,26℄ and the referenes therein). Animportant priniple of multigrid is that a basi iterative method, whih yields appropriate loalorretions, is applied on a hierarhy of disretizations with di�erent harateristi mesh sizes. Thismultilevel struture is of main importane for the eÆieny of multigrid.Another lass of eÆient iterative solvers onsists of Krylov subspae methods ombined with ILUpreonditioning (f. [8,20℄ and the referenes therein). These methods only need the matrix andare in general easier to implement than multigrid methods. Also the Krylov subspae methodsare better suitable for a "blak-box" approah. On the other hand, for disretized partial di�eren-tial equations the Krylov methods with ILU preonditioning are often less eÆient than multigridmethods.In the multigrid �eld there have been developed methods whih have a multilevel struture butrequire only the matrix of the linear system. These are alled algebrai multigrid methods. Ap-proahes towards algebrai multigrid are presented in, e.g. [7,9,19,23,25℄. In all these methods onetries to mimi the multigrid priniple. First one introdues a reasonable oarse "grid" spae. Thena prolongation operator is hosen and for the restrition one usually takes the adjoint of the pro-longation. The operator on the oarse grid spae is de�ned by a Galerkin approah. With theseomponents, a standard multigrid approah (smoothing + oarse grid orretion) is applied. Thesealgebrai multigrid methods an be used in situations where a grid (hierarhy) is not available.Also these methods an be used for developing blak-box solvers.Reently there have been developed ILU type of preonditioners with a multilevel struture, f.[5,6,16,21,22℄. The multilevel struture is indued by a level wise numbering of the unknowns. In[2,3,17,18℄, new hybrid methods have been presented, whih use ideas both from ILU (inompleteGaussian elimination) and from multigrid.In the present paper we reonsider the approximate yli redution preonditioner of [17,18℄.This method is based on the reursive appliation of a two-level method, as in yli redution orin a multigrid V-yle method. For the de�nition of a two level struture we use two importantonepts: a redued graph and a maximal independent set. The partitioning of the set of unknowns,denoted by the labels "red " and "blak", yields a orresponding blok-representation of the given



2 Arnold Reuskenmatrix A: PAPT = 24Abb AbrArb Arr 35 ; (1)with P a suitable permutation matrix. The onstrution of the red-blak partitioning is suhthat, under reasonable assumptions on A, the Arr blok is guaranteed to be strongly diagonallydominant. In [18℄ one an �nd a tehnique for onstruting a sparse approximation ~Sbb of theShur omplement Sbb := Abb � AbrA�1rr Arb. This approximation is obtained by replaing theblok Gaussian elimination whih results in the Shur omplement (f. (4)) by a sequene of pointGaussian elimination steps.In [18℄ the approximate yli redution preonditioner is presented and analyzed in a generalframework and applied to onvetion-di�usion and anisotropi di�usion problems. In the presentpaper we explain a simple variant of the yli redution preonditioner whih is then applied to adisretization of the Helmholtz equation ��u� �u = f (� � 0 a onstant) on the unit square. InSet. 4 we onsider � = 0 (Poisson equation) and � = 19:73 (SPD, lose to singular) and ompareCG + approximate yli redution preonditioning with the standard ICCG method. In Set. 5 weonsider the inde�nite ase (� = 100, � = 200) and ompare the GMRES(5)+ ILU preonditioning(using droptoleranes) with GMRES(5) + approximate yli redution preonditioning.2 The Cyli Redution PrinipleWe reall the lassial method of yli redution. This method an be used, for example, forsolving a linear system with a tridiagonal matrix or with a speial blok tridiagonal matrix (f.[10,13,24℄). We explain the yli redution priniple by onsidering an n� n linear system with atridiagonal matrix:Ax = b; A = 26666664a1 b11 a2 b2 ;. . . . . . . . .; . . . . . . bn�1n�1 an
37777775 ; ai 6= 0 for all i : (2)Reordering the unknowns based on an obvious red-blak (or "odd-even") struture results in apermuted system with a matrix of the formPAPT = 24Abb AbrArb Arr 35 ; (3)in whih [Abb Abr℄ represents the equations in the unknowns with a blak label and [Arb Arr℄represents the equations in the unknowns with a red label. Note that, beause A is tridiagonal,the diagonal bloks Abb;Arr are diagonal matries. Gaussian elimination in the red points resultsin a redued system with dimension (approximately) 12n. In matrix notation this orresponds toblok UL-deomposition:PAPT = 24 I AbrA�1rr; I 3524 Sbb ;Arb Arr 35 ; Sbb := Abb �AbrA�1rr Arb : (4)



An Algebrai Multilevel Preonditioner 3The redued system has a matrix Sbb (Shur omplement) whih is tridiagonal, and thus the sameapproah an be applied to Sbb. So the basi yli redution idea is to redue signi�antly thedimension of the problem repeatedly until one has a relatively small problem that an be solvedeasily. After this deomposition phase a blok UL-deomposition of the matrix A is available andthe linear system in (2) an be solved using a simple bakward{forward substitution proess. Inthis proess the systems with matrix Arr are trivial to solve, beause Arr is diagonal.In Set. 3 we will modify this simple diret method, resulting in a preonditioner for sparse matri-es whih are not neessarily tridiagonal. For a better understanding of this preonditioner we �rstgive a rather detailed desription of a partiular implementation of the yli redution methodfor a tridiagonal matrix, whih onsists of a deomposition phase and a solution phase.Deomposition phase. We assume a tridiagonal matrix A 2 IRn�n. Dimbound, with 1 <Dimbound� n is a given integer (used in D5 below). Set i := 1, A1 := A, m0 := n.D1. Red-blak partitioning . Given the tridiagonal matrix Ai we onstrut a red-blak (odd-even)partitioning of the unknowns. This results in ni verties with label red and mi verties with labelblak. Note: mi + ni = mi�1.D2.Determine permutation. We determine a symmetri permutation pi : f1; 2; :::;mi�1g ! f1; 2; :::;mi�1gsuh that applying this permutation to the index set of the unknowns results in an ordering inwhih all unknowns with label red have index j 2 (mi;mi�1℄ and all unknowns with label blakhave index j 2 [1;mi℄. Note that sine we only have to permute between the sets fj j j > miand label(j) = blakg and fj j j � mi and label(j) = redg, suh a permutation an be fullyharaterized by a permutation p̂i : fmi + 1;mi + 2; :::;mi�1g ! f1; 2; :::;mig.D3. Determine permuted matrix . The symmetri matrix orresponding to the permutation pi ofD2 is denoted by Pi. We determine PiAiPi. This matrix has a 2� 2-blok representation:PiAiPi = "Abbi AbriArbi Arri # ; (5)with Arri 2 IRni�ni , Abbi 2 IRmi�mi , Arbi 2 IRni�mi , Abri 2 IRmi�ni .D4. Compute Shur omplement . Compute the Shur omplement Ai+1 := PiAiPi=Arri :=Abbi �Abri (Arri )�1Arbi .D5. Store. Save mi; p̂i;Arri ;Arbi ;Abri . If mi < Dimbound then save Ai+1 (stop the redutionproess) else i := i+ 1 and goto D1.Remark 1. The algorithm used in the deomposition phase is well-de�ned i� the diagonal matriesArri are nonsingular. The latter property holds if the matrix A is symmetri positive de�nite oran M-matrix. This follows from the fat that the Shur omplement of an SPD-matrix (M-matrix)is an SPD-matrix (M-matrix), f. [12℄.If the above deomposition proess stops with i = imax, we obtain integers m1 > m2 > ::: > mimax ,permutation vetors p̂i (1 � i � imax), sparse matries Arri ;Arbi ;Abri (1 � i � imax) and theapproximate Shur omplement on the highest level Aimax+1. We use the following terminology:p̂i is alled the permutation operator on level i, Arri is alled the solve operator on level i, Arbi isalled the ollet operator on level i, Abri is alled the distribute operator on level i.



4 Arnold ReuskenThe red unknowns on all levels, together with the blak unknowns on the �nal level indue a diretsum deomposition IRn = IRn1 � IRn2 � : : :� IRnimax � IRmimax . The unknowns on level i with labelred are assigned the level number i, and the verties on level imax with label blak are assignedlevel number imax + 1. The unknowns with level number j are alled the level j unknowns. Notethat every unknown has a unique level number.Solution phase. For a lear desription of the solution phase we introdue permute, ollet,distribute and solve operations. These operations use the orresponding operators whih are avail-able from the deomposition phase. We give a desription in a pseudo-programming language.proedure permuteoperation(i: int; var x 2 IRmi�1) (� uses p̂i�)for j := mi + 1 to mi�1 doif j 6= p̂i(j) then interhange xj and xp̂i(j);proedure olletoperation(i: int;var x 2 IRni ; g 2 IRmi) (� uses Arbi �)ompute x := x�Arbi g;proedure distributeoperation(i: int;var x 2 IRmi ;g 2 IRni) (� uses Abri �)ompute x := x�Abri g;proedure solveoperation(i: int; var x 2 IRni) (� uses Arri �)solve Arri w = x. The result is written in x.proedure highestlevelsolve(var x 2 IRmimax ) (� uses Aimax+1�)solve Aimax+1w = x; x := w;Using these proedures it is easy to formulate the bakward and forward substitution proess,i.e. the solution phase, of the approximate yli redution preonditioner. On eah level i (1 �i � imax + 1) we de�ne ULsolve as follows:proedure ULsolve(i: int; var f 2 IRmi�1);var fred 2 IRni ;beginif i = imax + 1 then highestlevelsolve(f) elsebeginpermuteoperation(i; f);partition f = � fbfr� with fr 2 IRni , fb 2 IRmi ;make a opy fred := fr;solveoperation(i; fred);distributeoperation(i; fb; fred);ULsolve(i+ 1; fb);olletoperation(i; fr; fb);solveoperation(i; fr);permuteoperation(i; f);endend;The solution of Ax = b results from the all ULsolve(1;b). The struture of ULsolve is simi-lar to the struture of the multigrid V -yle algorithm as presented in [11℄. The distribute andollet operations orrespond to the multigrid restrition and prolongation, respetively. The solve



An Algebrai Multilevel Preonditioner 5operation orresponds to the smoother in multigrid. Note, however, that in ULsolve we do not useany grid information and that every unknown is involved in the solve operations of preisely onelevel (as in hierarhial basis multigrid, f. [1℄).3 Approximate Cyli Redution PreonditioningIn this setion we introdue an approximate yli redution preonditioner. For this we reall afew notions from graph theory.A matrix A 2 IRn�n indues an ordered direted graph GA(V;E), onsisting of an orderedset of verties V = f1; 2; : : : ; ng and a set E of ordered pairs of verties alled edges . This setE onsists of all pairs (i; j) for whih aij 6= 0. A direted graph will also be alled a digraph. If(i; j) is an element of E then i is said to be adjaent to j and j is said to be adjaent from i.Two verties i 6= j are said to be independent if (i; j) =2 E and (j; i) =2 E. A subset M of Vis alled an independent set if every two verties in M are independent. M is alled a maximalindependent set of verties if M is independent but no proper superset of M in V is independent.Note that a maximal independent set is in general not unique. For a vertex i 2 V , its neighbour-hood N(i) is de�ned by N(i) = fj 2 V j j 6= i and (i; j) 2 Eg. For i 2 V its degree , deg(i), isthe number of elements in the neighbourhood of i, that is, deg(i) = jN(i)j. A vertex i is alled anisolated vertex if deg(i) = 0. Note that an isolated vertex an be adjaent from other verties in V .In the lassial yli redution method, as desribed in Set. 2, a red-blak partitioning V =Vr [ Vb; Vr \ Vb = f;g of the vertex set V orresponding to a tridiagonal matrix is onstrutedsuh that Vr is a maximal independent subset of V . Sine the verties in Vr are independent, thematrix Arr is diagonal. Moreover, the red-blak partitioning yields a maximal independent set Vrfor whih the orresponding Shur omplement A=Arr is tridiagonal and has muh smaller dimen-sion than the original matrix. For a general sparse matrix A it is easy to onstrut a partitioningV = Vr [ Vb; Vr \ Vb = f;g of the vertex set of the graph GA(V;E) suh that Vr is a maximalindependent subset of V . Hene the same approah as in yli redution, i.e. ompute the Shuromplement and apply the same tehnique reursively, an be applied. However, it is well-knownthat almost always one gets an unaeptable amount of �ll-in in the Shur omplement after onlya few reursive steps. Thus this diret (!) method is not satisfatory. In the approximate yliredution preonditioner we onstrut a partitioning V = Vr [ Vb; Vr \ Vb = f;g suh that Arr isstrongly diagonally dominant . Furthermore an approximate Shur omplement is used and systemswith matrix Arr are solved only approximately . The preonditioner has the following struture,whih is very similar to the yli redution method of Set. 2.Deomposition phase. We assume a sparse matrixA 2 IRn�n.Dimbound, with 1 < Dimbound�n is a given integer (used in D5 below). Set i := 1, A1 := A, m0 := n.D1. Partitioning of the vertex set . Compute a partitioning Vi = V ri [ V bi ; V ri \ V bi = f;g ofthe vertex set Vi of the graph orresponding to Ai suh that the matrix Arri is strongly diago-nally dominant. This results in ni verties with label red and mi verties with label blak. Note:mi + ni = mi�1.D2 = D2. (as in Set. 2)D3 = D3.D4. Compute approximate Shur omplement . Compute a sparse approximation Ai+1 2 IRmi�miof the Shur omplement PiAiPi=Arri .D5. Store. Save mi; p̂i;Arri ;Arbi ;Abri . If mi < Dimbound or mi > 0:8mi�1 then save Ai+1 (stopthe redution proess) else i := i+ 1 and goto D1.



6 Arnold ReuskenThe methods used in D1; D4 will be explained below. In D5 we introdued an additional stoppingriterion to avoid a stagnation in the problem size redution.Solution phase. We apply the proedure ULsolve of Set. 2 in whih all proedures are un-hanged exept for the proedure solveoperation whih is replaed byproedure solveoperation(i: int; var x 2 IRni)solve Arri w = x approximately , using a few iterations of a basiiterative method. The result is written in x.For the hoie of the basi iterative method in solveoperation there are obvious possibilities:Jaobi, Gauss-Seidel, ILU. Note that the onstrution in the deomposition phase is suh that thematries Arri are strongly diagonally dominant, hene these basi iterative methods have a highonvergene rate for these systems. In this paper we use a method of Jaobi type. The solution ofthe system Arri w = x is approximated by w3, whih results from:w1 = (Drri )�1x (start)w2 = w1 � ( ~Drri )�1(Arri w1 � x) (modi�ed Jaobi)w3 = w2 � (Drri )�1(Arri w2 � x) (Jaobi); (6)with Drri = diag(Arri ), ~Drri the diagonal matrix whih satis�es ~Drri 1l = Arri 1l, 1l := (1; 1; : : : ; 1)T .Using M = I � (Drri )�1Arri , ~M = I � ( ~Drri )�1Arri , a simple omputation yields that w3 =(I�M ~MM)(Arri )�1x. If Arri is symmetri positive de�nite then the matrix (I�M ~MM)(Arri )�1is symmetri. This onservation of symmetry is important for the CG method in Set. 4. In generalthe rate of onvergene of the Jaobi method (iteration matrix M) is higher than the rate ofonvergene of the modi�ed Jaobi method (iteration matrix ~M). However, for the modi�ed Jaobimethod the (onsisteny) property ~M1l = 0 holds, whih is favourable for Poisson type of problems(f. [15℄). This motivates our hoie for a symmetri ombination of the Jaobi and the modi�edJaobi method.This proedure solveoperation is used both in Set. 4 and in Set. 5.We now explain methods whih an be used in in D1 and D4. Numerial experiments basedon these methods are presented in Set. 4 and Set. 5.Partitioning of the vertex set. The partitioning method onsists of three steps, where thethird one is optional (f. Set. 4 and 5).P1. Compute a redued digraph. As in algebrai multigrid methods (f. [19,25℄), for the graphoarsening we distinguish "strong" and "weak" edges in the digraph. The underlying multigridheuristi is that if one wants to use simple (point) smoothers then one should oarsen in the dire-tion of the "strong" onnetions.Every loop in E, i.e. an edge of the form (i; i), is labeled strong. For every nonisolated vertex i 2 Van edge (i; j) 2 E with j 6= i is labeled strong if for the orresponding matrix entry aij we have:jaij j � � maxj2N(i) jaij j ; (7)with 0 � � < 1 a given parameter (typially 0:4 � � � 0:6). An edge is labeled weak if it is notstrong. Note that for every nonisolated vertex i there is at least one strong edge (i; j) with j 6= i.Thus we obtain a partitioning E = Es[Ew of the edges into strong (Es) and weak (Ew) edges. Thedireted graph onsisting of the vertex set V and the set of strong edges Es is alled the redueddigraph and is denoted by GA(V;Es).



An Algebrai Multilevel Preonditioner 7P2. Compute a maximal independent set of the redued digraph. We ompute a maximal inde-pendent set M of the redued digraph GA(V;Es). This an be realized with low omputationalosts using a simple breath �rst searh tehnique (f. [14,18℄). A vertex i 2 V is assigned a red(blak) label if i 2M (i =2 M).P3.(optional) Chek for diagonal dominane. The vertex set partitioning onstruted in P1, P2results in a orresponding blok partitioning of the matrix A as in (1). We now hek diagonaldominane of the Arr blok. If for a given parameter value �Xj j(Arr)i;j j > � j(Arr)i;ij (8)for some red vertex i, then the red label of this vertex is hanged to blak. In our appliations weuse � = 1:5.Approximate Shur omplement. In [18℄ on an �nd a tehnique for approximating the Shuromplement whih is based on replaing the blok Gaussian elimination (f. (4)) by a sequene ofpoint Gaussian elimination steps. In the present paper we use a simple variant of this tehniquethat an be interpreted as a Galerkin approah with matrix dependent prolongation and restrition.Note that for a matrix of the form A(0) = 24Abb AbrArb Arr 35 ;the Shur omplement Sbb = A(0)=Arr an be represented asSbb = � Ib �AbrA�1rr �A(0) � Ib� � = � Ib � �A(0) � Ib�A�1rr Arb � ; (9)with � arbitrary. LetDrr = diag(Arr) and ~Drr be the diagonal matrix whih satis�es ~Drr1l = Arr1land let ~pA = � Ib� ~D�1rr Arb � ; ~rA = � Ib �Abr ~D�1rr � ;rA = � Ib �AbrD�1rr � ; rinj = � Ib ; � :For the approximation of the Shur omplement in (9) we will use one of the following two Galerkinoperators: S1: Galerkin approximation Ŝ(1)bb = ~rAA(0)~pA; Ŝ(2)bb = rAA(0)~pA: (10)The approximation Ŝ(1)bb is spd if A(0) is spd. From the analysis in [18℄ it follows that the approx-imation Ŝ(1)bb has better onsisteny properties than Ŝ(2)bb , whereas the latter has better stabilityproperties.To redue the amount of �ll-in in the approximate Shur omplement Ŝ(k)bb we use standardtehniques: Restrition to a presribed pattern (S2) and thresholding (S3). In the appliations inSet. 4, 5 we always use S2, whereas S3 is optional.S2. Restrition to presribed pattern~S(k)bb := �Ŝ(k)bb �jgraph(rinjA(0) ~pA) ; k = 1; 2: (11)



8 Arnold ReuskenHere we use (with C;B 2 IRn�n) the notation (Cjgraph(B))i;j = Ci;j if i 6= j and (i; j) 2 graph(B),(Cjgraph(B))i;j = 0 if i 6= j and (i; j) =2 graph(B) and diag(Cjgraph(B)) suh that Cjgraph(B)1l = C1l(i.e. entries outside the pattern are added to the diagonal).S3. Thresholding. We use a threshold paremeter "t > 0. Let ~Sbb 2 IRm�m be an approximateShur omplement. For 1 � i � m, let ki > 0 be the number of nonzero entries in the ith row of~Sbb. In row i every entry (~Sbb)i;j withj(~Sbb)i;j j < "t 1ki Xj j(~Sbb)i;j j (12)is replaed by zero. This is done for all rows i = 1; 2; : : : ;m.4 Appliation to a SPD Helmholtz ProblemIn this setion we show results of a few numerial experiments with the approximate yli re-dution (CR) preonditioner. We onsider the standard 5-point �nite di�erene disretization ofthe Helmholtz problem ��u � �u = f on (0; 1)2 with zero Dirihlet boundary onditions ona uniform grid with mesh size h. The smallest eigenvalue of the disrete operator is �min =8h�2 sin2( 12�h) � � = 2�2 � � + O(h2) = 19:73921 � � + O(h2). We take � = 0, i.e. the Pois-son equation, and � = 19:73. In both ases the disrete problem is symmetri positive de�nite. Wewill ompare the CG method with CR preonditioning (CR-CG) with the standard ICCG method.The implementation is done in MATLAB and we used the MATLAB funtion CHOLINC. Weonsider mesh sizes h = 160 (symbol '+' in the �gures), h = 1120 (symbol '�') and h = 1240 (symbol'o'). In all experiments we take the righthand side suh that the disrete solution is given by 1l=k1lk2and we use zero as the starting vetor.Experiment 1. We take � = 0. We hoose the parameter value Dimbound = 50 in the deompo-sition phase. In the CR-preonditioner we use in step D1 in the deomposition phase the methodP1, P2 desribed in Set. 3. We take � = 0:6 in (7). For this problem we do not need the hekfor diagonal dominane in P3 (this follows from the analysis in [18℄ and is on�rmed by numerialexperiments). In step D4 in the deomposition phase we use the method as in S1, S2 (i.e. (10),(11)) with k = 1, i.e. the symmetri variant. We do not use the thresholding strategy desribedin S3. Numerial results for the ICCG and CR-CG methods are shown in Fig. 1 and Fig. 2. InFig. 1 one an observe the well-known dependene of the onvergene rate of the ICCG methodon the mesh size h. When h is halved then, in order to obtain a �xed error redution, one needsapproximately twie as many ICCG iterations. This h dependene is muh weaker for the CR-CGmethod (although there still seems to be a mild h-dependene). Also note that the ICCG methodshows relatively slow onvergene in the �rst phase of the solution proess (superlinear onvergenebehaviour), whereas the CR-CG method has an almost linear onvergene behaviour. For h = 1240 ,to redue the starting error with a fator 100 one needs about 70 ICCG iterations but only 2CR-CG iterations.Remark 2. We give an indiation of the storage needed for the methods in Experiment 1 for thease h = 1240 , i.e. n = 2392. For the symmetri matrix A storage for approximately 2 12n entries isneeded. The bloks Arr1 ; Abr1 ; Arb1 , onstruted in the �rst step (i.e. i = 1) of the deompositionphase of the CR-preonditioner, are bloks from the matrix A, after a suitable permutation. Heneone does not need additional storage for these bloks. The union of the bloks Abri = (Arbi )T overall levels i > 1 ontains approximately 2:4n nonzero entries. For the union of the symmetri bloksArri over all levels i > 1 we need storage for approximately 1:3n entries. The storage needed for
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Fig. 2. CR-CGthe approximate Shur omplement on the highest level is negligible. It follows that for the CR-preonditioner (additional) storage for approximately 3:7n entries is needed. For the inompleteCholeski preonditioner storage for approximately 3n entries is needed. Hene, for this problem,the CR-preonditioner needs only 20{30 perent more storage than the IC-preonditioner. Thenumerial experiments show that this statement also holds for the ases h = 160 and h = 1120 inExperiment 1.We briey disuss the arithmeti work, for h = 1240 , needed for one evaluation of the CRpreonditioner (i.e. one all of ULsolve(1;b)). As a unit of arithmeti work we use one matrix-vetor multipliation with the given matrix A, denoted by MATVEC. The total arithmeti workneeded in the distributeoperation and olletoperation over all levels i � 1 is approximately2 MATVEC. In the two alls of solveoperation on level i we need arithmeti work omparableto 4 Jaobi iterations applied to a system with matrix Arri . Adding these osts over all levelsi � 1 results in approximately 2 12 MATVEC arithmeti work. The osts for highestlevelsolveare negligible. It follows that the arithmeti osts for one CR-CG iteration are approximately 2 12times the osts of one ICCG iteration. The same statement holds for the ases h = 160 and h = 1120in Experiment 1.Experiment 2. We onsider � = 19:73. Appliation of the MATLAB funtion CHOLINC yields awell-de�ned inomplete Choleski fatorization of the matrix A. The results for the ICCG methodare shown in Fig. 3. We take all omponents and all parameter values in the CR algortihm as inExperiment 1. The results for the CR-CG method are given in Fig. 4. It turns out that, both withrespet to storage and with respet to omputational osts per iteration, results very similar tothose formulated in Remark 2 hold. Note that the CR-CG algorithm is muh more eÆient thanthe ICCG method, but both methods have a large stagnation phase at the beginning.5 Appliation to an Inde�nite Helmholtz ProblemIn this setion we onsider a disrete Helmholtz problem as in Set. 4 (with h = 160 ; 1120 ; 1240 )but now for � = 100; � = 200. In these ases the problem is inde�nite. In all three ases,h = 160 ; 1120 ; 1240 , the disrete operator has 6 negative eigenvalues (ounted with multipliity) if� = 100 and 13 negative eigenvalues if � = 200. The CG method is no longer appliable. The MIN-RES method ould be used for this type of problem. If, however, one wants to ombine this methodwith preonditioning then one needs a symmetri positive de�nite preonditioner. It is not lear
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Fig. 4. CR-CGhow to onstrut an eÆient spd preonditioner for this problem. We will use a (preonditioned)GMRES method with restart after 5 iterations (GMRES(5)) as a solver. For the preonditionerwe use standard ILU tehniques and the approximate CR method. For the ILU preonditionerthe MATLAB funtion LUINC is applied whih an be used for omputing the standard ILU(0)fatorization and for omputing an ILU fatorization based on droptoleranes (ILU(eps), whereeps denotes the drop tolerane). The righthand side and starting vetor are as in Set. 4.Experiment 3. We take � = 100. The ILU(0) and ILU(eps) fatorizations are omputed usingthe MATLAB funtion LUINC. In Table 5 we give the number of nonzero entries in the preon-ditioner (where we do not make use of symmetry). The onvergene behaviour of the GMRES(5)method with ILU left preonditioning (ILU-GMRES(5)) is shown for h = 160 ; h = 1120 in Fig. 5 andFig. 6, respetively. In these �gures we use the following symbols: '+' for ILU(0), 'x' for ILU(0.01),'o' for ILU(0.005), '�' for ILU(0.002). Note that the unit on the horizontal axis is one preondi-tioned GMRES(5) iteration, whih onsists of 5 preonditioned GMRES iterations. In Fig. 5 andFig. 6 we see slow onvergene and stagnation phases. Moreover, the dependene of the preon-ditioner on the threshold parameter eps is unpreditable. For example, for h = 1120 the result foreps = 0:002 is signi�antly better than for eps = 0:005 (after 100 GMRES(5) iterations), whereasfor h = 160 it is the other way round. Numerial experiments for the ase with � = 200 show aTable 1. Number of nonzero entries in ILU preonditionerILU(0) ILU(0.01) ILU(0.005) ILU(0.002)h = 160 17169 36828 54833 86659h = 1120 70329 152583 218851 324555similar unsatisfatory behaviour of GMRES(5) with ILU preonditioning.Experiment 4 . We onsider the inde�nite problem with � = 100, � = 200 and apply GMRES(5)with CR preonditioning. If in the deomposition phase we use the same omponents and param-eter values as in Experiments 1 and 2 then the resulting preonditoner is not satisfatory. Themain ause for this poor behaviour lies in the fat that if we only use the method P1, P2 in thepartitioning step D1 then for inde�nite problems (strong) diagonal dominane of the Arr is not
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Fig. 6. ILU-GMRES(5), h = 1120guaranteeed. Hene, in addition to P1, P2 we now also use the optional method in P3. This yieldsa signi�ant improvement of the performane of the preonditoner. In view of the better stabilityproperties, we take the Shur omplement approximation Ŝ(2)bb in S1, (10). A signi�ant furtherimprovement an be obtained if we allow more �ll-in in the preonditioner. For this we simplylower the value of the parameter � in (7). This auses slower oarsening and more �ll-in. Based onnumerial experiments for an inde�nite problem (� = 200) of relatively low dimension (h = 140 )we hoose the parameter value � = 0:4. The inrease of �ll-in, due this hoie of �, an beomevery large if one goes to higher levels. However, many �ll-in entries turn out to be very small.Hene we now also use the optional thresholding step S3. Based on numerial experiments for alow dimensional problem we take the threshold parameter "t = 0:001 in (12). Summarizing, in thedeomposition phase we use P1, P2, P3 (in D1), S1 (with Ŝ(2)bb ), S2, S3 (in D4) with parametervalues Dimbound = 50; � = 0:4; "t = 0:001. The results of the GMRES(5) method with CR pre-onditioner are shown in Fig. 7 (� = 100) and Fig. 8 (� = 200). The use of the symbols '+','�','o'is as in Set. 4.We give an indiation of the storage and arithmeti work needed for the CR preonditioner (f. Re-
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Fig. 7. CR-GMRES(5), � = 100 0 1 2 3 4 5 6 7
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Fig. 8. CR-GMRES(5), � = 200



12 Arnold Reuskenmark 2). We onsider the ase h = 1240 ; � = 200, i.e. n = 2392. Due to the use of the nonsymmetriShur omplement preonditoner Ŝ(2)bb in (10) the preonditioner is in general not symmetri. Theunion of the bloks Abri ; Arbi over all levels i > 1 ontains approximately 25n nonzeros entries.Theunion of the bloks Arri over all levels i > 1 ontains approximately 5n nonzeros entries. It followsthat for this preonditioner the storage needed is approximately 6 times as high as for the matrixA (if we do not make use of symmetry). Hene these storage osts are quite high (f. Remark 3).The total arithmeti work needed in the olletoperation and in thedistributeoperation over all levels i � 1 is approximately 5 12 MATVEC. In the two alls ofsolveoperation over all levels i � 1 we need arithmeti work omparable to 5 MATVEC.Similar results, both with respet to storage and with respet to arithmeti work , hold for theother ases (h = 160 ; 1120 ; � = 100). For this type of inde�nite problem the storage and arith-meti osts appear to be high. Note, however, that these problems are known to be very hard forother iterative solvers like geometri multigrid and Krylov methods with ILU preonditioning (f.Experiment 3). From Fig. 8 we see that, for the ase h = 1240 , after 7 CR-GMRES(5) iterationsthe error has been redued with a fator 107, i.e. a fator 10 per CR-GMRES(5) iteration, whihorresponds to a fator 1:6 per preonditioned GMRES iteration.Remark 3. Note that, opposite to ILU preonditioners, the solution phase of the CR preonditioneris easy to parallelize. This parallelization an be realized along the same lines as for a geometrimultigrid V-yle (f. [4℄). The graph partitioning method in P2 an be replaed by a similarmethod whih is suitable for parallelization. Using suh a variant, the deomposition phase in theCR preonditioner is also easy to parallelize.Referenes1. Bank, R.E., Dupont, T.F., Yserentant, H.: The hierarhial basis multigrid method. Numer. Math. 52(1988) 427{4582. Bank, R.E., Smith, R.K.: The inomplete fatorization multigraph algorithm. SIAM J. Si. Comput.20 (1999) 1349{13643. Bank, R.E., Wagner, C.: Multilevel ILU deomposition. Numer. Math 82 (1999) 543{5764. Bastian, P.: Parallele adaptive Mehrgitterverfahren. Teubner Skripten zur Numerik, Teubner, Stuttgart,Leipzig (1996)5. Botta, E.E.F., Van der Ploeg, A.: Preonditioning tehniques for matries with arbitrary sparsity pat-terns. In: Proeedings of the Ninth International Conferene on Finite Elements in Fluids, New Trendsand Appliations (1995) 989{9986. Botta, E.E.F., Wubs, W.: MRILU: it's the preonditioning that ounts. Report W-9703, Departmentof Mathematis, University of Groningen, The Netherlands (1997)7. Braess, D.: Towards algebrai multigrid for ellipti problems of seond order. Computing 55 (1995)379{3938. Bruaset, A.M.: A survey of preonditioned iterative methods. Pitman Researh Notes in Mathematis328 Longman (1995)9. Dendy, J.E.: Blak box multigrid. J. Comput. Phys. 48 (1982) 366{38610. Golub, G.H., Van Loan, C.: Matrix Computations. Johns Hopkins University Press, seond edition(1989)11. Hakbush, W.: Multigrid methods and appliations. Springer, Berlin, Heidelberg, New York (1985)12. Hakbush, W.: Iterative solution of large sparse systems of equations. Springer, New York (1994)13. Heller, D.: Some aspets of the yli redution algorithm for blok tridiagonal linear systems. SIAMJ. Numer. Anal. 13 (1976) 484{49614. Horowitz, E., Sahni, S.: Fundamentals of data strutures in Pasal. Pitman, London (1984)15. Notay, Y.: Using approximate inverses in algebrai multilevel preonditioning. Numer. Math. 80 (1998)397{417
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