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Abstract. This paper is concerned with the convergence analysis of robust multigrid methods for
convection-diffusion problems. We consider a finite difference discretization of a 2D model convection-
diffusion problem with constant coefficients and Dirichlet boundary conditions. For the approximate
solution of this discrete problem a multigrid method based on semicoarsening, matrix-dependent
prolongation and restriction and line smoothers is applied. For a multigrid W-cycle we prove an upper
bound for the contraction number in the euclidean norm which is smaller than one and independent
of the mesh size and the diffusion/convection ratio. For the contraction number of a multigrid V-
cycle a bound is proved which is uniform for a class of convection-dominated problems. The analysis
is based on linear algebra arguments only.

Key words. multigrid, convection–diffusion, convergence analysis

AMS subject classifications. 65F10, 65F50, 65N22, 65N55

1. Introduction. Concerning the theoretical analysis of multigrid methods dif-
ferent fields of application have to be distinguished. For linear selfadjoint elliptic
boundary value problems the convergence theory has reached a mature, if not its final
state (cf. [5, 9, 28, 29]). In other areas the state of the art is (far) less advanced.
For example, for convection-diffusion problems the development of a multigrid con-
vergence analysis is still in its infancy. In this paper we present a convergence analysis
of a multilevel method for a special class of 2D convection-diffusion problems.
An interesting class of problems for the analysis of multigrid convergence is given by

{

−ε∆u + b · ∇u = f in Ω = (0, 1)2

u = g on ∂Ω,
(1.1)

with ε > 0 and b = (cosφ, sin φ), φ ∈ [0, 2π). The application of a discretization
method (e.g., a finite difference method with upwinding or a streamline diffusion fi-
nite element method) results in a large sparse linear system which depends on a mesh
size parameter h. Note that in this discrete problem we have three interesting pa-
rameters: h (mesh size), ε (convection-diffusion ration) and φ (flow direction). For
the approximate solution of this type of problems robust multigrid methods have been
developed which are efficient solvers for a large range of relevant values for the param-
eters h, ε, φ. To obtain good robustness properties the components in the multigrid
method have to be chosen in a special way because in general the “standard” multi-
grid approach used for a diffusion problem does not yield satisfactory results when
applied to a convection-dominated problem. To improve robustness several modifi-
cations have been proposed in the literature, such as “robust” smoothers (smoothers
which try to follow the flow direction), matrix-dependent prolongations and restric-
tions and semicoarsening techniques. For an explanation of these methods we refer
to [9, 27, 3, 7, 13, 14, 16, 17, 21, 30]. These modifications are based on heuristic
arguments and empirical studies.
Related to the theoretical analysis of multigrid applied to convection-diffusion prob-
lems we note the following. In the literature one finds convergence analyses of multi-
grid methods for nonsymmetric elliptic boundary value problems which are based on
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perturbation arguments [6, 9, 15, 26]. If these analyses are applied to the problem in
(1.1) the constants in the estimates depend on ε and the results are not satisfactory
for the case ε ≪ 1, i.e., for convection-dominated problems. In [1, 11, 23] multigrid
convergence for a 1D convection-diffusion problem is analyzed. The results show ro-
bustness of two- and multigrid methods. These analyses, however, are restricted to the
1D case. In [18, 24] convection-diffusion equations as in (1.1) with periodic boundary
conditions are considered. A Fourier analysis is applied to analyze the convergence of
two- or multigrid methods. In [18] the problem (1.1) with periodic boundary condi-
tions and φ = 0 is studied. A V-cycle contraction result is proved which is uniform in
ε and h provided ε

h
≤ c is satisfied with c a positive constant that does not depend on

ε or h. In [24] a two-grid method for solving a finite difference discretization of the
problem (1.1) with periodic boundary conditions is analyzed and it is proved that the
two-grid contraction number is bounded by a constant smaller than one which does
not depend on any of the parameters ε, h, φ. In [2] the application of the hierarchi-
cal basis multigrid method to a finite element discretization of problems as in (1.1)
is studied. The analysis there shows how the convergence rate depends on ε and on
the flow direction, but the estimates are not uniform with respect to the mesh size
parameter h. Recently, in [19] an analysis of the robustness of a multigrid method
applied to a class of 2D convection-diffusion problems with Dirichlet boundary condi-
tions has been presented. In our opinion, this analysis contains some loose ends and
is not convincing.
As one of the simplest model cases for a 2D discrete convection-diffusion problem one
can take the problem as in (1.1) with φ = 0 and discretized by a stable finite difference
method on a tensor product grid. In none of the analyses known from the literature
the robustness of multigrid, with respect to variation in ε and h, applied to this prob-
lem has been proved. In this paper such robustness results will be presented. Note
that for this discrete problem we have, for ε small, a “flow” in the x-direction from
left to right aligned with the grid lines. We study a multigrid method in which the
following components for smoothing and coarse grid correction are used. The coarse
grids are obtained by semicoarsening in the x-direction and for the construction of the
coarse grid operators we use the Galerkin approach. The prolongation and restric-
tion are matrix-dependent and result from a tensor product construction applied to
1D matrix-dependent intergrid transfer operators known from the literature. For the
smoother we take a y-line Jacobi or a left-to-right y-line Gauss-Seidel method. Note
that the y-lines are in crosswind direction and thus the y-line Jacobi method is not
a robust smoother. We use y-line smoothers to make the analysis work. The conver-
gence analysis that will be presented is based on linear algebra arguments only. The
main idea is as follows. The discrete operator (block tridiagonal matrix) has the tensor
product form A = I ⊗Ax + Ay ⊗ I, where Ay is a symmetric positive definite tridiag-

onal matrix (corresponds to −ε ∂2

∂y2 ) and Ax is a tridiagonal M-matrix (corresponds

to −ε ∂2

∂x2 + ∂
∂x

). Using an orthogonal eigenvector basis of Ay we can transform A to
block diagonal form where the diagonal blocks are tridiagonal matrices. The diagonal
blocks depend on the eigenvalues of Ay. These eigenvalues are treated as unknown
positive parameters. This block diagonalization can be applied to all components in
our two-grid method. It then turns out that each diagonal block of the transformed
two-grid iteration matrix can be interpreted as the iteration matrix of a two-grid
method applied to a discrete one-dimensional convection-diffusion-reaction problem.
In this one-dimensional setting with tridiagonal matrices we can prove a smoothing
property and approximation property which are robust with respect to variation in
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the relevant parameters (ε, h and the eigenvalues of Ay). This block diagonalization
technique is also used in [4] for the analysis of robustness of multigrid applied to a
symmetric anisotropic diffusion problem. Using this technique we obtain a bound for
the two-grid contraction number which depends only on ν, the number of smoothing
iterations. Moreover, this bound is smaller than one for ν sufficiently large. Using a
standard technique as in [9] we obtain a similar bound for the multigrid W -cycle. For
the class of convection-dominated problems with ε

h
≤ 1

2 we will prove a robustness
result for the multigrid V-cycle with left-to-right y-line Gauss-Seidel smoothing.

The remainder of this paper is organized as follows. In Sect. 2 we introduce the
class of discrete problems that will be considered and describe the two-grid method.
It is shown that for this two-grid method the contraction number corresponding to
a two-dimensional convection diffusion problem can be bounded by the maximum of
the two-grid contraction numbers for a certain class of one-dimensional convection-
diffusion-reaction problems. In Sect. 3 we consider this class of one-dimensional
problems and prove a smoothing- and approximation property in which the constants
are independent of all relevant parameters. As a consequence of this we obtain a
robustness result for the two-grid method. In Sect. 4 the W-cycle convergence is an-
alyzed along the lines as in [9]. Finally, in Sect. 5 a robustness result for the V-cycle
multigrid method applied to convection-dominated problems is proved.

2. Two-grid method and preliminary results. We start with a description
of the class of problems that will be considered. Let Ωk,m be a two-dimensional tensor
product grid, with an arbitrary but fixed mesh size hy = 1

m
in the y-direction and a

variable mesh size hk = 2−k, k = 1, 2, . . ., in the x-direction. We use the notation

nk := 2k − 1,

Ik : nk × nk identity matrix ,

Iy : (m − 1) × (m − 1) identity matrix .

We assume that Ay is a given symmetric positive definite matrix of order m− 1. Let
Tγ be the tridiagonal matrix

Tγ =













1 −γ

−(1 − γ)
. . .

. . .

. . .
. . . −γ

−(1 − γ) 1













, γ ∈ (0,
1

2
) . (2.1)

The dimension of Tγ will be clear from the context. Now a class of tensor product
matrices is introduced:

L̂k(γ) = { αIy ⊗ Tγ + βAy ⊗ Ik | α > 0, β ≥ 0 } . (2.2)

In (2.2) we use the tensor product notation: For matrices A ∈ R
n×n and B ∈

R
m×m, A ⊗ B ∈ R

nm×nm is a block-matrix with (i, j)-block given by aijB, 1 ≤
i, j ≤ n.

Remark 2.1. We show that finite difference methods applied to certain 2D
convection–diffusion equations yield matrices that are in L̂k(γ). Consider the bound-
ary value problem

{

−ε∂2u
∂x2 − ∂

∂y
(b(y)∂u

∂y
) + ∂u

∂x
= f in Ω = (0, 1)2

u = 0 on ∂Ω,
(2.3)
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with ε > 0, b ∈ C1[0, 1] and b(y) > 0 for all y ∈ [0, 1]. An interesting special case
of (2.3) is b(y) = ε for all y. For the second order derivatives central differences on
the grid Ωk,m are used. The differential operator in y-direction then results in the
symmetric positive definite matrix

Ay =
1

h2
y

















b1 + b2 −b2

−b2 b2 + b3 −b3

. . .
. . .

. . .

. . .
. . . −bm−1

−bm−1 bm−1 + bm

















, bj := b((j− 1

2
)hy). (2.4)

If for the differential operator in x-direction, u → −ε∂2u
∂x2 + ∂u

∂x
, we use full upwind

differences for the term ∂u
∂x

we obtain the matrix

αTγ with α =
2ε

h2
k

+
1

hk

, γ =
ε

hk

2 ε
hk

+ 1
∈ (0,

1

2
) . (2.5)

If we use central differences for the term ∂u
∂x

we obtain the matrix

αTγ with α =
2ε

h2
k

, γ =
ε

hk

− 1
2

2 ε
hk

, (2.6)

with γ ∈ (0, 1
2 ) if the usual stability condition hk < 2ε is fulfilled. Using a left-to-right,

bottom-to-top ordering of the grid points both (2.4), (2.5) and (2.4), (2.6) result in a
discrete problem with a matrix of the form

αIy ⊗ Tγ + Ay ⊗ Ik ∈ L̂k(γ). (2.7)

We note that many other known finite difference approximations of the differential

operator −ε ∂2

∂x2 + ∂
∂x

, like e.g. the Il’in scheme, combined with (2.4) yield a matrix

which is an element of L̂k(γ) for a suitable γ ∈ (0, 1
2 ). 2

We now introduce a two–grid method for solving a system with matrix Â ∈ L̂k(γ).
This method uses semicoarsening in the x-direction, a matrix-dependent prolongation
and restriction and a Galerkin approach. For the smoother a (damped) block-Jacobi
or block-Gauss-Seidel iteration is used. For the description of these two-grid compo-
nents we need the following matrices

rγ : R
nk → R

nk−1 , rγ =
1

2
rinj(2Ik − Tγ), (2.8a)

pγ : R
nk−1 → R

nk , pγ = (2Ik − Tγ)rT
inj, (2.8b)

where rinj(x1, x2, . . . , xnk
)T = (x2, x4, . . . , xnk−1)

T is the trivial injection. Note that
rγ and pγ are standard matrix-dependent transfer operators corresponding to Tγ , with
stencils [rγ ] = 1

2 [1 − γ 1 γ] and [pγ ] = [γ 1 1 − γ] (cf. [9, 23]). Let

Â = αIy ⊗ Tγ + βAy ⊗ Ik ∈ L̂k(γ) (2.9)
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be given. We define the matrix-dependent restriction and prolongation

r̂γ = Iy ⊗ rγ , p̂γ = Iy ⊗ pγ , (2.10)

and the coarse grid matrix ÂH

ÂH = αr̂γ(Iy ⊗ Tγ)p̂γ + βAy ⊗ Ik−1 . (2.11)

Using r̂γ(Iy ⊗ Tγ)p̂γ = Iy ⊗ rγTγpγ and rγTγpγ = 1
2 tridiag(−(1 − γ)2, 1 − 2γ(1 −

γ),−γ2) it follows that

ÂH ∈ L̂k−1(γ̃) with γ̃ =
γ2

1 − 2γ(1 − γ)
∈ (0, γ). (2.12)

Note that in a coarse grid correction based on (2.10), (2.11) we use semicoarsening in
the x-direction. Furthermore, the interpolation and restriction operators have 3-point
stencils . The smoothers we use have an iteration matrix of the form

Ŝθ = Iy ⊗ Ik − θŴ−1Â, θ ∈ (0, 1) .

We will consider a y-line-Jacobi method, i.e.

Ŵ = ŴJ = αIy ⊗ Ik + βAy ⊗ Ik (2.13)

and a left-to-right y-line-Gauss-Seidel method, i.e.,

Ŵ = ŴGS = αIy ⊗ Lγ + βAy ⊗ Ik , (2.14)

where

Lγ =













1

−(1 − γ)
. . . ∅
. . .

. . .

−(1 − γ) 1













(2.15)

is the lower triangular part of Tγ . In this paper we consider the following two
smoothers: A damped Jacobi method with iteration matrix

Ŝ(ν) = Ŝ
(ν)
J = (I − 1

2
Ŵ−1

J Â)ν (2.16)

and a Gauss-Seidel method with iteration matrix

Ŝ(ν) = Ŝ
(ν)
GS = (I − Ŵ−1

GS Â)(I − 1

2
Ŵ−1

GS Â)ν−1 . (2.17)

Note that in (2.17) we use a combination of a Gauss-Seidel method with and without
damping. The reason for this originates from the analysis of the smoothing property
below (Theorem 3.8).

A two-grid method with the components described above has a corresponding
iteration matrix

M̂k = M̂k(γ) = (I − p̂γÂ−1
H r̂γÂ)Ŝ(ν) , (2.18)
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with I = Iy ⊗ Ik. Note that M̂k(γ) depends only on Â ∈ L̂k(γ), the parameter ν and

on the choice of the smoother (Jacobi (2.16) or Gauss-Seidel (2.17)). We call M̂k(γ)
the two-grid iteration matrix induced by Â. Because the dependence of M̂k on γ plays
an important role in the remainder we use the notation M̂k(γ).

Let Qy ∈ R
(m−1)×(m−1) be an orthogonal matrix such that

QT AyQ = diag(µi)1≤i≤m−1 .

Note that µi > 0 for all i. We define the orthogonal matrix

Q̂k := Q ⊗ Ik, k = 1, 2, . . . . (2.19)

Using Q̂k we can transform all components in the iteration matrix M̂k to block-
diagonal form:

Lemma 2.2. For Â, p̂γ , r̂γ , ŴJ, ŴGS as in (2.9), (2.10), (2.13), (2.14) the
following holds:

Q̂T
k ÂQ̂k = blockdiag(αTγ + βµiIk)1≤i≤m−1, (2.20)

Q̂T
k−1r̂γQ̂k = blockdiag(rγ)1≤i≤m−1 with rγ as in (2.8a), (2.21)

Q̂T
k p̂γQ̂k−1 = blockdiag(pγ)1≤i≤m−1 with pγ as in (2.8b), (2.22)

Q̂T
k−1ÂHQ̂k−1 = blockdiag(αrγTγpγ + βµiIk−1)1≤i≤m−1, (2.23)

Q̂T
k ŴJQ̂k = blockdiag((α + βµi)Ik)1≤i≤m−1, (2.24)

Q̂T
k ŴGSQ̂k = blockdiag(αLγ + βµiIk)1≤i≤m−1. (2.25)

Proof. We show how the results in (2.20) and (2.21) can be proved. The
proofs for the other results are similar. Note that

Q̂T
k ÂQ̂k = (QT ⊗ Ik)(αIy ⊗ Tγ + βAy ⊗ Ik)(Q ⊗ Ik)

= αIy ⊗ Tγ + βQT AyQ ⊗ Ik

= αIy ⊗ Tγ + βdiag(µi)1≤i≤m−1 ⊗ Ik

= αblockdiag(Tγ)1≤i≤m−1 + βblockdiag(µiIk)1≤i≤m−1

= blockdiag(αTγ + βµiIk)1≤i≤m−1

and thus (2.20) holds. The result in (2.21) follows from

Q̂T
k−1r̂γQ̂k = (QT ⊗ Ik−1)(Iy ⊗ rγ)(Q ⊗ Ik)

= Iy ⊗ rγ = blockdiag(rγ)1≤i≤m−1. 2

Note that the diagonal blocks in (2.20), (2.24), (2.25) are (tri)diagonal matrices of
dimension nk ×nk. Motivated by the results in Lemma 2.2 we introduce the following
class of nk × nk tridiagonal matrices:

Lk(γ) = { αTγ + δIk | α > 0, δ ≥ 0 }, γ ∈ (0,
1

2
).

Let

A = αTγ + δIk ∈ Lk(γ)
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be given. We define the coarse grid matrix

AH = αrγTγpγ + δIk−1 ∈ Lk−1(γ̃) with γ̃ =
γ2

1 − 2γ(1 − γ)
(2.26)

and a smoother with iteration matrix

Sθ = Ik − θW−1A, θ ∈ (0, 1) .

We consider a Jacobi smoother with iteration matrix

S(ν) = S
(ν)
J = (I − 1

2
W−1

J A)ν , WJ = diag(A) = (α + δ)Ik (2.27)

and a Gauss-Seidel smoother with iteration matrix

S(ν) = S
(ν)
GS = (I − W−1

GS A)(I − 1

2
W−1

GS A)ν−1, WGS = αLγ + δIk . (2.28)

These components yield a corresponding two-grid iteration matrix

Mk = Mk(γ) = (Ik − pγA−1
H rγA)S(ν) , (2.29)

which is called the two-grid iteration matrix induced by A.
Note that for the (large) tensor product matrices we use a notation with ”̂ ” (e.g.

Â, Ŵ ), whereas for the (small) tridiagonal matrices we use a notation without ”̂ ”
(e.g. A, W ). Using these definitions and Lemma 2.2 we obtain the following

Theorem 2.3. Take Â ∈ L̂k(γ) as in (2.9) and let M̂k(γ) be the two-grid iteration
matrix induced by Â (cf. (2.18)). Then

Q̂T
k M̂k(γ)Q̂k = blockdiag(M

(i)
k (γ))1≤i≤m−1 ,

where M
(i)
k (γ) is the two-grid iteration matrix as in (2.29) induced by the matrix

A = αTγ + βµiIk ∈ Lk(γ).
Proof. Note that

Q̂T
k M̂k(γ)Q̂k = (I − (Q̂T

k p̂γQ̂k−1)(Q̂
T
k−1ÂHQ̂k−1)

−1(Q̂T
k−1r̂γQ̂k)(Q̂T

k ÂQ̂k))(Q̂T
k Ŝ(ν)Q̂k),

and Q̂T
k ŜθQ̂k = I − θ(Q̂T

k Ŵ Q̂k)−1(Q̂T
k ÂQ̂k).

Now use the results of Lemma 2.2.
In this theorem and in Theorem 2.4 below we assume that the smoother S(ν) used in
Mk(γ) corresponds to the smoother Ŝ(ν) used in M̂k(γ), i.e., Ŝ(ν) = Ŝ

(ν)
J corresponds

to S(ν) = S
(ν)
J and Ŝ(ν) = Ŝ

(ν)
GS corresponds to S(ν) = S

(ν)
GS .

The result in the following theorem yields a possibility to analyze the convergence
of the two-grid method induced by a given matrix Â ∈ L̂k(γ) by considering two-grid
convergence for a class of tridiagonal matrices.

Theorem 2.4. Let Â ∈ L̂k(γ) be given and let M̂k(γ) be the two-grid iteration
matrix induced by Â. Then the following holds:

‖M̂k(γ)‖2 ≤ max
A∈Lk(γ)

‖Mk(γ)‖2 , (2.30)

where Mk(γ) is the two-grid iteration matrix (2.29) induced by A.
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Proof. From Theorem 2.3 we obtain

‖M̂k(γ)‖2 = max
1≤i≤m−1

‖M (i)
k (γ)‖2 ,

with M
(i)
k (γ) the two-grid iteration matrix induced by A = αTγ + βµiIk ∈ Lk(γ).

Hence the inequality in (2.30) holds because the maximum over A ∈ Lk(γ) is taken.

Corollary 2.5. The iteration matrix Mk(γ) does not depend on the scaling of
the matrix A ∈ Lk(γ). Hence we obtain

‖M̂k(γ)‖2 ≤ max
A∈Lk(γ)

‖Mk(γ)‖2 = max
A∈L∗

k
(γ)

‖Mk(γ)‖2 ,

with

L∗
k(γ) = { Tγ + δIk | δ ≥ 0 } . 2

3. Convergence analysis of the two-grid method. In this section we will
derive bounds for

max
A∈L∗

k
(γ)

‖Mk(γ)‖2 . (3.1)

Note that A ∈ L∗
k(γ) is a tridiagonal matrix, which can be interpreted as a finite dif-

ference discretization of a 1D convection-diffusion-reaction equation (cf. Remark 2.1).
The analysis below will be based on an approximation property (given in Theorem 3.4)
and a smoothing property (proved in Theorems 3.7, 3.8). These two properties com-
bined yield a two-grid convergence result (Theorem 3.9). We emphasize that, because
we are in a 1D setting (A is tridiagonal), the approximation property can be proved
using only linear algebra arguments. This is crucial for the convergence analysis pre-
sented in this paper. Note that the convergence analyses of multigrid methods for
second order elliptic boundary value problems, which are known in the literature and
based on an approximation- and smoothing property, make use of a H1+δ-regularity
assumption for the underlying boundary value problem, with δ > 0. As is well-known,
even for very simple (1D) convection-diffusion problems the constants in such regu-
larity estimates tend to infinity if the ratio between diffusion and convection tends to
zero (cf. [25]).

For the analysis below we need the permutation

Pk : R
nk → R

nk , Pk(x1, x2, . . . , xnk
)T = (x1, x3, . . . , xnk

, x2, x4, . . . , xnk−1)
T
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which transforms the lexicographical ordering to a red-black ordering. Using this
renumbering we obtain:

PkTγPT
k =:

[

I −Trb

−Tbr Ik−1

]

, (3.2)

rγPT
k =:

1

2

[

Tbr Ik−1

]

, (3.3)

Pkpγ =:

[

Trb

Ik−1

]

, (3.4)

rγTγpγ =
1

2
(Ik−1 − TbrTrb) =

1

2
tridiag(−(1 − γ)2, 1 − 2γ(1 − γ),−γ2) . (3.5)

We start with a lemma in which a few results are collected that will be useful in the
remainder of this section.

Lemma 3.1. For the matrices Tγ , pγ and rγ the following holds:

‖Tγ‖2 ≤ 2 , (3.6)

‖pγ‖2 ≤
√

2 , ‖rγ‖2 ≤ 1

2

√
2 , (3.7)

‖rγTγpγ‖2 ≤ 1 , (3.8)

‖Tγ(Tγ + δIk)−1‖2 ≤ min{1,
2

δ
} for δ > 0 , (3.9)

‖(rγTγpγ + δIk−1)
−1‖2 ≤ 1

δ
for δ > 0 , (3.10)

rγpγ = Ik−1 − rγTγpγ . (3.11)

Proof. The result in (3.6) follows from ‖Tγ‖2
2 ≤ ‖Tγ‖∞‖Tγ‖1 ≤ 4. Note that

‖pγ‖2
2 = ‖Pkpγ‖2

2 = ‖
[

Trb

Ik−1

]

‖2
2 ≤ ‖

[

Trb

Ik−1

]

‖∞‖
[

Trb

Ik−1

]

‖1 ≤ 2 ,

hence ‖pγ‖2 ≤
√

2. With a similar argument one can prove ‖rγ‖2 ≤ 1
2

√
2. Using (3.5)

we get

‖rγTγpγ‖2
2 ≤ ‖rγTγpγ‖∞‖rγTγpγ‖1 ≤ 1 ,

i.e., the result (3.8) holds. For the result in (3.9) we note that Tγ + T T
γ is positive

definite and that

max
x 6=0

‖Tγ(Tγ + δIk−1)
−1‖2

2

‖x‖2
2

= max
y 6=0

‖Tγy‖2
2

‖(Tγ + δIk−1)y‖2
2

= max
y 6=0

‖Tγy‖2
2

‖Tγy‖2
2 + 2δ(Tγy, y) + δ2‖y‖2

2

≤ max
y 6=0

‖Tγy‖2
2

‖Tγy‖2
2 + δ2‖y‖2

2

≤ min{1,

(‖Tγ‖2

δ

)2

} .

Using the result in (3.6) we obtain (3.9). Note that rγTγpγ is positive definite (cf.
(3.5)) and thus (3.10) follows from

‖(rγTγpγ + δIk−1)
−1‖2

2 = max
x 6=0

‖x‖2

‖rγTγpγx‖2
2 + 2δ(rγTγpγx, x) + δ2‖x‖2

2

≤ 1

δ2
.
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From (3.3), (3.4) and (3.5) it follows that

rγpγ =
1

2
(TbrTrb + Ik−1) = Ik−1 −

1

2
(Ik−1 − TbrTrb) = Ik−1 − rγTγpγ ,

and thus the result (3.11) holds.
In the next lemma we prove a uniform bound for the iteration matrix of the coarse
grid correction Ik − pγA−1

H rγA for A ∈ L∗
k(γ).

Lemma 3.2. Take A = Tγ + δIk ∈ L∗
k(γ) and define AH := rγTγpγ + δIk−1 as in

(2.26). Then the following holds:

‖Ik − pγA−1
H rγA‖2 ≤

√
2 + 1 .

Proof. We use the identities in (3.2)-(3.5) and the notation TH := rγTγpγ =
AH − δIk−1, CT := I − PkpγT−1

H rγTγPT
k . Now note

Pk(I − pγA−1
H rγA)PT

k = CT + PkpγA−1
H (AH − TH)T−1

H rγTγPT
k − δPkpγA−1

H rγPT
k

= CT + δPkpγA−1
H (T−1

H rγTγPT
k − rγPT

k ) ,

(3.12)

and

T−1
H rγTγPT

k = T−1
H rγPT

k PkTγPT
k = T−1

H

[

∅ TH

]

=
[

∅ Ik−1

]

. (3.13)

Using the latter in (3.12) yields

‖I − pγA−1
H rγA‖2 ≤ ‖CT ‖2 +

1

2
δ‖pγ‖2‖A−1

H ‖2‖
[

−Tbr Ik−1

]

‖2 . (3.14)

For the first term on the right handside in (3.14) we get, using (3.13),

‖CT ‖2 = ‖PkCT PT
k ‖2 = ‖I −

[

Trb

Ik−1

]

[

∅ Ik−1

]

‖2 = ‖
[

I −Trb

∅ ∅

]

‖2

≤ ‖
[

I −Trb

]

‖
1

2

1 ‖
[

I −Trb

]

‖
1

2

∞ ≤
√

2 .

(3.15)

Furthermore,

‖
[

−Tbr Ik−1

]

‖2 ≤ ‖
[

−Tbr Ik−1

]

‖
1

2

1 ‖
[

−Tbr Ik−1

]

‖
1

2

∞ ≤
√

2 . (3.16)

The inequality ‖A−1
H ‖ ≤ 1

δ
is given in (3.10). Using this and the results (3.15), (3.16)

in (3.14) yields

‖I − pγA−1
H rγA‖2 ≤

√
2 +

1

2
δ
√

2
1

δ

√
2 =

√
2 + 1. 2

The main ingredient for the approximation property (Theorem 3.4 below) is given in
the following lemma:

Lemma 3.3. The following inequality holds:

‖(I − pγrγ)T−1
γ ‖2 ≤ 1

2

√

3 +
√

5 .
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Proof. First note that for T̃γ := PkTγPT
k we have

T̃γ =

[

I −Trb

−Tbr Ik−1

]

=

[

I −Trb

∅ Ik−1

] [

I − TrbTbr ∅
−Tbr Ik−1

]

,

and thus

T̃−1
γ =

[

(I − TrbTbr)
−1 ∅

∗ ∗

] [

I Trb

∅ Ik−1

]

,

with appropriate blocks ∗. Using this we get

Pk(I − pγrγ)T−1
γ PT

k = (I − PkpγrγPT
k )T̃−1

γ

= (I − 1

2

[

TrbTbr Trb

Tbr Ik−1

]

)T̃−1
γ

=
1

2
(T̃γ +

[

I − TrbTbr ∅
∅ ∅

]

)T̃−1
γ

=
1

2
(I +

[

I Trb

∅ ∅

]

) =
1

2

[

2I Trb

∅ Ik−1

]

.

From this we obtain

‖(I − pγrγ)T−1
γ ‖2

2 ≤ 1

4
‖

[

2I Trb

∅ Ik−1

]

‖1‖
[

2I Trb

∅ Ik−1

]

‖∞ ≤ 1
1

2
.

A slightly sharper bound can be obtained as follows. Note that

‖(I − pγrγ)T−1
γ ‖2

2 =
1

4
ρ(B) with B =

[

4I + TrbT
T
rb Trb

T T
rb Ik−1

]

. (3.17)

A straightforward computation yields that λ ∈ σ(B) implies

λ2 − 5λ + 4

λ
∈ σ(TrbT

T
rb) .

Using ‖TrbT
T
rb‖∞ = ‖TrbT

T
rb(1, 1, . . . , 1)T ‖∞ ≤ 1 we obtain that σ(TrbT

T
rb) ⊂ [0, 1]

holds. Hence 0 < λ2 − 5λ + 4 ≤ λ must hold for all eigenvalues λ ∈ σ(B). From this
one obtains λ ≤ 3 +

√
5 for all λ ∈ σ(B). Using this in (3.17) proves the result of this

lemma.
Note that for the result in Lemma 3.3 to hold, it is essential that pγ and rγ are

appropriate matrix-dependent prolongations and restrictions.

Theorem 3.4 (Approximation Property). Take A = Tγ + δIk ∈ L∗
k(γ) and let

AH := rγTγpγ + δIk−1. Then the following holds:

‖A−1 − pγA−1
H rγ‖2 ≤ 5

1

2
min{1,

2

δ
} .

Proof. We start with

‖A−1 − pγA−1
H rγ‖2 = ‖(I − pγA−1

H rγA)(pγrγ + (I − pγrγ))T−1
γ TγA−1‖2

≤
(

‖(I − pγA−1
H rγA)pγrγT−1

γ ‖2 + ‖I − pγA−1
H rγA‖2‖(I − pγrγ)T−1

γ ‖2

)

‖TγA−1‖2 .

(3.18)
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For the term ‖TγA−1‖2 the inequality

‖TγA−1‖2 ≤ min{1,
2

δ
} (3.19)

is given in (3.9). For the second term in the upper bound in (3.18) we obtain, using
Lemma 3.2 and Lemma 3.3,

‖I − pγA−1
H rγA‖2‖(I − pγrγ)T−1

γ ‖2 ≤ (
√

2 + 1)
1

2

√

3 +
√

5 . (3.20)

We finally consider the first term in the upper bound in (3.18). For this we introduce
Ã := (1 + δ)Tγ + δIk = A + δTγ . From the result (3.11) it follows that

AH = rγTγpγ + δIk−1 = rγTγpγ + δ(rγpγ + rγTγpγ) = rγÃpγ .

Using this Galerkin relation between Ã and AH we obtain

(I − pγA−1
H rγA)pγrγT−1

γ = (I − pγA−1
H rγ(Ã − δTγ))pγrγT−1

γ

= (I − pγA−1
H rγÃ)pγrγT−1

γ + δpγA−1
H rγTγpγrγT−1

γ

= δpγA−1
H rγTγpγrγT−1

γ .

Using this result and those in (3.10), (3.6), (3.7) and Lemma 3.3 it follows that

‖(I − pγA−1
H rγA)pγrγT−1

γ ‖2 = δ‖pγA−1
H rγTγpγrγT−1

γ ‖2

≤ δ‖pγ‖2‖A−1
H ‖2‖rγTγ(I − pγrγ)T−1

γ − rγ‖2

≤ δ
√

2
1

δ
(‖rγ‖2‖Tγ‖2‖(I − pγrγ)T−1

γ ‖2 + ‖rγ‖2)

≤ 1

2

√
2

√

3 +
√

5 + 1 .

(3.21)

Combination of (3.18)-(3.21) results in

‖A−1 − pγA−1
H rγ‖2 ≤

{

1

2

√
2

√

3 +
√

5 + 1 + (
√

2 + 1)
1

2

√

3 +
√

5

}

min{1,
2

δ
}

=

{

1 +
1

2
(2
√

2 + 1)

√

3 +
√

5

}

min{1,
2

δ
} ≤ 5

1

2
min{1,

2

δ
} ,

which completes the proof of the theorem.

Remark 3.5. Note that in the proof of the approximation property we use only
linear algebra arguments. A relation between the tridiagonal matrix A and an under-
lying two-point boundary value problem is not used. 2

We now turn to the analysis of the smoothing property. We will use a result from
[20, 22] (cf. also [12] or Theorem 10.6.8 in [10]). For completeness we cite a special
case of this result, which will be used below.

Lemma 3.6. Take A, W ∈ R
n×n with W invertible and such that ‖I−W−1A‖2 ≤

1 is satisfied. Define S := I − 1
2W−1A. Then the following inequality holds:

‖W−1ASν‖2 ≤ 2

√

2

πν
for ν = 1, 2, . . . . (3.22)
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We first consider the case with damped Jacobi smoothing (2.27): for A ∈ L∗
k(γ),

S(ν) = S
(ν)
J := (I − 1

2diag(A)−1A)ν .
Theorem 3.7 (Smoothing Property). For A = Tγ + δIk ∈ L∗

k(γ) the following
holds:

‖AS
(ν)
J ‖2 ≤ (1 + δ)ηJ(ν) for ν = 1, 2, . . . ,

with ηJ(ν) = 2

√

2

πν
.

Proof. We use the notation WJ = diag(A) = (1 + δ)Ik and R = WJ − A =
tridiag(1 − γ, 0, γ). It follows that

‖Ik − W−1
J A‖2 =

1

1 + δ
‖R‖2 ≤ 1

1 + δ
(‖R‖∞‖R‖1)

1

2 ≤ 1

1 + δ
≤ 1

holds. Application of Lemma 3.6 results in

1

1 + δ
‖AS

(ν)
J ‖2 ≤ 2

√

2

πν
. 2

We now analyze the Gauss-Seidel smoother (2.28): for A = Tγ + δIk ∈ L∗
k(γ), S(ν) =

S
(ν)
GS = (Ik−W−1

GS A)(Ik− 1
2W−1

GS A)ν−1, with WGS = Lγ+δIk. In Lemma 3.6 a damping
factor θ = 1

2 is used (we note that in the more general analysis in [8] it suffices to have
arbitrary θ < 1). On the other hand, the Gauss-Seidel method without damping,
i.e. θ = 1, is a so-called robust smoother in the sense that it becomes a direct solver
in the limit case γ = 0. Here we want to benefit both from the smoothing effect as
formulated in Lemma 3.6 and from the fact that for γ ↓ 0 the Gauss-Seidel method
with θ = 1 is a fast solver. This motivates the use of a Gauss-Seidel smoother where
we first apply ν − 1 damped Gauss-Seidel iterations with θ = 1

2 and then one Gauss-
Seidel iteration with θ = 1. For this method one can prove a smoothing property as
given in the following theorem.

Theorem 3.8 (Smoothing Property). For A = Tγ + δIk ∈ L∗
k(γ) the following

holds:

‖AS
(ν)
GS‖2 ≤ γηGS(ν) for ν = 1, 2, . . . , (3.23)

with ηGS(1) = 2, ηGS(ν) = 2

√

2

π(ν − 1)
for ν = 2, 3, . . . .

Proof. We use the notation R = WGS − A = tridiag(0, 0, γ). Note that

A(I − W−1
GS A) = (WGS − R)W−1

GS R = RW−1
GSA (3.24)

holds. And thus

‖AS
(ν)
GS‖2 ≤ ‖R‖2‖W−1

GS A(Ik − 1

2
W−1

GS A)ν−1‖2 ≤ γ‖W−1
GSA(Ik − 1

2
W−1

GS A)ν−1‖2 .

(3.25)
To be able to apply Lemma 3.6 we now prove that ‖Ik − W−1

GS A‖2 ≤ 1 holds.
A standard result for the Gauss-Seidel method applied to irreducibly diagonally



14 A. REUSKEN

dominant matrices yields ‖Ik − W−1
GS A‖∞ < 1. To bound ‖Ik − W−1

GS A‖1 we use
an explicit representation of W−1

GS . With Jk := tridiag(1, 0, 0) ∈ R
nk×nk we have

WGS = (1 + δ)Ik − (1 − γ)Jk = (1 + δ)(Ik − 1−γ
1+δ

Jk) and thus

W−1
GS =

1

1 + δ

nk−1
∑

m=0

(

1 − γ

1 + δ

)m

Jm
k .

From this we obtain, with 1 = (1, 1, . . . , 1)T ,

‖W−1
GSR‖1 = ‖RT W−T

GS ‖∞ = ‖RT W−T
GS 1‖∞

≤ γ‖W−T
GS 1‖∞ = γ

1

1 + δ

nk−1
∑

m=0

(

1 − γ

1 + δ

)m

≤ γ
1

1 + δ

1

1 − 1−γ
1+δ

=
γ

δ + γ
≤ 1 .

It now follows that ‖W−1
GSR‖2

2 ≤ ‖W−1
GSR‖∞‖W−1

GSR‖1 < 1. Application of Lemma 3.6
yields for ν > 1:

‖W−1
GS A(Ik − 1

2
W−1

GS A)ν−1‖2 ≤ 2

√

2

π(ν − 1)
. (3.26)

For ν = 1 we have (cf. (3.24)):

‖AS
(1)
GS‖2 ≤ ‖R‖2‖W−1

GS A‖2 ≤ ‖R‖2(‖I‖2 + ‖I − W−1
GS A‖2) ≤ 2γ . (3.27)

Combining (3.25), (3.26) and (3.24) proves the theorem.

Note that the upper bound in (3.23) tends to zero for γ ↓ 0. As a direct consequence
of the approximation property and smoothing property proved above we obtain a
two-grid convergence result:

Theorem 3.9 (Two-grid convergence). For A ∈ L∗
k(γ), let Mk(γ) = (Ik −

pγA−1
H rγA)S(ν) be the two-grid iteration matrix (2.29) induced by A. For the two-

grid method with damped Jacobi smoothing, i.e., S(ν) = S
(ν)
J the inequality

max
A∈L∗

k
(γ)

‖Mk(γ)‖2 ≤ 16
1

2
ηJ(ν) for ν = 1, 2, . . . (3.28)

holds. For the two-grid method with (damped) Gauss-Seidel smoothing, i.e., S(ν) =

S
(ν)
GS the inequality

max
A∈L∗

k
(γ)

‖Mk(γ)‖2 ≤ 5
1

2
γηGS(ν) for ν = 1, 2, . . . . (3.29)

holds.
Proof. The result in (3.28) follows directly from Theorem 3.4 and Theorem 3.7

and the observation maxδ≥0{(1 + δ)min{1, 2
δ
}} = 3. The result in (3.29) is a direct

consequence of Theorem 3.4 and Theorem 3.8.
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Corollary 3.10. Using Theorem 3.9 in Corollary 2.5 yields a convergence result
for the two-grid method applied to a system with a tensor product matrix Â ∈ L̂k(γ).
For Â ∈ L̂k(γ) let M̂k(γ) be the two-grid iteration matrix (2.18) induced by Â. If
damped y-line Jacobi smoothing is used (cf. (2.16)), i.e., Ŝ(ν) = (I − 1

2Ŵ−1
J Â)ν , then

‖M̂k(γ)‖2 ≤ 16
1

2
ηJ(ν) for ν = 1, 2, . . . (3.30)

holds. If (damped) y-line Gauss-Seidel smoothing is used (cf. (2.17)), i.e., Ŝ(ν) =
(I − Ŵ−1

GS Â)(I − 1
2Ŵ−1

GS Â)ν−1, then

‖M̂k(γ)‖2 ≤ 5
1

2
γηGS(ν) for ν = 1, 2, . . . (3.31)

holds. 2

4. W-cycle convergence. In this section we analyze the convergence of the
multigrid W-cycle along the lines as in [10] Section 10.6.5. We consider a given
problem

Âx = b with Â ∈ L̂kmax
(γ), γ = γkmax

∈ (0,
1

2
) . (4.1)

As noted in Remark 2.1, such a problem is obtained if a stable finite difference scheme
is applied to a convection-diffusion problem as in (2.3) on a grid Ωkmax,m with grid
sizes hy = 1

m
and hkmax

= 2−kmax in the y- and x-direction, respectively. To the
problem (4.1) we apply a W-cycle based on semicoarsening in the x-direction. More
precisely, we use a Galerkin approach as described in (2.11). If

Âk = αkIy ⊗ Tγk
+ βAy ⊗ Ik ∈ L̂k(γk) with γk ∈ (0,

1

2
) (4.2)

then for Âk−1 := αk r̂γk
(Iy ⊗ Tγk

)p̂γk
+ βAy ⊗ Ik−1 (as in (2.11)) we have:

Âk−1 = αk−1Iy ⊗ Tγk−1
+ βAy ⊗ Ik−1 with (4.3)

αk−1 =
1

2
αk(1 − 2γk(1 − γk)) > 0, γk−1 =

γ2
k

1 − 2γk(1 − γk)
, (4.4)

i.e., Âk−1 ∈ L̂k−1(γk−1) with 0 < γk−1 < γk. Hence this Galerkin technique can be
applied recursively and results in Âk ∈ L̂k(γk) for k = kmax − 1, k = kmax − 2, . . . , 1.
Note that the matrices Â1 ∈ L̂1(γ1) are of the form αIy + βAy ∈ R

(m−1)×(m−1).
Hence if Ay is a bandmatrix (e.g. tridiagonal) the computational costs for solving a

system with matrix Â1 are low. In the multigrid method, for the intergrid transfer
operators between level k and level k − 1 we use the matrix-dependent prolongation
and restriction p̂γ = p̂γk

, r̂γ = r̂γk
as in (2.10). As in the two-grid method in Section 2

we consider damped y-line Jacobi smoothing with iteration matrix Ŝ
(ν)
J as in (2.16)

and (damped) y-line Gauss-Seidel method with iteration matrix Ŝ
(ν)
GS as in (2.17). We

use the notation Ŝ(ν) to denote Ŝ
(ν)
J or Ŝ

(ν)
GS . Note that a linear iterative method

for solving a system Âkx = bk with iteration matrix Ŝ(ν) can be represented as
xnew = Ŝ(ν)xold + (I − Ŝ(ν))Â−1

k bk. We use the notation xnew = S(ν)(xold, bk).
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Using the components described above we introduce a multigrid method for solv-
ing a problem Âkx = bk with matrix Âk ∈ L̂k(γk), 1 ≤ k ≤ kmax:

procedure MGM
(ν)
k (xk, bk)

if k = 1 then x1 := Â−1
1 b1 else

begin xk := S(ν)(xk, bk);

dk−1 := r̂γk
(Âkxk − bk);

e
(0)
k−1 := 0;

for j := 1 to τ do e
(j)
k−1 := MGM

(ν)
k−1(e

(j−1)
k−1 , dk−1);

xk := xk − p̂γk
e
(τ)
k−1;

MGM
(ν)
k := xk;

end;

(4.5)

In this section we consider the W-cycle, i.e., τ = 2 in the algorithm above. For the
iteration matrix Ŵk = Ŵk(γk) of the W-cycle we have the recursion:

{

Ŵ1 = 0

Ŵk = (Ik − p̂γk
(Ik−1 − Ŵ 2

k−1)Â
−1
k−1 r̂γk

Âk)Ŝ(ν), 2 ≤ k ≤ kmax .
(4.6)

Remark 4.1. Consider Âk as in (4.2) with Ay a (m−1)×(m−1) bandmatrix with
at most M nonzero entries per row. The constant M is assumed to be independent
of m and k. Due to the semicoarsening the arithmetic costs (number of arithmetic
operations) needed in one W-cycle iteration are not proportional to the number of
unknowns. Let Nk := nk × (m − 1) be the number of interior grid points (= the
number of unknowns) on level k. Note that Nk−1 = 1

2Nk. The arithmetic costs of a

matrix-vector multiplication Âkx and, for fixed ν, of the application of the smoother
S(ν) on level k are both proportional to Nk. The arithmetic costs for one application
of the intergrid transfer operators r̂γk

and p̂γk
are also proportional to Nk. Using a

standard argument (cf. [10], Section 10.4.4) it follows that the total arithmetic costs
for one W-cycle iteration on level k are bounded by CNk log Nk, with C independent
of k and m. 2

Lemma 4.2. Let Ŵk = Ŵk(γk) as in (4.6) be the iteration matrix of the W-cycle
and let M̂(γk) as in (2.18) be the iteration matrix of the two-grid method induced by
Âk ∈ L̂k(γk). Then for 2 ≤ k ≤ kmax, we have:

‖Ŵk(γk)‖2 ≤ ‖M̂(γk)‖2 + (1 +
√

2)‖Ŵk−1(γk−1)‖2
2 .

Proof. From

Ŵk(γk) = M̂(γk) + p̂γk
Ŵk−1(γk−1)

2Â−1
k−1r̂γk

ÂkŜ(ν)

we obtain

‖Ŵk(γk)‖2 ≤ ‖M̂(γk)‖2 + ‖p̂γk
‖2‖Ŵk−1(γk−1)‖2

2‖Â−1
k−1r̂γk

Âk‖2‖Ŝ(ν)‖2 . (4.7)
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Using the orthogonal transformations as in Lemma 2.2 it follows that

‖p̂γk
‖2 = ‖pγk

‖2 ≤
√

2 (4.8)

and, using the notation TH := rγk
Tγk

pγk
,

‖Â−1
k−1r̂γk

Âk‖2 ≤ max
δ≥0

‖(TH + δIk−1)
−1rγk

(Tγk
+ δIk)‖2

≤ max
δ≥0

{

‖(TH + δIk−1)
−1TH‖2‖T−1

H rγk
Tγk

‖2 + δ‖(TH + δIk−1)
−1‖2‖rγk

‖2

}

.

Using the results in (3.13), (3.10), (3.7) and ‖(TH + δIk−1)
−1TH‖2 ≤ 1 we get

‖Â−1
k−1r̂γk

Âk‖2 ≤ 1 +
1

2

√
2 . (4.9)

We now consider Ŝ(ν) = Ŝ
(ν)
J = (I − 1

2Ŵ−1
J Âk)ν . In the proof of Theorem 3.7 it is

shown that ‖I − W−1
J A‖2 ≤ 1 holds for all A ∈ L∗

k(γk). Using this and the results in

(2.20), (2.24) it follows that for Âk ∈ L̂k(γk)

‖I − 1

2
Ŵ−1

J Âk‖2 ≤ max
A∈L∗

k
(γk)

‖I − 1

2
W−1

J A‖2

≤ 1

2
+

1

2
max

A∈L∗

k
(γk)

‖I − W−1
J A‖2 ≤ 1 .

Hence ‖Ŝ(ν)
J ‖2 ≤ 1 holds. Finally, we consider Ŝ(ν) = Ŝ

(ν)
GS . In the proof of Theo-

rem 3.8 it is shown that ‖I − W−1
GS A‖2 ≤ 1 holds for all A ∈ L∗

k(γk). Using a similar

argument as for the Jacobi method one can prove that ‖Ŝ(ν)
GS‖2 ≤ 1 holds. Hence,

both for the Jacobi and Gauss-Seidel method the inequality

‖Ŝ(ν)‖2 ≤ 1 (4.10)

holds. The results in (4.7)-(4.10) prove the statement of this lemma.

For the convergence of the W-cycle method we obtain the following result:
Theorem 4.3. Let Ŵkmax

(γkmax
) be the iteration matrix of the W-cycle method,

(4.5) with τ = 2, applied to the problem (4.1). Assume that ν is sufficiently large
such that 66(1+

√
2)ηJ(ν) < 1 is satisfied. Then for the W-cycle method with damped

Jacobi smoothing (Ŝ(ν) = Ŝ
(ν)
J ) the inequalities

‖Ŵkmax
(γkmax

)‖2 ≤ 33ηJ(ν)

1 +
√

1 − 66(1 +
√

2)ηJ(ν)
< 33ηJ(ν) < 1 (4.11)

hold. Assume that ν is sufficiently large such that 22γkmax
(1 +

√
2)ηGS(ν) < 1 is

satisfied. Then for the W-cycle method with Gauss-Seidel smoothing (Ŝ(ν) = Ŝ
(ν)
GS )

the inequalities

‖Ŵkmax
(γkmax

)‖2 ≤ 11γkmax
ηGS(ν)

1 +
√

1 − 22γkmax
(1 +

√
2)ηGS(ν)

< 11γkmax
ηGS(ν) < 1 (4.12)

hold.
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Proof. Define T := max1≤k≤kmax
‖M̂(γk)‖2. Assume that

4(1 +
√

2)T < 1 (4.13)

holds. Then it follows from Lemma 4.2 that

‖Ŵkmax
(γkmax

)‖2 ≤ ξ∗ :=
2T

1 +
√

1 − 4(1 +
√

2)T
< 2T , (4.14)

with ξ∗ the fixed point of the iteration

x1 = 0, xi = T + (1 +
√

2)x2
i−1, i ≥ 2 .

For the Jacobi method it follows from (3.30) that T = TJ ≤ 16 1
2ηJ(ν). Hence (4.13)

holds if 66(1+
√

2)ηJ(ν) < 1 is satisfied. The result in (4.11) then follows from (4.14).
For the Gauss-Seidel method it follows from (3.31) and from γk < γkmax

for k < kmax

that T = TGS ≤ 5 1
2γkmax

ηGS(ν). Hence (4.13) holds if γkmax
22(1+

√
2) < 1 is satisfied.

The result in (4.12) then follows from (4.14).

Note that the bound 33ηJ(ν) in (4.11) depends only on ν. Hence, for ν sufficiently
large we have a bound for the contraction number of the W-cycle with Jacobi smooth-
ing which is smaller than one and independent of m, kmax and γkmax

. If the problem
(4.1) corresponds to a discrete convection-diffusion problem as in (2.3) this means
that the W-cycle method with Jacobi smoothing is a robust solver in the sense that
for ν sufficiently large its contraction number is smaller than one and independent of
both the grid size and the parameter ε.
Due to γkmax

< 1
2 the result in (4.12) yields the bound 5 1

5ηGS(ν) for the contraction
number of the W-cycle with Gauss-Seidel smoothing. Hence this Gauss-Seidel method
results in a robust solver, too. Note, however, that the bound in (4.12) improves if
γkmax

becomes smaller. We comment on this in the following remark.
Remark 4.4. It is clear that if γ ↓ 0 the y-line Gauss-Seidel method with

iteration matrix Ŝ
(1)
GS = I − Ŵ−1

GS Â becomes an exact solver. Hence, for γ “sufficiently
small” we do not need a coarse grid correction because the smoother is already a
fast solver. Here we want to be more precise about what “sufficiently small” means
and show that even for “small” γ the use of a coarse grid correction may result in a
significantly faster convergence. We consider the boundary value problem as in (2.3)
with b(y) = ε for all y. A uniform square grid with mesh size h = hk = hy in both
directions is used. We use the notation n = nk = 1

h
− 1. The term ∂u

∂x
is discretized

using full upwind differences. This results in a discrete problem with matrix

Â = Âk = αIk ⊗ Tγ + Ay ⊗ Ik

as in (2.7) with γ = ε
h
(2 ε

h
+1)−1, α = 1

h
(2 ε

h
+1) = ε

h2

1
γ
. Note that σ(Ay) = {µi}1≤i≤n

with µ1 := min1≤i≤n µi = επ2(1 + O(h)). We define δi = µi

α
. Note that δ1 =

γπ2h2(1 + O(h)) ≤ 1
2π2h2(1 + O(h)). Here and in the following the constants in the

O(h) terms are independent of all parameters. Using the orthogonal transformation
as in Lemma 2.2 yields, with R = tridiag(0, 0, 1),

‖Ŝ(1)
GS‖2 = max

1≤i≤n
‖I − (Lγ + δiIk)−1(Tγ + δiIk)‖2

= γ max
1≤i≤n

‖(Lγ + δiIk)−1R‖2 = γ‖(Lγ + δ1Ik)−1R‖2 .



CONVERGENCE ANALYSIS OF MULTIGRID 19

We now analyze the dependence of the contraction number ‖Ŝ(1)
GS‖2 on the parameters

h and γ. Using RRT = Ik − eneT
n , with en = (0, . . . , 0, 1)T , and (Lγ + δ1Ik)−1en =

(1 + δ1)
−1en it follows that

‖Ŝ(1)
GS‖2

2 = γ2‖Lγ + δ1Ik)−1RRT (Lγ + δ1Ik)−T ‖2

= γ2‖((LT
γ + δ1Ik)(Lγ + δ1Ik))−1 − (1 + δ1)

−2eneT
n‖2

and thus

γ2(‖((LT
γ + δ1Ik)(Lγ + δ1Ik))−1‖2 − 1) ≤ ‖Ŝ(1)

GS‖2
2 ≤

γ2(‖((LT
γ + δ1Ik)(Lγ + δ1Ik))−1‖2 + 1) .

(4.15)

A longer straightforward computation results in

(LT
γ + δ1Ik)(Lγ + δ1Ik) = (1 − γ)(1 + δ1)B − (1 − γ)2eneT

n + (γ + δ1)
2Ik ,

with B = tridiag(−1, 2,−1). From this and λmin(B) = ch2(1 + O(h)), λmin(B −
eneT

n ) = c̃h2(1 + O(h)) with positive constants c and c̃ it follows that there are
constants c1, c2 > 0 independent of h and γ such that

λmin((L
T
γ + δ1Ik)(Lγ + δ1Ik)) ∈ [c1h

2 + γ2, c2h
2 + γ2]

holds. Using this in (4.15) one finally obtains

γ2

c2h2 + γ2
(1 − c2h

2 − γ2) ≤ ‖Ŝ(1)
GS‖2

2 ≤ γ2

c1h2 + γ2
(1 + c1h

2 + γ2) . (4.16)

This result shows the dependence of the contraction number ‖Ŝ(1)
GS‖2 on h and γ.

We compare this with the result of Theorem 4.3 for the W-cycle with one Gauss-
Seidel iteration (ν = 1) in the smoother. If γ is sufficiently small such that 22γ(1 +√

2)ηGS(1) < 1 is satisfied then for the contraction number of the W-cycle the estimate

‖Ŵk(γ)‖2 < cγ < 1 (4.17)

holds with c independent of h and γ. There is an interesting difference between the
bounds in (4.16) and in (4.17). As a measure for the convection-diffusion ratio we
take the parameter ε

h
. Note that for ε

h
≤ 1

4 we have 2
3

ε
h

≤ γ ≤ ε
h

and an upper
bound in (4.17) of the form c ε

h
. Hence for ε

h
sufficiently small the error reduction in

a W-cycle with ν = 1 must be large. On the other hand, the result in (4.16) shows
that for the Gauss-Seidel method the contraction number tends to one if ε

h
↓ 0 and

ε
h2 → ∞. Roughly speaking, the Gauss-Seidel method has a small contraction number
iff ε

h2 is sufficiently small, whereas the W-cycle has a small contraction number if ε
h

is
sufficiently small. Hence even for the convection-dominated case with ε

h
≪ 1 a multi-

grid Gauss-Seidel method (W-cycle) can have a significantly higer rate of convergence
than a one-grid Gauss-Seidel method. 2

5. V-cycle convergence. In this section we study the convergence of the V-
cycle algorithm (4.5) with τ = 1 applied to the problem (4.1). We consider only

Gauss-Seidel smoothing with iteration matrix Ŝ(ν) = Ŝ
(ν)
GS . It will be proved that

for the convection-dominated case (γkmax
≤ 1

4 ) a bound for the contraction number
similar to the one for the W-cycle in (4.12) holds. For the analysis it is crucial that for
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the two-grid method with Gauss-Seidel smoother the upper bound in (3.31) for the
contraction number on level k contains a factor γk and that in the Galerkin method we

have γk−1 =
γ2

k

1−2γk(1−γk) for k = kmax, kmax − 1, . . . , 2. Due to this, if γkmax
≤ γ̂ < 1

2

there is a significant decrease in the bound for the two-grid contraction number if
the level number k decreases. The analysis does not yield satisfactory results for the
diffusion-dominated case γk ≈ 1

2 because then γk−1 ≈ γk and the bound for the two-
grid contraction number is approximately constant as a function of the level number k.

For the V-cycle algorithm, (4.5) with τ = 1, the iteration matrix V̂k = V̂k(γk) satisfies
the recursion

{

V̂1 = 0

V̂k = (Ik − p̂γk
(Ik−1 − V̂k−1)Â

−1
k−1r̂γk

Âk)Ŝ(ν), 2 ≤ k ≤ kmax .

Theorem 5.1. Let V̂kmax
(γkmax

) be the iteration matrix of the V-cycle with Ŝ(ν) =

Ŝ
(ν)
GS applied to problem (4.1). Then for γkmax

≤ 1
4 the following holds:

‖V̂kmax
(γkmax

)‖2 ≤ Cγkmax
ηGS(ν) , (5.1)

with a constant C which does not depend on any of the parameters.
Proof. Note that for 2 ≤ k ≤ kmax

V̂k(γk) = M̂(γk) + p̂γk
V̂k−1(γk−1)Â

−1
k−1r̂γk

ÂkŜ
(ν)
GS .

Hence, with mk := ‖M̂k(γk)‖2:

‖V̂k(γk)‖2 ≤ mk + ‖p̂γk
‖2‖V̂k−1(γk−1)‖2‖Â−1

k−1r̂γk
Âk‖2‖Ŝ(ν)

GS‖2 .

In the proof of Lemma 4.2 it is shown that ‖p̂γk
‖2‖Â−1

k−1r̂γk
Âk‖2‖Ŝ(ν)

GS‖2 ≤ 1 +
√

2
holds. Thus we obtain

‖V̂k(γk)‖2 ≤ mk + (1 +
√

2)‖V̂k−1(γk−1)‖2

and using the bound for ‖M̂k(γk)‖2 in (3.31)

‖V̂kmax
(γkmax

)‖2 ≤
kmax−2
∑

k=0

(1 +
√

2)kmkmax−k ≤ 5
1

2
ηGS(ν)

kmax−2
∑

k=0

(1 +
√

2)kγkmax−k .

(5.2)

From γk−1 =
γ2

k

1−2γk(1−γk) it follows that γkmax−k is a decreasing function of k. Using

the notation ak = (1 +
√

2)kγkmax−k one gets

ak+1

ak

= (1 +
√

2)
γkmax−k−1

γkmax−k

= (1 +
√

2)
γkmax−k

1 − 2γkmax−k(1 − γkmax−k)

≤ (1 +
√

2)
γkmax

1 − 2γkmax
(1 − γkmax

)
=: β < 1 for k = 0, 1, . . . , kmax − 2 .

The inequality β < 1 holds due to the assumption γkmax
≤ 1

4 . From ak+1 ≤ βak we
get ak ≤ βka0 and

kmax−2
∑

k=0

ak <
a0

1 − β
= γkmax

ĉγ (5.3)
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with ĉγ = (1 − β)−1 = 1 + γkmax
(1 +

√
2)(1 − (3 +

√
2)γkmax

+ γ2
kmax

)−1, which is

bounded for all γkmax
∈ [0, 1

4 ]. Using (5.3) in (5.2) proves the theorem.

Remark 5.2. A standard argument as in Remark 4.1 shows that the arithmetic
costs for one V-cycle iteration are proportional to the number of unknowns. 2

Corollary 5.3. As a direct consequence of Theorem 5.1 we obtain the following
result. Consider the matrix class L̂c

k := ∪γ≤ 1

4

L̂k(γ). Then for the V-cycle with Gauss-

Seidel smoothing applied to Âk ∈ L̂c
k the following bound for the contraction number

holds:

‖V̂k‖2 ≤ KηGS(ν) ,

with a constant K that does not depend on any of the parameters. Thus for ν suffi-
ciently large we have a bound for the contraction number which is smaller than one
uniformly in k and in γ ≤ 1

4 . 2

In Theorem 5.1 the assumption γkmax
≤ 1

4 is used. With a few more technicali-
ties a V-cycle bound similar to the one in (5.1) can be proved under the assumption
γkmax

≤ γ̂ < 1
2 . The constant C in (5.1) then depends on γ̂. The analysis as in the

proof of Theorem 5.1, however, does not yield a satisfactory bound for the V-cycle
contraction number if we only assume γkmax

< 1
2 . Hence, a strong robustness result

as has been shown to hold for the W-cycle in Section 4, has not been proven for the
V-cycle, yet.
Note that for the discrete convection-equation as in Remark 2.1 with γ as in (2.5) the
condition γ ≤ 1

4 is equivalent to the condition ε
h
≤ 1

2 . Hence ∪kL̂c
k can be consid-

ered as the class of discretization matrices corresponding to all convection-dominated
problems. In this setting the result in Corollary 5.3 states that, for the V-cycle con-
traction number with ν sufficiently large, there is a uniform bound smaller than one
for all convection-dominated problems.
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