NAVIER-STOKES EQUATIONS IN ROTATION FORM: A ROBUST
MULTIGRID SOLVER FOR THE VELOCITY PROBLEM

MAXIM A. OLSHANSKII* AND ARNOLD REUSKEN t

Abstract. The topic of this paper is motivated by the Navier-Stokes equations in rotation
form. Linearization and application of an implicit time stepping scheme results in a linear stationary
problem of Oseen type. In well-known solution techniques for this problem such as the Uzawa (or
Schur complement) method, a subproblem consisting of a coupled non-symmetric system of linear
equations of diffusion-reaction type must be solved to update the velocity vector field. In this
paper we analyse a standard finite element method for the discretization of this coupled system and
we introduce and analyse a multigrid solver for the discrete problem. Both for the discretization
method and the multigrid solver the question of robustness with respect to the amount of diffusion
and variation in the convection field is addressed. We prove stability results and discretization error
bounds for the Galerkin finite element method. We present a convergence analysis of the multigrid
method which shows the robustness of the solver. Results of numerical experiments are presented
which illustrate the stability of the discretization method and the robustness of the multigrid solver.
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1. Introduction. The incompressible Navier-Stokes problem written in velocity-
pressure variables has several equivalent formulations. Very popular is the convection
form of the problem: find velocity u(¢,x) and kinematic pressure p(t,x) such that

6—u—leu+(u-V)u—|—Vp = f in Qx(0,T],

ot (1.1)

divu = 0 in Qx (0,7,

with given force field f and viscosity v > 0. Suitable boundary and initial conditions
have to be added to (1.1). One alternative to (1.1) is the rotation form of the Navier-
Stokes problem:

6—u—l/Au-i—(curlu)><u-{—VP = f in Qx(0,7],

ot (1.2)

divu = 0 in Qx(0,T],

which results from (1.1) after replacing the kinematic pressure by the Bernoulli (or
dynamic, or total; cf., e.g. [17]) pressure P = p + %u - u and using the identity

(wV)u = (curlu) x u+ $V(u-u). In the 3D case x stands for the vector product

and curlu :=V xu. In 2D , curlu := —g—;‘; + g—;‘f and a X u := (—aus,auy)’ for a

scalar a. Linearization and application of an implicit time stepping scheme to (1.2)
results in an Oseen type problem in which the equations are of the form

—vAu+wxu+ou+VP = f in Q

(1.3)
diva = 0 in £,
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with @« > 0 and w = curla, where a is a known approximation of u . Note that
the above linearization of (curlu) x u ensures the ellipticity of (1.3) (cf. Section 2).
One strategy to solve (1.3) is an Uzawa type algorithm, in which a Schur complement
problem S, P = g for the pressure has to be solved. The Schur complement operator
has the formal representation S,o,t = —div(—vA + w x +aI)_1V. The operator
(—vA+w x +al)~! in this Schur complement is the solution operator of the problem:

—vAu+wxu+au = f in £,

1.4
u = 0 on 09, (1.4)

where, for simplicity, we used homogeneous Dirichlet boundary conditions. The exact
solution of (1.4) can be replaced by a suitable approximation like in inexact Uzawa
method [3] or in block-preconditioners for (1.3) (e.g.[11]).

Linearization and application of an implicit time stepping scheme to the convec-
tion form (1.1) result in equations as in (1.3) with w x u replaced by (a - V)u. The
Uzawa technique applied to this linear stationary problem for u and p corresponds to
a Schur complement problem with operator S¢ony = —div (—VA+a-V—|—aI)*1 V. The
operator (—vA +a-V +al)~! in this Schur complement operator is the solution op-
erator of decoupled convection-diffusion(-reaction) problems. Hence in this approach
an efficient solver for convection-diffusion equations is of major importance. In the
setting of this paper we are particularly interested in finite element discretization
methods and multigrid solvers for the discrete problem. There is an extensive litera-
ture on these solution techniques for convection-diffusion problems, see, e.g., [1], [4],
[9], [13], [14], [15], [18],[19], [21] and the references therein. Important topics are ap-
propriate stabilization techniques for the finite element discretization and robustness
of the multigrid solvers for convection dominated problems.

In this paper we study the problem (1.4), which can be seen as the counterpart,
for Navier-Stokes in rotation form, of the convection-diffusion problems that corre-
spond to the Navier-Stokes problem in convection form. Note that, opposite to the
convection-diffusion problems, the problem (1.4) is a coupled system. In this paper
we restrict ourselves to the 2D case. We allow o = 0, which corresponds to the
linearization of a stationary Navier-Stokes problem in rotation form. We will prove
that, under certain reasonable assumptions on the rotation function w, the standard
Galerkin finite element discretization method, without any stabilization, is a useful
method. The bounds for the discretization error that are shown to hold are similar to
finite element error bounds for scalar linear reaction-diffusion problems (as, e.g., in
[16], [20]). We consider a multigrid solver for the discrete problem that results from
the Galerkin discretization of (1.4) with standard conforming finite elements. It is
proved that a multigrid W-cycle method with a canonical prolongation and restriction
and a block Richardson smoother is a robust solver for this problem, in the sense that
its contraction number (in the Euclidean norm) is bounded by a constant smaller
than one independent of all relevant parameters. Such a theoretical robustness result
is not known for multigrid applied to convection-diffusion problems. Moreover, in
the multigrid solver we do not need so-called robust smoothers or matrix-dependent
prolongations and restrictions, which are believed to be important for robustness of
multigrid applied to convection-diffusion problems. We will show results of numerical
experiments that illustrate the stability of the discretization method and the robust-
ness of the multigrid solver. Both in the analysis and the numerical experiments it
can be observed that the problem (1.4) resembles a scalar reaction-diffusion problem.
Note that from the numerical solution point of view reaction-diffusion equations are
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believed to be simpler than convection-diffusion equations.

Recently, in [12], a new preconditioning technique for a discretization of the Schur
complement operator S, has been introduced, which has good robustness properties
with respect to variation in v and in the mesh size parameter. In this paper we only
consider the inner solution operator that appears in the Schur complement operator.
Of course, a stabilization may be needed in the outer iterations for (1.3). This subject
is addressed in [10], where it is shown that a SUPG type stabilization method for
(1.3) yields optimal error bounds. The possible impact to (1.4) of additional terms,
resulting from stabilized finite element method for (1.3) is not considered in this paper.
Generally such terms enhance ellipticity of (1.4).

The results in [12], [10] and in the present paper show that for the application
of coupled (pressure-velocity) solvers and implicit schemes the rotation form of the
Navier-Stokes equations has interesting advantages compared to the convection form.
We note that relatively little is known on the numerical solution of the Navier-Stokes
equations in rotation form and we believe that this topic deserves further research.

The remainder of the paper is organized as follows. In Section 2 notation and
assumptions are introduced. Furthermore, continuity and regularity results for the
continuous problem are proved. In Section 3 the finite element method is treated. We
prove discretization error bounds in a problem dependent norm and in the Ls-norm.
In Section 4 a multigrid solver for the discrete problem is introduced. A convergence
analysis is presented that is based on smoothing and approximation properties. In
Section 5 we show results of a few numerical experiments.

2. Preliminaries and a priori estimates.. Let ) be a convex polygonal do-
main in R?. By (-,-) and ||-|| we denote the scalar product and the corresponding norm
in Ly(2)",n = 1,2. The standard norm in the Sobolev space H*(Q)2, is denoted by
Il - l|x- For u = (uy,us), v = (vi,v2) € La(2)? we have (u,v) = (u1,v1) + (uz,v2).
The norm on the space L, (£2) is denoted by || - ||oo-

For a scalar a and vector v we define the vector product a x v := (—awvy, avy)?

We consider the variational formulation of (1.4) in the two-dimensinonal case: for
given v >0, @ >0, w € L(Q), f € Ly(Q)?, determine u € U := H{(Q)? such that

a(u,v) =(f,v) forallueU, (2.1)
where
a(u,v) =v(Vu,Vv) + a(u,v) + (w x u,v) for u,v € U.

Here we use the notation (Vu,Vv) := E?zl(Vu,-, Vu;) = Z?’jzl(g;‘f , g;’% )-
Throughout the paper we use C to denote some generic strictly ;)osit%ve constant
independent of v, a and w .
The definition of the vector product implies (w X u,v) = —(w x v,u) for all

u,v € L2(0)? and thus the bilinear form a(-, ) is elliptic:

Cv|lul)f <a(u,u) forall ueU.
Using ||w X u|| < ||w]|co||u|| we obtain the continuity of the bilinear form:
a(u,v) < (v+a+||w||)|lull1]v]li forall u,veU (2.2)

(From the Lax-Milgram Lemma it follows that the variational problem (2.1) has a
unique solution.
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For the analysis below we introduce a parameter-dependent norm on U:

Iufll- = @IVal* + aljul* +

T
[[w]|oo
The constant appearing in the Friedrichs inequality is denoted by Cp:
lpll < CrlIVyll forall € Hy ().
The domain 2 is such that for any g € L2(€) the solution of the variational problem
Find ¢ € H} () such that (Vip, Vo) = (g,v) for all v e Hy(Q) (2.3)

is an element of H?(Q) and satisfies the regularity estimate ||p||2 < Cp||g]|-
For the analysis in the remainder of this paper the following three conditions are
formulated. We denote ¢, := ess infq |w|
(A1) Condition (A1) is satisfied if @ + ¢, > 0 and

llwlloo
a + Cy

n = <C.

(A2) Condition (A2) is satisfied if
w(x) >0 a.e. in Q orw(x) <0 a.e. in Q.
(A3) Condition (A3) is fulfilled if Vw € L,(Q)? for some ¢ > 2 and
IVwllz, < Cllwlle-

In the analysis below it will be explicitly stated which of these conditions are assumed.

Remark 2.1 (A2) holds, for example, if w stems from the effect of Coriolis forces
(cf., e.g., [6]); (A1) holds if w is continuous and does not have any zeros in Q or if in
a time-stepping scheme we have lower bound for a: 0 < apin < a. 0O

Note that (Jw|u,u) = (Jw| x u,1 x u) > 0 and thus we have for u € Ly(Q2)?

callull® < (jw] x u,1x u) . (2.4)
Using (|lw| x u,1 x u) < |||w| x ul|||1 X u|| = |Jw x u|||u]| we get
(o + cp)llull < [lw x ul| + af[ul| . (2.5)

The inequalities (2.4) and (2.5) are used in the analysis below.

2.1. Analysis of the continuous problem. In this section we will derive a
regularity result (Theorem 2.1) and a continuity result (Lemma 2.2). In the latter,
opposite to the result in (2.2), the problem dependent norm ||| - |||~ is used. The con-
tinuity result is used in the derivation of the discretization error bounds in Section 3.

THEOREM 2.1. For f € Ly(2)? let u € U be the solution of problem (2.1). Then
u is an element of H2()? and the estimates

vIVull? + allul® < c(v, o) [£]1* (2.6)
v ull + Chllw x ul* < 20% (4 + 2¢(v, a)?||w]]3,) ] (2.7)
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hold, with c(v,a) = . If the conditions (A1) and (A3) are satisfied, then

+02
v all3 + v(|lwlleo + @) [[Vul* + a®[[u]]® + [lw x u]|* < C[|f]]? (2.8)

with a constant C' independent of £, v, a and w.

Proof. Define f = f —w x u—au. Note that f € L()? and (Vu, Vv) = —1(f,v)
for all v € U. Hence, due to the regularity result for the Poisson equation (2.3), we
have u € H%(Q)? and

C C
lallz < == JIE] < = (] + [l x ull + o ju]) (2.9)

Note that |[ul|?> = ¢(v,a)(¥Cr? + @)||ul|? < c(v, a)(v||Vul|? + a|[u||?). Using this and
taking v =u in (2.1) we get

‘ ‘ 1 1
V||Vl + allul|* < [If[[[lal] < [[£lle(v, 0) 2 (v][Vall* + of[ul*)? (2.10)
and thus the result in (2.6) holds. We also have, using (2.6),
lwxul* < [[wlZ[[ull* < e(v, ) lw||3, (@I Vall* +allul?) < e(v,a)*[lw]Z €)% (2.11)
Combining this estimate with (2.9), and noting that «|lul| < ||f||, yields

v [[ull3 + Chllw x ul]> < CRIEl + c(v, a)lJwlloo IE]] + [£1)* + Cpe(v, ) [lwll3 1]
= Cp((2 + c(v, @) [wlleo)? + c(v, @) [|w][3,)[I£]]°
< 2033 + 2¢(v, a)?||w]|3,) £

and thus the result (2.7) is proved.

Assume now the conditions (A1) and (A3) to be valid. Since f € L»(2)? and
u € H?(Q)? equation (1.4) is satisfied in a strong sense and thus || — vAu + au + w x
u|| = |/f|| holds. Taking the square of this identity and noting that (u,w x u) =0
results in

V|| Aul| + 2val|Vul® + @?||ull* + 2v(Vu, V(w x u)) + [lw x uf* = [[f]* . (2.12)
A simple computation yields (Vu, V(w x u)) = —(Vui,usVw) + (Vus, u1 Vw) and
|(Va, V(w x w)] < [[Va]|(lur Vol + [Jlus Ve[ [*)2 . (2.13)

Take ¢q as in (A3) and define § = %q. The Holder inequality with % + % =1 and the
injection H; () < L2, () yields, for i = 1,2:

[uiVwl| = (uf, Vw - V)2 < a1, |V - Vool 7
< C|IVull[|Vwllz, < ClIVuillfjw]lo -

(2.14)

In the last inequality in (2.14) we used (A3). Combination of (2.13) and (2.14) yields
2v|(Vu, V(w x u))| < év|lwle ||[Vul*.
(From this result and (2.12) we obtain

v Aull + 2va||Vul* + a®[lul® + [lw x ul* < If]]* + ev|w]lo [Vl (2.15)



6 M. A. OLSHANSKII AND A. REUSKEN

(From (2.1) and (2.5) it follows that, for 6 > 0,

v[|Vul* < [If]| lul] = IE[1V/5 (e + e) [ul

1
Vé(a+ cy)
e
~ 20(a + cy)?

- | (2.16)
+3(a®[Jul]® + [lw x uf]?).

If we set 6 = (4¢||lw||oo) ™" and multiply (2.16) with J5 we obtain

2oVl < 2y 4 2oz L )

(a+cw)?
Adding this to (2.15) yields

V| Aul? + 2v(eljwllo + a)[[Vull* + o?[[ul]” + [lw x ul]* <

(1 L e+ ol + Gl x
Using assumption (A1), i.e. (clylﬂwp =1n? < C and ||lul]|]z < Cp||Au]| the result in
(2.8) follows. O

Note that in (2.6) and (2.7) with a = 0 we have regularity estimates of the form
lulls = O(r™1) and ||lul]|]z = O(r~2), which show a similar behaviour as regularity
results for convection-diffusion problems of the form —vAu +a-Vu = f (cf. [15]).
The result in (2.8), which holds if the conditions (A1) and (A3) are satisfied, yields
regularity estimates of the from |Jul|; = O(r~'/2) and |Jul|s = O(v~!). These bounds
show a behaviour that is typical for the solution of reaction-diffusion problems of the
form —vAu+bu = fif b > 0 (cf. [16]). In Section 4.2 the regularity result (2.8) will

be used in the convergence analysis of the multigrid method.
LemMA 2.2. Take 7 > 0. The following holds:

1
a(v,w) < Cr [Vl (VI Vul + (@ + lolloo) [ul?)*, voueU . (217)
If condition (A1) is satisfied, then
a(v,w) < Co vl llfulllr,  viueU. (2.18)

The constants C'. may depend on T.
Proof. For v,u € U we have

a(v,u) =v(Vv,Vu) + a(v,u) + (w x v,u)

(2.19)
< VIVVlIVal + af[vil[lall + llw x vl .

We define  := 7ljw||Z!. If we use ||w x v||||Jul] = (k2 |lw x v||)(x~2||ul|) and apply
the Cauchy-Schwarz inequality in (2.19) we obtain

1 1
a(v, ) < (VIVVIE + v + sllw x vI)* (v V) + afjul + 5 ul?)

< IVl (VIVall? + (o + Juwlloo) u?)
(2.20)
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and thus the result in (2.17) holds. If condition (A1) is satisfied we get, using (2.5),

[[w x vl Jul] < {jw x vl

1
X
——(aljull + v x ul)

ﬁ*%(a% + ﬁ*%)

1

< b x v )
w

1 ‘ oy 1
< Cr(k2]lw x v (allull® + &llw x ul?)= .

(@¥u]l + wblw x ) (32D

In the last inequality in (2.21) we used condition (A1):

_1, 1 _1 3.1, 1
SR+ 5 3
k7 2(az + K 2)§2 5 S—T}-{—LSCT.
a+cy a + Cy 2T 2(a+ cw)

(From the results in (2.19), (2.21) and the Cauchy-Schwarz inequality, we obtain
(2.18). O

3. Finite element method. In this section we apply a standard finite element
method to the problem (2.1) and derive bounds for the discretization error.

Let (7) be a quasi-uniform family of triangulations of (2, with mesh size pa-
rameter h, and U, C U be a finite element subspace of U, consisting of piecewise
polynomials of degree k € N. The finite element Galerkin discretization of the prob-
lem (2.1) is as follows: Find up, € Uy, such that

a(up,vy) = (f,vy) forall v, € Up. (3.1)
To meassure the effect of different terms in (1.4) we introduce mesh numbers®:

v ah?
Ekp = ———— Dy = —.
" wlloh?’ Ty

First we prove the stability of a(u,v) on Uj. Below we use the inverse inequality
IVVa|| < puh ™ ||va]|  for all vj € Uy.
The Ly-orthogonal projection P, : L2(2)? — Uy, is defined by
(Ppu,vp) = (u,vy) forall vy, € Uy, (3.2)

We will assume the following approximation property of the spaces Uy, (cf. e.g., [5]):
their exists interpolation operator I : U — Uy such that
lu— Ihul| < CR™||ully, , m=0,1,2, for ue€ UNH™(Q)? (3.3)
lu—Ihu|, <CR™ ||y, m=1,2, forueUnH™Q)?.
In (3.3) we use the notation H°(Q)? := L2(Q)? and || - |lo := || - ||-

LEMMA 3.1. Assume that the conditions (A1) and (A2) are fulfilled. If Ek;, > 1
and Dy, < 1 condition (A3) is also assumed. Then there exists a T € (0,1] such that

inf  sup __alun,va) >C >0. (3.5)
w€Unvyeu, [[[anlll- [[[valll-

1 The abbrivation and definition of Ek is chosen to be consistent with the definition of the Ekman
number in the theory of rotating flows. However the latter is only a particular case (w = const).
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Proof. Take a fixed up, € Up. Note that

(wx up, Pp(wxug)) = (Pplwxug), Prlw xuy)),
(up, Pp(w xup)) = 0.

Using (2.4) and condition (A2) it follows that

collanll® < (Jw] x up, 1 x wp) = (Pa(jw] x up), 1 x up)

= (IPr(w x up)],1 x up) < |[Pa(w x up)[[[unl]
and thus
(@ + cw)llunl] < eflup| +[[Pr(w x un)|- (3.6)
We take
7 =min{l,p,? ¢ '}, (3.7

with ¢ a constant (independent of all parameters) that will occur in the proof. Let
k= T||w||l. Using (3.6) we obtain

allun|l? + &llw x wn|® < (@ + &lJwllZ)|[[us?
2(a + &lwllZ,)
(a+ cy)?
2(a + KllwllZ) (@ + £
(a+cw)?

IN

(o [[up|[* + [IPn(w x up)||*)

(aellun[* + sl[Pr(w x up)[?).

Note that 77! + 7 < max{1,u2,¢} + 1 < C and thus, using condition (A1),

(a+alwlF)la+r™t) o+ (77 + Doflwlle +[lwllZ

(@ + cw)? (@ + cu)?

Oé2 ||’w||2 2
—— X< C(1+p?)<C.
SO aray S Cl+n*) <C

Hence
allup]® + Kllw x wp|]* < Clallupll® + &lIPa(w x up) ) - (3.8)
To prove (3.5) we chose v, = uy + kPp(w X up). Then

a(up,vpy) = 1/||Vuh||2 + a||uh||2 + ve(Vup, VP (w x up)) + &||Pr(w x uh)||2

2 2 , (3.9)
>v||Vup||® + allup|]® — ve||Vup|| [[VPR(w x up)|| + &||Pr(w x up)l]”.

For the estimation of the term ||[VPp(w X up)|| we distinguish three cases: Ek;, <1
(case 1), Dy, > 1 (case 2), Ekj, > 1 and Dy, < 1 (case 3).
In case 1 we have:

1
2 2
VT
Tl ) IPao x w)
o0

= (Bkn7p2) ¥[[Pp(w x up)|| < [[Pa(w x up)]| -

(vK) %||VPy(w x uy)|| < ( (3.10)
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Using this in (3.9) and applying the Cauchy-Schwarz inequality results in

a(un,vi) > 5oV + alluall? + 3 sllPa(w x wp) (3.11)
In case 2 we have

1 1 _ -1 1
v26[|[VPh(w x wp)|| < v2 kpuh ™ |wlloo|lull = 72D, 2 a2 [ul|

) (3.12)
1 -1 1
< 7,0 Y ab|lul| < ab|jull .
Using this in (3.9) and applying the Cauchy-Schwarz inequality results in
a(u >1 2 L 2 P 2 1
hove) 2 SVIIVuR|l” + Sallunll” + &lIPa(w > ap)]I". (3.13)

For case 3 first note that, using condition (A3) and the result in (2.14) it follows that
2
IV (w x wp) P = D 11(wn)iVol* + [0V (un)ill® +2((un)i Ve, w¥ (un);)
i=1

2
<2 1(un)iVoll + [0V (un)ill® < ellwllZ [ Vaal® -

i=1
We use that the Ly-orthogonal projection is bounded in the H'-norm (cf. ([2])):
[|IPrull1 < coflullz forueU.

For the constant ¢ in (3.7) we take é = 2c;/c; and then obtain
KIVPA(w x )| < exml[V(w x wn)] < esy/Ernlllel Fuall < 31Tl . (3.14)
Using this in (3.9) results in
(Vi) > 2oVl + afjunl? + wl[Patw x w1 (3.15)

Combination of (3.11), (3.13), (3.15) with (3.8) proves that
a(up, vi) > Clllun|f? (3.16)
holds. The results in (3.10), (3.12) and (3.14) imply
Vi VPR (w x up)|[* < [[Jun]]]7 -
Using this it follows that

1IValll? = vV (un + £Ph(w x wp))|I* + allup + £Ph(w x up)|f?
+ &||Pr(w x up + kw x Pp(w x uy))||?
<2(v||Vup|? + vk ||VPh(w x wp)|*) + allun]® + &% a||Pr(w x ug)|]?
+ 26([|Pr(w x wp)||* + £2[[Pa(w x Pr(w x up))[?)
< 20|V |? + 2| |unll; + a1+ 72)|lupl* + 26(1 + 72)|[Pa(w x up)|®
< 20|V |* + 2aljupl* + 45[|Pa(w x wp)||* + 2{| |7

< 6/[unll17 -
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Combination of the latter estimate and (3.16) completes the proof. O
Remark 3.1 Note that 7 in Lemma 3.1 does not depend on v, a or w.
Remark 3.2 Using the mesh-dependent norm
e lIPa(w x w]?)’ (3.17)

[lwlloo

llalllz.n = @IIVull* + aljul* +

the stability of a(-,-) on U can be proved without assumption (A1) and (A2) on
w, since estimate (3.8) is not needed. Moreover, continuity of a(-,-) on U, x U, in
the mesh-dependent norm (3.17) can be proved without the assumptions (A1), (A2).
This then results in satisfactory discretization error bounds in the norm ||| - |||, (see
treatment of the Oseen problem in [10]). However, for a certain duality argument in
the proof of the approximation property in the multigrid convergence analysis (see
Theorem 3.3 and Section 4) we need the continuity of a(-,-) on U x U and then the
mesh-dependent norm becomes inconvenient.

We now derive discretization error bounds for the finite element method using
standard arguments based on Galerkin orthogonality, stability, continuity and ap-
proximation properties of the finite element spaces.

THEOREM 3.2. Let u and uy, be the solution of (2.1) and (3.1), respectively. Let
the assumptions of Lemma 3.1 be fulfilled and take T € (0,1] as in Lemma 3.1. Then
the following inequalities hold:

i1 1 i .
lI[a = uslll; < Cr B (¥l + (@ + wl&)ull) . §=0,1,  (3.18)

1
llu—uylll- < Cr h(vE + (@ +|Jw||Z)h)||ull> - (3.19)

The constants C are independent of v, a, w, u and h but may depend on .
Proof. Let u; be an arbitrary function in Up. Take 7 as in Lemma 3.1. Then
there exists v, € Uy, such that

Clllup = ||+ [[[valll- < a(un — @n, va).
Using Galerkin orthogonality and the continuity result in (2.18) we obtain
a(up — Ay, vy) = a(a —ap, vy) < Crf|Ju— || |[[val]--
Hence,
= @l < Colllu = nlll- (3.20)
holds. From the triangle inequality and (3.20) it follows that
Il = ul[[7 < Crlffu— anl]7

[lwlloo

<, (¥ ta = @l +allu =l + ol x (- a)lP) (321
< Cr (vl =[] + (e + 7llwllco) lu — arll?)
According to (3.3) and (3.4) Gy, = Ipu can be taken such that
lu— [} < CP¥ullf, ,  [lu—al> <CR¥|lf, j=0,1.

Using this in (3.21) proves the result in (3.18). If we use the inequalities

lu—aullf < CR[lull ,  [lu—au]* < Ch*ulf},
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in (3.21) we get the result in (3.19). O
Note that [|w]|s oOccurs in the estimates (3.18) — (3.19) in a similar way as a,
which measures the reaction.
We now prove a discretization error bound in the Ls-norm. This result will play
an important role in the convergence analysis of the multigrid method.
THEOREM 3.3. Assume that the conditions (A1), (A2), (A8) are fulfilled. For
f € Ly(Q)? let u and uy, be the solutions of (2.1) and (3.1), respectively. Then
- el < Cin {22, LYy 3.22)
u—u min4 —, ————— .
e v o [l
holds with a constant C independent of v,a,w,h and f.
Proof. Take f € Ly(2)? and let u, uy be the solutions of (2.1) and (3.1), respec-
tively. From (3.18) and the regularity estimate (2.8) it follows that

1 1 L
[la = wlll; < Coh (vEllulls + (@ + lwll2)ull )
(3.23)

h o2 2\3 h
< — 2L - .
< Cr\/; (v*llall3 + v(a + [Jwllo)|[Val*) > < C'r\/;||f||

We now apply a duality argument. For this we introduce the adjoint bilinear form
a*(u,v) =v(Vu,Vv) + a(u,v) — (w xu,v) foru,veU,

and the adjoint problem
find @€ U such that a*(i1,v) = (f,v) forallve U,

with f := u —u, € U C Ly(Q)2. Let i1, € Uy, be the discrete solution of the adjoint
problem, i.e., a*(@y,vy) = (f,vy) for all v, € U,. Note that a*(-,-) equals a(-,-)
if, in a(-,-), we replace w by —w. The results in Lemma 3.1 and Theorem 3.2 do
not depend on sign(w) and thus hold for the adjoint problem, too. Moreover, since
the choice of 7 in Lemma 3.1 does not depend on w (cf. Remark 3.1), the estimate
(3.23) holds for the original and the adjoint problem, with the same 7 value. Using
this discretization error bound for the original and adjoint problem and the continuity
result of Lemma 2.2 we obtain

lu—wu|)? = (F,f) = a*(0,f) = a(f, @) = a(u — up, 1) = a(u — uy, @ — )
S h? - h?
< Crllla = upllf-[[[a = @nlll- < C-—~IE[| [|1£]] = C7—-[f] [[u — ual|.
Hence, [Ju — ug|| < C’T%2||f|| holds, which proves the first bound in (3.22). For the

second bound we note that from (2.5) and (A1) it follows that

1

— <
o= € ——

(aflu = upf] + flw x (w —wuz)]])

a+ |w|e o+ cy T3 3

1 1
1 o+ ||lw wl| & T2
< el <a%+w> <a%||u—uh||+—1||wx<u—uh>||

wl|&
<2 (tmrtabed 1 wld)lie —
_— T az2T w u—u
= o+ ol > riilr
<O (ad + ]3] u - |
— w u—u
>~ Ta+||w||oo ] h|llT

(3.24)

)
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Finally note that due to (3.18) with j = 0 and the results in (2.5), (2.8) we get

1 L 1 L 1 1 L
(@ +[wl|S)[[[u = unl|l; < (a2 + [lw]|5%) (V= |lully + (a2 + [[w]|Z)|ul])

—~

1 1
<wE(a? + [lwlls)lully + 2(a + [[w]eo) [Jull

= 8w|>—-

1 1
v2 (a2 + [lwll&)lall + 2(1 + 7)(|lw x ul] + afful])

IN

1
2

Cv(a+ [wllso)IVull* + o ul* + |lw x ull*)
ClIll

IN A

This is in combination with (3.24) yields the second bound in (3.22). O

4. A solver for the discrete problem. For the approximate solution of the
discrete problem we apply a multigrid method. The method and its convergence
analysis will be presented in a matrix-vector form as in Hackbusch [8].

4.1. Multigrid components. For the application of the multigrid solver we
assume that the quasi-uniform family of triangulations of Q results from a global
reqular refinement technique. This yields a hierarchy of nested finite element spaces

UycU,Cc---CcU,C---CU.
The corresponding mesh size parameter is denoted by hj and satisfies
CoQ_k S hk/ho S 612_k

with positive constants ¢y and ¢; independent of k. Note that Uy = Uy x Uy where
Ui is a standard conforming finite element space consisting of scalar functions. For
the matrix-vector formulation of the discrete problem we use the standard nodal basis
in Uy, denoted by {#;}1<i<n,, and the isomorphism:

ng
Pk : R —)Uk, PkZE:ZLU,'¢i.

i=1
For the product space U = U x Uj we use the isomorphism

iL“l

P, : X, :=R™ - U, Ppx=P, ( 2 > = Pyt x Pz, zte R™, i=1,2.

On R™ and X} we use scaled Euclidean scalar products: (z,y)r = hi > %, ;y; for
z,y € R™ and (x,y)r = (z!,y')r + (2%,9?)r for x, y € X;. The corresponding
norms are denoted by || -||. The adjoint P} : U, — X, satisfies (Px,v) = (x,P;v)
for all x € X, v € Ug. Note that the following norm equivalence holds

CVx]| < 1P| < Cllx| for all x € X, (4.1)

with a constant C' independent of k. The stiffness matrix Ly : R2"* — R?*™ on level
k is defined by

(Lpx,y)r = a(Prpx,Pry) for all x,y € X. (4.2)

This matrix has the block structure

I — vA+aM —M,,
k= M, vA+aM )’
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with
(Az,y)r = (VPex,VPy) , (Mz,y)r = (Prz, Pry) ,

(Mw$,y>k = (ka:c,Pky) (43)

for all z,y € R™ . Note that A is a stiffness matrix for a single (velocity) component,
M is a mass matrix and M, is of mass matrix type corresponding to the bilinear
form [z,y] — (wz,y). The latter is not necessarily a scalar product. The matrices
A, M, M,, are symmetric and A and M are positive definite.

For the prolongation and restriction in the multigrid algorithm we use the canon-
ical choice:

pr: Xe—1 = X, pe=Pp Py

hi—1

* *\—1 h 2 T (44)
re: Xp = Xpo1, 1o =Pi_ (P1)~L= ( k ) pl.
Consider a smoother of the form
xhew = xold _ W,c_l(kaOld —b), forx°d be X,

with corresponding iteration matrix denoted by S =1 — W, L.
The damped block Jacobi method corresponds to

_ diag(vA + aM) —diag(M,)

We=w" < diag(My,) diag(vA + aM) ) ’ (4.5)

with a damping parameter w € (0,1]. This type of smoother will be used in our
numerical experiments in Section 5. In the convergence analysis of the multigrid
method we consider a smoother of block Richardson type:

o Bl —paI
. s

where [ is the identity matrix and (1, 82 suitable scaling factors. With the components
defined above a standard multigrid algorithm with u; pre- and pe post-smoothing
iterations can be formulated (cf. [8]) with an iteration matrix M}, on level k that
satisfies the recursion

Mo (p1, p2) =0,
My (pa, p2) = Sp> (I — pe(I — My_ )Ly 2yriLe) S, k=1,2,....

The choices v = 1 and v = 2 correspond to the V- and W-cycle, respectively. For
the analysis of this multigrid method we use the framework of [7, 8] based on the
approximation and smoothing property. Below in Section 4.2 and Section 4.3 we will
prove the following approximation and smoothing properties:

_ _ 14 —1
1Ly ! —pe L2yl < C (ﬁ +a+ [lw|lw) (4.7)
cC ,v
LpSH| < —— (£ - 4.
|L&Sy, ||_\/M—1(h2 +a+|[wllw) (4.8)

As a direct consequence of (4.7) and (4.8) one obtains a bound for the contraction
number of the two-grid method:

c
Vit

I(I = peLityreLe) SEt | < (4.9)
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Using the analysis in [8] (Theorem 10.6.25) the convergence of the multigrid W-cycle
can be obtained as a consequence of the approximation and smoothing property. In
Section 4.3 we will prove ||Sk|| < 1. Using this and (4.7), (4.8), Theorem 10.6.25 from
[8] yields the following result:

THEOREM 4.1. Assume (A1) — (A8) hold, then for any ¢ € (0,1) there exists
o > 0 independent of the problem parameters v, a and the level number k, such that
for the contraction number of the multigrid W-cycle with smoothing (4.6) we have

1M (p, 0)[| <9 for all p > fio. O

This proves the robustness of the multigrid W-cycle with respect to variation in the
problem parameters v and o and the mesh size hy. This robustness is confirmed by
the numerical experiments in Section 5.

4.2. Approximation property. The analysis of the approximation property is
as in [7, 8]. The key ingredient is the finite element error bound in Theorem 3.3.

THEOREM 4.2. Let the assumptions (A1) — (A3) be valid, then

—1
14 —
L =Ll <€ (g +atlol)  <CILIT. @)
k

Proof. Take yi, € Xj. The constants C' that appear in the proof do not depend
on v,a,yi or k. Let s* € U, s € Uy, and s;,_1 € Uy_; be such that

a(s*,v) = ((P}) ‘yg,v) foralveU,
a(sg,v) = (P})'yg,v) forall v e Uy,
a(sg—1,v) = (P)"'yx,v) forallv e Ug_i.
Putting £ = (P}) 'y € L2(2)? in Theorem 3.3, we obtain

h? 1

ls* = sill < Cmin { = W}ua)z)*lyku for I € {k—1,k}.

Due to hr—1 < chy, this yields

1

hi,
Sk — Sk <len{— —_—
lIsk —sk—1]| < ot ol

HI®D vl -
(From (4.2) and (4.4) it follows that s; = PkLglyk and s_; = Pk,lL,;_llrkyk.
Thus, using (4.1), we get

Lyt = peLitire)yell < ClIPeLy ' yi — Pk 1Lt eyl = Clise — se—ll

<€ min {2 EAR

a+ ||w||

h? 1
<Cmin{—k,7} Y|l -
< v ot ole 1yl

Note that min{l—l), %} < ﬁ for all p,q > 0. Hence the first inequality in (4.10) is
proved. For the second inequality in (4.10) we note that

I/A+01M [Z) 0 _Mw
”L’“”:H< ] VA+aM>+<Mw ] )H

< |lvA + aM|| + [[Mu|l < V[IA]l + (a + [[w]loo) [|M]] -
Using ||A|| < Ch;? and ||M|| < C we obtain ||Lg|| < C(vhi? + a + ||w||) O
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4.3. Smoothing property. Let a;,m; be positive constants independent of v, «
and k such that for spectral radius of the matrices in (4.3) we have

p(A) <

k

Furthermore, let wmin = ess info w and wmax = €ss supg w and define

C, = Wmax if Wmax Z —Wmin
w = .
Wmin if Wmnax < —Wmnin -

Note that |Cy| = ||w||eo- In the analysis below we use the following elementary result:

LEMMA 4.3. Assume that for B € R and A € (0,00) we have BTB <
A(B + BY). Then ||I —wBl|| <1 holds for any w € [0, 5.

This result follows from

0< (I -wB)'(I-wB)=I-wB+B")+w’B"B
<I-wl-wA)(B+BY)Y<r. 1

Using this lemma we prove that the contraction number of the block Richardson
method is bounded by 1:

LEMMA 4.4. Assume that (A1) and (A2) are satisfied. Consider the block
Richardson method with Wy, as in (4.6) and

B = Vh_‘%l +akimy, By =ksCy, with constants
k1 >2(1+1%) , ko> 4dmin . (4.11)
Then the following inequality holds

1T — W, 'Lyl < 1.

Proof. A straightforward computation yields

W 'Ly =R+ Ry,  with (4.12)
Rl — v < /BlA /BQA )
B2+ B2\ —BA A )’
R, = 1 /glaM +ﬁ2Mw 6204M _61Mw
YT+ —BaM + My BraM + By My,
i From

1 or _vp A 0 ry V2 AZ 0
2 =g < 0 4 > =m0 4

it follows that

RTRy < =(RT+R) & vA<BI & mg(% + akymi)I

k

N | =

The last inequality holds, due to p(4) < # and akym; > 0. Application of
k

Lemma 4.3 yields
1l —2R;|| <1. (4.13)
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For the matrix R> we obtain:

1 1 Bra + B2 M 0
- RT R, = w
g e + 1) BT + 63 ( 0 praM + B2 My )
RTR, — 1 a’M? + M2 a(MyM — MM,)
2T g2\ —a(MyM —MM,)  o*M*+ M2 '

We use the notation M = BraM + B2 M,. Note that RI R, < %(Rg + R») holds if
the following two conditions are satisfied:

~

%M , (4.14)
H (LER T (4.15)

a?M? + M2

IN

(MM — MM,)z,y)|

IN

for all z,y € R"™. We first consider (4.14). We have M2 < ||w||%2, M? < my||w||?, M.
Due to (A2) the matrix M, is definite and Cy, M, is positive definite, moreover,
CuwMy > |CylewM = ||w||oocwM . Using this we obtain

?M? + M2 < (mya® + my||w||%) M,

1 - 1 . .
§M > E(nlmlazM + ko CyM,y,) > i(nlmlaz + Ko ||w]|ooCw ) M.
Hence, (4.14) is fulfilled if the inequality

1
mia® + ml||w||io < —(kimia® + Ka||wl|soCw)

[\

holds. Substitution of ||w]|cc = n(@ + ¢yy) and rearranging terms results in the equiv-
alent inequality

1 1 1
azml(im —(14+9%)+ Oécwﬂ(ilig —2mn) + nci(iﬁg —min) >0.

This inequality holds for ki,ks as in (4.11). Hence, with k1, k2 as in (4.11) the
condition (4.14) is fulfilled. To prove (4.15) we note that

af(MyM — MMy)z,y)| < a((|Mw Mz, y)i| + o (M Myz,y)k,
a|<MwM$7y>k| = a|<M$7Mwy>k| S %(a2<M2$,ﬂ?>k + (qu;y7y>k)7
al(MMyz,y)i| = al(Myz, My)i| < 5 (Mg, 2)i + o (M?y, y)i).

Thus (4.15) follows from (4.14). We conclude that (4.15) and (4.14) are satisfied for
K1, k2 as in (4.11). Hence, R¥ Ry < 1(RY + R;) holds. And due to Lemma 4.3

11— 2Ry < 1. (4.16)

Finally, (4.12), (4.13), and (4.16) yield

_ 1 1
0T =Wy Lall = I = (R + Ra) | < 511 = 2Ral| + 1T - 2Rs]| < 1.
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THEOREM 4.5. Assume that (A1) and (A2) are satisfied. Consider the block
Richardson method with Wy, as in (4.6) and
vaj

ﬁl = 2(? + amml), ﬁQ = 2"“/201117
k

with constants k1, ko from (4.11). Then the following estimate holds

C v
ILrSEH < T (ﬁ +a+|lwle), m=12,... (4.17)

Proof. ;From Lemma 4.4 we obtain
I —2W, 'L < 1. (4.18)

Furthermore,

_ Bl —p2I Bl B2l 2
”Wk” B P(( ﬂQI ﬂll ) < _ﬂQI ﬂll > ) (4'19)
= (B +8)F <P+ < O +a+ vl -

(From (4.18) and (4.19) and Theorem 10.6.8 in [8] the result in (4.17) follows. O

5. Numerical results. In this section results of a few numerical experiments
related to the accuracy of the discretization method and the convergence behaviour
of the multigrid solver are presented. For the discretization we use linear conforming
finite elements on a uniform triangulation of the unit square. The mesh size parameter
ish=h,=2"% k=4,5...,9.

In our experiments we consider problems with an a-priori known continuous so-
lution u € H?(2)?2 N U to the problem (2.1). Discretization errors are measured
as follows. Let u;, € Uy be the nodal interpolant of the continuous solution u and
uy, € Uy be the solution of the discrete problem. As a measure for the discretization
error we take

|[an — upl

Tl 6-1)

err(u, h,v) =

For the iterative solution of the discrete problem a multigrid V-cycle is applied.
The prolongations and restrictions in this multigrid method are the canonical ones,
as in (4.4). For the smoother a damped block Jacobi method as in (4.5) is used.
Thus for each pair of nodal values of {u;,u2} a 2 x 2 linear system is solved. The
damping parameter w in each smoothing step is determined in a dynamic way based
on a residual minimization criterion. We always use 2 pre- and 2 post-smoothing
iterations. For the starting vector in the iterative solver we take u® = 0. The iterations
are stopped as soon as the residual, in the Euclidean norm, is at least a factor 10°
smaller than the starting residual.

We consider test problems with different choices for w. Note that in the set-
ting of a (linearized) Navier-Stokes problem w = curlv = —% + %—’;’1, where v =
(v1(z,y),v2(x,y)) is an approximation of the flow field. In Experiment I we consider
a problem which corresponds to a flow with rotating vortices. In Experiment II we

take a flow field v with a parabolic boundary layer behaviour. Both in Experiment I
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and Experiment II the right-hand side is taken such that the continuous solution u
equals the flow field v. This seems a reasonable choice if the problem (2.1) results
from a linearized Navier-Stokes problem. Finally, in Experiment III a flow v which
exhibits an internal layer behaviour is considered.

In all the experiments we present results for the case @ = 0. For a > 0 in our
numerical experiments we always observed better results than for a = 0, both with
respect to the discretization error and with respect to the multigrid convergence.

Ezperiment Ia. We take v, = (v1,v2), with

) = 4(2]/ - 1)$(1 - J"): (5 2)
va(z,y) = —4(2z-1y(l-y), '
and w = curlv,. This type of convection v, simulates a rotating vortex. For this w
the conditions (A2) and (A3) are fulfilled. Related to (A1) we note that ||w||e = O(1)
and ¢,, = 0. However, based on the fact that w equals zero only at the corner points
of the domain, one could say that (A1) is “almost” fulfilled. For several values of h
and v the quantity err(u, h,v) is given in Table 5.1.

In Figure 5.1 the differences (u; — (up)1)(0.5,y) and (%L; - 8(;—;)1)(0.5,;1/) between

TABLE 5.1
err(u, h,v) for Ezperiment Ia

v 1/16 1/32 1/64  1/128  1/256  1/512

1 4.5e-4 1.1e-4 2.8e-5 7.2e-6 1.8e-6 4.5e-7
le-2 8.6e-3 2.1e-3 5.2e-4 1.3e-4 3.3e-5 8.2e-6
le-4 1.0e-2 2.7e-3 7.0e-4 1.7e-4 4.4e-5 1.1e-5
le-6 1.0e-2 2.7e-3 7.7e-4 2.1e-4 5.4e-5 1.3e-5
le-8 1.0e-2 2.7e-3 7.7e-4 2.1e-4 5.9¢e-5 1.6e-5

(the derivatives of) the first components of the continuous and FE solution are plotted
for the case v = 107%. Because of the symmetry the error in the solution is shown only
on half of the interval (Figure 5.1b) and the error in the solution derivative only on
the interval [0,0.1] near the boundary (Figure 5.1a). The numerical boundary layer,
typical for reaction-diffusion problems with dominating reaction terms, is clearly seen.
Results for the convergence behaviour of the multigrid method are shown in Table 5.2.

TABLE 5.2
V-cycle convergence for Ezperiment Ia

h
v 1/32 1/64 1/128 1/256 1/512
1 11(0.15)  11(0.15) 11(0.15) 11(0.15) 11(0.15)

le-2  11(0.14) 11(0.14) 11(0.14) 11(0.15) 11(0.15)
le-4  6(0.03)  7(0.05)  9(0.10)  11(0.14) 11(0.15)
le-6  5(0.01)  5(0.01)  5(0.01)  7(0.04)  7(0.05)
le-8  5(0.01)  5(0.01) 5(0.01) 5(0.01)  5(0.01)

Number of iterations and average reduction factor
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Fi1G. 5.2. a) Function w in the Ezperiment Ib; b) Function w in the Experiment II, v = 103,

Ezperiment Ib. We take vg = (v1,vs), with

vi(z,y) = 2 sin(wrz)cos(my),
va(z,y) = —cos(wrz)sin(my). (5.3)

and w = curl vg. This models a flow with two vortices rotating in opposite directions.
Note that the conditions (A1) and (A2) are not fulfilled. For the parameter w we
choose w = 1.6. One vortex lies entirely in the computational domain the second one
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F1G. 5.3. Error in FE solutions in the Ezperiment Ib, v = 1076, y = 0.5

only partially. The (vorticity) function w for this problem is plotted in Figure 5.2a.
Note the change of sign for w at x = 0.625. The error in the discrete solution
shown in Table 5.3 is larger compared to example Ia (which might correspond to
the strong violation of the conditions (Al) and (A2)). In Figure 5.3 the difference

TABLE 5.3
err(u, h,v) for Ezperiment Ib

v 1/16 1/32 1/64  1/128  1/256  1/512

1 1.9e-3 4.9e-4 1.2e-4 3.0e-5 7.5e-6 1.9e-6
le-2 1.5e-2 3.6e-3 9.0e-4 2.3e-4 5.7e-5 1.4e-5
le-4 4.8e-2 7.1e-3 1.8e-3 4.5e-4 1.1e-4 2.9e-5
le-6 1.4e-1 7.8e-2 1.0e-2 9.5e-4 2.3e-4 5.7e-5
le-8 1.4e-1 9.7e-2 6.7e-2 2.9e-2 2.0e-3 1.4e-4

(uy — (up)1)(0.5,y) is plotted for v = 1075. Note that some local oscillations in the
error are observed in the neighbourhood of z = 0.625, i.e. where condition (A1) is
locally violated. The results for the convergence behaviour of the multigrid method
are very similar to those in Table 5.2 for Experiment Ia.

Ezperiment II. We take v; = (v1, v2), with

1_X(_ /\/17)7
— o, 0 (5.4)

vi(x,y)
va (2, y)

and w = curlv;. This models a parabolic boundary layer behaviour in the velocity
field. The width of the layer is proportional to /v. Note that ||w||s, = O(v~1/2). The
vorticity is of v magnitude near the boundary and decays exponentially outside the
layer (see Fig. 5.2b). As before we take f such that the continuous solution equals the
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F1G. 5.4. Ezact and discrete solutions in Ezperiment II, x = 0.5: a) v = 10-3; b)v= 10—4

flow field: u = v;. Results for the discretization error are given in Table 5.4. The L,
norm of f is O(v~1) for v — 0, therefore one has to use a proper scaling of the values
from Table 5.4 (e.g. multiplying by 10 for v = 10~%) to obtain the absolute value of
the error |G, — up|| (cf. (5.1)).

TABLE 5.4
err(u, h,v) for Ezperiment II

v 1/16 1/32 1/64  1/128  1/256  1/512

1 7.4e-6 1.8e-6 4.5e-7 1.1e-7 2.8e-8 7.0e-9
le-2 3.7e-3 8.6e-3 2.1e-4 5.3e-5 1.3e-5 2.2e-6
le-4 4.2e-2 2.4e-2 3.1e-3 6.8e-4 1.6e-4 4.1e-5
le-6 1.2e-2 1.2e-2 1.2e-2 1.2e-2 1.0e-2 8.0e-4
le-8 3.9e-3 3.7e-3 3.7e-3 3.7e-3 3.6e-3 3.6e-3

In Figure 5.4 we plot u1(0.5,%) and (u)1(0.5,y) for the cases v = 1072 and
v = 10~* and for several h values. The FE solution is a poor approximation to the
continuous one if boundary layer is not resolved: h < vz. However for h ~ v the
results are quite good, although both the mesh Reynolds numbers and Ek;1 are very
large (e.g. =~ 10? for » = 10~%). Moreover no global oscillations are observed even
for very coarse meshes. We expect that a significant improvement can be obtained if
this simple full Galerkin discretization is combined with local grid refinement in the
boundary layer. In Table 5.5 numerical results for the multigrid method are presented.

Ezxperiment I1I. In this experiment we try to model the presence of an internal
layer. To this end, for the convection field we take the model of the Euler flow (extreme
case if v — 0), where the tangential velocity component is discontinuous on some line
in the interior of the domain. Hence the flow, potential almost everywhere, has a
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TABLE 5.5
V-cycle convergence for Ezperiment II

h
v 1/32 1/64 1/128 1/256 1/512

1 11(0.15)  11(0.15) ) ) )
le-2  12(0.16)  11(0.15) ) ) )
le-4  18(0.30) 17(0.29) 16(0.26) 14(0.22) 13(0.19)
) ) ) ) )

) ) )

le-6  23(0.40) 29(0.48
le-8  15(0.24) 19(0.33)  23(0.40

Number of iterations and average reduction factor

vorticity concentrated on this line (so called “vortex sheet”). We take w = curl vy,
with v4 = (v1,v2) and, for a given constant 1,

(BED = @y 05w,
(86D =0 iy g om0z

Using the parameter ¢ one can vary the angle under which the layer enters the domain.
We set ¢ = /3, so the grid is not aligned to the layer. For the discrete velocity Vﬁ €
U}, we take the nodal interpolant of vy, and set w = curlvﬁ, obtaining a piecewise
constant function w, which is essentially mesh-dependent due to the discontinuity of
vi (|lw]|eo = O(h™1)). Results for the convergence behaviour of the multigrid method
are given in Table 5.6.

TABLE 5.6
V-cycle convergence for Experiment I11

h
v 1/32 1/64 1/128 1/256 1/512

1 11(0.15)  11(0.15) ) )

le-2  13(0.20) 13(0.19) ) )
led  19(0.33) 19(0.34) 20(0.35) 21(0.36) 22

) ) ) )

) )

le-6  17(0.29)  20(0.36
le-8  17(0.29) 20(0.35)  24(0.42

Number of iterations and average reduction factor

Since discontinuous solutions are generally not allowed for viscous motions and
our given data are mesh-dependent, we do not consider discretization errors in this
example.

5.1. Discussion of numerical results. Recall that the analysis in the previous
sections yields, for the case a = 0,

err(u, h,v) < emin{r'h? ||lw||} (5.5)

under certain assumptions on w. These assumptions are “almost valid” for the prob-
lem Ia and do not hold for the problems Ib and II.

The results of the numerical experiments indeed show the O(h?) behaviour of
err(u, h,v) unless v is very small. In the latter case the second, v- and h-independent,
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upper bound for err(u, h,v) in (5.5) is observed and O(h?) convergence is recovered
for small h. For fixed h and v — 0 a growth of the error is observed (up to some
limit). In the experiments Ia,b this growth appears to be less than O(v 1), indicating
that the v-dependence in (5.5) might be somewhat pessimistic for these cases.

Although in the last two examples the multigrid convergence for a small values

of v is somewhat worse, the multigrid V-cycle with block Jacobi smoothing appears
to be a very robust solver. The convergence rates for realistic values of viscosity (in
laminar flows 1 — 10~ %) are excellent.
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