An Algebraic Multilevel Preconditioner for
Symmetric Positive Definite and Indefinite Problems

Arnold Reusken

Institut fiir Geometrie und Praktische Mathematik, RWTH Aachen,
Templergraben 55, D-52056 Aachen, Germany

Abstract. We present a preconditioning method for the iterative solution of large sparse systems of equa-
tions. The preconditioner is based on ideas both from ILU preconditioning and from multigrid. The result-
ing preconditioning technique requires the matrix only. A multilevel structure is obtained by constructing
a maximal independent set of the graph of a reduced matrix. The computation of a Schur complement
approximation is based on a Galerkin approach with a matrix dependent prolongation and restriction.
The resulting preconditioner has a transparant modular structure similar to the algorithmic structure of a
multigrid V-cycle. The method is applied to symmetric positive definite and indefinite Helmholtz problems.
The multilevel preconditioner is compared with standard ILU preconditioning methods.

1 Introduction

Multigrid methods are very efficient iterative solvers for the large systems of equations result-
ing from discretization of partial differential equations (cf. [11,26] and the references therein). An
important principle of multigrid is that a basic iterative method, which yields appropriate local
corrections, is applied on a hierarchy of discretizations with different characteristic mesh sizes. This
multilevel structure is of main importance for the efficiency of multigrid.

Another class of efficient iterative solvers consists of Krylov subspace methods combined with ILU
preconditioning (cf. [8,20] and the references therein). These methods only need the matrix and
are in general easier to implement than multigrid methods. Also the Krylov subspace methods
are better suitable for a ”black-box” approach. On the other hand, for discretized partial differen-
tial equations the Krylov methods with ILU preconditioning are often less efficient than multigrid
methods.

In the multigrid field there have been developed methods which have a multilevel structure but
require only the matrix of the linear system. These are called algebraic multigrid methods. Ap-
proaches towards algebraic multigrid are presented in, e.g. [7,9,19,23,25]. In all these methods one
tries to mimic the multigrid principle. First one introduces a reasonable coarse ”grid” space. Then
a prolongation operator is chosen and for the restriction one usually takes the adjoint of the pro-
longation. The operator on the coarse grid space is defined by a Galerkin approach. With these
components, a standard multigrid approach (smoothing + coarse grid correction) is applied. These
algebraic multigrid methods can be used in situations where a grid (hierarchy) is not available.
Also these methods can be used for developing black-box solvers.

Recently there have been developed ILU type of preconditioners with a multilevel structure, cf.
[5,6,16,21,22]. The multilevel structure is induced by a level wise numbering of the unknowns. In
[2,3,17,18], new hybrid methods have been presented, which use ideas both from ILU (incomplete
Gaussian elimination) and from multigrid.

In the present paper we reconsider the approximate cyclic reduction preconditioner of [17,18].
This method is based on the recursive application of a two-level method, as in cyclic reduction or
in a multigrid V-cycle method. For the definition of a two level structure we use two important
concepts: a reduced graph and a maximal independent set. The partitioning of the set of unknowns,
denoted by the labels "red ” and ”black”, yields a corresponding block-representation of the given

2 Arnold Reusken

matrix A:

Ay Ay,
PAPT = : (1)
Arb Arr

with P a suitable permutation matrix. The construction of the red-black partitioning is such
that, under reasonable assumptions on A, the A, block is guaranteed to be strongly diagonally
dominant. In [18] one can find a technique for constructing a sparse approximation Sy, of the
Schur complement Sy, := Ay, — Ap.ALA,;. This approximation is obtained by replacing the
block Gaussian elimination which results in the Schur complement (cf. (4)) by a sequence of point
Gaussian elimination steps.

In [18] the approximate cyclic reduction preconditioner is presented and analyzed in a general
framework and applied to convection-diffusion and anisotropic diffusion problems. In the present
paper we explain a simple variant of the cyclic reduction preconditioner which is then applied to a
discretization of the Helmholtz equation —Au — Au = f (A > 0 a constant) on the unit square. In
Sect. 4 we consider A = 0 (Poisson equation) and A = 19.73 (SPD, close to singular) and compare
CG + approximate cyclic reduction preconditioning with the standard ICCG method. In Sect. 5 we
consider the indefinite case (A = 100, A = 200) and compare the GMRES(5)+ ILU preconditioning
(using droptolerances) with GMRES(5) + approximate cyclic reduction preconditioning.

2 The Cyclic Reduction Principle

We recall the classical method of cyclic reduction. This method can be used, for example, for
solving a linear system with a tridiagonal matrix or with a special block tridiagonal matrix (cf.
[10,13,24]). We explain the cyclic reduction principle by considering an n x n linear system with a
tridiagonal matrix:

a1 bl
c1 a2 by 0

Ax=b, A= , a; #0 forall 7. (2)
0 by

Cp—1 Qn

Reordering the unknowns based on an obvious red-black (or ”odd-even”) structure results in a
permuted system with a matrix of the form

Ay Ay,
PAPT = : (3)

Arb Arr

in which [Ap Ay,] represents the equations in the unknowns with a black label and [A,, A,.]
represents the equations in the unknowns with a red label. Note that, because A is tridiagonal,
the diagonal blocks Ay, A, are diagonal matrices. Gaussian elimination in the red points results
in a reduced system with dimension (approximately) %n In matrix notation this corresponds to
block UL-decomposition:

[I AbrA;rl-I [Sbb 0 -|

PAPT = . Seb = Ap — Ay A A (4)
0 1 ||ana,]

An Algebraic Multilevel Preconditioner 3

The reduced system has a matrix Sy, (Schur complement) which is tridiagonal, and thus the same
approach can be applied to Sy,. So the basic cyclic reduction idea is to reduce significantly the
dimension of the problem repeatedly until one has a relatively small problem that can be solved
easily. After this decomposition phase a block UL-decomposition of the matrix A is available and
the linear system in (2) can be solved using a simple backward—forward substitution process. In
this process the systems with matrix A,, are trivial to solve, because A, is diagonal.

In Sect. 3 we will modify this simple direct method, resulting in a preconditioner for sparse matri-
ces which are not necessarily tridiagonal. For a better understanding of this preconditioner we first
give a rather detailed description of a particular implementation of the cyclic reduction method
for a tridiagonal matrix, which consists of a decomposition phase and a solution phase.

Decomposition phase. We assume a tridiagonal matrix A € R"™*". Dimbound, with 1 <
Dimbound < n is a given integer (used in D5 below). Set i := 1, A; := A, mg :=n.

D1. Red-black partitioning . Given the tridiagonal matrix A; we construct a red-black (odd-even)
partitioning of the unknowns. This results in n; vertices with label red and m; vertices with label
black. Note: m; +n; = m;_1.

D2. Determine permutation. We determine a symmetric permutation p; : {1,2,...,m;—1} — {1,2,...,m;_1}
such that applying this permutation to the index set of the unknowns results in an ordering in

which all unknowns with label red have index j € (m;,m;_1] and all unknowns with label black

have index j € [1,m;]. Note that since we only have to permute between the sets {j | j > m;

and label(j) = black} and {j | j < m; and label(j) = red}, such a permutation can be fully
characterized by a permutation p; : {m; + 1,m; + 2,....m;_1} = {1,2,...,m;}.

D3. Determine permuted matriz. The symmetric matrix corresponding to the permutation p; of
D2 is denoted by P;. We determine P;A;P;. This matrix has a 2 x 2-block representation:

PiAiP,' =

NI
] (5)

AP AT
with A" € R™*™, Al € R™*™ AT € R™ ™, Alr € R™ ™,

D4. Compute Schur complement. Compute the Schur complement A;y; = P;A;P;/Al" =
AP — Al(AT)TIAT

D5. Store. Save m;,p;, A", AT A If m; < Dimbound then save A;; (stop the reduction
process) else i := i + 1 and goto D1.

Remark 1. The algorithm used in the decomposition phase is well-defined iff the diagonal matrices
A!" are nonsingular. The latter property holds if the matrix A is symmetric positive definite or
an M-matrix. This follows from the fact that the Schur complement of an SPD-matrix (M-matrix)
is an SPD-matrix (M-matrix), cf. [12].

If the above decomposition process stops with ¢ = imax, we obtain integers my > my > ... > m;,___,
permutation vectors p; (1 < i < 4may), sparse matrices A", AT AP (1 < i < iyay) and the
approximate Schur complement on the highest level A; . +1. We use the following terminology:
p; is called the permutation operator on level ¢, A" is called the solve operator on level i, A;-"b is
called the collect operator on level i, A?’" is called the distribute operator on level i.

4 Arnold Reusken

The red unknowns on all levels, together with the black unknowns on the final level induce a direct
sum decomposition IR" = IR™ $IR™ @ ... IR max G IR™max . The unknowns on level ¢ with label
red are assigned the level number ¢, and the vertices on level i, with label black are assigned
level number i,,,x + 1. The unknowns with level number j are called the level j unknowns. Note
that every unknown has a unique level number.

Solution phase. For a clear description of the solution phase we introduce permute, collect,
distribute and solve operations. These operations use the corresponding operators which are avail-
able from the decomposition phase. We give a description in a pseudo-programming language.

procedure permuteoperation(i: int; var x € IR™"') (x uses p;*)
for j :=m; + 1 to m;—1 do
if j # pi(j) then interchange z; and z, (j);

procedure collectoperation(i: intjvar x € R™; g € IR™) (x uses Al’x)
compute x :=x — Al’g;

procedure distributeoperation(i: int;var x € IR™ ;g € IR™) (x uses A %)
compute x :=x — Ag;

procedure solveoperation(i: int; var x € IR™) (* uses Al"x)
solve AI"w = x. The result is written in x.

procedure highestlevelsolve(var x € IR™max) (% uses A;_ . t1%)
solve A; _ 41W = X; X 1= W;

Using these procedures it is easy to formulate the backward and forward substitution process,
i.e. the solution phase, of the approximate cyclic reduction preconditioner. On each level i (1 <
i < imax + 1) we define ULsolve as follows:
procedure ULsolve(i: int; var f € R™i"1);
var fioq € R™;

begin
if § = imax + 1 then highestlevelsolve(f) else
begin
permuteoperation(i, f);
partition f = <£b> with f. € R™, f, € R™;
r
make a copy freq := f;
solveoperation(i, freq);
distributeoperation(i, fj, fied);
ULsolve(i+ 1,1f;);
collectoperation(i, £, f);
solveoperation(i,f,);
permuteoperation(i, f);
end
end;

The solution of Ax = b results from the call ULsolve(1,b). The structure of ULsolve is simi-
lar to the structure of the multigrid V-cycle algorithm as presented in [11]. The distribute and
collect operations correspond to the multigrid restriction and prolongation, respectively. The solve

An Algebraic Multilevel Preconditioner 5

operation corresponds to the smoother in multigrid. Note, however, that in ULsolve we do not use
any grid information and that every unknown is involved in the solve operations of precisely one
level (as in hierarchical basis multigrid, cf. [1]).

3 Approximate Cyclic Reduction Preconditioning

In this section we introduce an approximate cyclic reduction preconditioner. For this we recall a
few notions from graph theory.

A matrix A € R™*" induces an ordered directed graph G4 (V,E), consisting of an ordered
set of vertices V = {1,2,...,n} and a set E of ordered pairs of vertices called edges . This set
E consists of all pairs (¢,7) for which a;; # 0. A directed graph will also be called a digraph. If
(i,7) is an element of E then i is said to be adjacent to j and j is said to be adjacent from .
Two vertices i # j are said to be independent if (i,j) ¢ E and (j,i) ¢ E. A subset M of V
is called an independent set if every two vertices in M are independent. M is called a mazimal
independent set of vertices if M is independent but no proper superset of M in V' is independent.
Note that a maximal independent set is in general not unique. For a vertex i € V, its neighbour-
hood N(i) is defined by N(i) = {j € V | j # i and (i,j) € E}. For i € V its degree , deg(i), is
the number of elements in the neighbourhood of i, that is, deg(i) = |N(7)|. A vertex 4 is called an
isolated vertex if deg(i) = 0. Note that an isolated vertex can be adjacent from other verticesin V.

In the classical cyclic reduction method, as described in Sect. 2, a red-black partitioning V' =
V, UV, ViNV, = {0} of the vertex set V corresponding to a tridiagonal matrix is constructed
such that V. is a maximal independent subset of V. Since the vertices in V, are independent, the
matrix A, is diagonal. Moreover, the red-black partitioning yields a maximal independent set V.
for which the corresponding Schur complement A /A,., is tridiagonal and has much smaller dimen-
sion than the original matrix. For a general sparse matrix A it is easy to construct a partitioning
V=V,UW, V.NnV, = {0} of the vertex set of the graph G4(V, E) such that V, is a maximal
independent subset of V. Hence the same approach as in cyclic reduction, i.e. compute the Schur
complement and apply the same technique recursively, can be applied. However, it is well-known
that almost always one gets an unacceptable amount of fill-in in the Schur complement after only
a few recursive steps. Thus this direct (!) method is not satisfactory. In the approximate cyclic
reduction preconditioner we construct a partitioning V=V, UV;, V, NV, = {0} such that A, is
strongly diagonally dominant. Furthermore an approzimate Schur complement is used and systems
with matrix A,,. are solved only approzximately. The preconditioner has the following structure,
which is very similar to the cyclic reduction method of Sect. 2.

Decomposition phase. We assume a sparse matrix A € R"*". Dimbound, with 1 < Dimbound <
n is a given integer (used in D5 below). Set i :=1, A; := A, mg :=n.

D1. Partitioning of the vertex set. Compute a partitioning V; = V" U VP, VI nVY = {0} of
the vertex set V; of the graph corresponding to A; such that the matrix A]" is strongly diago-
nally dominant. This results in n; vertices with label red and m; vertices with label black. Note:
m; +n; =Mm;—1.

D2 = D2. (as in Sect. 2)

D3 =D3.

D4. Compute approzimate Schur complement. Compute a sparse approximation Ay, € IR™ %™
of the Schur complement P;A;P;/Al".

D5. Store. Save m;,p;, AT, ATt AY . If m; < Dimbound or m; > 0.8m;_; then save A1 (stop
the reduction process) else 7 := i 4+ 1 and goto D1.

6 Arnold Reusken

The methods used in D1, D4 will be explained below. In D5 we introduced an additional stopping
criterion to avoid a stagnation in the problem size reduction.

Solution phase. We apply the procedure ULsolve of Sect. 2 in which all procedures are un-
changed except for the procedure solveoperation which is replaced by
procedure solveoperation(i: int; var x € R™)
solve Al"w = x approzimately, using a few iterations of a basic
iterative method. The result is written in x.

For the choice of the basic iterative method in solveoperation there are obvious possibilities:
Jacobi, Gauss-Seidel, ILU. Note that the construction in the decomposition phase is such that the
matrices Al are strongly diagonally dominant, hence these basic iterative methods have a high
convergence rate for these systems. In this paper we use a method of Jacobi type. The solution of
the system A’"w = x is approximated by w?, which results from:

wl = (DI")"!x (start)
w2 =w! — (D) 1 (AI"w! —x) (modified Jacobi) (6)
w? =w? — (DI")"1(AI"w? —x) (Jacobi),

with D" = diag(A!"), D}" the diagonal matrix which satisfies D!"1 = A" 1, 1:= (1,1,...,1)T.
Using M = I — (DI")~'AI", M = I — (D}")~'Al", a simple computation yields that w® =
(I- MMM)(A}")"'x. If A" is symmetric positive definite then the matrix (I — MMM)(A}") "
is symmetric. This conservation of symmetry is important for the CG method in Sect. 4. In general
the rate of convergence of the Jacobi method (iteration matrix M) is higher than the rate of
convergence of the modified Jacobi method (iteration matrix M). However, for the modified Jacobi
method the (consistency) property M1 = 0 holds, which is favourable for Poisson type of problems
(cf. [15]). This motivates our choice for a symmetric combination of the Jacobi and the modified
Jacobi method.
This procedure solveoperation is used both in Sect. 4 and in Sect. 5.

We now explain methods which can be used in in DI and D4. Numerical experiments based
on these methods are presented in Sect. 4 and Sect. 5.

Partitioning of the vertex set. The partitioning method consists of three steps, where the
third one is optional (cf. Sect. 4 and 5).

P1. Compute a reduced digraph. As in algebraic multigrid methods (cf. [19,25]), for the graph
coarsening we distinguish ”strong” and ”weak” edges in the digraph. The underlying multigrid
heuristic is that if one wants to use simple (point) smoothers then one should coarsen in the direc-
tion of the ”strong” connections.

Every loop in E, i.e. an edge of the form (i,1), is labeled strong. For every nonisolated vertex i € V
an edge (i,j) € E with j # i is labeled strong if for the corresponding matrix entry a;; we have:

|aij| = B max, |aij| (7)
with 0 < 8 < 1 a given parameter (typically 0.4 < 8 < 0.6). An edge is labeled weak if it is not
strong. Note that for every nonisolated vertex ¢ there is at least one strong edge (i, j) with j # i.
Thus we obtain a partitioning E = E;UE,, of the edges into strong (E,) and weak (E,,) edges. The
directed graph consisting of the vertex set V and the set of strong edges Es is called the reduced
digraph and is denoted by G4 (V, E).

An Algebraic Multilevel Preconditioner 7

P2. Compute a maximal independent set of the reduced digraph. We compute a maximal inde-
pendent set M of the reduced digraph G4(V, E;). This can be realized with low computational
costs using a simple breath first search technique (cf. [14,18]). A vertex i € V is assigned a red
(black) label if i € M (i ¢ M).

P3.(optional) Check for diagonal dominance. The vertex set partitioning constructed in P1, P2
results in a corresponding block partitioning of the matrix A as in (1). We now check diagonal
dominance of the A, block. If for a given parameter value s

Z |(Arr)i,j| > K |(A7‘T)i,i| (8)

for some red vertex i, then the red label of this vertex is changed to black. In our applications we
use k = 1.5.

Approximate Schur complement. In [18] on can find a technique for approximating the Schur
complement which is based on replacing the block Gaussian elimination (cf. (4)) by a sequence of
point Gaussian elimination steps. In the present paper we use a simple variant of this technique
that can be interpreted as a Galerkin approach with matrix dependent prolongation and restriction.
Note that for a matrix of the form

[Abb Ay, -|

A0 —
Arb AT’T‘J

the Schur complement Sy, = A(O)/AM can be represented as

I I
B _ —17 A0 | 1] _ ©) !
Sw = [Ir —ApAL]A [*] = lh=a [—AE}ATJ 7 9

with * arbitrary. Let D,.,. = diag(A,.,.) and 1~)Tr be the diagonal matrix which satisfies]~)M]l =A,1
and let

Iy
_ﬁ;rlATb
e = [I ~AwD;'], = (L 0].

pa = } , Ta=[I, —A,, D],

For the approximation of the Schur complement in (9) we will use one of the following two Galerkin
operators:

S1. Galerkin approximation Sl()é) = fAA(O)f)A, Sl(i) = rAA(O)f)A. (10)

The approximation S,()})) is spd if A(©) is spd. From the analysis in [18] it follows that the approx-

imation S,()i) has better consistency properties than S,()i), whereas the latter has better stability

properties.

To reduce the amount of fill-in in the approximate Schur complement é,()];) we use standard
techniques: Restriction to a prescribed pattern (S2) and thresholding (S3). In the applications in
Sect. 4, 5 we always use 52, whereas S3 is optional.

S2. Restriction to prescribed pattern

g ._ (gk k=1,2. 11
bb (bb)|graph(rim'x°~(°)f’A)7 ’ -

8 Arnold Reusken

Here we use (with C,B € IR"*") the notation (C| h(B))i,j =C,;ifi # j and (i,) € graph(B),
grap
(C|graph(B))i’j =0if i #j and (i,7) ¢ graph(B) and dlag(C|graph(B)) such that C|graph(B 1=cC1

(i.e. entries outside the pattern are added to the diagonal). :

S3. Thresholding. We use a threshold paremeter ¢, > 0. Let Sys € R™*™ be an approximate
Schur complement. For 1 < i < m, let k; > 0 be the number of nonzero entries in the ith row of
Ses. In row i every entry (gbb)m- with

- 1 .
|(Seb)iil < L EJ: |(Seb)i,; (12)
is replaced by zero. This is done for all rows ¢ =1,2,... ,m.

4 Application to a SPD Helmholtz Problem

In this section we show results of a few numerical experiments with the approximate cyclic re-
duction (CR) preconditioner. We consider the standard 5-point finite difference discretization of
the Helmholtz problem —Au — Au = f on (0,1)? with zero Dirichlet boundary conditions on
a uniform grid with mesh size h. The smallest eigenvalue of the discrete operator is Amin =
8h~2sin®(imh) — X = 2% — X + O(h?) = 19.73921 — X + O(h?). We take A = 0, i.e. the Pois-
son equation, and A = 19.73. In both cases the discrete problem is symmetric positive definite. We
will compare the CG method with CR preconditioning (CR-CG) with the standard ICCG method.
The implementation is done in MATLAB and we used the MATLAB function CHOLINC. We
consider mesh sizes h = g5 (symbol "+’ in the figures), h = 135 (symbol 'x’) and h = 535 (symbol
’0’). In all experiments we take the righthand side such that the discrete solution is given by 1/||1]2
and we use zero as the starting vector.

Ezperiment 1. We take A = 0. We choose the parameter value Dimbound = 50 in the decompo-
sition phase. In the CR-preconditioner we use in step DI in the decomposition phase the method
P1, P2 described in Sect. 3. We take 8 = 0.6 in (7). For this problem we do not need the check
for diagonal dominance in P3 (this follows from the analysis in [18] and is confirmed by numerical
experiments). In step D4 in the decomposition phase we use the method as in S1, S2 (i.e. (10),
(11)) with k = 1, i.e. the symmetric variant. We do not use the thresholding strategy described
in S3. Numerical results for the ICCG and CR-CG methods are shown in Fig. 1 and Fig. 2. In
Fig. 1 one can observe the well-known dependence of the convergence rate of the ICCG method
on the mesh size h. When h is halved then, in order to obtain a fixed error reduction, one needs
approximately twice as many ICCG iterations. This h dependence is much weaker for the CR-CG
method (although there still seems to be a mild h-dependence). Also note that the ICCG method
shows relatively slow convergence in the first phase of the solution process (superlinear convergence
behaviour), whereas the CR-CG method has an almost linear convergence behaviour. For h = ﬁ,
to reduce the starting error with a factor 100 one needs about 70 ICCG iterations but only 2
CR-CG iterations.

Remark 2. We give an indication of the storage needed for the methods in Experiment 1 for the
case h = 555, i.e. n = 239%. For the symmetric matrix A storage for approximately 24n entries is
needed. The blocks Af", A", A’ constructed in the first step (i.e. i = 1) of the decomposition
phase of the CR-preconditioner, are blocks from the matrix A, after a suitable permutation. Hence
one does not need additional storage for these blocks. The union of the blocks AY" = (A7*)T over
all levels ¢ > 1 contains approximately 2.4n nonzero entries. For the union of the symmetric blocks
A" over all levels 2 > 1 we need storage for approximately 1.3n entries. The storage needed for

An Algebraic Multilevel Preconditioner 9

Poisson equation Poisson equation
10 T T T
T

+o

& g 10 *
B H +°
s 510
= = + * o
10° + * o
o
*
+ o
107k
+ *
10'7 L L 10'7 L L L L L L L L L
0 50 100 150 o 1 2 3 4 5 6 7 8) 10
#1CCG iterations # CR-CG iterations
Fig. 1. ICCG Fig. 2. CR-CG

the approximate Schur complement on the highest level is negligible. It follows that for the CR-
preconditioner (additional) storage for approximately 3.7n entries is needed. For the incomplete
Choleski preconditioner storage for approximately 3n entries is needed. Hence, for this problem,
the CR-preconditioner needs only 20-30 percent more storage than the IC-preconditioner. The
numerical experiments show that this statement also holds for the cases h = % and h = ﬁ in
Experiment 1.

We briefly discuss the arithmetic work, for h = ﬁ, needed for one evaluation of the CR
preconditioner (i.e. one call of ULsolve(l,b)). As a unit of arithmetic work we use one matrix-
vector multiplication with the given matrix A, denoted by MATVEC. The total arithmetic work
needed in the distributeoperation and collectoperation over all levels ¢ > 1 is approximately
2 MATVEC. In the two calls of solveoperation on level ¢ we need arithmetic work comparable
to 4 Jacobi iterations applied to a system with matrix A}". Adding these costs over all levels
i > 1 results in approximately 2% MATVEC arithmetic work. The costs for highestlevelsolve
are negligible. It follows that the arithmetic costs for one CR-CG iteration are approximately 2%
times the costs of one ICCG iteration. The same statement holds for the cases h = % and h = ﬁ
in Experiment 1.

Experiment 2. We consider A = 19.73. Application of the MATLAB function CHOLINC yields a
well-defined incomplete Choleski factorization of the matrix A. The results for the ICCG method
are shown in Fig. 3. We take all components and all parameter values in the CR algortihm as in
Experiment 1. The results for the CR-CG method are given in Fig. 4. It turns out that, both with
respect to storage and with respect to computational costs per iteration, results very similar to
those formulated in Remark 2 hold. Note that the CR-CG algorithm is much more efficient than
the ICCG method, but both methods have a large stagnation phase at the beginning.

5 Application to an Indefinite Helmholtz Problem

In this section we consider a discrete Helmholtz problem as in Sect. 4 (with b = &5, 135> 515)
but now for A = 100, A = 200. In these cases the problem is indefinite. In all three cases,
h = %, ﬁ, ﬁ, the discrete operator has 6 negative eigenvalues (counted with multiplicity) if
A = 100 and 13 negative eigenvalues if A = 200. The CG method is no longer applicable. The MIN-
RES method could be used for this type of problem. If, however, one wants to combine this method

with preconditioning then one needs a symmetric positive definite preconditioner. It is not clear

10 Arnold Reusken

Helmholtz equation, SPD

Helmholtz equation, SPD
T

00994 e edeeRQ00000

+ * o

norm of the error
norm of the error
o

-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

L 7 L L L
0 150 200 250 0 5 15 20 25 30
#ICCG iterations # CR-CG iterations

Fig. 3. ICCG Fig. 4. CR-CG

how to construct an efficient spd preconditioner for this problem. We will use a (preconditioned)
GMRES method with restart after 5 iterations (GMRES(5)) as a solver. For the preconditioner
we use standard ILU techniques and the approximate CR method. For the ILU preconditioner
the MATLAB function LUINC is applied which can be used for computing the standard ILU(0)
factorization and for computing an ILU factorization based on droptolerances (ILU(eps), where
eps denotes the drop tolerance). The righthand side and starting vector are as in Sect. 4.

Ezperiment 3. We take A = 100. The ILU(0) and ILU(eps) factorizations are computed using
the MATLAB function LUINC. In Table 5 we give the number of nonzero entries in the precon-
ditioner (where we do not make use of symmetry). The convergence behaviour of the GMRES(5)
method with ILU left preconditioning (ILU-GMRES(5)) is shown for h = &, h = 35 in Fig. 5 and
Fig. 6, respectively. In these figures we use the following symbols: '+’ for ILU(0), ’x’ for ILU(0.01),
"o’ for ILU(0.005), *+’ for ILU(0.002). Note that the unit on the horizontal axis is one precondi-
tioned GMRES(5) iteration, which consists of 5 preconditioned GMRES iterations. In Fig. 5 and
Fig. 6 we see slow convergence and stagnation phases. Moreover, the dependence of the precon-
ditioner on the threshold parameter eps is unpredictable. For example, for h = ﬁ the result for
eps = 0.002 is significantly better than for eps = 0.005 (after 100 GMRES(5) iterations), whereas
for h = % it is the other way round. Numerical experiments for the case with A = 200 show a

Table 1. Number of nonzero entries in ILU preconditioner

ILU(0) ILU(0.01) ILU(0.005) ILU(0.002)
h= % 17169 36828 54833 86659
h=--| 70329 152583 218851 324555

similar unsatisfactory behaviour of GMRES(5) with ILU preconditioning.

Ezperiment /. We consider the indefinite problem with A = 100, A = 200 and apply GMRES(5)
with CR preconditioning. If in the decomposition phase we use the same components and param-
eter values as in Experiments 1 and 2 then the resulting preconditoner is not satisfactory. The
main cause for this poor behaviour lies in the fact that if we only use the method P1, P2 in the
partitioning step D1 then for indefinite problems (strong) diagonal dominance of the A, is not

An Algebraic Multilevel Preconditioner 11

Helmholtz equation, indefinite Helmholtz equation, indefinite

550500

><><><>ooo<><

feceis] e 10° Fra
%Dao Soc i,
107F o 4 3
W oo

5 ”‘Xwixf;@w%w 5
5 %%%)m &X%:Wm 3
° « @
s +1ILU(0) o S0k +:ILU() *E
2 2060005 ° X : ILU(eps=0.01)
% x 1 ILU(eps=0.01) E)]
2 0 ILU(eps=0.005) @ 2 0 ILU(eps=0.005) kad

102F *:1LU(eps=0.002) @ 4 *#1LU(eps=0.002)

%mmmm% - -
@® WK
de) %
o bty
feren)
107 I I I I I I I ! I 107 I I I I L I I I I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
#1LU-GMRES(S) iterations # ILU-GMRES(5) iterations
: 1 : 1
Fig. 5. ILU-GMRES(5), h = & Fig. 6. ILU-GMRES(5), h = 5

guaranteeed. Hence, in addition to P1, P2 we now also use the optional method in P3. This yields
a significant improvement of the performance of the preconditoner. In view of the better stability
properties, we take the Schur complement approximation S,(j) in S1, (10). A significant further
improvement can be obtained if we allow more fill-in in the preconditioner. For this we simply
lower the value of the parameter 3 in (7). This causes slower coarsening and more fill-in. Based on
numerical experiments for an indefinite problem (A = 200) of relatively low dimension (h = 35)
we choose the parameter value § = 0.4. The increase of fill-in, due this choice of 3, can become
very large if one goes to higher levels. However, many fill-in entries turn out to be very small.
Hence we now also use the optional thresholding step S3. Based on numerical experiments for a
low dimensional problem we take the threshold parameter ¢; = 0.001 in (12). Summarizing, in the
decomposition phase we use P1, P2, P3 (in D1), S1 (with ${2), S2, $3 (in D4) with parameter
values Dimbound = 50, § = 0.4, &, = 0.001. The results of the GMRES(5) method with CR pre-
conditioner are shown in Fig. 7 (A = 100) and Fig. 8 (A = 200). The use of the symbols '+’,’+’,’0’
is as in Sect. 4.

We give an indication of the storage and arithmetic work needed for the CR preconditioner (cf. Re-

Helmholtz equation, indefinite Helmholtz equation, indefinite
0 o
10 T T T 10 T T
107} E
10"
o
*
107k E .
+ 107
e}
-
10 F E| + e}
5 & 8 107
s $107°F
2 2
f107F E b=
5 + 5
£ £ o
5 © s1o * o
e * 2
10°F E
. *
-
10°F
10°F ® E o
+ o
107k
107} E
*
4
10"‘ L L L L L L L L L 10'7 L L L L L L
0 05 1 15 2 25 3 35 4 45 5 [1 2 5 6 7

! 3 4
CR-GMRES(5) iterations # CR-GMRES(S) iterations

Fig. 7. CR-GMRES(5), A = 100 Fig. 8. CR-GMRES(5), A = 200

12 Arnold Reusken

mark 2). We consider the case h = A =200, i.e. n = 2392. Due to the use of the nonsymmetric

240’
Schur complement preconditoner Sbb in (10) the preconditioner is in general not symmetric. The
union of the blocks A", A’ over all levels i > 1 contains approximately 25n nonzeros entries. The
union of the blocks A]" over all levels ¢ > 1 contains approximately 5n nonzeros entries. It follows
that for this preconditioner the storage needed is approximately 6 times as high as for the matrix
A (if we do not make use of symmetry). Hence these storage costs are quite high (cf. Remark 3).
The total arithmetic work needed in the collectoperation and in the

distributeoperation over all levels ¢ > 1 is approximately 5% MATVEC. In the two calls of
solveoperation over all levels ¢ > 1 we need arithmetic work comparable to 5 MATVEC.
Similar results, both with respect to storage and with respect to arithmetic work , hold for the
other cases (h = 60, 1§0> A = 100). For this type of indefinite problem the storage and arith-
metic costs appear to be high. Note, however, that these problems are known to be very hard for
other iterative solvers like geometric multigrid and Krylov methods with ILU preconditioning (cf.
Experiment 3). From Fig. 8 we see that, for the case h = 355, after 7 CR-GMRES(5) iterations
the error has been reduced with a factor 107, i.e. a factor 10 per CR-GMRES(5) iteration, which
corresponds to a factor 1.6 per preconditioned GMRES iteration.

Remark 3. Note that, opposite to ILU preconditioners, the solution phase of the CR preconditioner
is easy to parallelize. This parallelization can be realized along the same lines as for a geometric
multigrid V-cycle (cf. [4]). The graph partitioning method in P2 can be replaced by a similar
method which is suitable for parallelization. Using such a variant, the decomposition phase in the
CR preconditioner is also easy to parallelize.

References

1. Bank, R.E., Dupont, T.F., Yserentant, H.: The hierarchical basis multigrid method. Numer. Math. 52
(1988) 427-458

2. Bank, R.E., Smith, R.K.: The incomplete factorization multigraph algorithm. STAM J. Sci. Comput.

0 (1999) 1349-1364

3. Bank, R.E., Wagner, C.: Multilevel ILU decomposition. Numer. Math 82 (1999) 543-576

4. Bastian, P.: Parallele adaptive Mehrgitterverfahren. Teubner Skripten zur Numerik, Teubner, Stuttgart,
Leipzig (1996)

5. Botta, E.E.F., Van der Ploeg, A.: Preconditioning techniques for matrices with arbitrary sparsity pat-
terns. In: Proceedings of the Ninth International Conference on Finite Elements in Fluids, New Trends
and Applications (1995) 989-998

6. Botta, E.E.F., Wubs, W.: MRILU: it’s the preconditioning that counts. Report W-9703, Department
of Mathematics, University of Groningen, The Netherlands (1997)

7. Braess, D.: Towards algebraic multigrid for elliptic problems of second order. Computing 55 (1995)
379-393

8. Bruaset, A.M.: A survey of preconditioned iterative methods. Pitman Research Notes in Mathematics
328 Longman (1995)

9. Dendy, J.E.: Black box multigrid. J. Comput. Phys. 48 (1982) 366-386

10. Golub, G.H., Van Loan, C.: Matrix Computations. Johns Hopkins University Press, second edition
(1989)

11. Hackbusch, W.: Multigrid methods and applications. Springer, Berlin, Heidelberg, New York (1985)

12. Hackbusch, W.: Iterative solution of large sparse systems of equations. Springer, New York (1994)

13. Heller, D.: Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems. STAM
J. Numer. Anal. 13 (1976) 484-496

14. Horowitz, E., Sahni, S.: Fundamentals of data structures in Pascal. Pitman, London (1984)

15. Notay, Y.: Using approximate inverses in algebraic multilevel preconditioning. Numer. Math. 80 (1998)
397417

An Algebraic Multilevel Preconditioner 13

16. Van der Ploeg, A.: Preconditioning for sparse matrices with applications. PhD thesis, University of
Groningen (1994)

17. Reusken, A.: Approximate cyclic reduction preconditioning. In: Multigrid methods 5 (W. Hackbusch
and G. Wittum, eds.). Lecture Notes in Computational Science and Engineering 3 (1998) 243-259

18. Reusken, A.: On the approximate cyclic reduction preconditioner. STAM J. Sci. Comput., to appear

19. Ruge, J.W., Stiiben, K.: Algebraic multigrid. In: Multigrid Methods (S.F. McCormick, ed.). STAM,
Philadelphia (1987) 73-130

20. Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing Company, Boston (1996)

21. Saad, Y.: ILUM: a multi-elimination ILU preconditioner for general sparse matrices. SIAM J. Sci.
Comput. 17 (1996) 830-847

22. Saad, Y., Zhang, J.: BILUM: block versions of multi-elimination and multi-level ILU preconditioner
for general sparse linear systems. Report UMSI 97/126, Department of Computer Science, University
of Minnesota (1997)

23. Stiiben, K.: Algebraic multigrid (AMG): An introduction with applications. GMD Report 53 (1999)

24. Swarztrauber, P.N.: The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson’s equation on a rectangle. STAM Review 19 (1977) 490-501

25. Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth
order elliptic problems. Computing 56 (1996) 179-196

26. Wesseling, P.: An introduction to multigrid methods. Wiley, Chichester (1992)

