
APPROXIMATION OF THE DETERMINANT OF LARGE SPARSESYMMETRIC POSITIVE DEFINITE MATRICESARNOLD REUSKEN�Abstrat. This paper is onerned with the problem of approximating det(A)1=n for a largesparse symmetri positive de�nite matrix A of order n. It is shown that an eÆient solution ofthis problem is obtained by using a sparse approximate inverse of A. The method is explained andtheoretial properties are disussed. The method is ideal for implementation on a parallel omputer.Numerial experiments are desribed that illustrate the performane of this new method and providea omparison with Monte Carlo-type methods from the literature.Key words. determinant, sparse approximate inverse, preonditioningAMS subjet lassi�ations. 6F10, 65F10, 65F501. Introdution. Throughout this paper, A denotes a real symmetri positivede�nite matrix of order n with eigenvalues0 < �1 � �2 � : : : � �n:In a number of appliations, for example in lattie Quantum Chromodynamis ([14,8, 16, 17℄) ertain funtions of the determinant of A, suh as det(A) 12 or ln(det(A))are of interest. It is well-known (f. also x2) that for large n the funtion A! det(A)has poor saling properties and an be very ill-onditioned for ertain matries A. Inthis paper we onsider the funtiond : A! det(A) 1n : (1.1)A few basi properties of this funtion are disussed in x2. In this paper we present anew method for approximating d(A) for large sparse matries A. The method is basedon replaing A by a matrix whih is in a ertain sense lose to A�1 and for whih thedeterminant an be omputed with low omputational osts. One popular method forapproximatingA is based on the onstrution of an inomplete Cholesky fatorization.This inomplete fatorization is often used as a preonditioner when solving linearsystems with matrix A. In this paper we use another preonditioning tehnique,namely that of fatorized sparse approximate inverses (f. [1, 7, 10, 12℄). With suha method a lower triangular matrix GE with a presribed sparsity struture E anbe onstruted suh that GEAGTE is in ertain sense lose to the identity. We thenuse det(GE)�2=n = Qni=1(GE)�2=nii as an approximation for d(A). In x3 we explainthe onstrution of GE and disuss theoretial properties of this sparse approximateinverse. For example, suh a sparse approximate inverse an be shown to exist for anysymmetri positive de�nite A and has an interesting optimality property related tod(A). From this optimality property it immediately follows that d(A) � det(GE)�2=nholds and that the approximation of d(A) by det(GE)�2=n beomes better if we take alarger sparsity pattern E. Besides this optimality property the method we present hastwo other interesting properties. The method is ideal for a parallel implementationand has very low storage requirements .To make a omparison with other methods for approximating d(A) we desribe two�Institut f�ur Geometrie und Praktishe Mathematik, RWTH Aahen, Templergraben 55, D-52056Aahen, Germany. 1



2 A. REUSKENknown Monte Carlo-type methods (from [3℄ and [16℄). We present results of a fewnumerial experiments. In these experiments the new method and the Monte Carlomethods are applied to a few model examples of large sparse symmetri positivede�nite matries.2. Preliminaries. In this setion we disuss a few elementary properties of thefuntion d. We give a omparision between the onditioning of the funtion d andof the fution A ! d(A)n = det(A). We use the notation k � k2 for the Eulideannorm and �(A) = �n=�1 denotes the spetral ondition number of A. The trae ofthe matrix A is denoted by tr(A).Lemma 2.1. Let A and A+ ÆA be symmetri positive de�nite matries of ordern. The following inequalities hold:�1 � d(A) � �n ; (2.1a)d(A) � 1n tr(A) ; (2.1b)���d(A+ ÆA)� d(A)d(A) ��� � �(A)kÆAk2kAk2 : (2.1)Proof. The result in (2.1a) follows from�1 � ( nYi=1�i) 1n � �n :The result in (2.1b) follows from the inequality between the geometri and arithmetimean: d(A) = ( nYi=1 �i) 1n � 1n nXi=1 �i = 1ntr(A) :Now note thatd(A+ ÆA)� d(A)d(A) = �det(I +A�1ÆA)� 1n � 1 = � nYi=1(1 + �i(A�1ÆA))� 1n � 1 :From �i(A�1ÆA) � kA�1k2kÆAk2 it follows that� nYi=1(1 + �i(A�1ÆA))� 1n � 1 � � nYi=1(1 + kA�1k2kÆAk2)� 1n � 1 = kA�1k2kÆAk2 :Using 1 + �i(A�1ÆA) > 0 and �i(A�1ÆA) � �kA�1k2kÆAk2 we obtain� nYi=1(1+�i(A�1ÆA))� 1n�1 � � nYi=1maxf 0; 1�kA�1k2kÆAk2 g� 1n�1 � �kA�1k2kÆAk2 :Thus we have ���d(A+ ÆA)� d(A)d(A) ��� � kA�1k2kÆAk2 = �(A)kÆAk2kAk2 ;



APPROXIMATION OF DETERMINANTS 3and the result in (2.1) is proved.The result in (2.1) shows that the funtion d(A) is well-onditioned for matriesA whih have a not too large ondition number �(A).We now briey disuss the di�erene in onditioning between the funtions A!d(A) and A ! det(A). For any symmetri positive de�nite matrix B of order n wehave d0(A)B := limt!0 d(A+ tB)� d(A)t = d(A)n tr(A�1B) :From the Courant-Fisher eigenvalue haraterization we obtain �i(A�1B) � �i(A�1)kBk2for all i. Henekd0(A)k2 := maxB is SPD jd0(A)BjkBk2 = d(A)n maxB is SPD tr(A�1B)kBk2 � d(A)n tr(A�1) ;with equality for B = I . Thus for the ondition number of the funtion d we havekAk2kd0(A)k2d(A) = 1nkAk2tr(A�1) � �(A) : (2.2)Note that for the diagonal matrix A = diag(Aii) with A11 = 1; Aii = � for i > 1 theinequality in (2.2) is sharp if 0 < �� 1 and n is large. For this A and with ÆA = "I ,0 < "� �, the bound in (2.1) is sharp, too.For ~d(A) = det(A) = d(A)n the ondition number is given bykAk2k ~d0(A)k2~d(A) = kAk2nd(A)n�1kd0(A)k2d(A)n = kAk2tr(A�1) ; (2.3)i.e., n times larger than the ondition number in (2.2). The ondition numbers ford and ~d give an indiation of the sensitivity if the perturbation kÆAk2 is suÆientlysmall. Note that the bound in (2.1) is valid for arbitrary symmetri positive de�niteperturbations ÆA. The bound shows that even for larger perturbations the funtiond(A) is well-onditioned at A if �(A) is not too large. For the funtion ~d(A) thee�et of relatively large perturbations an be muh worse than for the asymptotiase (ÆA! 0), whih is haraterized by the ondition number in (2.3). Consider, forexample, for 0 < " < 12 a perturbation ÆA = "A, i.e. kÆAk2=kAk2 = ". Then~d(A+ ÆA)� ~d(A)~d(A) = (1 + ")n � 1 � e 12n" � 1 ;whih is very large if, for example, " = 10�3; n = 105.The results in this setion show that the numerial approximation of the funtiond(A) an be onsidered to be an easier task than the numerial approximation ofA! det(A).Remark 2.2. The results on onditioning derived above and the fat that inthe analysis of the sparse approximate inverse the funtion d(A) plays a natural role(f. Setion 3) are the main motivation for onsidering d(A) instead of A ! det(A).Of ourse, an algorithm for approximating d(A) yields an approximation for det(A)or ln(det(A)), too. Note that the funtions x ! xn and x ! ln(xn) have onditionnumbers n and 1= ln(x), respetively. Hene, if d̂ is an approximation of d(A) withrelative error jd̂�d(A)j=d(A) � eps then it follows that jd̂n�det(A)j= det(A) . n epsand j ln(d̂n)� ln(det(A))j=j ln(det(A))j . eps=j ln(d(A))j.



4 A. REUSKEN3. Sparse approximate inverse. In this setion we explain and analyze theonstrution of a sparse approximate inverse of the matrix A. Let A = LLT be theCholesky fatorization of A, i.e. L is lower triangular and L�1AL�T = I . Note thatd(A) = d(L)2 =Qni=1 L2=nii . We will onstrut a sparse lower triangular approximationG of L�1 and approximate d(A) by d(G)�2 = Qni=1G�2=nii . The onstrution of asparse approximate inverse that we use in this paper was introdued in [10, 11, 12℄and an also be found in [1℄. Some of the results derived in this setion are presentedin [1℄, too.3.1. Introdution. We �rst introdue some notation. Let E � f(i; j) j 1 �i; j � ng be a given sparsity pattern. By #E we denote the number of elements inE. Let SE be the set of n � n matries for whih all entries are set to zero if theorresponding index is not in E:SE = fM 2 Rn�n j Mij = 0 if (i; j) =2 Eg :For 1 � i � n let Ei = E \ f(i; j) j 1 � j � ng. If ni := #Ei > 0 we use therepresentationEi = f(i; j1); (i; j2); : : : ; (i; jni)g; 1 � j1 < j2 < : : : < jni � n : (3.1)For ni > 0 we de�ne the projetionPi : Rn ! Rni ; Pi(x1; x2; : : : ; xn)T = (xj1 ; xj2 ; : : : ; xjni )T : (3.2)Note that the matrix PiAP Ti : Rni ! Rniis symmetri positive de�nite. To failitate the analysis below, we �rst disuss theonstrution of a approximate sparse inverse ME 2 SE in a general framework. ForME 2 SE we use the representationME = 26664 mT1mT2...mTn 37775 ; mi 2 Rn :Note that if ni = 0 then mTi = (0; 0; : : : ; 0).For given A;B 2 Rn�n with A symmetri positive de�nite we onsider the fol-lowing problem:determine ME 2 SE suh that (MEA)ij = Bij for all (i; j) 2 E : (3.3)In (3.3) we have #E equations to determine #E entries inME . We �rst give two basilemmas whih will play an important role in the analysis of the sparse approximateinverse de�ned in (3.9).Lemma 3.1. The problem (3.3) has a unique solution ME 2 SE. If ni > 0 thenthe ith row of ME is given by mTi withmi = P Ti (PiAP Ti )�1Pibi ; (3.4)where bTi is the ith row of B.



APPROXIMATION OF DETERMINANTS 5Proof. The equations in (3.3) an be represented as(mTi A)jk = (bTi )jk for all i with ni > 0 and all k = 1; 2; : : : ; ni ;wheremTi is the ith row ofME. Consider an i with ni > 0. Note thatME 2 SE , heneP Ti Pimi = mi. For the unknown entries in mi we obtain the system of equations(AP Ti Pimi)jk = (bi)jk ; k = 1; 2; : : : ; ni ;whih is equivalent to PiAP Ti Pimi = Pibi :The matrix PiAP Ti is symmetri positive de�nite and thus mi must satisfyPimi = (PiAP Ti )�1Pibi :Using P Ti Pimi = mi we obtain the result in (3.4). The onstrution in this proofshows that the solution is unique.Below we use the Frobenius norm, denoted by k � kF :kBk2F = nXi;j=1B2ij = tr(BBT ) ; B 2 Rn�n : (3.5)Lemma 3.2. Let A = LLT be the Cholesky fatorization of A and let ME 2 SEbe the unique solution of (3.3). Then ME is the unique minimizer of the funtionalM ! k(B �MA)L�T k2F = tr((B �MA)A�1(B �MA)T ); M 2 SE : (3.6)Proof. Let ei be the ith basis vetor in Rn . Take M 2 SE . The ith rows of Mand B are denoted by mTi and bTi , respetively. Now notetr((B �MA)A�1(B �MA)T ) = nXi=1 eTi (BA�1BT �MBT �BMT +MAMT )ei= tr(BA�1BT ) + nXi=1(�2mTi bi +mTi Ami) : (3.7)The minimum of the funtional (3.6) is obtained if in (3.7) we minimize the funtionalsmi ! �2mTi bi +mTi Ami ; mi 2 R(P Ti ) (3.8)for all i with ni > 0. If we writemi = P Ti m̂i ; m̂i 2 Rni , then for ni > 0 the funtional(3.8) an be rewritten asm̂i ! �2m̂Ti Pibi + m̂Ti PiAP Ti m̂i ; m̂i 2 Rni :The unique minimum of this funtional is obtained for m̂i = (PiAP Ti )�1Pibi, i.e.mi = P Ti (PiAP Ti )�1Pibi for all i with ni > 0. Using Lemma 3.1 it follows that MEis the unique minimizer of the funtional (3.6).



6 A. REUSKEN3.2. Sparse approximate inverse for approximating d(A). We now intro-due the sparse approximate inverse that will be used as an approximation for L�1.For this we hose a lower triangular pattern El � f(i; j) j 1 � j � i � ng and weassume that (i; i) 2 El for all i. The sparse approximate inverse is onstruted in twosteps: 1: ĜEl 2 SEl suh that (ĜElA)ij = Æij for all (i; j) 2 El ; (3.9a)2: GEl := (diag(ĜEl))� 12 ĜEl : (3.9b)The onstrution of GEl in (3.9) was �rst introdued in [10℄. A theoretial bakgroundfor this fatorized sparse inverse is given in [12℄. The approximate inverse ĜEl in (3.9a)is of the form (3.3) with B = I . From Lemma 3.1 it follows that in (3.9a) there is aunique solution ĜEl . Note that beause El is lower triangular and (i; i) 2 El we haveni = #El > 0 for all i and jni = i in (3.1). Hene it follows from Lemma 3.1 that theith row of ĜEl , denoted by gTi , is given bygi = P Ti (PiAP Ti )�1Piei; i = 1; 2; : : : ; n;= P Ti (PiAP Ti )�1êi; with êi = (0; : : : ; 0; 1)T 2 Rni : (3.10)The ith entry of gi, i.e. eTi gi, is given by êTi (PiAP Ti )�1êi, whih is stritly positivebeause PiAP Ti is symmetri positive de�nite. Hene diag(ĜEl) ontains only stritlypositive entries and the seond step (3.9b) is well-de�ned. De�ne ĝi = Pigi. The sparseapproximate inverse ĜEl in (3.9a) an be omputed by solving the low dimensionalsymmetri positive de�nite systemsPiAP Ti ĝi = êi := (0; : : : ; 1)T ; i = 1; 2; : : : ; n: (3.11)For the approximation of d(A) we propose to use d(GEl)�2. Due tod(GEl)�2 = d(ĜEl)�1 = nYi=1(ĜEl)� 1niiwe only need the diagonal entries of ĜEl . In the systems PiAP Ti ĝi = êi we then onlyhave to ompute the last entry of ĝi, i.e. (ĝi)ni . If these systems are solved usingthe Cholesky fatorization PiAP Ti =: LiLTi (Li lower triangular) we only need the(ni; ni) entry of Li, sine (ĝi)ni = (Li)�2nini and thusd(GEl)�2 = nYi=1(Li) 2nnini :This leads to the following algorithm:Algorithm 3.3. Let A 2 Rn�n and a lower triangular pattern El be given.For i = 1; : : : ; n do:1. Construt the matrix Ai := PiAP Ti 2 Rni�ni ,2. Compute the Cholesky fatorization Ai = LiLTi and set i := (Li)nini .End. Compute nYi=1  2ni : (3.12)



APPROXIMATION OF DETERMINANTS 73.3. Analysis of the method. We now derive some interesting properties ofthe sparse approximate inverse as in (3.9). We start with a minimization property ofĜEl :Theorem 3.4. Let A = LLT be the Cholesky fatorization of A and D :=diag(L); L̂ := LD. ĜEl as in (3.9a) is the unique minimizer of the funtionalG! k(I �GL̂)D�1k2F = tr((I �GL̂)D�2(I �GL̂)T ); G 2 SEl : (3.13)Proof. The onstrution of ĜEl in (3.9a) is as in (3.3) with E = El, B = I . HeneLemma 3.2 is appliable with B = I . It follows that ĜEl is the unique minimizer ofG! k(I �GA)L�T k2F ; G 2 SEl : (3.14)Deompose L�T as L�T = D�1+R with R stritly upper triangular. We then obtain:k(I �GA)L�T k2F = k(I �GLLT )L�T k2F = kD�1 +R �GLk2F= kD�1 �GLk2F + kRk2F = k(I �GL̂)D�1k2F + kRk2F :Hene the minimizers in (3.14) and (3.13) are the same.Remark 3.5. From the result in Theorem 3.4 we see that in a saled Frobeniusnorm (saling with D�1) ĜEl is the optimal approximation of L̂�1 in the set SEl , inthe sense that ĜElL̂ is losest to the identity. A seemingly more natural minimizationproblem is minG2SEl kI �GLkF ; (3.15)i.e. we diretly approximate L�1 (instead of L̂�1) and do not use the saling withD�1. The minimization problem (3.15) is of the form as in Lemma 3.2 with B = LT ,E = El. Hene the unique minimizer in (3.15), denoted by ~GEl , must satisfy (3.3)with B = LT : ( ~GElA)ij = Lji for all (i; j) 2 El : (3.16)Beause El ontains only indies (i; j) with i � j and Lji = 0 for i > j it follows that~GEl 2 SEl must satisfy( ~GElA)ij = � 0 if i 6= jLii if i = j for all (i; j) 2 El : (3.17)This is similar to the system of equations in (3.9a), whih haraterizes ĜEl . However,in (3.17) one needs the values Lii, whih in general are not available. Hene oppositeto the minimization problem related to the funtional (3.13) the minimization problem(3.15) is in general not solvable with aeptable omputational osts. 2The following lemma will be used in the proof of Theorem 3.8.Lemma 3.6. Let ĜEl be as in (3.9a). Deompose ĜEl as ĜEl = D̂(I � L̂), withD̂ diagonal and L̂ stritly lower triangular. De�ne El� := El n f(i; i) j 1 � i � ng.Then L̂ is the unique minimizer of the funtionalL! tr((I � L)A(I � LT )) ; L 2 SEl� ; (3.18)



8 A. REUSKENand also of the funtionalL! det[diag((I � L)A(I � LT ))℄ ; L 2 SEl� : (3.19)Furthermore, for D̂ we haveD̂ = [diag((I � L̂)A(I � L̂T ))℄�1 : (3.20)Proof. From the onstrution in (3.9a) it follows that((I � L̂)A)ij = 0 for all (i; j) 2 El� ;i.e., L̂ 2 SEl� is suh that (L̂A)ij = Aij for all (i; j) 2 SEl� . This is of the form (3.3)with B = A, E = El�. From Lemma 3.2 we obtain that L̂ is the unique minimizer ofthe funtionalL! tr((A� LA)A�1(A� LA)T ) = tr((I � L)A(I � LT )) ; L 2 SEl� ;i.e., of the funtional (3.18). From the proof of Lemma 3.2, with B = A, it followsthat the minimization problemminL2SEl� tr((I � L)A(I � LT ))deouples into seperate minimization problems (f. (3.8)) for the rows of L:minli2R(PTi )f�2lTi ai + lTi Alig (3.21)for all i with ni > 0. Here lTi and aTi are the ith rows of L and A, respetively. Theminimization problem orresponding to (3.19) isminL2SEl� nYi=1((I � L)A(I � LT ))ii = minL2SEl� nYi=1(Aii � 2lTi ai + lTi Ali) :This deouples into the same minimization problems as in (3.21). Hene the fun-tionals in (3.18) and (3.19) have the same minimizer.Let J = diag((I � L̂)A(I � L̂T )). Using the onstrution of ĜEl in (3.9a) weobtain D̂2iiJii = (D̂(I � L̂)A(I � L̂T )D̂)ii = (ĜElAĜTEl)ii= nXk=1(ĜElA)ik(ĜEl)ik = nXk=1;(i;k)2El Æik(ĜEl)ik= (ĜEl)ii = D̂ii :Hene D̂ii = J�1ii holds for all i, i.e., (3.20) holds.Corollary 3.7. From (3.20) it follows that diag(ĜElAĜEl) = diag(ĜEl) andthus, using (3.9b) we obtain diag(GElAGEl) = I (3.22)



APPROXIMATION OF DETERMINANTS 9for the approximate inverse GEl .The following theorem gives a main result in the theory of approximate inverses.It was �rst derived in [12℄. A proof an be found in [1℄, too.Theorem 3.8. Let GEl be the approximate inverse in (3.9). Then GEl is theunique minimizer of the funtionalG! 1n tr(GAGT )det(GAGT ) 1n ; G 2 SEl : (3.23)Proof. For G 2 SEl we use the deomposition G = D(I � L), with D diagonaland L 2 SEl� . Furthermore, for L 2 SEl� , JL := diag((I � L)A(I � LT )). Now note1n tr(GAGT )det(GAGT ) 1n = det(A)� 1n 1n tr((D(I � L)A(I � LT )D)det(G2) 1n = det(A)� 1n 1n tr(D2JL)det(D2) 1n= det(A)� 1n 1n tr(D2JL)det(D2JL) 1n det(JL) 1n � det(A)� 1n det(JL) 1n : (3.24)The inequality in (3.24) follows from the inequality between the arithmeti and geo-metri mean: 1nPni=1 �i � (Qni=1 �i)1=n for �i � 0.For ĜEl in (3.9a) we use the deomposition ĜEl = D̂(I�L̂). For the approximateinverse GEl we then have GEl = (diag(ĜEl))� 12 ĜEl = D̂ 12 (I � L̂). From Lemma 3.6(3.19) it follows that det(JL) � det(JL̂) for all L 2 SEl� . Furthermore from Lemma 3.6(3.20) we obtain that for GEl = D̂ 12 (I� L̂) we have (D̂ 12 )2JL̂ = I and thus equality in(3.24) for G = GEl . We onlude that GEl is the unique minimizer of the funtionalin (3.23).Remark 3.9. The quantity K(A) = 1n tr(A)det(A) 1nan be seen as a nonstandard ondition number (f. [1, 10℄). Properties of thisquantity are given in [1℄ (Theorem 13.5). One elementary property is1 � K(A) � �n�1 = �(A) : 2Corollary 3.10. For the approximate inverseGEl as in (3.9) we have (f.(3.22))1 � K(GElAGTEl) = 1det(GElAGTEl) 1n ;i.e., d(A) � det(G2El)� 1n = nYi=1(GEl)� 2nii = nYi=1(ĜEl)� 1nii = nYi=1  2ni ; (3.25)



10 A. REUSKENwhere i is as in (3.12). Let ~El be a lower triangular sparsity pattern that is largerthan El, i.e., El � ~El � f(i; j) j 1 � j � i � ng. From the optimality result inTheorem 3.8 it follows that1 � K(G ~ElAGT~El) � K(GElAGTEl) : 2 (3.26)In the following remark we summarize the main properties of the new method forapproximating d(A) that is formulated in Algorithm 3.3.Remark 3.11. The method of approximating d(A) by d(GEl)�2 = d(ĜEl)�1boils down to hosing a sparsity pattern El and omputing the Cholesky deomposi-tion of the low dimensional matries Ai in step 2 of Algorithm 3.3. Related to thisalgorithm we note the following:1. The sparse approximate inverse exists for every symmetri positive de�niteA. Note that suh an existene result does not hold for the inomplete Choleskyfatorization.2. The onstrution of the matries Ai = PiAP Ti and the omputation of theCholesky fatorization Ai = LiLTi an be realized for all i in parallel . Hene themethod has a very high potential for parallelism.3. If for a given i the number i = (Li)nini in (3.12) has been omputed thematries Ai and Li are not needed anymore. Hene the storage requirements for themethod are very low.4. The sparse approximate inverse has an optimality property related to thedeterminant: The funtional G ! K(GAGT ) ; G 2 SEl , is minimal for GEl . Fromthis the inequality (3.25) and the monotoniity result (3.26) follow.5. From(3.25) it follows that Qni=1  2ni is an upper bound for d(A). 24. Monte Carlo methods for approximating d(A). In this setion we de-sribe two methods for aproximating d(A) that are known from the literature. Bothmethods are based on the following proposition [9, 3℄.Proposition 4.1. Let H be a symmetri matrix of order n with tr(H) 6= 0.Let V be the disrete random variable whih takes the values 1 and �1 eah withprobability 0:5 and let z be a vetor of n independent samples from V . Then zTHz isan unbiased estimator of tr(H): E(zTHz) = tr(H) ;and var(zTHz) = 2Xi 6=j h2ij :Using the identity d(A) = det(A) 1n = exp( 1n tr ln(A))this leads to the following Monte Carlo algorithmAlgorithm 4.2.For j = 1; 2; : : : ;M1. Generate zj 2 Rn with entries whih are uniformly distributed in (0; 1).2. If (zj)i < 0:5 then (zj)i := �1, otherwise, (zj)i := 1.3. Compute an approximationdj � zTj ln(A)zj : (4.1)



APPROXIMATION OF DETERMINANTS 11End. Compute d̂M (A) = exp( 1n 1M MXj=1 dj) :In the following two subsetions we desribe methods for omputing the approxima-tion dj � zTj ln(A)zj in (4.1).4.1. Approximation of zT ln(A)z using Chebyshev polynomials. We de-sribe a method that is presented in [16℄. We assume that A is saled by a fator0 < 1b � 1�n . Then �( 1bA) � ["; 1℄ holds with 0 < " � �1b . For ease of notation thissaled matrix is denoted by A, too.Let Tk, k � 0 be the Chebyshev polynomials on [0; 1℄:T�1(x) = 2x� 1; T0(x) = 1; Tk+1(x) = (4x� 2)Tk(x)� Tk�1(x) for k � 1 :The method is based on the following expansion for lnx :lnx = m+1Xk=1 bkTk(1� x1� " ) + Æ lnx for x 2 ["; 1℄; (4.2)jÆj � 2e�2(m+1)p" : (4.3)We show that this result holds and derive a simple and heap algorithm for theomputation of the oeÆients bk. Starting point is the identity1y�1 + �Tm+1�1� y1� " �� = mXk=0 kTk�1� y1� " � ; y 2 ["; 1℄ ; (4.4)with parameters � and k, 0 � k � m. With z := 1�y1�" 2 [0; 1℄ this is equivalent to1 + �Tm+1(z) = (1� (1� ")z) mXk=0 kTk(z) : (4.5)Substitution of zTk(z) = 14Tk+1(z) + 12Tk(z) + 14Tk�1(z) in (4.5) and omparing theoeÆients of Tk on both sides of the equality results in a linear system of m + 2equations for the unknowns  := (0; : : : ; m)T and �. A simple alulation showsthat the solution of this system is given by = 41� "B�1e1 ; (4.6)� = �eTm+1B�1e1 ; (4.7)with e1 and em+1 the �rst and (m+ 1)-th basis vetor in Rm+1 , respetively, andB = 0BBBBBBBB�2 �1�2 2 �1 ;�1 2 �1. . . . . . . . .; . . . . . . �1�1 2
1CCCCCCCCA 2 R(m+1)�(m+1) ;  := 1 + "1� " :



12 A. REUSKENHene, the LU -deomposition of B results in an eÆient algorithm for omputing theoeÆients  and � in (4.6), (4.7). Elementary manipulations with di�erene equationsyield expliit formulas for B�1e1. For example, for the last omponent of this vetorone an derive the expression�� = eTm+1B�1e1 = �2�m+1 + ��(m+1) ; � :=  +p2 � 1 : (4.8)Suh expliit expressions are given in [16℄ and o�er an alternative (but probablysomewhat less eÆient) approah for omputing  and �.From (4.4) and jTm+1(z)j � 1 it follows that�j�j1y � 1y � mXk=0 kTk�1� y1� " � � j�j1y ; y 2 ["; 1℄ :Integrating between y = x 2 ["; 1℄ and y = 1 we obtainj�j lnx � �(1� ") mXk=0 k Z 1�x1�"0 Tk(z) dz � lnx � �j�j lnx ; x 2 ["; 1℄ : (4.9)Using R T0 = 12 (T0 + T1); R T1 = 18 (T2 � T0); R Tk = 14 (Tk+1k+1 � Tk�1k�1 ); k � 2, astraightforward omputation yields� (1� ") mXk=0 k Z 1�x1�"0 Tk(z) dz = m+1Xk=0 bkTk�1� x1� " � ;with bk = �1� "4k k�1 ; k = m;m+ 1 ;bk = �1� "4k (k�1 � k+1) ; 2 � k � m� 1 ;b1 = �1� "4 (20 � 2) ;b0 = �m+1Xk=1 (�1)kbk :
(4.10)

Hene, using the values for the oeÆients  = (0; : : : ; m)T from (4.6) the oeÆientsbk in (4.2) diretly follow from(4.10). The bound on Æ in (4.3) is a onsequene of(4.9) and j�j = 2�m+1 + ��(m+1) � 2��(m+1) � 2e�2(m+1)p" :Now assume that the oeÆients bk have been omputed. For zj 2 Rn it follows thatzTj ln(A)zj � m+1Xk=0 bkzTj Tk�I �A1� " �zj =: dj (4.11)an be used as an approximation in (4.1). The terms zTj Tk� I�A1�" �zj in (4.11) an beomputed using the reursion for Tk. In our appliations we have n = dim(A) � mand the osts for omputing dj in (4.11) are dominated by the osts for the m + 1matrix-vetor multipliations with the matrix A. These matrix-vetor omputationsare easy to parallelize. Note, however, that the Monte Carlo algorithm 4.2 and theomputation of the sum in (4.11) are purely sequential prozesses.



APPROXIMATION OF DETERMINANTS 134.2. Approximation of zT ln(A)z using quadrature. In this subsetion wereall the method from [3℄ for approximating zT ln(A)z, z 2 Rn . Let QT�Q = A bethe eigen-deomposition of A with Q orthogonal, � = diag(�1; : : : ; �n), �1 � : : : � �n.For z 2 Rn let ~z = Qzkzk2 . Then we havezT ln(A)zkzk22 = ~zT ln(�)~z = nXi=1 ln�i ~zi2 = Z �n�1 ln� d�(�) =: J ; (4.12)where the measure �(�) is given by�(�) =8<: 0 if � < �1 ;Pij=1 ~z2j if �i � � < �i+1; 1 � i � n� 1 ;1 if �n � � :For approximating the integral in (4.12) one an use a Gauss-type quadrature rule.Several possibilities are treated in [3℄. Here we use a Gauss-Radau method:QN := NXj=1 !j ln �j + �� ln � ;where the node � is presribed. We will onsider � � �1 and � � �n. The weights!j , �� and the nodes �j are unknown and to be determined. It is well known thatthe nodes and weights in the Gauss quadrature an be omputed using the Lanzosmethod (f. [4℄). The Gauss-Radau quadrature is treated in [5℄. For f(x) = lnx wehave f (2N+1)(x) > 0 for all x > 0 and from [5℄ it then follows that if � � �1 (� � �n)the approximation QN is a lower bound (upper bound) for J . In [3℄ the followingalgorithm for approximating J is proposed. We assume that �1 � �1 and �2 � �n aregiven.Algorithm 4.3.x0 = z=kzk2; x�1 = 0; 0 = 0;For k = 1; 2; : : : do1. �k = xTk�1Axk�1.2. rk = Axk�1 � �kxk�1 � k�1xk�2.3. k = krkk2.4. Let Tk = 0BBBBBB��1 1 ;1 �2 2. . . . . . . . .. . . . . . k�1; k�1 �k
1CCCCCCA ;Æm = 2keTk (Tk � �mI)�1ek; m = 1; 2;T̂ (m)k = � Tk kekkeTk �m � ; �m = �m + Æm ; m = 1; 2 :5. Compute the eigenvalues �(m)` and the �rst elements !(m)` of the normalizedeigenvetors of T̂ (m)k (m = 1; 2; 1 � ` � k + 1).



14 A. REUSKEN6. Q(m)k =Pk+1`=1 (!(m)` )2 ln �(m)` , m = 1; 2.7. If Q(2)k �Q(1)kjQ(1)k j � eps (user spei�ed tolerane) then Stop.8. xk = rk=k.End. Compute dz = 12(Q(1)k +Q(2)k )kzk22 : (4.13)For z = zj as in Algorithm 4.2 the value dj := dzj from (4.13) is taken as theapproximation in (4.1). As for the method in the previous subsetion we have anouter (Monte Carlo) and inner iteration whih are purely sequential operations. Inour appliations the dimensions of the eigenvalue problems that our in Algorithm4.3 are very small ompared to n = dim(A) and the osts for one iteration in thisalgorithm are dominated by the matrix-vetor multipliation with the matrix A.Both in the algorithm in this subsetion and in the algorithm in subsetion 4.1 we needapproximations of �1 and �n. It turns out that the performane of the algorithms isless sensitive to the auray of these approximations. In the numerial experimentswe used a �xed (small) number of Lanzos iterations to ompute these approximations.5. Numerial experiments. In this setion we present some results of numer-ial experiments with the methods introdued in x3 and x4. All experiments are doneusing a MATLAB implementation.Experiment 1 (disrete 2D Laplaian). We onsider the standard 5{point dis-rete Laplaian on a uniform square grid with N mesh points in both diretions,i.e. n = N2. For this symmetri positive de�nite matrix the eigenvalues are known:��� = 4(N + 1)2�sin2( ��2(N + 1)) + sin2( ��2(N + 1))� ; 1 � �; � � N : (5.1)For the hoie of the sparsity pattern El we use a simple approah:El(k) := f(i; j) j i � j and (Ak)ij 6= 0g ; k = 1; 2; : : : : (5.2)We �rst desribe some features of the methods for the ase N = 30, k = 2 and afterthat we will vary N and k. Let A denote the disrete Laplaian for the ase N = 30.For the matries Ai = PiAP Ti 2 Rni�ni (i = 1; : : : ; n) the dimensions ni are between1 and 7; the mean of these dimensions is 6.7. Algorithm 3.3 yields an approximationd(GEl(2))�2 = d(ĜEl(2))�1 = nYi=1  2ni = 3:2526 103 :for d(A) = 3:1379 103. Hene the relative error is 3.5%. For the omputation of theCholesky fatorizations Ai = LiLTi ; i = 1; 2; : : : ; n; approximately 41 103 ops areneeded (in the MATLAB implementation). If we ompare this with the osts of onematrix{vetor multipliation A �x (8760 ops), denoted by MATVEC, it follows thatfor omputing this approximation of d(A), with error 3.5 perent, we need arithmetiwork omparable to only 5 MATVEC. In Table 5.1 we give results for the disrete 2DLaplaian with N = 30 (n = 900), N = 100 (n = 10000) and N = 200 (n = 40000).We use the sparsity patterns El(2) and El(4). In the third olumn of this table wegive the omputed approximation of d(A) and the orresponding relative error. In



APPROXIMATION OF DETERMINANTS 15Table 5.1Results for 2D disrete Laplaian with El = El(2)n d(A) d(GEl(2))�2 osts for d(GEl(4))�2 osts for(error) d(GEl(2))�2 (error) d(GEl(4))�2900 3.138 103 3.253 103 5 MV 3.177 103 41 MV(3.5%) (1.2%)10000 3.292 104 3.434 104 5 MV 3.347 103 45 MV(4.1%) (1.6%)40000 1.300 105 1.359 105 5 MV 1.323 103 46 MV(4.3%) (1.7 %)the fourth olumn we give the total arithmeti osts for the Cholesky fatorization ofthe matries Ai, i = 1; 2; : : : ; n. In the olumns 5 and 6 we give the results and orre-sponding arithmeti osts for ase with the larger sparsity pattern El(4). Related toFig. 5.1. Algorithm 4.2 ombined with the method from x4.1 : n = 10000 (left), n = 40000 (right).
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 x : m=10 these numerial results we note the following. From the third and fourth olumn inTable 5.1 we see that using this method we an obtain an approximation of d(A) withrelative error only a few perent and arithmeti osts only a few MATVEC. More-over, this eÆieny hardly depends on the dimension n. Comparison of the third and�fth olumns in Table 5.1 shows that the approximation signi�antly improves if weenlarge the pattern from El(2) to El(4). The orresponding arithmeti osts inreaseby a fator of about 9. This is aused by the fat that the mean of the dimensions ofthe systems Ai, i = 1; 2; : : : ; n, inreases from approximately 7 (for El(2)) to approx-imately 20 (for El(4)).We also applied the Monte Carlo algorithm 4.2, with M = 50, to this problem. Iffor the approximation of zTj ln(A)zj in (4.1) we use the approah based on Cheby-shev polynomials we obtain the results in Figure 5.1. It turns out that the boundin (4.3) is very pessimisti and should not be used to determine a value for the pa-rameter m. In the experiments we used the values m = 3; 4; 7; 10. Note that thearithmeti osts in the inner Chebyshev iteration (4.11) are omparable to m + 1MATVEC. From Figure 5.1 we see that for a relative error of approximately 1:5% itsuÆes to take 10{15 Monte Carlo iterations with m = 4. The arithmeti osts arethen roughly 50-75 MATVEC. In Figure 5.2 results are shown if zTj ln(A)zj in (4.1)is approximated using Algorithm 4.3. We used di�erent toleranes in step 7 in thisalgorithm: eps = 0:02; 0:01; 0:005; 0:002. The orresponding total number of matrix-vetor multipliations is: 188; 250; 306; 449 (for n = 10000) and 200; 250; 350; 501



16 A. REUSKENTable 5.2Results for MATLAB random sparse matries with El = El(2)n d(A) d(GEl)�2 osts for(error) d(GEl )�2900 0.82453 0.82521 23 MV(8.2 10�4)10000 0.80985 0.81053 18 MV(8.4 10�4)(for n = 40000). We observe that for a relative error of approximately 1:5% about10-15 Monte Carlo iterations with eps = 0:005 are suÆient. The arithmeti osts arethen roughly 60-95 MATVEC.Note that both Monte Carlo methods (in Figure 5.1 and in Figure 5.2) perform sim-Fig. 5.2. Algorithm 4.2 ombined with the method from x4.2 : n = 10000 (left), n = 40000 (right).
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 x : eps=0.002 ilarly. In both methods we need estimates for the extreme eigenvalues of the matrixA. We used the known values of these extreme eigenvalues given in (5.1).Experiment 2 (MATLAB random sparse matrix). The sparsity struture of thematries onsidered in Experiment 1 is very regular. In this experiment we on-sider matries with a pattern of nonzero entries that is very irregular. We used theMATLAB generator (sprand(n; n; 2=n)) to generate a matrix B of order n with ap-proximately 2n nonzero entries. These are uniformly distributed random entries in(0; 1). The matrix BTB is then sparse symmetri positive semide�nite. In the generiase this matrix has many eigenvalues zero. To obtain a positive de�nite matrix wegenerated a random vetor d with all entries hosen from a uniform distribution onthe interval (0; 1) (d :=rand(n; 1)). As a testmatrix we used A := BTB+diag(d). Weperformed numerial experiments similar to those in Experiment 1 above. We onlyonsider the ase with sparsity pattern El = El(2). Results obtained with Algorithm3.3 are shown in Table 5.2. From these results it is lear that for this random matrixA the approximation of d(A) based on the sparse approximate inverse is muh betterthan for the disrete Laplaian in Experiment 1. This is related to the fat that forthe random matries onsidered in this example the preonditioned matrix GElAGElturns out to be very well-onditioned. We also apply the same Monte Carlo methodsas disussed in Experiment 1 to these matries. To allow a fair omparison we �rstresaled the matrix A with a diagonal matrix D, suh that the absolute row sumsof the matrix DAD are all equal to one. Estimates of the extreme eigenvalues that



APPROXIMATION OF DETERMINANTS 17are needed in these algorithms are obtained by applying 20 iterations of the Lanzosmethod (with starting vetor (1; : : : ; 1)T ). The performane of these methods is sim-ilar for the three ases n = 900; 10000; 40000. In Figure 5.3 we show the results forthe ase n = 10000.For the Monte Carlo method using the approah based on Chebyshev polynomialsFig. 5.3. Algorithm 4.2 ombined with the method from x4.1 (left) and from x4.2 (right).
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the result after 20 iterations and m = 7 (f. Figure 5.3, left) has a relative error� 0:001. For omputing this result approximately 180 MATVEC are needed. If weuse the Gauss-Radau quadrature (f. Figure 5.3, right) with eps = 0:02 then after 20Monte Carlo the result also has a relative error � 0:001. The total osts are about100 MATVEC. Hene, in this example the method based on the sparse approximateinverse is more eÆient than the Monte Carlo methods.Experiment 3 (QCD type matrix). In this experiment we onsider a omplex Her-mitean positive de�nite matrix with a regular sparsity struture. This matrix ismotivated by appliations from the QCD �eld. In QCD simulations the determinantof the so-alled Wilson fermion matrix is of interest. These matries and some of theirproperties are disussed in [14, 13℄. The Wilson fermion matrix A = I��D desribesa nearest neighbour oupling with periodi boundary onditions on a four-dimensionalregular spae-time lattie with lattie sites
N = f (x1; x2; x3; x4) j xi = 1; : : : ; ni; ni = 2Ni g :The so-alled hopping matrix D has the formDx;y = 4X�=1 �(I � �)
 U�(x)�Æx;y�e� + �(I + �)
 UH� (x� e�)�Æx;y+e� ; (5.3)where x; y are lattie sites from 
N , e� is the �-th basisvetor in R4 and Æx;y = 1 (0)if x = y (x 6= y). The matries I � � 2 C 4�4 are projetors onto two-dimensionalsubspaes and the matries U�(x) 2 C 3�3 are from SU(3) (f. [13℄ for details). Usu-ally, these matries U�(x) are generated randomly. In this model the matrix D has ablok struture with bloks Dx;y 2 C 12�12 , x; y 2 
N . Here we onsider a very simplevariant of this model. We take � = 0, I = 1, U�(x) = exp(2i���(x)), where ��(x) ishosen from a uniform distribution on the interval (0; 1). Hene the ouplings Dx;y in



18 A. REUSKEN(5.3) are omplex salars. Note that the matrix D is hermitean. Due to the randomlygenerated funtions ��(x) the ouplings Dx;y show a strong utuation as a fun-tion of x and y. In QCD simulations the parameter � is taken suh that the Wilsonfermion matrix A is positive de�nite and lose to singular. In the experiment herewe omputed the largest eigenvalue �D of D (using the MATLAB funtion eigs) andset � := (1:01 �D)�1 We performed numerial experiments as in Experiment 1 withEl = El(2) for two ases: (n1; n2; n3; n4) = (4; 4; 8; 8) and (n1; n2; n3; n4) = (8; 8; 8; 8).The results are presented in Table 5.3. We also used the Monte Carlo methods. AsTable 5.3Results for QCD type matrix with El = El(2)n d(A) d(GEl )�2 osts for(error) d(GEl)�21024 0.8032 0.8248 22 MV(2.7%)4096 0.8037 0.8254 21 MV(2.7%)in Experiment 2 we applied 20 Lanzos iterations to obtain estimates for the extremeeigenvalues. The results are shown in Figure 5.4. From this �gure we see that after 20Fig. 5.4. Algorithm 4.2 ombined with the method from x4.1 (left) from x4.2 (right).
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Monte Carlo iterations using the method from subsetion x4.1 with m = 2 the resulthas a relative error of about 2 perent. For omputing this result approximately 80MATVEC are needed. Using the method from subsetion x4.2 with eps = 0:4 theresult after 20 Monte Carlo iterations has a relative error of about 1 perent. Thetotal osts for omputing this result are about 80 MATVEC.Note that in all three experiments the performane of the methods hardly dependson the dimension n. In all measurements for the arithmeti osts we did not takeinto aount the osts of determining the sparsity pattern El(k) and of building thematries PiAP Ti .We onlude that at least for these few model problems the new method an om-pete, even on a sequential mahine, with the two Monte Carlo methods proposedin the literature. We believe that in a (massively) parallel environment the methodbased on the sparse approximate inverse an be expeted to be muh more eÆientthan the Monte Carlo tehniques beause the former is ideally suited for a parallelimplementation.



APPROXIMATION OF DETERMINANTS 19Remark 5.1. In this paper we do not disuss the topi of error estimation. Forthe Monte Carlo method error estimation tehniques are treated in [3℄. Related to themethod based on the sparse approximate inverse (Algorithm 3.3) we briey disussone possible tehnique for a posteriori error estimation. From (3.25) we have the apriori error bound d(A)d(GEl)�2 � 1 :The exat error is given byd(A)d(GEl)�2 = d(GElAGTEl) = d(EEl) ;where EEl := GElAGTEl is a sparse symmetri positive de�nite matrix. Fore ease ofpresentation we assume that the patternEl is suÆiently large suh that �(I�EEl) < 1holds. In [12℄ it is proved that if A is an M -matrix or a (blok) H-matrix then thisondition is satis�ed for every lower triangular pattern El. For the exat error weobtain, using a Taylor expansion of ln(I �B) for B 2 Rn�n with �(B) < 1 (f. [6℄):d(EEl) = exp� 1n ln(det(EEl))� = exp� 1ntr(ln(EEl))�= exp� 1ntr(ln(I � (I � EEl)))� = exp�� 1ntr( 1Xk=1 (I � EEl)kk )� : (5.4)Hene, an error estimation an be based on estimates for the partial sums Sm :=Pmk=1 1k tr((I�EEl)k). The onstrution of GEl is suh that diag(EEl) = I (f. (3.22))and thus tr(EEl) = n and S1 = 0. For S2 we haveS2 = 12tr((I � EEl)2) = 12tr(I � 2EEl + E2El) = �12n+ 12tr(E2El) : (5.5)For approximating the trae quantity tr(E2El) in S2 we an use the following MonteCarlo algorithm, based on Proposition 4.1:Algorithm 5.2.For j = 1; 2; : : : ;M1. Generate zj 2 Rn with entries whih are uniformly distributed in (0; 1).2. If (zj)i < 0:5 then (zj)i := �1, otherwise, (zj)i := 1.3. yj := EElzj , �j := yTj yj.End.This then yields Ŝ2 := �12n+ 12M MXj=1 �j (5.6)as an approximation for S2. The orresponding error estimate is given byE2 = exp(� 1nŜ2): (5.7)It turns out that, at least in our experiments, this tehnique yields satisfatory results.One lear disadvantage of this approah is that the matrix GEl must be available (and
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