
APPROXIMATION OF THE DETERMINANT OF LARGE SPARSESYMMETRIC POSITIVE DEFINITE MATRICESARNOLD REUSKEN�Abstra
t. This paper is 
on
erned with the problem of approximating det(A)1=n for a largesparse symmetri
 positive de�nite matrix A of order n. It is shown that an eÆ
ient solution ofthis problem is obtained by using a sparse approximate inverse of A. The method is explained andtheoreti
al properties are dis
ussed. The method is ideal for implementation on a parallel 
omputer.Numeri
al experiments are des
ribed that illustrate the performan
e of this new method and providea 
omparison with Monte Carlo-type methods from the literature.Key words. determinant, sparse approximate inverse, pre
onditioningAMS subje
t 
lassi�
ations. 6F10, 65F10, 65F501. Introdu
tion. Throughout this paper, A denotes a real symmetri
 positivede�nite matrix of order n with eigenvalues0 < �1 � �2 � : : : � �n:In a number of appli
ations, for example in latti
e Quantum Chromodynami
s ([14,8, 16, 17℄) 
ertain fun
tions of the determinant of A, su
h as det(A) 12 or ln(det(A))are of interest. It is well-known (
f. also x2) that for large n the fun
tion A! det(A)has poor s
aling properties and 
an be very ill-
onditioned for 
ertain matri
es A. Inthis paper we 
onsider the fun
tiond : A! det(A) 1n : (1.1)A few basi
 properties of this fun
tion are dis
ussed in x2. In this paper we present anew method for approximating d(A) for large sparse matri
es A. The method is basedon repla
ing A by a matrix whi
h is in a 
ertain sense 
lose to A�1 and for whi
h thedeterminant 
an be 
omputed with low 
omputational 
osts. One popular method forapproximatingA is based on the 
onstru
tion of an in
omplete Cholesky fa
torization.This in
omplete fa
torization is often used as a pre
onditioner when solving linearsystems with matrix A. In this paper we use another pre
onditioning te
hnique,namely that of fa
torized sparse approximate inverses (
f. [1, 7, 10, 12℄). With su
ha method a lower triangular matrix GE with a pres
ribed sparsity stru
ture E 
anbe 
onstru
ted su
h that GEAGTE is in 
ertain sense 
lose to the identity. We thenuse det(GE)�2=n = Qni=1(GE)�2=nii as an approximation for d(A). In x3 we explainthe 
onstru
tion of GE and dis
uss theoreti
al properties of this sparse approximateinverse. For example, su
h a sparse approximate inverse 
an be shown to exist for anysymmetri
 positive de�nite A and has an interesting optimality property related tod(A). From this optimality property it immediately follows that d(A) � det(GE)�2=nholds and that the approximation of d(A) by det(GE)�2=n be
omes better if we take alarger sparsity pattern E. Besides this optimality property the method we present hastwo other interesting properties. The method is ideal for a parallel implementationand has very low storage requirements .To make a 
omparison with other methods for approximating d(A) we des
ribe two�Institut f�ur Geometrie und Praktis
he Mathematik, RWTH Aa
hen, Templergraben 55, D-52056Aa
hen, Germany. 1



2 A. REUSKENknown Monte Carlo-type methods (from [3℄ and [16℄). We present results of a fewnumeri
al experiments. In these experiments the new method and the Monte Carlomethods are applied to a few model examples of large sparse symmetri
 positivede�nite matri
es.2. Preliminaries. In this se
tion we dis
uss a few elementary properties of thefun
tion d. We give a 
omparision between the 
onditioning of the fun
tion d andof the fu
tion A ! d(A)n = det(A). We use the notation k � k2 for the Eu
lideannorm and �(A) = �n=�1 denotes the spe
tral 
ondition number of A. The tra
e ofthe matrix A is denoted by tr(A).Lemma 2.1. Let A and A+ ÆA be symmetri
 positive de�nite matri
es of ordern. The following inequalities hold:�1 � d(A) � �n ; (2.1a)d(A) � 1n tr(A) ; (2.1b)���d(A+ ÆA)� d(A)d(A) ��� � �(A)kÆAk2kAk2 : (2.1
)Proof. The result in (2.1a) follows from�1 � ( nYi=1�i) 1n � �n :The result in (2.1b) follows from the inequality between the geometri
 and arithmeti
mean: d(A) = ( nYi=1 �i) 1n � 1n nXi=1 �i = 1ntr(A) :Now note thatd(A+ ÆA)� d(A)d(A) = �det(I +A�1ÆA)� 1n � 1 = � nYi=1(1 + �i(A�1ÆA))� 1n � 1 :From �i(A�1ÆA) � kA�1k2kÆAk2 it follows that� nYi=1(1 + �i(A�1ÆA))� 1n � 1 � � nYi=1(1 + kA�1k2kÆAk2)� 1n � 1 = kA�1k2kÆAk2 :Using 1 + �i(A�1ÆA) > 0 and �i(A�1ÆA) � �kA�1k2kÆAk2 we obtain� nYi=1(1+�i(A�1ÆA))� 1n�1 � � nYi=1maxf 0; 1�kA�1k2kÆAk2 g� 1n�1 � �kA�1k2kÆAk2 :Thus we have ���d(A+ ÆA)� d(A)d(A) ��� � kA�1k2kÆAk2 = �(A)kÆAk2kAk2 ;



APPROXIMATION OF DETERMINANTS 3and the result in (2.1
) is proved.The result in (2.1
) shows that the fun
tion d(A) is well-
onditioned for matri
esA whi
h have a not too large 
ondition number �(A).We now brie
y dis
uss the di�eren
e in 
onditioning between the fun
tions A!d(A) and A ! det(A). For any symmetri
 positive de�nite matrix B of order n wehave d0(A)B := limt!0 d(A+ tB)� d(A)t = d(A)n tr(A�1B) :From the Courant-Fis
her eigenvalue 
hara
terization we obtain �i(A�1B) � �i(A�1)kBk2for all i. Hen
ekd0(A)k2 := maxB is SPD jd0(A)BjkBk2 = d(A)n maxB is SPD tr(A�1B)kBk2 � d(A)n tr(A�1) ;with equality for B = I . Thus for the 
ondition number of the fun
tion d we havekAk2kd0(A)k2d(A) = 1nkAk2tr(A�1) � �(A) : (2.2)Note that for the diagonal matrix A = diag(Aii) with A11 = 1; Aii = � for i > 1 theinequality in (2.2) is sharp if 0 < �� 1 and n is large. For this A and with ÆA = "I ,0 < "� �, the bound in (2.1
) is sharp, too.For ~d(A) = det(A) = d(A)n the 
ondition number is given bykAk2k ~d0(A)k2~d(A) = kAk2nd(A)n�1kd0(A)k2d(A)n = kAk2tr(A�1) ; (2.3)i.e., n times larger than the 
ondition number in (2.2). The 
ondition numbers ford and ~d give an indi
ation of the sensitivity if the perturbation kÆAk2 is suÆ
ientlysmall. Note that the bound in (2.1
) is valid for arbitrary symmetri
 positive de�niteperturbations ÆA. The bound shows that even for larger perturbations the fun
tiond(A) is well-
onditioned at A if �(A) is not too large. For the fun
tion ~d(A) thee�e
t of relatively large perturbations 
an be mu
h worse than for the asymptoti

ase (ÆA! 0), whi
h is 
hara
terized by the 
ondition number in (2.3). Consider, forexample, for 0 < " < 12 a perturbation ÆA = "A, i.e. kÆAk2=kAk2 = ". Then~d(A+ ÆA)� ~d(A)~d(A) = (1 + ")n � 1 � e 12n" � 1 ;whi
h is very large if, for example, " = 10�3; n = 105.The results in this se
tion show that the numeri
al approximation of the fun
tiond(A) 
an be 
onsidered to be an easier task than the numeri
al approximation ofA! det(A).Remark 2.2. The results on 
onditioning derived above and the fa
t that inthe analysis of the sparse approximate inverse the fun
tion d(A) plays a natural role(
f. Se
tion 3) are the main motivation for 
onsidering d(A) instead of A ! det(A).Of 
ourse, an algorithm for approximating d(A) yields an approximation for det(A)or ln(det(A)), too. Note that the fun
tions x ! xn and x ! ln(xn) have 
onditionnumbers n and 1= ln(x), respe
tively. Hen
e, if d̂ is an approximation of d(A) withrelative error jd̂�d(A)j=d(A) � eps then it follows that jd̂n�det(A)j= det(A) . n epsand j ln(d̂n)� ln(det(A))j=j ln(det(A))j . eps=j ln(d(A))j.



4 A. REUSKEN3. Sparse approximate inverse. In this se
tion we explain and analyze the
onstru
tion of a sparse approximate inverse of the matrix A. Let A = LLT be theCholesky fa
torization of A, i.e. L is lower triangular and L�1AL�T = I . Note thatd(A) = d(L)2 =Qni=1 L2=nii . We will 
onstru
t a sparse lower triangular approximationG of L�1 and approximate d(A) by d(G)�2 = Qni=1G�2=nii . The 
onstru
tion of asparse approximate inverse that we use in this paper was introdu
ed in [10, 11, 12℄and 
an also be found in [1℄. Some of the results derived in this se
tion are presentedin [1℄, too.3.1. Introdu
tion. We �rst introdu
e some notation. Let E � f(i; j) j 1 �i; j � ng be a given sparsity pattern. By #E we denote the number of elements inE. Let SE be the set of n � n matri
es for whi
h all entries are set to zero if the
orresponding index is not in E:SE = fM 2 Rn�n j Mij = 0 if (i; j) =2 Eg :For 1 � i � n let Ei = E \ f(i; j) j 1 � j � ng. If ni := #Ei > 0 we use therepresentationEi = f(i; j1); (i; j2); : : : ; (i; jni)g; 1 � j1 < j2 < : : : < jni � n : (3.1)For ni > 0 we de�ne the proje
tionPi : Rn ! Rni ; Pi(x1; x2; : : : ; xn)T = (xj1 ; xj2 ; : : : ; xjni )T : (3.2)Note that the matrix PiAP Ti : Rni ! Rniis symmetri
 positive de�nite. To fa
ilitate the analysis below, we �rst dis
uss the
onstru
tion of a approximate sparse inverse ME 2 SE in a general framework. ForME 2 SE we use the representationME = 26664 mT1mT2...mTn 37775 ; mi 2 Rn :Note that if ni = 0 then mTi = (0; 0; : : : ; 0).For given A;B 2 Rn�n with A symmetri
 positive de�nite we 
onsider the fol-lowing problem:determine ME 2 SE su
h that (MEA)ij = Bij for all (i; j) 2 E : (3.3)In (3.3) we have #E equations to determine #E entries inME . We �rst give two basi
lemmas whi
h will play an important role in the analysis of the sparse approximateinverse de�ned in (3.9).Lemma 3.1. The problem (3.3) has a unique solution ME 2 SE. If ni > 0 thenthe ith row of ME is given by mTi withmi = P Ti (PiAP Ti )�1Pibi ; (3.4)where bTi is the ith row of B.



APPROXIMATION OF DETERMINANTS 5Proof. The equations in (3.3) 
an be represented as(mTi A)jk = (bTi )jk for all i with ni > 0 and all k = 1; 2; : : : ; ni ;wheremTi is the ith row ofME. Consider an i with ni > 0. Note thatME 2 SE , hen
eP Ti Pimi = mi. For the unknown entries in mi we obtain the system of equations(AP Ti Pimi)jk = (bi)jk ; k = 1; 2; : : : ; ni ;whi
h is equivalent to PiAP Ti Pimi = Pibi :The matrix PiAP Ti is symmetri
 positive de�nite and thus mi must satisfyPimi = (PiAP Ti )�1Pibi :Using P Ti Pimi = mi we obtain the result in (3.4). The 
onstru
tion in this proofshows that the solution is unique.Below we use the Frobenius norm, denoted by k � kF :kBk2F = nXi;j=1B2ij = tr(BBT ) ; B 2 Rn�n : (3.5)Lemma 3.2. Let A = LLT be the Cholesky fa
torization of A and let ME 2 SEbe the unique solution of (3.3). Then ME is the unique minimizer of the fun
tionalM ! k(B �MA)L�T k2F = tr((B �MA)A�1(B �MA)T ); M 2 SE : (3.6)Proof. Let ei be the ith basis ve
tor in Rn . Take M 2 SE . The ith rows of Mand B are denoted by mTi and bTi , respe
tively. Now notetr((B �MA)A�1(B �MA)T ) = nXi=1 eTi (BA�1BT �MBT �BMT +MAMT )ei= tr(BA�1BT ) + nXi=1(�2mTi bi +mTi Ami) : (3.7)The minimum of the fun
tional (3.6) is obtained if in (3.7) we minimize the fun
tionalsmi ! �2mTi bi +mTi Ami ; mi 2 R(P Ti ) (3.8)for all i with ni > 0. If we writemi = P Ti m̂i ; m̂i 2 Rni , then for ni > 0 the fun
tional(3.8) 
an be rewritten asm̂i ! �2m̂Ti Pibi + m̂Ti PiAP Ti m̂i ; m̂i 2 Rni :The unique minimum of this fun
tional is obtained for m̂i = (PiAP Ti )�1Pibi, i.e.mi = P Ti (PiAP Ti )�1Pibi for all i with ni > 0. Using Lemma 3.1 it follows that MEis the unique minimizer of the fun
tional (3.6).



6 A. REUSKEN3.2. Sparse approximate inverse for approximating d(A). We now intro-du
e the sparse approximate inverse that will be used as an approximation for L�1.For this we 
hose a lower triangular pattern El � f(i; j) j 1 � j � i � ng and weassume that (i; i) 2 El for all i. The sparse approximate inverse is 
onstru
ted in twosteps: 1: ĜEl 2 SEl su
h that (ĜElA)ij = Æij for all (i; j) 2 El ; (3.9a)2: GEl := (diag(ĜEl))� 12 ĜEl : (3.9b)The 
onstru
tion of GEl in (3.9) was �rst introdu
ed in [10℄. A theoreti
al ba
kgroundfor this fa
torized sparse inverse is given in [12℄. The approximate inverse ĜEl in (3.9a)is of the form (3.3) with B = I . From Lemma 3.1 it follows that in (3.9a) there is aunique solution ĜEl . Note that be
ause El is lower triangular and (i; i) 2 El we haveni = #El > 0 for all i and jni = i in (3.1). Hen
e it follows from Lemma 3.1 that theith row of ĜEl , denoted by gTi , is given bygi = P Ti (PiAP Ti )�1Piei; i = 1; 2; : : : ; n;= P Ti (PiAP Ti )�1êi; with êi = (0; : : : ; 0; 1)T 2 Rni : (3.10)The ith entry of gi, i.e. eTi gi, is given by êTi (PiAP Ti )�1êi, whi
h is stri
tly positivebe
ause PiAP Ti is symmetri
 positive de�nite. Hen
e diag(ĜEl) 
ontains only stri
tlypositive entries and the se
ond step (3.9b) is well-de�ned. De�ne ĝi = Pigi. The sparseapproximate inverse ĜEl in (3.9a) 
an be 
omputed by solving the low dimensionalsymmetri
 positive de�nite systemsPiAP Ti ĝi = êi := (0; : : : ; 1)T ; i = 1; 2; : : : ; n: (3.11)For the approximation of d(A) we propose to use d(GEl)�2. Due tod(GEl)�2 = d(ĜEl)�1 = nYi=1(ĜEl)� 1niiwe only need the diagonal entries of ĜEl . In the systems PiAP Ti ĝi = êi we then onlyhave to 
ompute the last entry of ĝi, i.e. (ĝi)ni . If these systems are solved usingthe Cholesky fa
torization PiAP Ti =: LiLTi (Li lower triangular) we only need the(ni; ni) entry of Li, sin
e (ĝi)ni = (Li)�2nini and thusd(GEl)�2 = nYi=1(Li) 2nnini :This leads to the following algorithm:Algorithm 3.3. Let A 2 Rn�n and a lower triangular pattern El be given.For i = 1; : : : ; n do:1. Constru
t the matrix Ai := PiAP Ti 2 Rni�ni ,2. Compute the Cholesky fa
torization Ai = LiLTi and set 
i := (Li)nini .End. Compute nYi=1 
 2ni : (3.12)



APPROXIMATION OF DETERMINANTS 73.3. Analysis of the method. We now derive some interesting properties ofthe sparse approximate inverse as in (3.9). We start with a minimization property ofĜEl :Theorem 3.4. Let A = LLT be the Cholesky fa
torization of A and D :=diag(L); L̂ := LD. ĜEl as in (3.9a) is the unique minimizer of the fun
tionalG! k(I �GL̂)D�1k2F = tr((I �GL̂)D�2(I �GL̂)T ); G 2 SEl : (3.13)Proof. The 
onstru
tion of ĜEl in (3.9a) is as in (3.3) with E = El, B = I . Hen
eLemma 3.2 is appli
able with B = I . It follows that ĜEl is the unique minimizer ofG! k(I �GA)L�T k2F ; G 2 SEl : (3.14)De
ompose L�T as L�T = D�1+R with R stri
tly upper triangular. We then obtain:k(I �GA)L�T k2F = k(I �GLLT )L�T k2F = kD�1 +R �GLk2F= kD�1 �GLk2F + kRk2F = k(I �GL̂)D�1k2F + kRk2F :Hen
e the minimizers in (3.14) and (3.13) are the same.Remark 3.5. From the result in Theorem 3.4 we see that in a s
aled Frobeniusnorm (s
aling with D�1) ĜEl is the optimal approximation of L̂�1 in the set SEl , inthe sense that ĜElL̂ is 
losest to the identity. A seemingly more natural minimizationproblem is minG2SEl kI �GLkF ; (3.15)i.e. we dire
tly approximate L�1 (instead of L̂�1) and do not use the s
aling withD�1. The minimization problem (3.15) is of the form as in Lemma 3.2 with B = LT ,E = El. Hen
e the unique minimizer in (3.15), denoted by ~GEl , must satisfy (3.3)with B = LT : ( ~GElA)ij = Lji for all (i; j) 2 El : (3.16)Be
ause El 
ontains only indi
es (i; j) with i � j and Lji = 0 for i > j it follows that~GEl 2 SEl must satisfy( ~GElA)ij = � 0 if i 6= jLii if i = j for all (i; j) 2 El : (3.17)This is similar to the system of equations in (3.9a), whi
h 
hara
terizes ĜEl . However,in (3.17) one needs the values Lii, whi
h in general are not available. Hen
e oppositeto the minimization problem related to the fun
tional (3.13) the minimization problem(3.15) is in general not solvable with a

eptable 
omputational 
osts. 2The following lemma will be used in the proof of Theorem 3.8.Lemma 3.6. Let ĜEl be as in (3.9a). De
ompose ĜEl as ĜEl = D̂(I � L̂), withD̂ diagonal and L̂ stri
tly lower triangular. De�ne El� := El n f(i; i) j 1 � i � ng.Then L̂ is the unique minimizer of the fun
tionalL! tr((I � L)A(I � LT )) ; L 2 SEl� ; (3.18)



8 A. REUSKENand also of the fun
tionalL! det[diag((I � L)A(I � LT ))℄ ; L 2 SEl� : (3.19)Furthermore, for D̂ we haveD̂ = [diag((I � L̂)A(I � L̂T ))℄�1 : (3.20)Proof. From the 
onstru
tion in (3.9a) it follows that((I � L̂)A)ij = 0 for all (i; j) 2 El� ;i.e., L̂ 2 SEl� is su
h that (L̂A)ij = Aij for all (i; j) 2 SEl� . This is of the form (3.3)with B = A, E = El�. From Lemma 3.2 we obtain that L̂ is the unique minimizer ofthe fun
tionalL! tr((A� LA)A�1(A� LA)T ) = tr((I � L)A(I � LT )) ; L 2 SEl� ;i.e., of the fun
tional (3.18). From the proof of Lemma 3.2, with B = A, it followsthat the minimization problemminL2SEl� tr((I � L)A(I � LT ))de
ouples into seperate minimization problems (
f. (3.8)) for the rows of L:minli2R(PTi )f�2lTi ai + lTi Alig (3.21)for all i with ni > 0. Here lTi and aTi are the ith rows of L and A, respe
tively. Theminimization problem 
orresponding to (3.19) isminL2SEl� nYi=1((I � L)A(I � LT ))ii = minL2SEl� nYi=1(Aii � 2lTi ai + lTi Ali) :This de
ouples into the same minimization problems as in (3.21). Hen
e the fun
-tionals in (3.18) and (3.19) have the same minimizer.Let J = diag((I � L̂)A(I � L̂T )). Using the 
onstru
tion of ĜEl in (3.9a) weobtain D̂2iiJii = (D̂(I � L̂)A(I � L̂T )D̂)ii = (ĜElAĜTEl)ii= nXk=1(ĜElA)ik(ĜEl)ik = nXk=1;(i;k)2El Æik(ĜEl)ik= (ĜEl)ii = D̂ii :Hen
e D̂ii = J�1ii holds for all i, i.e., (3.20) holds.Corollary 3.7. From (3.20) it follows that diag(ĜElAĜEl) = diag(ĜEl) andthus, using (3.9b) we obtain diag(GElAGEl) = I (3.22)



APPROXIMATION OF DETERMINANTS 9for the approximate inverse GEl .The following theorem gives a main result in the theory of approximate inverses.It was �rst derived in [12℄. A proof 
an be found in [1℄, too.Theorem 3.8. Let GEl be the approximate inverse in (3.9). Then GEl is theunique minimizer of the fun
tionalG! 1n tr(GAGT )det(GAGT ) 1n ; G 2 SEl : (3.23)Proof. For G 2 SEl we use the de
omposition G = D(I � L), with D diagonaland L 2 SEl� . Furthermore, for L 2 SEl� , JL := diag((I � L)A(I � LT )). Now note1n tr(GAGT )det(GAGT ) 1n = det(A)� 1n 1n tr((D(I � L)A(I � LT )D)det(G2) 1n = det(A)� 1n 1n tr(D2JL)det(D2) 1n= det(A)� 1n 1n tr(D2JL)det(D2JL) 1n det(JL) 1n � det(A)� 1n det(JL) 1n : (3.24)The inequality in (3.24) follows from the inequality between the arithmeti
 and geo-metri
 mean: 1nPni=1 �i � (Qni=1 �i)1=n for �i � 0.For ĜEl in (3.9a) we use the de
omposition ĜEl = D̂(I�L̂). For the approximateinverse GEl we then have GEl = (diag(ĜEl))� 12 ĜEl = D̂ 12 (I � L̂). From Lemma 3.6(3.19) it follows that det(JL) � det(JL̂) for all L 2 SEl� . Furthermore from Lemma 3.6(3.20) we obtain that for GEl = D̂ 12 (I� L̂) we have (D̂ 12 )2JL̂ = I and thus equality in(3.24) for G = GEl . We 
on
lude that GEl is the unique minimizer of the fun
tionalin (3.23).Remark 3.9. The quantity K(A) = 1n tr(A)det(A) 1n
an be seen as a nonstandard 
ondition number (
f. [1, 10℄). Properties of thisquantity are given in [1℄ (Theorem 13.5). One elementary property is1 � K(A) � �n�1 = �(A) : 2Corollary 3.10. For the approximate inverseGEl as in (3.9) we have (
f.(3.22))1 � K(GElAGTEl) = 1det(GElAGTEl) 1n ;i.e., d(A) � det(G2El)� 1n = nYi=1(GEl)� 2nii = nYi=1(ĜEl)� 1nii = nYi=1 
 2ni ; (3.25)



10 A. REUSKENwhere 
i is as in (3.12). Let ~El be a lower triangular sparsity pattern that is largerthan El, i.e., El � ~El � f(i; j) j 1 � j � i � ng. From the optimality result inTheorem 3.8 it follows that1 � K(G ~ElAGT~El) � K(GElAGTEl) : 2 (3.26)In the following remark we summarize the main properties of the new method forapproximating d(A) that is formulated in Algorithm 3.3.Remark 3.11. The method of approximating d(A) by d(GEl)�2 = d(ĜEl)�1boils down to 
hosing a sparsity pattern El and 
omputing the Cholesky de
omposi-tion of the low dimensional matri
es Ai in step 2 of Algorithm 3.3. Related to thisalgorithm we note the following:1. The sparse approximate inverse exists for every symmetri
 positive de�niteA. Note that su
h an existen
e result does not hold for the in
omplete Choleskyfa
torization.2. The 
onstru
tion of the matri
es Ai = PiAP Ti and the 
omputation of theCholesky fa
torization Ai = LiLTi 
an be realized for all i in parallel . Hen
e themethod has a very high potential for parallelism.3. If for a given i the number 
i = (Li)nini in (3.12) has been 
omputed thematri
es Ai and Li are not needed anymore. Hen
e the storage requirements for themethod are very low.4. The sparse approximate inverse has an optimality property related to thedeterminant: The fun
tional G ! K(GAGT ) ; G 2 SEl , is minimal for GEl . Fromthis the inequality (3.25) and the monotoni
ity result (3.26) follow.5. From(3.25) it follows that Qni=1 
 2ni is an upper bound for d(A). 24. Monte Carlo methods for approximating d(A). In this se
tion we de-s
ribe two methods for aproximating d(A) that are known from the literature. Bothmethods are based on the following proposition [9, 3℄.Proposition 4.1. Let H be a symmetri
 matrix of order n with tr(H) 6= 0.Let V be the dis
rete random variable whi
h takes the values 1 and �1 ea
h withprobability 0:5 and let z be a ve
tor of n independent samples from V . Then zTHz isan unbiased estimator of tr(H): E(zTHz) = tr(H) ;and var(zTHz) = 2Xi 6=j h2ij :Using the identity d(A) = det(A) 1n = exp( 1n tr ln(A))this leads to the following Monte Carlo algorithmAlgorithm 4.2.For j = 1; 2; : : : ;M1. Generate zj 2 Rn with entries whi
h are uniformly distributed in (0; 1).2. If (zj)i < 0:5 then (zj)i := �1, otherwise, (zj)i := 1.3. Compute an approximationdj � zTj ln(A)zj : (4.1)



APPROXIMATION OF DETERMINANTS 11End. Compute d̂M (A) = exp( 1n 1M MXj=1 dj) :In the following two subse
tions we des
ribe methods for 
omputing the approxima-tion dj � zTj ln(A)zj in (4.1).4.1. Approximation of zT ln(A)z using Chebyshev polynomials. We de-s
ribe a method that is presented in [16℄. We assume that A is s
aled by a fa
tor0 < 1b � 1�n . Then �( 1bA) � ["; 1℄ holds with 0 < " � �1b . For ease of notation thiss
aled matrix is denoted by A, too.Let Tk, k � 0 be the Chebyshev polynomials on [0; 1℄:T�1(x) = 2x� 1; T0(x) = 1; Tk+1(x) = (4x� 2)Tk(x)� Tk�1(x) for k � 1 :The method is based on the following expansion for lnx :lnx = m+1Xk=1 bkTk(1� x1� " ) + Æ lnx for x 2 ["; 1℄; (4.2)jÆj � 2e�2(m+1)p" : (4.3)We show that this result holds and derive a simple and 
heap algorithm for the
omputation of the 
oeÆ
ients bk. Starting point is the identity1y�1 + �Tm+1�1� y1� " �� = mXk=0 
kTk�1� y1� " � ; y 2 ["; 1℄ ; (4.4)with parameters � and 
k, 0 � k � m. With z := 1�y1�" 2 [0; 1℄ this is equivalent to1 + �Tm+1(z) = (1� (1� ")z) mXk=0 
kTk(z) : (4.5)Substitution of zTk(z) = 14Tk+1(z) + 12Tk(z) + 14Tk�1(z) in (4.5) and 
omparing the
oeÆ
ients of Tk on both sides of the equality results in a linear system of m + 2equations for the unknowns 
 := (
0; : : : ; 
m)T and �. A simple 
al
ulation showsthat the solution of this system is given by
 = 41� "B�1e1 ; (4.6)� = �eTm+1B�1e1 ; (4.7)with e1 and em+1 the �rst and (m+ 1)-th basis ve
tor in Rm+1 , respe
tively, andB = 0BBBBBBBB�2
 �1�2 2
 �1 ;�1 2
 �1. . . . . . . . .; . . . . . . �1�1 2

1CCCCCCCCA 2 R(m+1)�(m+1) ; 
 := 1 + "1� " :



12 A. REUSKENHen
e, the LU -de
omposition of B results in an eÆ
ient algorithm for 
omputing the
oeÆ
ients 
 and � in (4.6), (4.7). Elementary manipulations with di�eren
e equationsyield expli
it formulas for B�1e1. For example, for the last 
omponent of this ve
torone 
an derive the expression�� = eTm+1B�1e1 = �2�m+1 + ��(m+1) ; � := 
 +p
2 � 1 : (4.8)Su
h expli
it expressions are given in [16℄ and o�er an alternative (but probablysomewhat less eÆ
ient) approa
h for 
omputing 
 and �.From (4.4) and jTm+1(z)j � 1 it follows that�j�j1y � 1y � mXk=0 
kTk�1� y1� " � � j�j1y ; y 2 ["; 1℄ :Integrating between y = x 2 ["; 1℄ and y = 1 we obtainj�j lnx � �(1� ") mXk=0 
k Z 1�x1�"0 Tk(z) dz � lnx � �j�j lnx ; x 2 ["; 1℄ : (4.9)Using R T0 = 12 (T0 + T1); R T1 = 18 (T2 � T0); R Tk = 14 (Tk+1k+1 � Tk�1k�1 ); k � 2, astraightforward 
omputation yields� (1� ") mXk=0 
k Z 1�x1�"0 Tk(z) dz = m+1Xk=0 bkTk�1� x1� " � ;with bk = �1� "4k 
k�1 ; k = m;m+ 1 ;bk = �1� "4k (
k�1 � 
k+1) ; 2 � k � m� 1 ;b1 = �1� "4 (2
0 � 
2) ;b0 = �m+1Xk=1 (�1)kbk :
(4.10)

Hen
e, using the values for the 
oeÆ
ients 
 = (
0; : : : ; 
m)T from (4.6) the 
oeÆ
ientsbk in (4.2) dire
tly follow from(4.10). The bound on Æ in (4.3) is a 
onsequen
e of(4.9) and j�j = 2�m+1 + ��(m+1) � 2��(m+1) � 2e�2(m+1)p" :Now assume that the 
oeÆ
ients bk have been 
omputed. For zj 2 Rn it follows thatzTj ln(A)zj � m+1Xk=0 bkzTj Tk�I �A1� " �zj =: dj (4.11)
an be used as an approximation in (4.1). The terms zTj Tk� I�A1�" �zj in (4.11) 
an be
omputed using the re
ursion for Tk. In our appli
ations we have n = dim(A) � mand the 
osts for 
omputing dj in (4.11) are dominated by the 
osts for the m + 1matrix-ve
tor multipli
ations with the matrix A. These matrix-ve
tor 
omputationsare easy to parallelize. Note, however, that the Monte Carlo algorithm 4.2 and the
omputation of the sum in (4.11) are purely sequential prozesses.



APPROXIMATION OF DETERMINANTS 134.2. Approximation of zT ln(A)z using quadrature. In this subse
tion were
all the method from [3℄ for approximating zT ln(A)z, z 2 Rn . Let QT�Q = A bethe eigen-de
omposition of A with Q orthogonal, � = diag(�1; : : : ; �n), �1 � : : : � �n.For z 2 Rn let ~z = Qzkzk2 . Then we havezT ln(A)zkzk22 = ~zT ln(�)~z = nXi=1 ln�i ~zi2 = Z �n�1 ln� d�(�) =: J ; (4.12)where the measure �(�) is given by�(�) =8<: 0 if � < �1 ;Pij=1 ~z2j if �i � � < �i+1; 1 � i � n� 1 ;1 if �n � � :For approximating the integral in (4.12) one 
an use a Gauss-type quadrature rule.Several possibilities are treated in [3℄. Here we use a Gauss-Radau method:QN := NXj=1 !j ln �j + �� ln � ;where the node � is pres
ribed. We will 
onsider � � �1 and � � �n. The weights!j , �� and the nodes �j are unknown and to be determined. It is well known thatthe nodes and weights in the Gauss quadrature 
an be 
omputed using the Lan
zosmethod (
f. [4℄). The Gauss-Radau quadrature is treated in [5℄. For f(x) = lnx wehave f (2N+1)(x) > 0 for all x > 0 and from [5℄ it then follows that if � � �1 (� � �n)the approximation QN is a lower bound (upper bound) for J . In [3℄ the followingalgorithm for approximating J is proposed. We assume that �1 � �1 and �2 � �n aregiven.Algorithm 4.3.x0 = z=kzk2; x�1 = 0; 
0 = 0;For k = 1; 2; : : : do1. �k = xTk�1Axk�1.2. rk = Axk�1 � �kxk�1 � 
k�1xk�2.3. 
k = krkk2.4. Let Tk = 0BBBBBB��1 
1 ;
1 �2 
2. . . . . . . . .. . . . . . 
k�1; 
k�1 �k
1CCCCCCA ;Æm = 
2keTk (Tk � �mI)�1ek; m = 1; 2;T̂ (m)k = � Tk 
kek
keTk �m � ; �m = �m + Æm ; m = 1; 2 :5. Compute the eigenvalues �(m)` and the �rst elements !(m)` of the normalizedeigenve
tors of T̂ (m)k (m = 1; 2; 1 � ` � k + 1).



14 A. REUSKEN6. Q(m)k =Pk+1`=1 (!(m)` )2 ln �(m)` , m = 1; 2.7. If Q(2)k �Q(1)kjQ(1)k j � eps (user spe
i�ed toleran
e) then Stop.8. xk = rk=
k.End. Compute dz = 12(Q(1)k +Q(2)k )kzk22 : (4.13)For z = zj as in Algorithm 4.2 the value dj := dzj from (4.13) is taken as theapproximation in (4.1). As for the method in the previous subse
tion we have anouter (Monte Carlo) and inner iteration whi
h are purely sequential operations. Inour appli
ations the dimensions of the eigenvalue problems that o

ur in Algorithm4.3 are very small 
ompared to n = dim(A) and the 
osts for one iteration in thisalgorithm are dominated by the matrix-ve
tor multipli
ation with the matrix A.Both in the algorithm in this subse
tion and in the algorithm in subse
tion 4.1 we needapproximations of �1 and �n. It turns out that the performan
e of the algorithms isless sensitive to the a

ura
y of these approximations. In the numeri
al experimentswe used a �xed (small) number of Lan
zos iterations to 
ompute these approximations.5. Numeri
al experiments. In this se
tion we present some results of numer-i
al experiments with the methods introdu
ed in x3 and x4. All experiments are doneusing a MATLAB implementation.Experiment 1 (dis
rete 2D Lapla
ian). We 
onsider the standard 5{point dis-
rete Lapla
ian on a uniform square grid with N mesh points in both dire
tions,i.e. n = N2. For this symmetri
 positive de�nite matrix the eigenvalues are known:��� = 4(N + 1)2�sin2( ��2(N + 1)) + sin2( ��2(N + 1))� ; 1 � �; � � N : (5.1)For the 
hoi
e of the sparsity pattern El we use a simple approa
h:El(k) := f(i; j) j i � j and (Ak)ij 6= 0g ; k = 1; 2; : : : : (5.2)We �rst des
ribe some features of the methods for the 
ase N = 30, k = 2 and afterthat we will vary N and k. Let A denote the dis
rete Lapla
ian for the 
ase N = 30.For the matri
es Ai = PiAP Ti 2 Rni�ni (i = 1; : : : ; n) the dimensions ni are between1 and 7; the mean of these dimensions is 6.7. Algorithm 3.3 yields an approximationd(GEl(2))�2 = d(ĜEl(2))�1 = nYi=1 
 2ni = 3:2526 103 :for d(A) = 3:1379 103. Hen
e the relative error is 3.5%. For the 
omputation of theCholesky fa
torizations Ai = LiLTi ; i = 1; 2; : : : ; n; approximately 41 103 
ops areneeded (in the MATLAB implementation). If we 
ompare this with the 
osts of onematrix{ve
tor multipli
ation A �x (8760 
ops), denoted by MATVEC, it follows thatfor 
omputing this approximation of d(A), with error 3.5 per
ent, we need arithmeti
work 
omparable to only 5 MATVEC. In Table 5.1 we give results for the dis
rete 2DLapla
ian with N = 30 (n = 900), N = 100 (n = 10000) and N = 200 (n = 40000).We use the sparsity patterns El(2) and El(4). In the third 
olumn of this table wegive the 
omputed approximation of d(A) and the 
orresponding relative error. In



APPROXIMATION OF DETERMINANTS 15Table 5.1Results for 2D dis
rete Lapla
ian with El = El(2)n d(A) d(GEl(2))�2 
osts for d(GEl(4))�2 
osts for(error) d(GEl(2))�2 (error) d(GEl(4))�2900 3.138 103 3.253 103 5 MV 3.177 103 41 MV(3.5%) (1.2%)10000 3.292 104 3.434 104 5 MV 3.347 103 45 MV(4.1%) (1.6%)40000 1.300 105 1.359 105 5 MV 1.323 103 46 MV(4.3%) (1.7 %)the fourth 
olumn we give the total arithmeti
 
osts for the Cholesky fa
torization ofthe matri
es Ai, i = 1; 2; : : : ; n. In the 
olumns 5 and 6 we give the results and 
orre-sponding arithmeti
 
osts for 
ase with the larger sparsity pattern El(4). Related toFig. 5.1. Algorithm 4.2 
ombined with the method from x4.1 : n = 10000 (left), n = 40000 (right).
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 x : m=10 these numeri
al results we note the following. From the third and fourth 
olumn inTable 5.1 we see that using this method we 
an obtain an approximation of d(A) withrelative error only a few per
ent and arithmeti
 
osts only a few MATVEC. More-over, this eÆ
ien
y hardly depends on the dimension n. Comparison of the third and�fth 
olumns in Table 5.1 shows that the approximation signi�
antly improves if weenlarge the pattern from El(2) to El(4). The 
orresponding arithmeti
 
osts in
reaseby a fa
tor of about 9. This is 
aused by the fa
t that the mean of the dimensions ofthe systems Ai, i = 1; 2; : : : ; n, in
reases from approximately 7 (for El(2)) to approx-imately 20 (for El(4)).We also applied the Monte Carlo algorithm 4.2, with M = 50, to this problem. Iffor the approximation of zTj ln(A)zj in (4.1) we use the approa
h based on Cheby-shev polynomials we obtain the results in Figure 5.1. It turns out that the boundin (4.3) is very pessimisti
 and should not be used to determine a value for the pa-rameter m. In the experiments we used the values m = 3; 4; 7; 10. Note that thearithmeti
 
osts in the inner Chebyshev iteration (4.11) are 
omparable to m + 1MATVEC. From Figure 5.1 we see that for a relative error of approximately 1:5% itsuÆ
es to take 10{15 Monte Carlo iterations with m = 4. The arithmeti
 
osts arethen roughly 50-75 MATVEC. In Figure 5.2 results are shown if zTj ln(A)zj in (4.1)is approximated using Algorithm 4.3. We used di�erent toleran
es in step 7 in thisalgorithm: eps = 0:02; 0:01; 0:005; 0:002. The 
orresponding total number of matrix-ve
tor multipli
ations is: 188; 250; 306; 449 (for n = 10000) and 200; 250; 350; 501



16 A. REUSKENTable 5.2Results for MATLAB random sparse matri
es with El = El(2)n d(A) d(GEl)�2 
osts for(error) d(GEl )�2900 0.82453 0.82521 23 MV(8.2 10�4)10000 0.80985 0.81053 18 MV(8.4 10�4)(for n = 40000). We observe that for a relative error of approximately 1:5% about10-15 Monte Carlo iterations with eps = 0:005 are suÆ
ient. The arithmeti
 
osts arethen roughly 60-95 MATVEC.Note that both Monte Carlo methods (in Figure 5.1 and in Figure 5.2) perform sim-Fig. 5.2. Algorithm 4.2 
ombined with the method from x4.2 : n = 10000 (left), n = 40000 (right).
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 x : eps=0.002 ilarly. In both methods we need estimates for the extreme eigenvalues of the matrixA. We used the known values of these extreme eigenvalues given in (5.1).Experiment 2 (MATLAB random sparse matrix). The sparsity stru
ture of thematri
es 
onsidered in Experiment 1 is very regular. In this experiment we 
on-sider matri
es with a pattern of nonzero entries that is very irregular. We used theMATLAB generator (sprand(n; n; 2=n)) to generate a matrix B of order n with ap-proximately 2n nonzero entries. These are uniformly distributed random entries in(0; 1). The matrix BTB is then sparse symmetri
 positive semide�nite. In the generi

ase this matrix has many eigenvalues zero. To obtain a positive de�nite matrix wegenerated a random ve
tor d with all entries 
hosen from a uniform distribution onthe interval (0; 1) (d :=rand(n; 1)). As a testmatrix we used A := BTB+diag(d). Weperformed numeri
al experiments similar to those in Experiment 1 above. We only
onsider the 
ase with sparsity pattern El = El(2). Results obtained with Algorithm3.3 are shown in Table 5.2. From these results it is 
lear that for this random matrixA the approximation of d(A) based on the sparse approximate inverse is mu
h betterthan for the dis
rete Lapla
ian in Experiment 1. This is related to the fa
t that forthe random matri
es 
onsidered in this example the pre
onditioned matrix GElAGElturns out to be very well-
onditioned. We also apply the same Monte Carlo methodsas dis
ussed in Experiment 1 to these matri
es. To allow a fair 
omparison we �rstres
aled the matrix A with a diagonal matrix D, su
h that the absolute row sumsof the matrix DAD are all equal to one. Estimates of the extreme eigenvalues that



APPROXIMATION OF DETERMINANTS 17are needed in these algorithms are obtained by applying 20 iterations of the Lan
zosmethod (with starting ve
tor (1; : : : ; 1)T ). The performan
e of these methods is sim-ilar for the three 
ases n = 900; 10000; 40000. In Figure 5.3 we show the results forthe 
ase n = 10000.For the Monte Carlo method using the approa
h based on Chebyshev polynomialsFig. 5.3. Algorithm 4.2 
ombined with the method from x4.1 (left) and from x4.2 (right).
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the result after 20 iterations and m = 7 (
f. Figure 5.3, left) has a relative error� 0:001. For 
omputing this result approximately 180 MATVEC are needed. If weuse the Gauss-Radau quadrature (
f. Figure 5.3, right) with eps = 0:02 then after 20Monte Carlo the result also has a relative error � 0:001. The total 
osts are about100 MATVEC. Hen
e, in this example the method based on the sparse approximateinverse is more eÆ
ient than the Monte Carlo methods.Experiment 3 (QCD type matrix). In this experiment we 
onsider a 
omplex Her-mitean positive de�nite matrix with a regular sparsity stru
ture. This matrix ismotivated by appli
ations from the QCD �eld. In QCD simulations the determinantof the so-
alled Wilson fermion matrix is of interest. These matri
es and some of theirproperties are dis
ussed in [14, 13℄. The Wilson fermion matrix A = I��D des
ribesa nearest neighbour 
oupling with periodi
 boundary 
onditions on a four-dimensionalregular spa
e-time latti
e with latti
e sites
N = f (x1; x2; x3; x4) j xi = 1; : : : ; ni; ni = 2Ni g :The so-
alled hopping matrix D has the formDx;y = 4X�=1 �(I � 
�)
 U�(x)�Æx;y�e� + �(I + 
�)
 UH� (x� e�)�Æx;y+e� ; (5.3)where x; y are latti
e sites from 
N , e� is the �-th basisve
tor in R4 and Æx;y = 1 (0)if x = y (x 6= y). The matri
es I � 
� 2 C 4�4 are proje
tors onto two-dimensionalsubspa
es and the matri
es U�(x) 2 C 3�3 are from SU(3) (
f. [13℄ for details). Usu-ally, these matri
es U�(x) are generated randomly. In this model the matrix D has ablo
k stru
ture with blo
ks Dx;y 2 C 12�12 , x; y 2 
N . Here we 
onsider a very simplevariant of this model. We take 
� = 0, I = 1, U�(x) = exp(2i���(x)), where ��(x) is
hosen from a uniform distribution on the interval (0; 1). Hen
e the 
ouplings Dx;y in



18 A. REUSKEN(5.3) are 
omplex s
alars. Note that the matrix D is hermitean. Due to the randomlygenerated fun
tions ��(x) the 
ouplings Dx;y show a strong 
u
tuation as a fun
-tion of x and y. In QCD simulations the parameter � is taken su
h that the Wilsonfermion matrix A is positive de�nite and 
lose to singular. In the experiment herewe 
omputed the largest eigenvalue �D of D (using the MATLAB fun
tion eigs) andset � := (1:01 �D)�1 We performed numeri
al experiments as in Experiment 1 withEl = El(2) for two 
ases: (n1; n2; n3; n4) = (4; 4; 8; 8) and (n1; n2; n3; n4) = (8; 8; 8; 8).The results are presented in Table 5.3. We also used the Monte Carlo methods. AsTable 5.3Results for QCD type matrix with El = El(2)n d(A) d(GEl )�2 
osts for(error) d(GEl)�21024 0.8032 0.8248 22 MV(2.7%)4096 0.8037 0.8254 21 MV(2.7%)in Experiment 2 we applied 20 Lan
zos iterations to obtain estimates for the extremeeigenvalues. The results are shown in Figure 5.4. From this �gure we see that after 20Fig. 5.4. Algorithm 4.2 
ombined with the method from x4.1 (left) from x4.2 (right).
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Monte Carlo iterations using the method from subse
tion x4.1 with m = 2 the resulthas a relative error of about 2 per
ent. For 
omputing this result approximately 80MATVEC are needed. Using the method from subse
tion x4.2 with eps = 0:4 theresult after 20 Monte Carlo iterations has a relative error of about 1 per
ent. Thetotal 
osts for 
omputing this result are about 80 MATVEC.Note that in all three experiments the performan
e of the methods hardly dependson the dimension n. In all measurements for the arithmeti
 
osts we did not takeinto a

ount the 
osts of determining the sparsity pattern El(k) and of building thematri
es PiAP Ti .We 
on
lude that at least for these few model problems the new method 
an 
om-pete, even on a sequential ma
hine, with the two Monte Carlo methods proposedin the literature. We believe that in a (massively) parallel environment the methodbased on the sparse approximate inverse 
an be expe
ted to be mu
h more eÆ
ientthan the Monte Carlo te
hniques be
ause the former is ideally suited for a parallelimplementation.



APPROXIMATION OF DETERMINANTS 19Remark 5.1. In this paper we do not dis
uss the topi
 of error estimation. Forthe Monte Carlo method error estimation te
hniques are treated in [3℄. Related to themethod based on the sparse approximate inverse (Algorithm 3.3) we brie
y dis
ussone possible te
hnique for a posteriori error estimation. From (3.25) we have the apriori error bound d(A)d(GEl)�2 � 1 :The exa
t error is given byd(A)d(GEl)�2 = d(GElAGTEl) = d(EEl) ;where EEl := GElAGTEl is a sparse symmetri
 positive de�nite matrix. Fore ease ofpresentation we assume that the patternEl is suÆ
iently large su
h that �(I�EEl) < 1holds. In [12℄ it is proved that if A is an M -matrix or a (blo
k) H-matrix then this
ondition is satis�ed for every lower triangular pattern El. For the exa
t error weobtain, using a Taylor expansion of ln(I �B) for B 2 Rn�n with �(B) < 1 (
f. [6℄):d(EEl) = exp� 1n ln(det(EEl))� = exp� 1ntr(ln(EEl))�= exp� 1ntr(ln(I � (I � EEl)))� = exp�� 1ntr( 1Xk=1 (I � EEl)kk )� : (5.4)Hen
e, an error estimation 
an be based on estimates for the partial sums Sm :=Pmk=1 1k tr((I�EEl)k). The 
onstru
tion of GEl is su
h that diag(EEl) = I (
f. (3.22))and thus tr(EEl) = n and S1 = 0. For S2 we haveS2 = 12tr((I � EEl)2) = 12tr(I � 2EEl + E2El) = �12n+ 12tr(E2El) : (5.5)For approximating the tra
e quantity tr(E2El) in S2 we 
an use the following MonteCarlo algorithm, based on Proposition 4.1:Algorithm 5.2.For j = 1; 2; : : : ;M1. Generate zj 2 Rn with entries whi
h are uniformly distributed in (0; 1).2. If (zj)i < 0:5 then (zj)i := �1, otherwise, (zj)i := 1.3. yj := EElzj , �j := yTj yj.End.This then yields Ŝ2 := �12n+ 12M MXj=1 �j (5.6)as an approximation for S2. The 
orresponding error estimate is given byE2 = exp(� 1nŜ2): (5.7)It turns out that, at least in our experiments, this te
hnique yields satisfa
tory results.One 
lear disadvantage of this approa
h is that the matrix GEl must be available (and



20 A. REUSKENthus stored). Note that for the 
omputation of the approximation d(GEl)�2 of d(A)we do not have to store the matrix GEl .A
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