
NAVIER-STOKES EQUATIONS IN ROTATION FORM: A ROBUSTMULTIGRID SOLVER FOR THE VELOCITY PROBLEMMAXIM A. OLSHANSKII� AND ARNOLD REUSKEN yAbstrat. The topi of this paper is motivated by the Navier-Stokes equations in rotationform. Linearization and appliation of an impliit time stepping sheme results in a linear stationaryproblem of Oseen type. In well-known solution tehniques for this problem suh as the Uzawa (orShur omplement) method, a subproblem onsisting of a oupled non-symmetri system of linearequations of di�usion-reation type must be solved to update the veloity vetor �eld. In thispaper we analyse a standard �nite element method for the disretization of this oupled system andwe introdue and analyse a multigrid solver for the disrete problem. Both for the disretizationmethod and the multigrid solver the question of robustness with respet to the amount of di�usionand variation in the onvetion �eld is addressed. We prove stability results and disretization errorbounds for the Galerkin �nite element method. We present a onvergene analysis of the multigridmethod whih shows the robustness of the solver. Results of numerial experiments are presentedwhih illustrate the stability of the disretization method and the robustness of the multigrid solver.AMS subjet lassi�ations. 65N30, 65N55, 76D17, 35J55Key words. �nite elements, multigrid, onvetion-di�usion, Navier-Stokes equations, rotationform, vortiity1. Introdution. The inompressible Navier-Stokes problem written in veloity-pressure variables has several equivalent formulations. Very popular is the onvetionform of the problem: �nd veloity u(t;x) and kinemati pressure p(t;x) suh that�u�t � ��u+ (u � r)u+rp = f in 
� (0; T ℄;divu = 0 in 
� (0; T ℄; (1.1)with given fore �eld f and visosity � > 0. Suitable boundary and initial onditionshave to be added to (1.1). One alternative to (1.1) is the rotation form of the Navier-Stokes problem:�u�t � ��u+ (urlu)� u+rP = f in 
� (0; T ℄;divu = 0 in 
� (0; T ℄; (1.2)whih results from (1.1) after replaing the kinemati pressure by the Bernoulli (ordynami, or total; f., e.g. [17℄) pressure P = p + 12u � u and using the identity(u�r)u = (urlu) � u + 12r(u � u): In the 3D ase � stands for the vetor produtand urlu := r� u. In 2D , urlu := ��u1�x2 + �u2�x1 and a � u := (�au2; au1)T for asalar a. Linearization and appliation of an impliit time stepping sheme to (1.2)results in an Oseen type problem in whih the equations are of the form���u+w � u+ �u+rP = f in 
divu = 0 in 
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2 M. A. OLSHANSKII AND A. REUSKENwith � � 0 and w = urla, where a is a known approximation of u . Note thatthe above linearization of (urlu) � u ensures the elliptiity of (1.3) (f. Setion 2).One strategy to solve (1.3) is an Uzawa type algorithm, in whih a Shur omplementproblem SrotP = ~g for the pressure has to be solved. The Shur omplement operatorhas the formal representation Srot = �div (��� + w � +�I)�1r. The operator(���+w�+�I)�1 in this Shur omplement is the solution operator of the problem:���u+w� u+ �u = f in 
;u = 0 on �
; (1.4)where, for simpliity, we used homogeneous Dirihlet boundary onditions. The exatsolution of (1.4) an be replaed by a suitable approximation like in inexat Uzawamethod [3℄ or in blok-preonditioners for (1.3) (e.g.[11℄).Linearization and appliation of an impliit time stepping sheme to the onve-tion form (1.1) result in equations as in (1.3) with w � u replaed by (a � r)u. TheUzawa tehnique applied to this linear stationary problem for u and p orresponds toa Shur omplement problem with operator Sonv = �div (���+a�r+�I)�1r. Theoperator (���+ a � r+�I)�1 in this Shur omplement operator is the solution op-erator of deoupled onvetion-di�usion(-reation) problems. Hene in this approahan eÆient solver for onvetion-di�usion equations is of major importane. In thesetting of this paper we are partiularly interested in �nite element disretizationmethods and multigrid solvers for the disrete problem. There is an extensive litera-ture on these solution tehniques for onvetion-di�usion problems, see, e.g., [1℄, [4℄,[9℄, [13℄, [14℄, [15℄, [18℄,[19℄, [21℄ and the referenes therein. Important topis are ap-propriate stabilization tehniques for the �nite element disretization and robustnessof the multigrid solvers for onvetion dominated problems.In this paper we study the problem (1.4), whih an be seen as the ounterpart,for Navier-Stokes in rotation form, of the onvetion-di�usion problems that orre-spond to the Navier-Stokes problem in onvetion form. Note that, opposite to theonvetion-di�usion problems, the problem (1.4) is a oupled system. In this paperwe restrit ourselves to the 2D ase. We allow � = 0, whih orresponds to thelinearization of a stationary Navier-Stokes problem in rotation form. We will provethat, under ertain reasonable assumptions on the rotation funtion w, the standardGalerkin �nite element disretization method, without any stabilization, is a usefulmethod. The bounds for the disretization error that are shown to hold are similar to�nite element error bounds for salar linear reation-di�usion problems (as, e.g., in[16℄, [20℄). We onsider a multigrid solver for the disrete problem that results fromthe Galerkin disretization of (1.4) with standard onforming �nite elements. It isproved that a multigrid W-yle method with a anonial prolongation and restritionand a blok Rihardson smoother is a robust solver for this problem, in the sense thatits ontration number (in the Eulidean norm) is bounded by a onstant smallerthan one independent of all relevant parameters. Suh a theoretial robustness resultis not known for multigrid applied to onvetion-di�usion problems. Moreover, inthe multigrid solver we do not need so-alled robust smoothers or matrix-dependentprolongations and restritions, whih are believed to be important for robustness ofmultigrid applied to onvetion-di�usion problems. We will show results of numerialexperiments that illustrate the stability of the disretization method and the robust-ness of the multigrid solver. Both in the analysis and the numerial experiments itan be observed that the problem (1.4) resembles a salar reation-di�usion problem.Note that from the numerial solution point of view reation-di�usion equations are



NAVIER-STOKES EQUATIONS AND A MULTIGRID SOLVER 3believed to be simpler than onvetion-di�usion equations.Reently, in [12℄, a new preonditioning tehnique for a disretization of the Shuromplement operator Srot has been introdued, whih has good robustness propertieswith respet to variation in � and in the mesh size parameter. In this paper we onlyonsider the inner solution operator that appears in the Shur omplement operator.Of ourse, a stabilization may be needed in the outer iterations for (1.3). This subjetis addressed in [10℄, where it is shown that a SUPG type stabilization method for(1.3) yields optimal error bounds. The possible impat to (1.4) of additional terms,resulting from stabilized �nite element method for (1.3) is not onsidered in this paper.Generally suh terms enhane elliptiity of (1.4).The results in [12℄, [10℄ and in the present paper show that for the appliationof oupled (pressure-veloity) solvers and impliit shemes the rotation form of theNavier-Stokes equations has interesting advantages ompared to the onvetion form.We note that relatively little is known on the numerial solution of the Navier-Stokesequations in rotation form and we believe that this topi deserves further researh.The remainder of the paper is organized as follows. In Setion 2 notation andassumptions are introdued. Furthermore, ontinuity and regularity results for theontinuous problem are proved. In Setion 3 the �nite element method is treated. Weprove disretization error bounds in a problem dependent norm and in the L2-norm.In Setion 4 a multigrid solver for the disrete problem is introdued. A onvergeneanalysis is presented that is based on smoothing and approximation properties. InSetion 5 we show results of a few numerial experiments.2. Preliminaries and a priori estimates.. Let 
 be a onvex polygonal do-main in R2 : By (�; �) and k�k we denote the salar produt and the orresponding normin L2(
)n; n = 1; 2. The standard norm in the Sobolev spae Hk(
)2, is denoted byk � kk. For u = (u1; u2); v = (v1; v2) 2 L2(
)2 we have (u;v) = (u1; v1) + (u2; v2).The norm on the spae L1(
) is denoted by k � k1.For a salar a and vetor v we de�ne the vetor produt a� v := (�av2; av1)T .We onsider the variational formulation of (1.4) in the two-dimensinonal ase: forgiven � > 0; � > 0; w 2 L1(
); f 2 L2(
)2, determine u 2 U := H10 (
)2 suh thata(u;v) = (f ;v) for all u 2 U; (2.1)where a(u;v) = �(ru;rv) + �(u;v) + (w � u;v) for u;v 2 U:Here we use the notation (ru;rv) :=P2i=1(rui;rvi) =P2i;j=1( �ui�xj ; �vi�xj ).Throughout the paper we use C to denote some generi stritly positive onstantindependent of �, � and w .The de�nition of the vetor produt implies (w � u;v) = �(w � v;u) for allu;v 2 L2(
)2 and thus the bilinear form a(�; �) is ellipti:C �kuk21 � a(u;u) for all u 2 U :Using kw � uk � kwk1kuk we obtain the ontinuity of the bilinear form:a(u;v) � (� + �+ kwk1)kuk1kvk1 for all u;v 2 U (2.2)>From the Lax-Milgram Lemma it follows that the variational problem (2.1) has aunique solution.



4 M. A. OLSHANSKII AND A. REUSKENFor the analysis below we introdue a parameter-dependent norm on U:jjjujjj� = (�kruk2 + �kuk2 + �kwk1 kw � uk2) 12 ; � � 0:The onstant appearing in the Friedrihs inequality is denoted by CF :k'k � CF kr'k for all ' 2 H10 (
):The domain 
 is suh that for any g 2 L2(
) the solution of the variational problemFind ' 2 H10 (
) suh that (r';rv) = (g; v) for all v 2 H10 (
) (2.3)is an element of H2(
) and satis�es the regularity estimate k'k2 � CP kgk:For the analysis in the remainder of this paper the following three onditions areformulated. We denote w := ess inf
 jwj(A1) Condition (A1) is satis�ed if �+ w > 0 and� := kwk1�+ w � C:(A2) Condition (A2) is satis�ed ifw(x) � 0 a:e: in 
 or w(x) � 0 a:e: in 
:(A3) Condition (A3) is ful�lled if rw 2 Lq(
)2 for some q > 2 andkrwkLq � C kwk1:In the analysis below it will be expliitly stated whih of these onditions are assumed.Remark 2.1 (A2) holds, for example, if w stems from the e�et of Coriolis fores(f., e.g., [6℄); (A1) holds if w is ontinuous and does not have any zeros in 
 or if ina time-stepping sheme we have lower bound for �: 0 < �min � �:Note that (jwju;u) = (jwj � u; 1� u) � 0 and thus we have for u 2 L2(
)2wkuk2 � (jwj � u; 1� u) : (2.4)Using (jwj � u; 1� u) � kjwj � ukk1� uk = kw � ukkuk we get(�+ w)kuk � kw � uk+ �kuk : (2.5)The inequalities (2.4) and (2.5) are used in the analysis below.2.1. Analysis of the ontinuous problem. In this setion we will derive aregularity result (Theorem 2.1) and a ontinuity result (Lemma 2.2). In the latter,opposite to the result in (2.2), the problem dependent norm jjj � jjj� is used. The on-tinuity result is used in the derivation of the disretization error bounds in Setion 3.Theorem 2.1. For f 2 L2(
)2 let u 2 U be the solution of problem (2.1). Thenu is an element of H2(
)2 and the estimates�kruk2 + �kuk2 � (�; �)kfk2 ; (2.6)�2kuk22 + C2P kw � uk2 � 2C2P �4 + 2(�; �)2kwk21�kfk2 (2.7)



NAVIER-STOKES EQUATIONS AND A MULTIGRID SOLVER 5hold, with (�; �) = C2F�+C2F� : If the onditions (A1) and (A3) are satis�ed, then�2kuk22 + �(kwk1 + �)kruk2 + �2kuk2 + kw � uk2 � Ckfk2 (2.8)with a onstant C independent of f , �, � and w.Proof. De�ne ~f = f�w�u��u. Note that ~f 2 L2(
)2 and (ru;rv) = � 1� (~f ;v)for all v 2 U. Hene, due to the regularity result for the Poisson equation (2.3), wehave u 2 H2(
)2 andkuk2 � CP� k~fk � CP� (kfk+ kw � uk+ �kuk) (2.9)Note that kuk2 = (�; �)(�C�2F +�)kuk2 � (�; �)(�kruk2+�kuk2). Using this andtaking v = u in (2.1) we get�kruk2 + �kuk2 � kfkkuk � kfk(�; �) 12 (�kruk2 + �kuk2) 12 ; (2.10)and thus the result in (2.6) holds. We also have, using (2.6),kw�uk2 � kwk21kuk2 � (�; �)kwk21(�kruk2+�kuk2) � (�; �)2kwk21kfk2: (2.11)Combining this estimate with (2.9), and noting that �kuk � kfk, yields�2kuk22 + C2P kw � uk2 � C2P (kfk+ (�; �)kwk1kfk+ kfk)2 + C2P (�; �)2kwk21kfk2= C2P ((2 + (�; �)kwk1)2 + (�; �)2kwk21)kfk2� 2C2P (3 + 2(�; �)2kwk21)kfk2and thus the result (2.7) is proved.Assume now the onditions (A1) and (A3) to be valid. Sine f 2 L2(
)2 andu 2 H2(
)2 equation (1.4) is satis�ed in a strong sense and thus k� ��u+�u+w�uk = kfk holds. Taking the square of this identity and noting that (u; w � u) = 0results in�2k�uk+ 2��kruk2 + �2kuk2 + 2�(ru;r(w � u)) + kw � uk2 = kfk2 : (2.12)A simple omputation yields (ru;r(w � u)) = �(ru1; u2rw) + (ru2; u1rw) andj(ru;r(w � u))j � kruk(ku1rwk2 + ku2rwk2) 12 : (2.13)Take q as in (A3) and de�ne ~q = 12q. The H�older inequality with 1p + 1~q = 1 and theinjetion H1(
) ,! L2p(
) yields, for i = 1; 2:kuirwk = (u2i ;rw � rw) 12 � kuikL2pkrw � rwk 12L~q� CkruikkrwkLq � Ckruikkwk1 : (2.14)In the last inequality in (2.14) we used (A3). Combination of (2.13) and (2.14) yields2�j(ru;r(w � u))j � � �kwk1 kruk2:>From this result and (2.12) we obtain�2k�uk+ 2��kruk2 + �2kuk2 + kw � uk2 � kfk2 + � �kwk1 kruk2: (2.15)



6 M. A. OLSHANSKII AND A. REUSKEN>From (2.1) and (2.5) it follows that, for Æ > 0,�kruk2 � kfk kuk = 1pÆ(�+ w)kfkpÆ(� + w)kuk� kfk22Æ(�+ w)2 + Æ(�2kuk2 + kw � uk2): (2.16)If we set Æ = (4 � kwk1)�1 and multiply (2.16) with 12Æ we obtain2��kwk1kruk2 � �2 kwk21(�+ w)2 kfk2 + 12�2kuk2 + 12kw � uk2 :Adding this to (2.15) yields�2k�uk2 + 2�(�kwk1 + �)kruk2 + �2kuk2 + kw � uk2 ��1 + �2 kwk21(� + w)2 �kfk2 + 12�2kuk2 + 12kw � uk2:Using assumption (A1), i.e. kwk21(�+w)2 = �2 � C and kuk2 � CP k�uk the result in(2.8) follows.Note that in (2.6) and (2.7) with � = 0 we have regularity estimates of the formkuk1 = O(��1) and kuk2 = O(��2), whih show a similar behaviour as regularityresults for onvetion-di�usion problems of the form ���u + a � ru = f (f. [15℄).The result in (2.8), whih holds if the onditions (A1) and (A3) are satis�ed, yieldsregularity estimates of the from kuk1 = O(��1=2) and kuk2 = O(��1). These boundsshow a behaviour that is typial for the solution of reation-di�usion problems of theform ���u+ bu = f if b > 0 (f. [16℄). In Setion 4.2 the regularity result (2.8) willbe used in the onvergene analysis of the multigrid method.Lemma 2.2. Take � > 0. The following holds:a(v;u) � C� jjjvjjj���kruk2 + (�+ kwk1)kuk2� 12 ; v;u 2 U : (2.17)If ondition (A1) is satis�ed, thena(v;u) � C� jjjvjjj� jjjujjj� ; v;u 2 U : (2.18)The onstants C� may depend on � .Proof. For v;u 2 U we havea(v;u) = �(rv;ru) + �(v;u) + (w � v;u)� �krvkkruk+ �kvkkuk+ kw � vkkuk : (2.19)We de�ne � := �kwk�11 . If we use kw � vkkuk = (� 12 kw � vk)(�� 12 kuk) and applythe Cauhy-Shwarz inequality in (2.19) we obtaina(v;u) � ��krvk2 + �kvk2 + �kw � vk2� 12��kruk2 + �kuk2 + ��1kuk2� 12� C� jjjvjjj���kruk2 + (�+ kwk1)kuk2� 12 (2.20)



NAVIER-STOKES EQUATIONS AND A MULTIGRID SOLVER 7and thus the result in (2.17) holds. If ondition (A1) is satis�ed we get, using (2.5),kw � vk kuk � kw � vk 1�+ w (�kuk+ kw � uk)� � 12 kw � vk�� 12 (� 12 + �� 12 )�+ w (� 12 kuk+ � 12 kw � uk)� C� (� 12 kw � vk)(�kuk2 + �kw � uk2) 12 : (2.21)In the last inequality in (2.21) we used ondition (A1):�� 12 (� 12 + �� 12 )�+ w � 32��1 + 12��+ w � 32� � + �2(�+ w) � C� :>From the results in (2.19), (2.21) and the Cauhy-Shwarz inequality, we obtain(2.18).3. Finite element method. In this setion we apply a standard �nite elementmethod to the problem (2.1) and derive bounds for the disretization error.Let (Th) be a quasi-uniform family of triangulations of 
, with mesh size pa-rameter h, and Uh � U be a �nite element subspae of U, onsisting of pieewisepolynomials of degree k 2 N. The �nite element Galerkin disretization of the prob-lem (2.1) is as follows: Find uh 2 Uh suh thata(uh;vh) = (f ;vh) for all vh 2 Uh: (3.1)To meassure the e�et of di�erent terms in (1.4) we introdue mesh numbers1:Ekh = �kwk1h2 ; Dh = �h2� :First we prove the stability of a(u;v) on Uh. Below we use the inverse inequalitykrvhk < �uh�1kvhk for all vh 2 Uh:The L2-orthogonal projetion Ph : L2(
)2 ! Uh is de�ned by(Phu;vh) = (u;vh) for all vh 2 Uh: (3.2)We will assume the following approximation property of the spaes Uh (f. e.g., [5℄):their exists interpolation operator Ih : U! Uh suh thatku� Ihuk � Chmkukm ; m = 0; 1; 2; for u 2 U \Hm(
)2 (3.3)ku� Ihuk1 � Chm�1kukm ; m = 1; 2; for u 2 U \Hm(
)2 : (3.4)In (3.3) we use the notation H0(
)2 := L2(
)2 and k � k0 := k � k.Lemma 3.1. Assume that the onditions (A1) and (A2) are ful�lled. If Ekh > 1and Dh < 1 ondition (A3) is also assumed. Then there exists a � 2 (0; 1℄ suh thatinfuh2Uh supvh2Uh a(uh;vh)jjjuhjjj� jjjvhjjj� � C > 0: (3.5)1The abbrivation and de�nition of Ek is hosen to be onsistent with the de�nition of the Ekmannumber in the theory of rotating ows. However the latter is only a partiular ase (w = onst).



8 M. A. OLSHANSKII AND A. REUSKENProof. Take a �xed uh 2 Uh. Note that(w � uh;Ph(w � uh)) = (Ph(w � uh);Ph(w � uh));(uh;Ph(w � uh)) = 0:Using (2.4) and ondition (A2) it follows thatwkuhk2 � (jwj � uh; 1� uh) = (Ph(jwj � uh); 1� uh)= (jPh(w � uh)j; 1� uh) � kPh(w � uh)kkuhkand thus (� + w)kuhk � �kuhk+ kPh(w � uh)k: (3.6)We take � = minf1; ��2u ; ~�1g ; (3.7)with ~ a onstant (independent of all parameters) that will our in the proof. Let� := �kwk�11 . Using (3.6) we obtain�kuhk2 + �kw � uhk2 � (�+ �kwk21)kuhk2� 2(�+ �kwk21)(�+ w)2 (�2kuhk2 + kPh(w � uh)k2)� 2(�+ �kwk21)(� + ��1)(�+ w)2 (�kuhk2 + �kPh(w � uh)k2):Note that ��1 + � � maxf1; �2u; ~g+ 1 � C and thus, using ondition (A1),(�+ �kwk21)(�+ ��1)(�+ w)2 = �2 + (��1 + �)�kwk1 + kwk21(�+ w)2� C�2 + kwk21(�+ w)2 � C(1 + �2) � C :Hene �kuhk2 + �kw � uhk2 � C(�kuhk2 + �kPh(w � uh)k2) : (3.8)To prove (3.5) we hose vh = uh + �Ph(w � uh). Thena(uh;vh) = �kruhk2 + �kuhk2 + ��(ruh;rPh(w � uh)) + �kPh(w � uh)k2��kruhk2 + �kuhk2 � ��kruhk krPh(w � uh)k+ �kPh(w � uh)k2: (3.9)For the estimation of the term krPh(w � uh)k we distinguish three ases: Ekh � 1(ase 1), Dh � 1 (ase 2), Ekh > 1 and Dh < 1 (ase 3).In ase 1 we have:(��) 12 krPh(w � uh)k � � ���2ukwk1h2� 12 kPh(w � uh)k= (Ekh��2u) 12 kPh(w � uh)k � kPh(w � uh)k : (3.10)



NAVIER-STOKES EQUATIONS AND A MULTIGRID SOLVER 9Using this in (3.9) and applying the Cauhy-Shwarz inequality results ina(uh;vh) � 12�kruhk2 + �kuhk2 + 12�kPh(w � uh)k2: (3.11)In ase 2 we have� 12�krPh(w � uh)k � � 12 ��uh�1kwk1kuk = ��uD� 12h � 12 kuk� � 12�uD� 12h � 12 kuk � � 12 kuk : (3.12)Using this in (3.9) and applying the Cauhy-Shwarz inequality results ina(uh;vh) � 12�kruhk2 + 12�kuhk2 + �kPh(w � uh)k2: (3.13)For ase 3 �rst note that, using ondition (A3) and the result in (2.14) it follows thatkr(w � uh)k2 = 2Xi=1 k(uh)irwk2 + kwr(uh)ik2 + 2((uh)irw;wr(uh)i)� 2 2Xi=1 k(uh)irwk2 + kwr(uh)ik2 � 1kwk21kruhk2 :We use that the L2-orthogonal projetion is bounded in the H1-norm (f. ([2℄)):kPhuk1 � 2kuk1 for u 2 U :For the onstant ~ in (3.7) we take ~ = 22p1 and then obtain�krPh(w � uh)k � 2�kr(w � uh)k � 2p1�kwk1kruhk � 12kruhk : (3.14)Using this in (3.9) results ina(uh;vh) � 12�kruhk2 + �kuhk2 + �kPh(w � uh)k2: (3.15)Combination of (3.11), (3.13), (3.15) with (3.8) proves thata(uh;vh) � Cjjjuhjjj2� (3.16)holds. The results in (3.10), (3.12) and (3.14) imply��2krPh(w � uh)k2 � jjjuhjjj2� :Using this it follows thatjjjvhjjj2� = �kr(uh + �Ph(w � uh))k2 + �kuh + �Ph(w � uh)k2+ �kPh(w � uh + �w � Ph(w � uh))k2� 2(�kruhk2 + ��2krPh(w � uh)k2) + �kuhk2 + �2�kPh(w � uh)k2+ 2�(kPh(w � uh)k2 + �2kPh(w � Ph(w � uh))k2)� 2�kruhk2 + 2jjjuhjjj2� + �(1 + �2)kuhk2 + 2�(1 + �2)kPh(w � uh)k2� 2�kruhk2 + 2�kuhk2 + 4�kPh(w � uh)k2 + 2jjjuhjjj2�� 6jjjuhjjj2� :



10 M. A. OLSHANSKII AND A. REUSKENCombination of the latter estimate and (3.16) ompletes the proof.Remark 3.1 Note that � in Lemma 3.1 does not depend on �; � or w.Remark 3.2 Using the mesh-dependent normjjjujjj�;h = (�kruk2 + �kuk2 + �kwk1 kPh(w � u)k2) 12 (3.17)the stability of a(�; �) on Uh an be proved without assumption (A1) and (A2) onw, sine estimate (3.8) is not needed. Moreover, ontinuity of a(�; �) on Uh �U, inthe mesh-dependent norm (3.17) an be proved without the assumptions (A1), (A2).This then results in satisfatory disretization error bounds in the norm jjj � jjj�;h (seetreatment of the Oseen problem in [10℄). However, for a ertain duality argument inthe proof of the approximation property in the multigrid onvergene analysis (seeTheorem 3.3 and Setion 4) we need the ontinuity of a(�; �) on U �U and then themesh-dependent norm beomes inonvenient.We now derive disretization error bounds for the �nite element method usingstandard arguments based on Galerkin orthogonality, stability, ontinuity and ap-proximation properties of the �nite element spaes.Theorem 3.2. Let u and uh be the solution of (2.1) and (3.1), respetively. Letthe assumptions of Lemma 3.1 be ful�lled and take � 2 (0; 1℄ as in Lemma 3.1. Thenthe following inequalities hold:jjju� uhjjj� � C� hj(� 12 kukj+1 + (� 12 + kwk 121)kukj) ; j = 0; 1; (3.18)jjju� uhjjj� � C� h(� 12 + (� 12 + kwk 121)h)kuk2 : (3.19)The onstants C� are independent of �; �; w; u and h but may depend on � .Proof. Let ûh be an arbitrary funtion in Uh. Take � as in Lemma 3.1. Thenthere exists vh 2 Uh suh thatCjjjuh � ûhjjj� jjjvhjjj� � a(uh � ûh;vh):Using Galerkin orthogonality and the ontinuity result in (2.18) we obtaina(uh � ûh;vh) = a(u� ûh;vh) � C� jjju� ûhjjj� jjjvhjjj� :Hene, jjjuh � ûhjjj� � C� jjju� ûhjjj� (3.20)holds. From the triangle inequality and (3.20) it follows thatjjju� uhjjj2� � C� jjju� ûhjjj2��C� ��kr(u� ûh)k2 + �ku� ûhk2 + �kwk1 kw � (u� ûh)k2�� C� ��ku� ûhk21 + (� + �kwk1)ku� ûhk2� (3.21)Aording to (3.3) and (3.4) ûh = Ihu an be taken suh thatku� ûhk21 � Ch2jkuk2j+1 ; ku� ûhk2 � Ch2jkuk2j ; j = 0; 1:Using this in (3.21) proves the result in (3.18). If we use the inequalitiesku� ûhk21 � Ch2kuk22 ; ku� ûhk2 � Ch4kuk22 ;



NAVIER-STOKES EQUATIONS AND A MULTIGRID SOLVER 11in (3.21) we get the result in (3.19).Note that kwk1 ours in the estimates (3.18) { (3.19) in a similar way as �,whih measures the reation.We now prove a disretization error bound in the L2-norm. This result will playan important role in the onvergene analysis of the multigrid method.Theorem 3.3. Assume that the onditions (A1), (A2), (A3) are ful�lled. Forf 2 L2(
)2 let u and uh be the solutions of (2.1) and (3.1), respetively. Thenku� uhk � Cminnh2� ; 1�+ kwk1okfk (3.22)holds with a onstant C independent of �; �; w; h and f .Proof. Take f 2 L2(
)2 and let u, uh be the solutions of (2.1) and (3.1), respe-tively. From (3.18) and the regularity estimate (2.8) it follows thatjjju� uhjjj� � C�h�� 12 kuk2 + (� 12 + kwk 121)kuk1�� C� hp� ��2kuk22 + �(�+ kwk1)kruk2� 12 � C� hp� kfk: (3.23)We now apply a duality argument. For this we introdue the adjoint bilinear forma�(u;v) = �(ru;rv) + �(u;v) � (w � u;v) for u;v 2 U ;and the adjoint problem�nd ~u 2 U suh that a�(~u;v) = (~f ;v) for all v 2 U ;with ~f := u� uh 2 U � L2(
)2. Let ~uh 2 Uh be the disrete solution of the adjointproblem, i.e., a�(~uh;vh) = (~f ;vh) for all vh 2 Uh. Note that a�(�; �) equals a(�; �)if, in a(�; �), we replae w by �w. The results in Lemma 3.1 and Theorem 3.2 donot depend on sign(w) and thus hold for the adjoint problem, too. Moreover, sinethe hoie of � in Lemma 3.1 does not depend on w (f. Remark 3.1), the estimate(3.23) holds for the original and the adjoint problem, with the same � value. Usingthis disretization error bound for the original and adjoint problem and the ontinuityresult of Lemma 2.2 we obtainku� uhk2 = (~f ;~f ) = a�(~u;~f) = a(~f ; ~u) = a(u� uh; ~u) = a(u� uh; ~u� ~uh)� C� jjju� uhjjj� jjj~u� ~uhjjj� � C� h2� kfk k~fk = C� h2� kfk ku� uhk:Hene, ku � uhk � C� h2� kfk holds, whih proves the �rst bound in (3.22). For theseond bound we note that from (2.5) and (A1) it follows thatku� uhk � 1�+ w (�ku� uhk+ kw � (u� uh)k)� 1�+ kwk1 �+ kwk1�+ w  � 12 + kwk 121� 12 ! � 12 ku� uhk+ � 12kwk 121 kw � (u� uh)k!� 2�+ kwk1 (1 + �)�� 12 (� 12 � 12 + kwk 121)jjju� uhjjj�� C� 1�+ kwk1 (� 12 + kwk 121)jjju� uhjjj� (3.24)



12 M. A. OLSHANSKII AND A. REUSKENFinally note that due to (3.18) with j = 0 and the results in (2.5), (2.8) we get(� 12 + kwk 121)jjju� uhjjj� � (� 12 + kwk 121)(� 12 kuk1 + (� 12 + kwk 121)kuk)� � 12 (� 12 + kwk 121)kuk1 + 2(�+ kwk1)kuk� � 12 (� 12 + kwk 121)kuk1 + 2(1 + �)(kw � uk+ �kuk)� C��(�+ kwk1)kruk2 + �2kuk2 + kw � uk2� 12� CkfkThis is in ombination with (3.24) yields the seond bound in (3.22).4. A solver for the disrete problem. For the approximate solution of thedisrete problem we apply a multigrid method. The method and its onvergeneanalysis will be presented in a matrix-vetor form as in Hakbush [8℄.4.1. Multigrid omponents. For the appliation of the multigrid solver weassume that the quasi-uniform family of triangulations of 
 results from a globalregular re�nement tehnique. This yields a hierarhy of nested �nite element spaesU0 � U1 � � � � � Uk � � � � � U :The orresponding mesh size parameter is denoted by hk and satis�es02�k � hk=h0 � 12�kwith positive onstants 0 and 1 independent of k. Note that Uk = Uk � Uk whereUk is a standard onforming �nite element spae onsisting of salar funtions. Forthe matrix-vetor formulation of the disrete problem we use the standard nodal basisin Uk, denoted by f�ig1�i�nk , and the isomorphism:Pk : Rnk ! Uk; Pkx = nkXi=1 xi�i:For the produt spae Uk = Uk � Uk we use the isomorphismPk : Xk := R2nk ! Uk; Pkx = Pk � x1x2 � = Pkx1 � Pkx2; xi 2 Rnk ; i = 1; 2:On Rnk and Xk we use saled Eulidean salar produts: hx; yik = h2kPnki=1 xiyi forx; y 2 Rnk and hx;yik = hx1; y1ik + hx2; y2ik for x; y 2 Xk. The orrespondingnorms are denoted by k �k. The adjoint P�k : Uk ! Xk satis�es (Pkx;v) = hx;P�kvikfor all x 2 Xk; v 2 Uk. Note that the following norm equivalene holdsC�1kxk � kPkxk � Ckxk for all x 2 Xk; (4.1)with a onstant C independent of k. The sti�ness matrix Lk : R2nk ! R2nk on levelk is de�ned by hLkx;yik = a(Pkx;Pky) for all x;y 2 Xk: (4.2)This matrix has the blok strutureLk = � �A+ �M �MwMw �A+ �M � ;



NAVIER-STOKES EQUATIONS AND A MULTIGRID SOLVER 13with hAx; yik = (rPkx;rPky) ; hMx; yik = (Pkx; Pky) ;hMwx; yik = (wPkx; Pky) (4.3)for all x; y 2 Rnk . Note that A is a sti�ness matrix for a single (veloity) omponent,M is a mass matrix and Mw is of mass matrix type orresponding to the bilinearform [x; y℄ ! (wx; y). The latter is not neessarily a salar produt. The matriesA;M;Mw are symmetri and A and M are positive de�nite.For the prolongation and restrition in the multigrid algorithm we use the anon-ial hoie: pk : Xk�1 ! Xk; pk = P�1k Pk�1rk : Xk ! Xk�1; rk = P�k�1(P�k)�1 = � hkhk�1�2 pTk : (4.4)Consider a smoother of the formxnew = xold �W�1k (Lkxold � b); for xold;b 2 Xkwith orresponding iteration matrix denoted by Sk = I �W�1k Lk:The damped blok Jaobi method orresponds toWk = !�1� diag(�A+ �M) �diag(Mw)diag(Mw) diag(�A+ �M) � ; (4.5)with a damping parameter ! 2 (0; 1℄. This type of smoother will be used in ournumerial experiments in Setion 5. In the onvergene analysis of the multigridmethod we onsider a smoother of blok Rihardson type:Wk = � �1I ��2I�2I �1I � : (4.6)where I is the identity matrix and �1; �2 suitable saling fators. With the omponentsde�ned above a standard multigrid algorithm with �1 pre- and �2 post-smoothingiterations an be formulated (f. [8℄) with an iteration matrix Mk on level k thatsatis�es the reursionM0(�1; �2) = 0;Mk(�1; �2) = S�2k �I � pk(I �Mk�1)L�1k�1rkLk�S�1k ; k = 1; 2; : : : :The hoies  = 1 and  = 2 orrespond to the V- and W-yle, respetively. Forthe analysis of this multigrid method we use the framework of [7, 8℄ based on theapproximation and smoothing property. Below in Setion 4.2 and Setion 4.3 we willprove the following approximation and smoothing properties:kL�1k � pk L�1k�1rkk � C � �h2 + �+ kwk1��1 (4.7)kLkS�1k k � Cp�1 � �h2 + �+ kwk1� (4.8)As a diret onsequene of (4.7) and (4.8) one obtains a bound for the ontrationnumber of the two-grid method:k(I � pkL�1k�1rkLk)S�1k k � Cp�1 : (4.9)



14 M. A. OLSHANSKII AND A. REUSKENUsing the analysis in [8℄ (Theorem 10.6.25) the onvergene of the multigrid W-ylean be obtained as a onsequene of the approximation and smoothing property. InSetion 4.3 we will prove kSkk � 1. Using this and (4.7), (4.8), Theorem 10.6.25 from[8℄ yields the following result:Theorem 4.1. Assume (A1) { (A3) hold, then for any  2 (0; 1) there exists��0 > 0 independent of the problem parameters �, � and the level number k, suh thatfor the ontration number of the multigrid W-yle with smoothing (4.6) we havekMk(�; 0)k �  for all � � ��0:This proves the robustness of the multigrid W-yle with respet to variation in theproblem parameters � and � and the mesh size hk. This robustness is on�rmed bythe numerial experiments in Setion 5.4.2. Approximation property. The analysis of the approximation property isas in [7, 8℄. The key ingredient is the �nite element error bound in Theorem 3.3.Theorem 4.2. Let the assumptions (A1) { (A3) be valid, thenkL�1k � pk L�1k�1rkk � C � �h2k + �+ kwk1��1 � CkLkk�1: (4.10)Proof. Take yk 2 Xk. The onstants C that appear in the proof do not dependon �; �;yk or k. Let s� 2 U, sk 2 Uk, and sk�1 2 Uk�1 be suh thata(s�;v) = ((P�k)�1yk;v) for all v 2 U;a(sk;v) = ((P�k)�1yk;v) for all v 2 Uk ;a(sk�1;v) = ((P�k)�1yk;v) for all v 2 Uk�1:Putting f = (P�k)�1yk 2 L2(
)2 in Theorem 3.3, we obtainks� � slk � Cminnh2l� ; 1�+ kwk1ok(P�k)�1ykk for l 2 fk � 1; kg:Due to hk�1 � hk this yieldsksk � sk�1k � Cminnh2k� ; 1�+ kwk1ok(P�k)�1ykk :>From (4.2) and (4.4) it follows that sk = PkL�1k yk and sk�1 = Pk�1L�1k�1rkyk.Thus, using (4.1), we getk(L�1k � pkL�1k�1rk)ykk � CkPkL�1k yk �Pk�1L�1k�1rkykk = Cksk � sk�1k� C minnh2k� ; 1�+ kwk1ok(P�k)�1ykk� C minnh2k� ; 1�+ kwk1okykk :Note that minf 1p ; 1q g � 2p+q for all p; q > 0. Hene the �rst inequality in (4.10) isproved. For the seond inequality in (4.10) we note thatkLkk = � �A+ �M ;; �A+ �M �+� ; �MwMw ; �� k�A+ �Mk+ kMwk � �kAk+ (� + kwk1)kMk :Using kAk � Ch�2k and kMk � C we obtain kLkk � C(�h�2k + �+ kwk1)



NAVIER-STOKES EQUATIONS AND A MULTIGRID SOLVER 154.3. Smoothing property. Let a1;m1 be positive onstants independent of �; �and k suh that for spetral radius of the matries in (4.3) we have�(A) � a1h2k ; �(M) � m1:Furthermore, let wmin = ess inf
 w and wmax = ess sup
 w and de�neCw = � wmax if wmax � �wminwmin if wmax < �wmin :Note that jCwj = kwk1. In the analysis below we use the following elementary result:Lemma 4.3. Assume that for B 2 Rn�n and � 2 (0;1) we have BTB ��(B +BT ). Then kI � !Bk � 1 holds for any ! 2 [0; 1� ℄.This result follows from0 � (I � !B)T (I � !B) = I � !(B +BT ) + !2BTB� I � !(1� !�)(B + BT ) � I :Using this lemma we prove that the ontration number of the blok Rihardsonmethod is bounded by 1:Lemma 4.4. Assume that (A1) and (A2) are satis�ed. Consider the blokRihardson method with Wk as in (4.6) and�1 = �a1h2k + ��1m1; �2 = �2Cw; with onstants�1 � 2(1 + �2) ; �2 � 4m1� : (4.11)Then the following inequality holdskI �W�1k Lkk � 1:Proof. A straightforward omputation yieldsW�1k Lk = R1 +R2 ; with (4.12)R1 = ��21 + �22 � �1A �2A��2A �1A � ;R2 = 1�21 + �22 � �1�M + �2Mw �2�M � �1Mw��2�M + �1Mw �1�M + �2Mw � :>From 12(RT1 +R1) = ��1�21 + �22 � A 00 A � ; RT1 R1 = �2�21 + �22 � A2 00 A2 �it follows thatRT1 R1 � 12(RT1 +R1) , �A � �1I , �A � (�a1h2k + ��1m1)I :The last inequality holds, due to �(A) � a1h2k and ��1m1 � 0. Appliation ofLemma 4.3 yields kI � 2R1k � 1 : (4.13)



16 M. A. OLSHANSKII AND A. REUSKENFor the matrix R2 we obtain:12(RT2 +R2) = 1�21 + �22 � �1�M + �2Mw ;; �1�M + �2Mw � ;RT2 R2 = 1�21 + �22 � �2M2 +M2w �(MwM �MMw)��(MwM �MMw) �2M2 +M2w � :We use the notation M̂ = �1�M + �2Mw. Note that RT2 R2 � 12 (RT2 + R2) holds ifthe following two onditions are satis�ed:�2M2 +M2w � 12M̂ ; (4.14)�jh(MwM �MMw)x; yik j � 14�hM̂x; xik + hM̂y; yik�; (4.15)for all x; y 2 Rnk . We �rst onsider (4.14). We have M2w � kwk21M2 � m1kwk21M .Due to (A2) the matrix Mw is de�nite and CwMw is positive de�nite, moreover,CwMw � jCwjwM = kwk1wM . Using this we obtain�2M2 +M2w � (m1�2 +m1kwk21)M;12M̂ � 12(�1m1�2M + �2CwMw) � 12(�1m1�2 + �2kwk1w)M:Hene, (4.14) is ful�lled if the inequalitym1�2 +m1kwk21 � 12(�1m1�2 + �2kwk1w)holds. Substitution of kwk1 = �(�+ w) and rearranging terms results in the equiv-alent inequality�2m1(12�1 � (1 + �2)) + �w�(12�2 � 2m1�) + �2w(12�2 �m1�) � 0 :This inequality holds for �1; �2 as in (4.11). Hene, with �1; �2 as in (4.11) theondition (4.14) is ful�lled. To prove (4.15) we note that�jh(MwM �MMw)x; yik j � �(hjMwMx; yikj+ �jhMMwx; yikj;�jhMwMx; yikj = �jhMx;Mwyikj � 12��2hM2x; xik + hM2wy; yik�;�jhMMwx; yik j = �jhMwx;Myikj � 12�hM2wx; xik + �2hM2y; yik�:Thus (4.15) follows from (4.14). We onlude that (4.15) and (4.14) are satis�ed for�1; �2 as in (4.11). Hene, RT2 R2 � 12 (RT2 +R2) holds. And due to Lemma 4.3kI � 2R2k � 1 : (4.16)Finally, (4.12), (4.13), and (4.16) yieldkI �W�1k Lkk = kI � (R1 +R2)k � 12kI � 2R1k+ 12kI � 2R2k � 1 :



NAVIER-STOKES EQUATIONS AND A MULTIGRID SOLVER 17Theorem 4.5. Assume that (A1) and (A2) are satis�ed. Consider the blokRihardson method with Wk as in (4.6) and�1 = 2(�a1h2k + ��1m1); �2 = 2�2Cw;with onstants �1, �2 from (4.11). Then the following estimate holdskLkS�1k k � Cp�1 � �h2 + �+ kwk1�; �1 = 1; 2; : : : (4.17)Proof. >From Lemma 4.4 we obtainkI � 2W�1k Lkk � 1: (4.18)Furthermore, kWkk = ��� �1I ��2I�2I �1I �� �1I �2I��2I �1I �� 12= (�21 + �22) 12 � �1 + �2 � C( �h2 + �+ kwk1) : (4.19)>From (4.18) and (4.19) and Theorem 10.6.8 in [8℄ the result in (4.17) follows.5. Numerial results. In this setion results of a few numerial experimentsrelated to the auray of the disretization method and the onvergene behaviourof the multigrid solver are presented. For the disretization we use linear onforming�nite elements on a uniform triangulation of the unit square. The mesh size parameteris h = hk = 2�k; k = 4; 5; : : : ; 9.In our experiments we onsider problems with an a-priori known ontinuous so-lution u 2 H2(
)2 \ U to the problem (2.1). Disretization errors are measuredas follows. Let ûh 2 Uh be the nodal interpolant of the ontinuous solution u anduh 2 Uh be the solution of the disrete problem. As a measure for the disretizationerror we take err(u; h; �) = kûh � uhkkfk (5.1)For the iterative solution of the disrete problem a multigrid V-yle is applied.The prolongations and restritions in this multigrid method are the anonial ones,as in (4.4). For the smoother a damped blok Jaobi method as in (4.5) is used.Thus for eah pair of nodal values of fu1; u2g a 2 � 2 linear system is solved. Thedamping parameter ! in eah smoothing step is determined in a dynami way basedon a residual minimization riterion. We always use 2 pre- and 2 post-smoothingiterations. For the starting vetor in the iterative solver we take u0 = 0. The iterationsare stopped as soon as the residual, in the Eulidean norm, is at least a fator 109smaller than the starting residual.We onsider test problems with di�erent hoies for w. Note that in the set-ting of a (linearized) Navier-Stokes problem w = urlv = ��v2�x + �v1�y , where v =(v1(x; y); v2(x; y)) is an approximation of the ow �eld. In Experiment I we onsidera problem whih orresponds to a ow with rotating vorties. In Experiment II wetake a ow �eld v with a paraboli boundary layer behaviour. Both in Experiment I



18 M. A. OLSHANSKII AND A. REUSKENand Experiment II the right-hand side is taken suh that the ontinuous solution uequals the ow �eld v. This seems a reasonable hoie if the problem (2.1) resultsfrom a linearized Navier-Stokes problem. Finally, in Experiment III a ow v whihexhibits an internal layer behaviour is onsidered.In all the experiments we present results for the ase � = 0. For � > 0 in ournumerial experiments we always observed better results than for � = 0, both withrespet to the disretization error and with respet to the multigrid onvergene.Experiment Ia. We take vr = (v1; v2), withv1(x; y) = 4(2y � 1)x(1� x);v2(x; y) = �4(2x� 1)y(1� y) ; (5.2)and w = urlvr. This type of onvetion vr simulates a rotating vortex. For this wthe onditions (A2) and (A3) are ful�lled. Related to (A1) we note that kwk1 = O(1)and w = 0. However, based on the fat that w equals zero only at the orner pointsof the domain, one ould say that (A1) is \almost" ful�lled. For several values of hand � the quantity err(u; h; �) is given in Table 5.1.In Figure 5.1 the di�erenes (u1 � (uh)1)(0:5; y) and (�u1�y � �(uh)1�y )(0:5; y) betweenTable 5.1err(u; h; �) for Experiment Iah� 1=16 1=32 1=64 1=128 1=256 1=5121 4.5e-4 1.1e-4 2.8e-5 7.2e-6 1.8e-6 4.5e-71e-2 8.6e-3 2.1e-3 5.2e-4 1.3e-4 3.3e-5 8.2e-61e-4 1.0e-2 2.7e-3 7.0e-4 1.7e-4 4.4e-5 1.1e-51e-6 1.0e-2 2.7e-3 7.7e-4 2.1e-4 5.4e-5 1.3e-51e-8 1.0e-2 2.7e-3 7.7e-4 2.1e-4 5.9e-5 1.6e-5(the derivatives of) the �rst omponents of the ontinuous and FE solution are plottedfor the ase � = 10�6. Beause of the symmetry the error in the solution is shown onlyon half of the interval (Figure 5.1b) and the error in the solution derivative only onthe interval [0; 0:1℄ near the boundary (Figure 5.1a). The numerial boundary layer,typial for reation-di�usion problems with dominating reation terms, is learly seen.Results for the onvergene behaviour of the multigrid method are shown in Table 5.2.Table 5.2V-yle onvergene for Experiment Iah� 1=32 1=64 1=128 1=256 1=5121 11(0.15) 11(0.15) 11(0.15) 11(0.15) 11(0.15)1e-2 11(0.14) 11(0.14) 11(0.14) 11(0.15) 11(0.15)1e-4 6(0.03) 7(0.05) 9(0.10) 11(0.14) 11(0.15)1e-6 5(0.01) 5(0.01) 5(0.01) 7(0.04) 7(0.05)1e-8 5(0.01) 5(0.01) 5(0.01) 5(0.01) 5(0.01)Number of iterations and average redution fator
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h=1/512h=1/256h=1/128

0.10.080.06y
a)

0.040.020
0.010-0.01-0.03-0.05

h=1/512h=1/256h=1/128

0.50.40.3y
b)

0.20.10

4e-43e-42e-41e-40Fig. 5.1. Disretization error in Experiment Ia, � = 10�6, x = 0:5 a) in y-derivative, b) insolution840-4-8
a)0 0.2 0.4 0.6 0.8x 1 0 0.20.4 y0.60.81

0-10-20-30b)0 0.2 0.4 0.6 0.8x 1 0 0.20.4 y0.60.81
Fig. 5.2. a) Funtion w in the Experiment Ib; b) Funtion w in the Experiment II, � = 10�3.Experiment Ib. We take vR = (v1; v2), withv1(x; y) = 1! sin(!�x) os(�y);v2(x; y) = � os(!�x) sin(�y): (5.3)and w = urlvR. This models a ow with two vorties rotating in opposite diretions.Note that the onditions (A1) and (A2) are not ful�lled. For the parameter ! wehoose ! = 1:6. One vortex lies entirely in the omputational domain the seond one
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h=1/64h=1/32

10.80.6x0.40.20

0.060.040.020-0.02-0.04-0.06-0.08-0.1 h=1/512h=1/256h=1/128 10.80.6x0.40.20

2e-41e-40-1e-4-2e-4-3e-4Fig. 5.3. Error in FE solutions in the Experiment Ib, � = 10�6, y = 0:5only partially. The (vortiity) funtion w for this problem is plotted in Figure 5.2a.Note the hange of sign for w at x = 0:625. The error in the disrete solutionshown in Table 5.3 is larger ompared to example Ia (whih might orrespond tothe strong violation of the onditions (A1) and (A2)). In Figure 5.3 the di�ereneTable 5.3err(u; h; �) for Experiment Ibh� 1=16 1=32 1=64 1=128 1=256 1=5121 1.9e-3 4.9e-4 1.2e-4 3.0e-5 7.5e-6 1.9e-61e-2 1.5e-2 3.6e-3 9.0e-4 2.3e-4 5.7e-5 1.4e-51e-4 4.8e-2 7.1e-3 1.8e-3 4.5e-4 1.1e-4 2.9e-51e-6 1.4e-1 7.8e-2 1.0e-2 9.5e-4 2.3e-4 5.7e-51e-8 1.4e-1 9.7e-2 6.7e-2 2.9e-2 2.0e-3 1.4e-4(u1 � (uh)1)(0:5; y) is plotted for � = 10�6. Note that some loal osillations in theerror are observed in the neighbourhood of x = 0:625, i.e. where ondition (A1) isloally violated. The results for the onvergene behaviour of the multigrid methodare very similar to those in Table 5.2 for Experiment Ia.Experiment II. We take vl = (v1; v2), withv1(x; y) = 1� exp(�y=p�);v2(x; y) = 0: (5.4)and w = urlvl. This models a paraboli boundary layer behaviour in the veloity�eld. The width of the layer is proportional to p�. Note that kwk1 = O(��1=2). Thevortiity is of �� 12 magnitude near the boundary and deays exponentially outside thelayer (see Fig. 5.2b). As before we take f suh that the ontinuous solution equals the
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h=1/16 -h=1/32 -h=1/64 -exat 10.80.6y0.40.20
a)

10.80.60.40.20
h=1/16 -h=1/32 -h=1/64 -h=1/128 -exat

10.80.6y0.40.20
b)

1.41.210.80.60.40.20Fig. 5.4. Exat and disrete solutions in Experiment II, x = 0:5: a) � = 10�3; b) � = 10�4ow �eld: u = vl. Results for the disretization error are given in Table 5.4. The L2norm of f is O(�� 14 ) for � ! 0; therefore one has to use a proper saling of the valuesfrom Table 5.4 (e.g. multiplying by 10 for � = 10�4) to obtain the absolute value ofthe error kûh � uhk (f. (5.1)). Table 5.4err(u; h; �) for Experiment IIh� 1=16 1=32 1=64 1=128 1=256 1=5121 7.4e-6 1.8e-6 4.5e-7 1.1e-7 2.8e-8 7.0e-91e-2 3.7e-3 8.6e-3 2.1e-4 5.3e-5 1.3e-5 2.2e-61e-4 4.2e-2 2.4e-2 3.1e-3 6.8e-4 1.6e-4 4.1e-51e-6 1.2e-2 1.2e-2 1.2e-2 1.2e-2 1.0e-2 8.0e-41e-8 3.9e-3 3.7e-3 3.7e-3 3.7e-3 3.6e-3 3.6e-3In Figure 5.4 we plot u1(0:5; y) and (uh)1(0:5; y) for the ases � = 10�3 and� = 10�4 and for several h values. The FE solution is a poor approximation to theontinuous one if boundary layer is not resolved: h � � 12 : However for h � � 12 theresults are quite good, although both the mesh Reynolds numbers and Ek�1h are verylarge (e.g. � 102 for � = 10�4). Moreover no global osillations are observed evenfor very oarse meshes. We expet that a signi�ant improvement an be obtained ifthis simple full Galerkin disretization is ombined with loal grid re�nement in theboundary layer. In Table 5.5 numerial results for the multigrid method are presented.Experiment III. In this experiment we try to model the presene of an internallayer. To this end, for the onvetion �eld we take the model of the Euler ow (extremease if � ! 0), where the tangential veloity omponent is disontinuous on some linein the interior of the domain. Hene the ow, potential almost everywhere, has a



22 M. A. OLSHANSKII AND A. REUSKENTable 5.5V-yle onvergene for Experiment IIh� 1=32 1=64 1=128 1=256 1=5121 11(0.15) 11(0.15) 11(0.15) 11(0.15) 11(0.15)1e-2 12(0.16) 11(0.15) 11(0.15) 11(0.15) 11(0.15)1e-4 18(0.30) 17(0.29) 16(0.26) 14(0.22) 13(0.19)1e-6 23(0.40) 29(0.48) 29(0.49) 28(0.41) 29(0.48)1e-8 15(0.24) 19(0.33) 23(0.40) 28(0.47) 25(0.43)Number of iterations and average redution fatorvortiity onentrated on this line (so alled \vortex sheet"). We take w = urlvd,with vd = (v1; v2) and, for a given onstant  ,� v1(x; y) = os v2(x; y) = sin if os > (x� 0:25) sin ;� v1(x; y) = 0v2(x; y) = 0 if os � (x� 0:25) sin :Using the parameter  one an vary the angle under whih the layer enters the domain.We set  = �=3, so the grid is not aligned to the layer. For the disrete veloity vdh 2Uh we take the nodal interpolant of vd, and set w = urlvdh, obtaining a pieewiseonstant funtion w, whih is essentially mesh-dependent due to the disontinuity ofvd ( kwk1 = O(h�1)). Results for the onvergene behaviour of the multigrid methodare given in Table 5.6. Table 5.6V-yle onvergene for Experiment IIIh� 1=32 1=64 1=128 1=256 1=5121 11(0.15) 11(0.15) 11(0.15) 11(0.15) 11(0.15)1e-2 13(0.20) 13(0.19) 14(0.22) 14(0.21) 13(0.19)1e-4 19(0.33) 19(0.34) 20(0.35) 21(0.36) 22(0.38)1e-6 17(0.29) 20(0.36) 24(0.42) 28(0.47) 30(0.50)1e-8 17(0.29) 20(0.35) 24(0.42) 28(0.48) 32(0.53)Number of iterations and average redution fatorSine disontinuous solutions are generally not allowed for visous motions andour given data are mesh-dependent, we do not onsider disretization errors in thisexample.5.1. Disussion of numerial results. Reall that the analysis in the previoussetions yields, for the ase � = 0,err(u; h; �) � minf��1h2; kwk�11 g (5.5)under ertain assumptions on w. These assumptions are \almost valid" for the prob-lem Ia and do not hold for the problems Ib and II.The results of the numerial experiments indeed show the O(h2) behaviour oferr(u; h; �) unless � is very small. In the latter ase the seond, �- and h-independent,
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