APPROXIMATION OF THE DETERMINANT OF LARGE SPARSE
SYMMETRIC POSITIVE DEFINITE MATRICES
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Abstract. This paper is concerned with the problem of approximating det(A)l/” for a large
sparse symmetric positive definite matrix A of order n. It is shown that an efficient solution of
this problem is obtained by using a sparse approximate inverse of A. The method is explained and
theoretical properties are discussed. The method is ideal for implementation on a parallel computer.
Numerical experiments are described that illustrate the performance of this new method and provide
a comparison with Monte Carlo-type methods from the literature.
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1. Introduction. Throughout this paper, A denotes a real symmetric positive
definite matrix of order n with eigenvalues

0< A <A <. < A

In a number of applications, for example in lattice Quantum Chromodynamics ([14,
8, 16, 17]) certain functions of the determinant of A, such as det(A)= or In(det(A))
are of interest. It is well-known (cf. also §2) that for large n the function A — det(A)
has poor scaling properties and can be very ill-conditioned for certain matrices A. In
this paper we consider the function

d: A— det(A)w . (1.1)

A few basic properties of this function are discussed in §2. In this paper we present a
new method for approximating d(A) for large sparse matrices A. The method is based
on replacing A by a matrix which is in a certain sense close to A~! and for which the
determinant can be computed with low computational costs. One popular method for
approximating A is based on the construction of an incomplete Cholesky factorization.
This incomplete factorization is often used as a preconditioner when solving linear
systems with matrix A. In this paper we use another preconditioning technique,
namely that of factorized sparse approximate inverses (cf. [1, 7, 10, 12]). With such
a method a lower triangular matrix Gg with a prescribed sparsity structure E can
be constructed such that G AGY is in certain sense close to the identity. We then
use det(Gp)~2/" = H?:l(GE);iz/n as an approximation for d(A). In §3 we explain
the construction of Gg and discuss theoretical properties of this sparse approximate
inverse. For example, such a sparse approximate inverse can be shown to exist for any
symmetric positive definite A and has an interesting optimality property related to
d(A). From this optimality property it immediately follows that d(A) < det(Gg)~ /"
holds and that the approximation of d(A4) by det(Gg)~2/™ becomes better if we take a
larger sparsity pattern E. Besides this optimality property the method we present has
two other interesting properties. The method is ideal for a parallel implementation
and has very low storage requirements.

To make a comparison with other methods for approximating d(A) we describe two
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2 A. REUSKEN

known Monte Carlo-type methods (from [3] and [16]). We present results of a few
numerical experiments. In these experiments the new method and the Monte Carlo
methods are applied to a few model examples of large sparse symmetric positive
definite matrices.

2. Preliminaries. In this section we discuss a few elementary properties of the
function d. We give a comparision between the conditioning of the function d and
of the fuction A — d(A)" = det(A). We use the notation || - ||2 for the Euclidean
norm and k(A) = A, /A1 denotes the spectral condition number of A. The trace of
the matrix A is denoted by tr(A).

LEMMA 2.1. Let A and A+ 0A be symmetric positive definite matrices of order
n. The following inequalities hold:

AL < d(A) <\, (2.1a)
d(A) < %tr(A) : (2.1b)

d(A + §A) — d(A)
d(A)

‘ < n(A)””(Sj:'; . (2.1c)

Proof. The result in (2.1a) follows from

The result in (2.1b) follows from the inequality between the geometric and arithmetic
mean:

n

S|

1 1

d = ) L= .

(W= <23 x=2u)
=1 =1

Now note that

d(A + §A) — d(A)
d(A)

= (det(I + A‘HSA))% -1= (ﬁ(l + A,-(A—léA))) -1.

i=1

3=

From \;(A716A4) < ||A71]]2]|6A]|2 it follows that

n n

(TIa+rat64))™ = 1< (T + 14 al64]))

i=1 i=1

n

—1=[|A7Y2[|0A]l2 .

3=

Using 1+ X\;(A710A4) > 0 and \;(A~104) > —||A7Y|2||0A]]2 we obtain

n

(TTa+xi(a 164)))

i=1

3=

~1> ([ max{o, 1= 4 ofl04ll2 }) " 1> — |4 2[]6 Al
i=1

Thus we have

‘d(A+6A)—d

b < 1A alsAll = k()
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and the result in (2.1c) is proved. a

The result in (2.1c) shows that the function d(A) is well-conditioned for matrices
A which have a not too large condition number x(A).

We now briefly discuss the difference in conditioning between the functions A —
d(A) and A — det(A4). For any symmetric positive definite matrix B of order n we
have

d(A)B = lim WAHD) = dAd) Aoy

t—0 t n

From the Courant-Fischer eigenvalue characterization we obtain A;(A™1B) < \;(A71)|| B|l2
for all <. Hence
|d'(A)B|  d(A) tr(A"'B) _ d(A)

d' (A2 = =
' (Al B s SPD | B|2 n B SPD 1Bl — n

with equality for B = I. Thus for the condition number of the function d we have

[[All2lld"(A)]>
d(A)

Note that for the diagonal matrix A = diag(A;;) with A;; =1, A;; = a for i > 1 the
inequality in (2.2) is sharp if 0 < @ < 1 and n is large. For this A and with A = €I,
0 < € < «, the bound in (2.1¢) is sharp, too.

For d(A) = det(A) = d(A)" the condition number is given by

= LJAltr(A™") < £(4) (2.2

JALICOl _ [And )l _
d4) d(A)" = [|A[l2tr(A™") (2.3)

i.e., n times larger than the condition number in (2.2). The condition numbers for
d and d give an indication of the sensitivity if the perturbation ||§A||s is sufficiently
small. Note that the bound in (2.1c) is valid for arbitrary symmetric positive definite
perturbations dA. The bound shows that even for larger perturbations the function
d(A) is well-conditioned at A if k(A) is not too large. For the function d(A) the
effect of relatively large perturbations can be much worse than for the asymptotic
case (0A — 0), which is characterized by the condition number in (2.3). Consider, for
example, for 0 < e < $ a perturbation 04 = 4, i.e. [|[6A]]2/||All2 = ¢. Then

d(A + 6A) — d(A)

=(l4e)"—1>e2™ —1,
i) (1+e) >

which is very large if, for example, € = 1073, n = 10°.

The results in this section show that the numerical approximation of the function
d(A) can be considered to be an easier task than the numerical approximation of
A — det(A).

REMARK 2.2. The results on conditioning derived above and the fact that in
the analysis of the sparse approximate inverse the function d(A) plays a natural role
(cf. Section 3) are the main motivation for considering d(A) instead of A — det(A).
Of course, an algorithm for approximating d(A) yields an approximation for det(A)
or In(det(A)), too. Note that the functions z — 2™ and z — ln(z™) have condition
numbers n and 1/In(z), respectively. Hence, if d is an approximation of d(A) with
relative error |d — d(A)|/d(A) < eps then it follows that |d" — det(A)|/ det(4) < neps
and |1n(c§”) —In(det(A))|/|In(det(A))| < eps/|In(d(A))|.
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3. Sparse approximate inverse. In this section we explain and analyze the
construction of a sparse approximate inverse of the matrix A. Let A = LLT be the

Cholesky factorization of A, i.e. L is lower triangular and L=*AL~" = I. Note that
d(4) =d(L)? =TI, Lfi/ ". We will construct a sparse lower triangular approximation
G of L™ and approximate d(4) by d(G)™? =[], G;-z/". The construction of a
sparse approximate inverse that we use in this paper was introduced in [10, 11, 12]
and can also be found in [1]. Some of the results derived in this section are presented

in [1], too.

3.1. Introduction. We first introduce some notation. Let E C {(i,5) | 1 <
i,j < n} be a given sparsity pattern. By #E we denote the number of elements in
E. Let Sg be the set of n x n matrices for which all entries are set to zero if the
corresponding index is not in E:

Sp={M e R"*" | M;; =0if (i,7) ¢ E} .

For1 <i<nlet B, = En{(j)|1<j<n} Ifn :=#E; >0 we use the
representation

E; ={(i,51),(1,52), -, (4 dns) b, 1<j1 <j2<...<jn, <nm. (3.1)
For n; > 0 we define the projection
Pi: R* - R% | Pi(xy,2,...,20)" = (le,ij,...,xjni)T . (3.2)
Note that the matrix
P,APT . R" — R™

is symmetric positive definite. To facilitate the analysis below, we first discuss the
construction of a approximate sparse inverse Mg € Sg in a general framework. For
Mg € Sg we use the representation

NN

Mg = . R m; € R" .

m

S

Note that if n; = 0 then m? = (0,0,...,0).
For given A, B € R**"™ with A symmetric positive definite we consider the fol-
lowing problem:

determine Mg € Sg such that (MgA);; = B;j for all (i,j) € E . (3.3)

In (3.3) we have #F equations to determine #FE entries in Mg. We first give two basic
lemmas which will play an important role in the analysis of the sparse approximate
inverse defined in (3.9).

LEMMA 3.1. The problem (3.3) has a unique solution My € Sg. If n; > 0 then
the ith row of Mg is given by m] with

m; = P (P,APT) "' Pib; | (3.4)

where b} is the ith row of B.
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Proof. The equations in (3.3) can be represented as
(m] A)j, = (b]);, for all i with n; >0 and all k =1,2,...,n; ,

where mlT is the ith row of M. Consider an ¢ with n; > 0. Note that Mg € Sg, hence
PiTPimi = m;. For the unknown entries in m; we obtain the system of equations

(AP Pmy)j, = (bi)je » k=1,2,...,n;,
which is equivalent to
P, API Pim; = Pib; .
The matrix P,-APiT is symmetric positive definite and thus m; must satisfy
Pim; = (PLAPT) ' Pb; .

Using PiTPimi = m; we obtain the result in (3.4). The construction in this proof
shows that the solution is unique. O

Below we use the Frobenius norm, denoted by || - ||#:
n
IBllF = > B}, =tx(BB"), BeR". (3.5)
i,j=1

LEMMA 3.2. Let A = LLT be the Cholesky factorization of A and let Mg € Sp
be the unique solution of (3.8). Then Mg is the unique minimizer of the functional

M = ||(B—MAL 1|2 =tr(B- MAAY(B-MAT), MeSg. (3.6)

Proof. Let e; be the ith basis vector in R*. Take M € Sg. The ith rows of M
and B are denoted by m! and b7, respectively. Now note

tr(B— MA)A N (B=MA)") =Y "€/ (BA'B" — MB" - BM" + MAM")e;

i=1

= tr(BAT'BT) + ) _(=2m] b + m] Am;) . (3.7)

i=1
The minimum of the functional (3.6) is obtained if in (3.7) we minimize the functionals
m; = —2mlib; +miAm; , m; e R(P) (3.8)

for all i with n; > 0. If we write m; = PiTmi ,m; € R™ | then for n; > 0 the functional
(3.8) can be rewritten as

m; — —27?1?131'1)1' + ’ﬁlzTP,'APiTm,' , m; € R™.
The unique minimum of this functional is obtained for m; = (P APT)"1Pb;, ie.

m; = P (P, APY)~1P;b; for all i with n; > 0. Using Lemma 3.1 it follows that My
is the unique minimizer of the functional (3.6). O
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3.2. Sparse approximate inverse for approximating d(A4). We now intro-
duce the sparse approximate inverse that will be used as an approximation for L~!.
For this we chose a lower triangular pattern E' C {(i,j) | 1 < j < i < n} and we
assume that (i,i) € E' for all i. The sparse approximate inverse is constructed in two
steps:

1. Gpg € Sgi such that (GgiA);; = 6;; for all (i,7) € E', (3.9a)

2. G = (diag(Gm)) G - (3.9b)

The construction of G g in (3.9) was first introduced in [10]. A theoretical background
for this factorized sparse inverse is given in [12]. The approximate inverse Gz in (3.9a)
is of the form (3.3) with B = I. From Lemma 3.1 it follows that in (3.9a) there is a
unique solution G . Note that because E' is lower triangular and (i,i) € E' we have
n; = #E' > 0 for all i and j,, =i in (3.1). Hence it follows from Lemma 3.1 that the
ith row of G g, denoted by gl is given by

gi = PT(P,APY) ! Piey, i=1,2,...,n,
= PI(PAPT)"'¢;, with ¢; = (0,...,0,1)T e R . (3.10)

The ith entry of g;, i.e. elg;, is given by él'(P,APT)~1é;, which is strictly positive
because P; AP is symmetric positive definite. Hence diag(é pt) contains only strictly
positive entries and the second step (3.9b) is well-defined. Define §; = P;g;. The sparse
approximate inverse G gt in (3.9a) can be computed by solving the low dimensional
symmetric positive definite systems

PiAPl g =¢é;:=(0,..., )", i=1,2,... n (3.11)

For the approximation of d(A) we propose to use d(Gg:)~2. Due to
d(Gp)? =d(Gp) ™" = H(GAE’);I

we only need the diagonal entries of G gt In the systems P;APT§; = é; we then only
have to compute the last entry of g;, i.e. (g;)n,. If these systems are solved using
the Cholesky factorization P;AP! =: L;LT (L; lower triangular) we only need the
(ns,n;) entry of Ly, since (§i)n, = (Li);,2,, and thus
n 2
d(GEl)72 = H(Li)gim :

i=1

This leads to the following algorithm:

ALGORITHM 3.3. Let A € R™ ™ and a lower triangular pattern E' be given.
Fori=1,...,n do:
1. Construct the matriz A; := PiAPiT € Rmixni |
2. Compute the Cholesky factorization A; = L;LT and set v; := (L;)nn,; -
End. Compute

LI
11 (3.12)
i=1
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3.3. Analysis of the method. We now derive some interesting properties of
the sparse approximate inverse as in (3.9). We start with a minimization property of
GElZ

THEOREM 3.4. Let A = LL" be the Cholesky factorization of A and D :=
diag(L), L :=LD. Gg as in (3.9a) is the unique minimizer of the functional

G = ||(I —= GL)D™Y% = tr((I — GL)D™%(I - GL)T), G e Sp. (3.13)

Proof. The construction of G in (3.9a) is as in (3.3) with £ = E', B = I. Hence
Lemma 3.2 is applicable with B = I. It follows that Gg: is the unique minimizer of

G- ||I-GALT||%, GeSp . (3.14)
Decompose L~ as L~ = D~! + R with R strictly upper triangular. We then obtain:

11 = GAL™|% = I = GLLT)L™T| = |ID™! + R~ GLI[%
=ID7" = GL|E + |RIIE = I = GL)D7[E + |RIIZ -

Hence the minimizers in (3.14) and (3.13) are the same. O

REMARK 3.5. From the result in Theorem 3.4 we see that in a scaled Frobenius
norm (scaling with D) éEz is the optimal approximation of L' in the set Sgt, in
the sense that G Ezﬁ is closest to the identity. A seemingly more natural minimization
problem is

in || —GL 3.15
Joip [ (3.15)

i.e. we directly approximate L~! (instead of IAFI) and do not use the scaling with
D~L. The minimization problem (3.15) is of the form as in Lemma 3.2 with B = LT,
E = E!. Hence the unique minimizer in (3.15), denoted by G, must satisfy (3.3)
with B = LT:

(GgiA)ij = Ly forall (i,5) € E' . (3.16)

Because E! contains only indices (4, ) with i > j and Lj; = 0 for i > j it follows that
G € S must satisfy

(GpiA)j = { OLi:f fff i ; for all (i,j) € E' . (3.17)

This is similar to the system of equations in (3.9a), which characterizes G . However,
in (3.17) one needs the values L;;, which in general are not available. Hence opposite
to the minimization problem related to the functional (3.13) the minimization problem
(3.15) is in general not solvable with acceptable computational costs. a

The following lemma will be used in the proof of Theorem 3.8.

LEMMA 3.6. Let G be as in (3.9a). Decompose Gy as G = D(I — L), with
D diagonal and L strictly lower triangular. Define E' = E'\ {(i,i) | 1 < i < n}.
Then L is the unique minimizer of the functional

L —tr((I = L)A(I = LT)) , LeSy , (3.18)
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and also of the functional

L — det[diag((I — L)A(I — L™))], LeSp . (3.19)

Furthermore, for D we have

D = [diag((I — L)A(I — LT))] 7' . (3.20)

Proof. From the construction in (3.9a) it follows that
(I —L)A);j =0 forall (i,5) € EL ,

ie, Le Spr is such that (ﬁA)ij = Ajj for all (i,5) € S . This is of the form (3.3)

with B = A, E = E' . From Lemma 3.2 we obtain that L is the unique minimizer of
the functional

L—tr((A—LA)A Y (A—LA)T) =tr((I —L)A(I - L)), L€ Sy ,

i.e., of the functional (3.18). From the proof of Lemma 3.2, with B = A, it follows
that the minimization problem

L‘élégl_ tr((I — L)A(I — LT))

decouples into seperate minimization problems (cf. (3.8)) for the rows of L:

min {217 a; + 17 Al;} (3.21)
L ER(PT)

for all ¢ with n; > 0. Here [ and a! are the ith rows of L and A, respectively. The
minimization problem corresponding to (3.19) is

n n

i I—L)A(I - L")); = mi Ay — 2T a; +1T AL) .
L ,-:1(( )A( ) pn H( i ai + 1 Aly)

This decouples into the same minimization problems as in (3.21). Hence the func-
tionals in (3.18) and (3.19) have the same minimizer. A

Let J = diag((I — L)A(I — LT)). Using the construction of Gz in (3.9a) we
obtain

)i = (G AGL)i

=Y GuAuGelu= Y,  oulGpu

=1 k=1,(i,k)€ E"

-l
[ V)
=~
|
s S
~
|
=
B
~
|
h
=
>

Hence Dj; = J;;' holds for all 4, i.e., (3.20) holds. O
COROLLARY 3.7. From (3.20) it follows that diag(G'gAG g) = diag(Gg:) and
thus, using (3.9b) we obtain
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for the approximate inverse G g .

The following theorem gives a main result in the theory of approximate inverses.
It was first derived in [12]. A proof can be found in [1], too.

THEOREM 3.8. Let Ggi be the approzimate inverse in (3.9). Then Ggi is the
unique minimizer of the functional

Lir(GAGT)

T ) Ge S 3.23
det(GAGT) E (3.23)

Proof. For G € Sgi we use the decomposition G = D(I — L), with D diagonal
and L € Sp:i . Furthermore, for L € Sp , Jp := diag(( — L)A(I — L™)). Now note

Lir(GAGT L Ltr((D(I — L)A(I — LT)D L 2tr(D%J
KR(GAGT) o (DU = DAULDD) s (D)
det(GAGT)~ det(G2)~ det(D2)*
1 ltI“(.DZJL) 1 1 1
= det(A)~* " L qet(Jp)w > det(A)w det(Jp)w . (3.24
et(A) det(DQJL);e(L) > det(A) " det(Jr) (3.24)

The inequality in (3.24) follows from the inequality between the arithmetic and geo-
metric mean: 3" oy > (T, )Y/ for a; > 0.

For G in (3.9a) we use the decomposition Gp = ﬁ([—l:). For the approximate
inverse G we then have G = (diag(G 1))~ 2G g = D2 (I — L). From Lemma 3.6
(3.19) it follows that det(Jy) > det(J; ) for all L € Sg: . Furthermore from Lemma, 3.6
(3.20) we obtain that for G = D2 (I — L) we have (ﬁ%)zJﬁ = I and thus equality in
(3.24) for G = G . We conclude that Gg: is the unique minimizer of the functional
in (3.23). O

REMARK 3.9. The quantity

Ltr(A)

K(4)=—> T

det(A)~
can be seen as a nonstandard condition number (cf. [1, 10]). Properties of this

quantity are given in [1] (Theorem 13.5). One elementary property is

1< K(4) <22 = x(4) . =

COROLLARY 3.10. For the approximate inverse G g as in (3.9) we have (cf.(3.22))

1

1< K(G@pAGh) = ——————
< K(GpraGp) det (G AGT, )%

?

ie.,
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where ~; is as in (3.12). Let E' be a lower triangular sparsity pattern that is larger
than E!, iee., E' ¢ E' C {(i,j) | 1 < j < i < n}. From the optimality result in
Theorem 3.8 it follows that

1 < K(GpAGEL) < K(GpAGE) . i (3.26)

In the following remark we summarize the main properties of the new method for
approximating d(A) that is formulated in Algorithm 3.3.

REMARK 3.11. The method of approximating d(A4) by d(Gp)~2 = d(G )™
boils down to chosing a sparsity pattern E! and computing the Cholesky decomposi-
tion of the low dimensional matrices A; in step 2 of Algorithm 3.3. Related to this
algorithm we note the following;:

1. The sparse approximate inverse exists for every symmetric positive definite
A. Note that such an existence result does not hold for the incomplete Cholesky
factorization.

2. The construction of the matrices 4; = P;AP! and the computation of the
Cholesky factorization A; = L;L! can be realized for all i in parallel. Hence the
method has a very high potential for parallelism.

3. If for a given ¢ the number v; = (L;)p,;n; in (3.12) has been computed the
matrices A; and L; are not needed anymore. Hence the storage requirements for the
method are very low.

4. The sparse approximate inverse has an optimality property related to the
determinant: The functional G — K(GAGY) , G € Sg, is minimal for Gg. From
this the inequality (3.25) and the monotonicity result (3.26) follow.

2

5. From(3.25) it follows that []} ;7 is an upper bound for d(A). O

4. Monte Carlo methods for approximating d(A). In this section we de-
scribe two methods for aproximating d(A) that are known from the literature. Both
methods are based on the following proposition [9, 3].

PROPOSITION 4.1. Let H be a symmetric matriz of order n with tr(H) # 0.
Let V' be the discrete random wvariable which takes the values 1 and —1 each with
probability 0.5 and let z be a vector of n independent samples from V. Then zTHz is
an unbiased estimator of tr(H):

E(z"Hz) =tr(H) ,
and
var(zTHz) = 2 Z h?j .
1#]
Using the identity

d(A) = det(A)+ = exp(%tr In(A))

this leads to the following Monte Carlo algorithm
ALGORITHM 4.2.
Forj=1,2,....M
1. Generate z; € R with entries which are uniformly distributed in (0,1).
2. If (z;); < 0.5 then (2;); := —1, otherwise, (z;); := 1.
3. Compute an approximation

d; ~ zJT In(A)z; . (4.1)
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End. Compute

. 1 M
dp(A) = exp(= Z d;) .
J:l

3

In the following two subsections we describe methods for computing the approxima-
tion dj ~ z In(A)z; in (4.1).

4.1. Approximation of 27 In(A4)z using Chebyshev polynomials. We de-
scribe a method that is presented in [16]. We assume that A is scaled by a factor
0<3t< ﬁ Then o(+A) C [e,1] holds with 0 < & < 4. For ease of notation this
scaled matrix is denoted by A, too.

Let T}, k > 0 be the Chebyshev polynomials on [0, 1]:
Ti(z) =2x -1, To(z) =1, Tpa(z) = (42 — 2)Tk(x) — Tp—r(z) for k>1.

The method is based on the following expansion for Inx :

m+1
Inz = Z kak +dlnz for =€ e1], (4.2)
6] < 2e*2<m+1>f : (4.3)

We show that this result holds and derive a simple and cheap algorithm for the
computation of the coefficients by. Starting point is the identity

;ll/ (1 + PTm+1 ) Z Cka , YE€lgl], (4.4)

=Y € [0,1] this is equivalent to

with parameters p and cg, 0 < k <m. With 2z := 1=

m

14 pTyi(2) = (1—¢)z Z enTi(z) - (4.5)

Substitution of 2T} (z) = 1Tj11(2) + 3T%k(2) + $Tk—1(z) in (4.5) and comparing the
coefficients of T on both sides of the equality results in a linear system of m + 2
equations for the unknowns ¢ := (co,...,c,)? and p. A simple calculation shows
that the solution of this system is given by

4
B71
1-—¢
p=—el B e, (47)

c= er, (4.6)

with e; and e,, ;1 the first and (m + 1)-th basis vector in R™*! | respectively, and

2y -1
-2 2y -1 0
-1 2y -1
B= L € RUm+D) x(m+1) _1+e
.. . ., ) ]._8
0 -1

-1 2y
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Hence, the LU-decomposition of B results in an efficient algorithm for computing the
coefficients ¢ and p in (4.6), (4.7). Elementary manipulations with difference equations
yield explicit formulas for B~'e;. For example, for the last component of this vector
one can derive the expression

-2
T -1, _ — /2
p=enB e = AL A~ (m+1) A=+ VY L. (4.8)
Such explicit expressions are given in [16] and offer an alternative (but probably

somewhat less efficient) approach for computing ¢ and p.
From (4.4) and |Ty41(2)] < 1 it follows that

1 1 & 1
— _<__§ T
|p|y_y k:oCk k(l_

Integrating between y = « € [, 1] and y = 1 we obtain

Y 1
)S|p|§7 yE[E,].]-

1—=z

1—¢
lp|llnz < —(1 —¢) ch/ 2)dz —Inzx < —|p|lnz , =€ le1]. (4.9)
Using [Tp = 3(To +T1), [Th = LTy —Tp), [Ti = 2(3 — 2=1), k > 2, a
straightforward computation yields
mo e 1
1—6 ch/ dZ_Zkak 5
k=0 70
. 1—¢
with by = — 1% k-1, k=mm+1,
1—
b = — 4k6(0k—1—0k+1) , 2<k<m-1, (4.10)
1—
b= ——— (20— ) ,
m—+1
bo=— > (=1)Fby .
k=1
Hence, using the values for the coefficients ¢ = (co, . .., cm)? from (4.6) the coefficients

by, in (4.2) directly follow from(4.10). The bound on ¢ in (4.3) is a consequence of
(4.9) and

2
_ —(m+1 —2(m+1)y/E
|p| ToamtL )\ —(m+1) <2 (ot <2 (Ve
Now assume that the coefficients by have been computed. For z; € R" it follows that

s I—A
& n(A)z; ~ Y b Tie(1— =
=0

)z =:d; (4.11)

can be used as an approximation in (4.1). The terms ijTk(%)zj in (4.11) can be
computed using the recursion for Tj. In our applications we have n = dim(A) > m
and the costs for computing d; in (4.11) are dominated by the costs for the m + 1
matrix-vector multiplications with the matrix A. These matrix-vector computations
are easy to parallelize. Note, however, that the Monte Carlo algorithm 4.2 and the
computation of the sum in (4.11) are purely sequential prozesses.



APPROXIMATION OF DETERMINANTS 13

4.2. Approximation of 27 In(4)z using quadrature. In this subsection we
recall the method from [3] for approximating 2z In(A4)z, z € R*. Let QTAQ = A be
the eigen-decomposition of A with @ orthogonal, A = diag(A1,...,An), A1 < ... <\,
For z € R* let z = Hgﬁ Then we have

2T In(A)z

12113

where the measure u()) is given by

n )\n
=7"In(A)z =) In\ 2 :/ InAdu(\) =: J , (4.12)
i=1 A1

'0 if A<,
u(A) = 2}215? if <A<y, 1<i<n-—-1,
if Ay <A

For approximating the integral in (4.12) one can use a Gauss-type quadrature rule.
Several possibilities are treated in [3]. Here we use a Gauss-Radau method:

N

Qn = ij Ind; +v.Int,
j=1

where the node 7 is prescribed. We will consider 7 &~ A\; and 7 &~ A,. The weights
wj, V- and the nodes 6; are unknown and to be determined. It is well known that
the nodes and weights in the Gauss quadrature can be computed using the Lanczos
method (cf. [4]). The Gauss-Radau quadrature is treated in [5]. For f(z) = Inz we
have fCN+1(z) > 0 for all > 0 and from [5] it then follows that if 7 < Ay (7 > \y)
the approximation @Qn is a lower bound (upper bound) for J. In [3] the following
algorithm for approximating J is proposed. We assume that 1 < A; and v» > A, are
given.
ALGORITHM 4.3.
xo = z/|zll2, -1 =0, 7 =0;
Fork=1,2,... do
1. ap = ${,1A$k—1-
2. 1 =ATp_1 — ORTh—1 — Vk—1Tk—2-

Sy = [Irell2.
4. Let
ar M 0
Y1 Q2 Y2
Tk— ' ’ 9
. : Ve—1
0 Ye-1 Qg

Om = ﬁeg(Tk — VmI)*lek, m=1,2,
= (m Ty Yrew
TIE ):<'7k€17; ¢m> ’ ¢m:’/m+6m; m=12.

5. Compute the eigenvalues 0ém) and the first elements wgm) of the normalized

eigenvectors of T,gm) (m=1,2; 1<l<k+1).
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6. QU™ = (wWi™)2mel™, m=1,2.

e
7. 1If Qr Qi < eps (user specified tolerance) then Stop.

End. Compute

1
@7+ Q= - (4.13)

For z = z; as in Algorithm 4.2 the value d; := d.; from (4.13) is taken as the
approximation in (4.1). As for the method in the previous subsection we have an
outer (Monte Carlo) and inner iteration which are purely sequential operations. In
our applications the dimensions of the eigenvalue problems that occur in Algorithm
4.3 are very small compared to n = dim(A) and the costs for one iteration in this
algorithm are dominated by the matrix-vector multiplication with the matrix A.
Both in the algorithm in this subsection and in the algorithm in subsection 4.1 we need
approximations of A\; and A,. It turns out that the performance of the algorithms is
less sensitive to the accuracy of these approximations. In the numerical experiments
we used a fixed (small) number of Lanczos iterations to compute these approximations.

5. Numerical experiments. In this section we present some results of numer-
ical experiments with the methods introduced in §3 and §4. All experiments are done
using a MATLAB implementation.

Experiment 1 (discrete 2D Laplacian). We consider the standard 5—point dis-
crete Laplacian on a uniform square grid with N mesh points in both directions,
i.e. n = N2. For this symmetric positive definite matrix the eigenvalues are known:

vm

72(N+1))+sin

/\,,H:4(N+1)2<sin2( il )>, 1<v,u<N. (51)

2(7
2(N+1)
For the choice of the sparsity pattern E! we use a simple approach:
E'(k) :=={(i,j) | i>7 and (A%);; #0}, k=1,2,.... (5.2)

We first describe some features of the methods for the case N = 30, kK = 2 and after
that we will vary IV and k. Let A denote the discrete Laplacian for the case N = 30.
For the matrices A; = PiAPiT € R *™ (=1,...,n) the dimensions n; are between
1 and 7; the mean of these dimensions is 6.7. Algorithm 3.3 yields an approximation

A(Gpiz) 2 = d(Gprio) Hﬁ — 3.2526 107 .

for d(A) = 3.1379 103. Hence the relative error is 3.5%. For the computation of the
Cholesky factorizations A; = L;LY, i = 1,2,... n, approximately 41 10° flops are
needed (in the MATLAB implementation). If we compare this with the costs of one
matrix—vector multiplication A *z (8760 flops), denoted by MATVEC, it follows that
for computing this approximation of d(A), with error 3.5 percent, we need arithmetic
work comparable to only 5 MATVEC. In Table 5.1 we give results for the discrete 2D
Laplacian with N = 30 (n = 900), N = 100 (n = 10000) and N = 200 (n = 40000).
We use the sparsity patterns E'(2) and E'(4). In the third column of this table we
give the computed approximation of d(A) and the corresponding relative error. In
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TABLE 5.1
Results for 2D discrete Laplacian with E* = E!(2)

n d(A) d(Ggi(z) 7 costs for d(Gpi))~? costs for
(error) d(GEl(Z))72 (error) d(G’El(zl))*2
900 3.138 102 3.253 102 5 MV 3.177 102 41 MV
(3.5%) (1.2%)
10000 | 3.292 104 3.434 10% 5 MV 3.347 102 45 MV
(4.1%) (1.6%)
40000 | 1.300 10° 1.359 10° 5 MV 1.323 103 46 MV
(4.3%) (1.7 %)

the fourth column we give the total arithmetic costs for the Cholesky factorization of
the matrices 4;, ¢ = 1,2,...,n. In the columns 5 and 6 we give the results and corre-
sponding arithmetic costs for case with the larger sparsity pattern E'(4). Related to

F1G. 5.1. Algorithm 4.2 combined with the method from §4.1 : n = 10000 (left), n = 40000 (right).

0.02 T

Relative error

é i m=
: x:m=10
,o,GA’W

L L L
] 5 10 15

o 5 10 15 20 25 30 35 40 45 50
Number of Monte Carlo iterations

these numerical results we note the following. From the third and fourth column in
Table 5.1 we see that using this method we can obtain an approximation of d(A) with
relative error only a few percent and arithmetic costs only a few MATVEC. More-
over, this efficiency hardly depends on the dimension n. Comparison of the third and
fifth columns in Table 5.1 shows that the approximation significantly improves if we
enlarge the pattern from E'(2) to E'(4). The corresponding arithmetic costs increase
by a factor of about 9. This is caused by the fact that the mean of the dimensions of
the systems A;, i = 1,2, ...,n, increases from approximately 7 (for E!(2)) to approx-
imately 20 (for E'(4)).

We also applied the Monte Carlo algorithm 4.2, with M = 50, to this problem. If
for the approximation of ij In(A)z; in (4.1) we use the approach based on Cheby-
shev polynomials we obtain the results in Figure 5.1. It turns out that the bound
in (4.3) is very pessimistic and should not be used to determine a value for the pa-
rameter m. In the experiments we used the values m = 3,4,7,10. Note that the
arithmetic costs in the inner Chebyshev iteration (4.11) are comparable to m + 1
MATVEC. From Figure 5.1 we see that for a relative error of approximately 1.5% it
suffices to take 10-15 Monte Carlo iterations with m = 4. The arithmetic costs are
then roughly 50-75 MATVEC. In Figure 5.2 results are shown if ij In(A)z; in (4.1)
is approximated using Algorithm 4.3. We used different tolerances in step 7 in this
algorithm: eps = 0.02, 0.01, 0.005, 0.002. The corresponding total number of matrix-
vector multiplications is: 188, 250, 306, 449 (for » = 10000) and 200, 250, 350, 501
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TABLE 5.2
Results for MATLAB random sparse matrices with E' = E'(2)

n d(A) d(Ggi)~2 costs for
(error) d(Gpi)~?
900 0.82453 0.82521 23 MV
(8.2107%)
10000 | 0.80985 0.81053 18 MV
(8.4 10—%)

(for n = 40000). We observe that for a relative error of approximately 1.5% about
10-15 Monte Carlo iterations with eps = 0.005 are sufficient. The arithmetic costs are
then roughly 60-95 MATVEC.

Note that both Monte Carlo methods (in Figure 5.1 and in Figure 5.2) perform sim-

Fi1c. 5.2. Algorithm 4.2 combined with the method from §4.2 : n = 10000 (left), n = 40000 (right).

-0.01F Bl

Relative error

+:eps=0.02

Relative error
L

0:eps=001
*:eps=0.005 -
X eps=0.002

+:eps=0.02
0:eps=0.01
-0.051 *:eps=0005 -

- ] X: eps=0.002
¢
sl ] -0.06 7W

5 10 15 20 25 30 35 40 5 50 o 5 10 15 20 25 30 35 40 5 50
Number of Monte Carlo iterations Number of Monte Carlo iterations

ilarly. In both methods we need estimates for the extreme eigenvalues of the matrix
A. We used the known values of these extreme eigenvalues given in (5.1).

Experiment 2 (MATLAB random sparse matrix). The sparsity structure of the
matrices considered in Experiment 1 is very regular. In this experiment we con-
sider matrices with a pattern of nonzero entries that is very irregular. We used the
MATLAB generator (SPRAND(n,n,2/n)) to generate a matrix B of order n with ap-
proximately 2n nonzero entries. These are uniformly distributed random entries in
(0,1). The matrix BT B is then sparse symmetric positive semidefinite. In the generic
case this matrix has many eigenvalues zero. To obtain a positive definite matrix we
generated a random vector d with all entries chosen from a uniform distribution on
the interval (0,1) (d :=RAND(n,1)). As a testmatrix we used A := B? B+diag(d). We
performed numerical experiments similar to those in Experiment 1 above. We only
consider the case with sparsity pattern E! = E'(2). Results obtained with Algorithm
3.3 are shown in Table 5.2. From these results it is clear that for this random matrix
A the approximation of d(A) based on the sparse approximate inverse is much better
than for the discrete Laplacian in Experiment 1. This is related to the fact that for
the random matrices considered in this example the preconditioned matrix G g AG g
turns out to be very well-conditioned. We also apply the same Monte Carlo methods
as discussed in Experiment 1 to these matrices. To allow a fair comparison we first
rescaled the matrix A with a diagonal matrix D, such that the absolute row sums
of the matrix DAD are all equal to one. Estimates of the extreme eigenvalues that
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are needed in these algorithms are obtained by applying 20 iterations of the Lanczos
method (with starting vector (1,...,1)T). The performance of these methods is sim-
ilar for the three cases n = 900, 10000, 40000. In Figure 5.3 we show the results for
the case n = 10000.

For the Monte Carlo method using the approach based on Chebyshev polynomials

x10°

Fi1G. 5.3. Algorithm 4.2 combined with the method from §4.1 (left) and from §4.2 (right).
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the result after 20 iterations and m = 7 (cf. Figure 5.3, left) has a relative error
~ 0.001. For computing this result approximately 180 MATVEC are needed. If we
use the Gauss-Radau quadrature (cf. Figure 5.3, right) with eps = 0.02 then after 20
Monte Carlo the result also has a relative error &~ 0.001. The total costs are about
100 MATVEC. Hence, in this example the method based on the sparse approximate
inverse is more efficient than the Monte Carlo methods.

Experiment 3 (QCD type matrix). In this experiment we consider a complex Her-
mitean positive definite matrix with a regular sparsity structure. This matrix is
motivated by applications from the QCD field. In QCD simulations the determinant
of the so-called Wilson fermion matrix is of interest. These matrices and some of their
properties are discussed in [14, 13]. The Wilson fermion matrix A = I — kD describes
a nearest neighbour coupling with periodic boundary conditions on a four-dimensional
regular space-time lattice with lattice sites

QN:{($1,$2,£E3,$4) | €Ty = 1,...,’[”, T :2Ni} .

The so-called hopping matrix D has the form

4
Dy = Z ((I = V) ® Uu(x))(shy*eu + ((I + ) ® Uf(a: - eu))5w7y+eH N GR))

p=1

where z,y are lattice sites from Qn, e, is the u-th basisvector in R* and §,, = 1 (0)
if z =y (x # y). The matrices I £, € C*** are projectors onto two-dimensional
subspaces and the matrices U, (z) € C**3 are from SU(3) (cf. [13] for details). Usu-
ally, these matrices U, () are generated randomly. In this model the matrix D has a
block structure with blocks D, , € C'**12 z y € Qx. Here we consider a very simple
variant of this model. We take v, =0, I =1, U,(x) = exp(2ima,(x)), where a, () is
chosen from a uniform distribution on the interval (0, 1). Hence the couplings D, , in
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(5.3) are complex scalars. Note that the matrix D is hermitean. Due to the randomly
generated functions a,(z) the couplings D, , show a strong fluctuation as a func-
tion of z and y. In QCD simulations the parameter « is taken such that the Wilson
fermion matrix A is positive definite and close to singular. In the experiment here
we computed the largest eigenvalue pp of D (using the MATLAB function EIGS) and
set £ := (1.01 pp)~! We performed numerical experiments as in Experiment 1 with
E!' = EY(2) for two cases: (n1,n2,n3,n4) = (4,4,8,8) and (n1,n2,n3,n4) = (8,8,8,8).
The results are presented in Table 5.3. We also used the Monte Carlo methods. As

TABLE 5.3
Results for QCD type matriz with E' = E'(2)

n d(A) | d(Ggi)~2 | costs for
(error) d(Gp )2
1024 | 0.8032 0.8248 22 MV
(2.7%)
4096 | 0.8037 0.8254 21 MV
(2.7%)

in Experiment 2 we applied 20 Lanczos iterations to obtain estimates for the extreme
eigenvalues. The results are shown in Figure 5.4. From this figure we see that after 20

Fic. 5.4. Algorithm 4.2 combined with the method from §4.1 (left) from §4.2 (right).
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Monte Carlo iterations using the method from subsection §4.1 with m = 2 the result
has a relative error of about 2 percent. For computing this result approximately 80
MATVEC are needed. Using the method from subsection §4.2 with eps = 0.4 the
result after 20 Monte Carlo iterations has a relative error of about 1 percent. The
total costs for computing this result are about 80 MATVEC.

Note that in all three experiments the performance of the methods hardly depends
on the dimension n. In all measurements for the arithmetic costs we did not take
into account the costs of determining the sparsity pattern E!(k) and of building the
matrices P;API.

We conclude that at least for these few model problems the new method can com-
pete, even on a sequential machine, with the two Monte Carlo methods proposed
in the literature. We believe that in a (massively) parallel environment the method
based on the sparse approximate inverse can be expected to be much more efficient
than the Monte Carlo techniques because the former is ideally suited for a parallel
implementation.
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REMARK 5.1. In this paper we do not discuss the topic of error estimation. For
the Monte Carlo method error estimation techniques are treated in [3]. Related to the
method based on the sparse approximate inverse (Algorithm 3.3) we briefly discuss
one possible technique for a posteriori error estimation. From (3.25) we have the a
priori error bound

_d4)
dGp)™* ~
The exact error is given by
d(A) T
W = d(GElAGEl) = d(EEl) ,
where Egi ' = G AG%, is a sparse symmetric positive definite matrix. Fore ease of

presentation we assume that the pattern E' is sufficiently large such that p(I—Eg) < 1
holds. In [12] it is proved that if A is an M-matrix or a (block) H-matrix then this
condition is satisfied for every lower triangular pattern E'. For the exact error we
obtain, using a Taylor expansion of In(I — B) for B € R"*" with p(B) < 1 (cf. [6]):

d(Ep) = exp <% ln(det(SEz))> — exp <%tr(ln(EEz))>

— exp <%tr(ln(] (- gE,)))> = exp ( - —tr ; (= 5’3’ ) . (5.4)

Hence, an error estimation can be based on estimates for the partial sums S,,
Sopey wtr((I = Ep)*). The construction of G is such that diag(Eg) = I (cf. (3.22))
and thus tr(€g:) = n and S; = 0. For Sy we have

S, = %tr(([ _Ep)?) = %u([ 96+ E2,) = —%n + %tr(é']%;,) L (55)
For approximating the trace quantity tr(£3,) in Sy we can use the following Monte
Carlo algorithm, based on Proposition 4.1:
ALGORITHM 5.2.
Forj=1,2,....M
1. Generate z; € R with entries which are uniformly distributed in (0,1).
2. If (z;); < 0.5 then (z;); == —1, otherwise, (z;); == 1.
3. y;=Emz, o= yfyj.
End.
This then yields

1 1 &
Sy 1= —En + m ;aj (56)
as an approximation for Sy. The corresponding error estimate is given by
1 -
E2 = exp(—ESQ). (57)

It turns out that, at least in our experiments, this technique yields satisfactory results.
One clear disadvantage of this approach is that the matrix G must be available (and
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thus stored). Note that for the computation of the approximation d(G g:)~2 of d(A)
we do not have to store the matrix Gg:.
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REFERENCES

O. AXELSSON, Iterative Solution Methods, Cambridge University Press, New York, 1994.

Z. BAI AND G. H. GOLUB, Bounds on the trace of the inverse and the determinant of symmetric
positive definite matrices, Annals of Numer. Math., 4 (1997), pp. 29-38.

Z. BA1, M. FAHEY AND G. H. GOLUB, Some large scale matriz computation problems, J. Com-
put. Appl. Math., 74 (1996), pp. 71-89.

P. Davis AND P. RABINOWITZ, Methods of Numerical Integration, Academic Press, New York,
1984.

G. H. GoLuB, Some modified matriz eigenvalue problems, SIAM Review, 15 (1973), pp. 318—
334.

G. H. GoLuB AND C. F. VAN LoAN, Matriz Computations, Third ed., The Johns Hopkins
University Press, Baltimore, MD, 1996.

M. J. GROTE AND T. HUCKLE, Parallel preconditioning with sparse approzrimate inverses, SIAM
J. Sci. Comput., 18 (1997), pp. 838—-853.

M HASENBRUCH, Speeding up finite step-size updating of full QCD on the lattice, Phys. Rev. D
59 (1999), 054505.

M. HUTCHINSON, A stochastic estimator of the trace of the influence matriz for laplacian
smoothing splines, Commun. Statist.-Simula., 18 (1989), pp. 1059-1076.

I. E. KAPORIN, An alternative approach to estimating the convergence rate of the CG method,
In Numnerical Methods and Software, Yu. A. Kuznetsov, ed., Dept. of Numerical Mathe-
matics, USSR Academy of Sciences, Moscow, 1990, pp. 55-72. (In Russian.)

L. .YU. KOLOTILINA AND A. YU. YEREMIN, On a family of two-level preconditionings of the
incomplete block factorization type, Soviet J. Numer. Anal. Math. Model., 1 (1986), pp.
293-320.

L. .Yu. KOLOTILINA AND A. YU. YEREMIN, Factorized sparse approximate inverse precondi-
tionings I : Theory, STAM J. Matrix Anal. Appl., 14 (1993), pp. 45-58.

B. MEDEKE, On algebraic multilevel preconditioners in lattice gauge theory. In: Numerical
Challenges in Lattice Quantum Chromodynamics (eds. A. Frommer, T. Lippert, B. Medeke
and K. Schilling), Lecture Notes in Computational Science and Engineering, 15 (2000), pp.
99-114.

I. MONTVAY AND G. MUNSTER, Quantum Fields on a Lattice, Cambridge University Press,
Cambridge, 1994.

D. PoLLARD, Convergence of Stochastic Processes, Springer, New York, 1984.

J. SEXTON AMD D. WEINGARTEN, Error estimate for the valence approximation and for a
systematic expansion of full QCD, Phys. Rev. D 55 (1997), pp. 4025-4035.

C. THRON, S. J. DoNG, K. F. Liu AND H. P. YING, Padé-Z> estimator of determinants, Phys.
Rev. D 57 (1998), pp. 1642-1653.



