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P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (eds.)
O. Nevanlinna and R. Rannacher (assoc. eds.)

Jyväskylä, 24–28 July 2004

A STOKES INTERFACE PROBLEM: STABILITY, FINITE
ELEMENT ANALYSIS AND A ROBUST SOLVER

Maxim A. Olshanskii⋆, Arnold Reusken†

⋆ Department of Mechanics and Mathematics
Moscow State University, Moscow 119899, Russia

e-mail: Maxim.Olshanskii@mtu-net.ru

† Institut für Geometrie und Praktische Mathematik
RWTH-Aachen, D-52056 Aachen, Germany

e-mail: reusken@igpm.rwth-aachen.de

Key words: Stokes equations, interface problem, two-phase flows, finite elements, pre-
conditioning.

Abstract. We consider a stationary Stokes problem with a piecewise constant viscos-
ity coefficient. For the variational formulation of this problem in H1

0 × L0
2 we prove a

well-posedness result in which the constants are uniform with respect to the jump in the
viscosity coefficient. For a standard discretization with a pair of LBB stable finite ele-
ment spaces we prove an infsup stability result uniform with respect to the jump in the
viscosity coefficient. From this we derive an estimate for the discretization error. We in-
troduce a robust preconditioner for the Schur complement of the discrete system. Results
of numerical experiments are presented.
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1 Introduction

In many numerical simulations of two-phase flows a so-called one-fluid approach is used.
In such a method the two phases are modeled by a single set of conservation laws for the
whole computational domain. Such an approach leads to Navier-Stokes equations with
discontinuous density and viscosity coefficients. The effect of surface tension can be taken
into account by using a special localized force term at the interface. The latter approach
is known as the continuum surface force (CSF) model, cf. [1]. One well-known technique
for capturing the unknown interface is based on the level set method, cf. [16, 13, 8] and
the references therein. If in such a setting one has highly viscous flows then the Stokes
equations with discontinuous viscosity are a reasonable model problem.

In this paper we treat the following Stokes problem on a bounded connected domain
Ω ⊂ R

d: Find a velocity u and a pressure p such that

−div (ν(x)∇u) + ∇p = f in Ω, (1)

div u = 0 in Ω, (2)

u = 0 on ∂Ω, (3)

with a piecewise constant viscosity :

ν =

{

1 in Ω1

ε in Ω2, ε ∈ (0, 1].

The subdomains Ω1, Ω2 are assumed to be Lipschitz and such that Ω1 ∩ Ω2 = ∅ and
Ω = Ω1 ∪Ω2. By Γ we denote the interface between the subdomains: Γ = ∂Ω1 ∩ ∂Ω2. We
assume that

meas(∂Ω1 ∩ ∂Ω) > 0 (4)

holds. For the variational formulation of the interface problem we use the standard spaces
V = H1

0 (Ω)d and

Q := L2
0(Ω) = { p ∈ L2(Ω) |

∫

Ω

p dx = 0 } .

The variational problem is as follows: given f ∈ V′ find {u, p} ∈ V × Q such that

(ν∇u,∇v) − (div v, p) = f(v) for v ∈ V,
(div u, q) = 0 for q ∈ Q .

(5)

Here and in the remainder the L2 scalar product and associated norm are denoted by
(·, ·), ‖ · ‖, respectively. The bilinear form (ν∇·,∇·) defines a scalar product on V. We
use the norm induced by this scalar product:

‖u‖V := (ν∇u,∇u)
1

2 for u ∈ V

2



Maxim A. Olshanskii, Arnold Reusken

On Q, apart from the standard L2 scalar product we will also use a weighted L2 scalar
product:

(p, q)ν :=

∫

Ω

ν−1 p q dx = (ν−1p, q) for p, q ∈ Q , (6)

and the norm ‖p‖ν := (p, p)
1

2

ν .
In this paper we analyze the Stokes problem with discontinuous viscosity given in (5).
For pure diffusion problems (Poisson equation) with a discontinuous diffusion coefficient
one can find analyses of discretization methods [2, 3, 6, 9, 17], error estimators [14, 4]
and iterative solvers [5, 7, 15, 20] in the literature. For the Stokes interface problem
however, much less is known. First theoretical results are presented in [12]. In that
paper we analyzed the Stokes interface problem in the space V × M , with M := { p ∈
L2(Ω) | (p, 1)ν = 0 }. Note that in the space M we use the nonstandard orthogonality
condition (p, 1)ν = 0. In [12] we proved uniform well-posedness and a uniform discrete
infsup result with respect to the norms ‖ · ‖V (in V) and ‖ · ‖ν (in M). In the present
paper we derive similar results but now for the more standard space Q = L2

0(Ω) instead
of M . The main results of this paper (theorems 1,2 and 4) were already formulated in
[12], however, without proofs. In the present paper we give a complete analysis including
the proofs. Although the main ideas in this paper are the same as for the case V × M
in [12] there are significant differences both in the analysis and in the results, due to the
fact that in the space Q we need a norm different from ‖ · ‖ν (namely the one defined in
(10) below). Further comments on the difference between the results in the space V×M
and in V×Q are given in remark 2 at the end of section 3 and in remark 3 at the end of
section 4.
In section 2 we introduce an appropriate norm on Q and prove a continuity and an infsup
result that are uniform with respect to the parameter ε. Using standard arguments this
then yields uniform well-posedness of the continuous Stokes problem.

In section 3 we consider the discrete variational problem in a pair of finite element
spaces (Qh ⊂ Q, Vh ⊂ V) that are assumed to be LBB stable. As a main result of this
paper we present a discrete infsup result that is uniform with respect to the parameters
h (mesh size) and ε. This result is used to derive a (sharp) uniform bound for the dis-
cretization error. In section 4 we derive a robust preconditioner for the Schur complement.
In combination with known results on block-preconditioning and on multigrid this then
implies optimality results for certain iterative methods. For a preconditioned MINRES
method we present results of numerical experiments in section 5.

2 Uniform well-posedness of the variational problem

In this section we analyze the variational problem (5). We need some preliminaries.
Let p̃ be the piecewise constant function

p̃ =

{

|Ω1|−1 on Ω1

−|Ω2|−1 on Ω2.
(7)
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Since (p̃, 1) = 0, we have p̃ ∈ Q. Consider the one-dimensional subspace Q0 := span{p̃}
of Q and an L2-orthogonal decomposition Q = Q0 ⊕ Q⊥

0 . For p ∈ Q we use the notation

p = p0 + p⊥0 , p0 ∈ Q0, p⊥0 ∈ Q⊥
0 (8)

One easily checks that

Q⊥
0 = { p ∈ Q | (p, 1)Ω1

= (p, 1)Ω2
= 0 }, (9)

For functions in Q⊥
0 we use the ν-norm from (6). On Q we introduce the norm

‖p‖Q := (‖p0‖2 + ‖p⊥0 ‖2
ν)

1

2 . (10)

The following uniform continuity result holds for the bilinear form (div ·, ·):
Lemma 1 There exists a constant C independent of ε such that

|(div u, p)| ≤ C‖u‖V‖p‖Q for all u ∈ V, p ∈ Q

Proof. We decompose p = p0 + p⊥0 . For the component p⊥0 the Cauchy inequality gives
for any u ∈ V:

(div u, p⊥0 ) ≤ ‖ν 1

2 div u‖‖p⊥0 ‖ν ≤
√

d‖u‖V‖p⊥0 ‖ν . (11)

Let u|Γ denote the trace of u on Γ. By a trace theorem one gets u ∈ H
1

2 (Γ) →֒ L2(Γ).
Moreover,

|
∫

Γ

u·n d s| ≤ (

∫

Γ

u2 d s)
1

2 (

∫

Γ

1 d s)
1

2 ≤ c1 ‖u|Γ‖L2(Γ).

For the component p0 (constant in each subdomain) and for arbitrary u ∈ V we have due
to the Stokes formula:

|(div u, p0)| = |
∫

Γ

u·n d s|
(

‖p0‖L∞(Ω1) + ‖p0‖L∞(Ω2)

)

≤ c1‖u|Γ‖L2(Γ)

(

1
√

|Ω1|
‖p0‖Ω1

+
1

√

|Ω2|
‖p0‖Ω2

)

≤ c2 ‖u‖H1(Ω1)‖p0‖ ≤ c3‖∇u‖Ω1
‖p0‖ ≤ c3‖u‖V‖p0‖. (12)

For the estimate ‖u‖H1(Ω1) ≤ c ‖∇u‖Ω1
we used assumption (4). Taking a sum of (12)

and (11) completes the proof.
In the next theorem we prove a uniform infsup property corresponding to the problem

(5). It generalizes the well-known Nečas inequality:

c(Ω)‖p‖ ≤ ‖∇p‖−1 := sup
u∈V

(div u, p)

‖∇u‖ ∀ p ∈ Q,

with c(Ω) > 0. We will need an equivalent form of this Nečas inequality: for any p ∈ Q
there exists u ∈ V such that

‖p‖2 = (divu, p) and c(Ω)‖∇u‖ ≤ ‖p‖. (13)
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Theorem 1 There exists a constant c > 0 independent of ε such that

sup
u∈V

(div u, p)

‖u‖V

≥ c ‖p‖Q for all p ∈ Q.

Proof. Fix an arbitrary p ∈ Q. First consider the component p⊥0 from (8). Since
p⊥0 |Ωk

∈ L2(Ωk) and (p⊥0 , 1)Ωk
= 0 for k = 1, 2, we can apply the Nečas inequality in the

form (13) in each subdomain. Thus there exists a function u1 ∈ H1
0 (Ω1)

d such that the
following relations hold with a constant c(Ω1) > 0:

‖p⊥0 ‖2
Ω1

= (div u1, p
⊥
0 )Ω1

and c(Ω1)‖∇u1‖Ω1
≤ ‖p⊥0 ‖Ω1

(14)

Similarly, using a scaling argument, it follows that there exists u2 ∈ H1
0 (Ω2)

d such that

‖ε− 1

2 p⊥0 ‖2
Ω2

= (div u2, p
⊥
0 )Ω2

and c(Ω2)‖ε
1

2∇u2‖Ω2
≤ ‖ε− 1

2 p⊥0 ‖Ω2
, (15)

with c(Ω2) > 0. Extending u1 and u2 by zero on the whole domain Ω and taking a sum
of (14) and (15) we get

‖p⊥0 ‖2
ν = (div ũ, p⊥0 ) and c1‖ũ‖V ≤ ‖p⊥0 ‖ν , ũ := u1 + u2,

with c1 = min{c(Ω1), c(Ω2)}. For the component p0 we use the Nečas inequality (13):
there exists ū ∈ H1

0 (Ω)d such that

‖p0‖2 = (div ū, p0) and c(Ω)‖∇ū‖ ≤ ‖p0‖.

We also have

(div ũ, p0) = 0, ‖p⊥0 ‖ν ≥ ‖p⊥0 ‖, ‖ū‖V ≤ ‖∇ū‖, ‖div ū‖ ≤
√

d‖∇ū‖.

Thus for any α > 0 and δ > 0 we get

(div (ũ + αū), p) = ‖p⊥0 ‖2
ν + α‖p0‖2 + α(div ū, p⊥0 )

≥ ‖p⊥0 ‖2
ν + α‖p0‖2 − α

√
d c(Ω)−1‖p0‖‖p⊥0 ‖

≥ (1 − δα
√

d

2c(Ω)
)‖p⊥0 ‖2

ν + α(1 −
√

d

2c(Ω)δ
)‖p0‖2.

The choice δ =
√

d c(Ω)−1 and α0 = 2c(Ω)2

c(Ω)2+d
leads to

(div (ũ + α0ū), p) ≥ c1(‖p⊥0 ‖2
ν + ‖p0‖2) with c1 =

c(Ω)2

c(Ω)2 + d
.

Hence, for u = ũ + α0ū we get

c1‖p‖2
Q ≤ (div u, p) and c‖u‖2

V
≤ ‖p⊥0 ‖2

ν + ‖p0‖2 = ‖p‖2
Q,
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with c > 0 independent of ε. This implies the result of the theorem.
From these results it follows that we have uniform (w.r.t. ε) well-posedness of the

continuous variational interface Stokes problem in the spaces V, Q with the norms ‖ · ‖V

and ‖ · ‖Q, respectively. Using standard arguments (cf. [11]) it can be shown that the
variational problem has a unique solution and that the a priori estimate

(‖u‖2
V

+ ‖p‖2
Q)

1

2 ≤ c‖f‖V′ (16)

holds with a constant c independent of f and of ε.
The dual norm ‖f‖V′ in (16) can replaced by a more trackable norm of f . For this we

need the Poincare type inequality

‖ν 1

2 v‖ ≤ CP‖v‖V, for all v ∈ V. (17)

The optimal constant CP in (17) is uniformly bounded w.r.t. ε (cf. [12]). For f ∈ L2(Ω)d

the Cauchy inequality and (17) immediately yield the a-priori estimate

(‖u‖2
V

+ ‖p‖2
Q)

1

2 ≤ c CP‖ν− 1

2 f‖,
with c CP independent of f and of ε.

3 Finite element discretization error analysis

In this section a finite element discretization of the Stokes interface problem using
conforming finite element spaces is analyzed.

We consider a family of triangulations {Th} in the sense of [10] and assume that each
triangulation Th is conforming w.r.t. the two subdomains Ω1, Ω2 in the following sense:

∃ T (i)
h ⊂ Th : ∪{T | T ∈ T (i)

h } = Ωi, i = 1, 2 (18)

This assumption is easily fulfilled if Ω1 and Ω2 are polyhedral subdomains.

Remark 1 In computational fluid dynamics for two-phase flow problems it is (more)
realistic to assume that Γ = ∂Ω1 ∩ ∂Ω2 is smooth. Then the assumption (18) in general
does not hold. However, in such applications it is common practice to approximate Γ by
a polyhedral discrete interface Γh. In such a setting the assumption (18) may still make
sense. As far as we know no rigorous analysis is available which for the (Navier)-Stokes
equations shows the effect of approximating the smooth interface Γ by a piecewise smooth
interface Γh. A theoretical analysis of this effect for a Poisson interface problem can be
found in [9]. The results in [9], however, are not robust with respect to the jump in the
diffusion coefficient.

We assume a pair of finite element spaces Vh ⊂ V and Qh ⊂ Q that is LBB stable
with a constant β̂ independent of h:

inf
qh∈Qh

sup
vh∈Vh

(div vh, qh)

‖∇vh‖‖qh‖
≥ β̂ > 0 .
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For the analysis it is convenient to introduce the bilinear form

a(u, p;v, q) := (ν∇u,∇v) − (div v, p) + (div u, q)

on (V×M)× (V×M). The discrete problem is as follows: find {uh, ph} ∈ Vh ×Qh such
that

a(uh, ph;vh, qh) = f(vh) for all {vh, qh} ∈ Vh × Qh . (19)

In the proof of the discrete infsup condition below we will use a decomposition which
is similar, but not identical to the one from the previous section. Let p̃h ∈ Qh be the
L2-orthogonal projection of p̃ on Qh,

(p̃ − p̃h, qh) = 0 for all qh ∈ Qh (20)

and define the one-dimensional subspace Q0,h := span(p̃h) of Qh. This induces an L2-
orthogonal decomposition Q = Q0,h ⊕ Q⊥

0,h, and for any p ∈ Q we write

p = p0,h + p⊥0,h, p0,h ∈ Q0,h, p⊥0,h ∈ Q⊥
0,h. (21)

For this decomposition we have a discrete analog of the result in (9):

Lemma 2 The following property holds:

Qh ∩ Q⊥
0,h = { ph ∈ Qh | (ph, 1)Ω1

= (ph, 1)Ω2
= 0 }

Proof. For ph ∈ Qh we define ci := (ph, 1)Ωi
, i = 1, 2. Due to Qh ⊂ L2

0(Ω) the equality
c1 + c2 = 0 holds. By definition of Q⊥

0,h we have ph ∈ Q⊥
0,h iff (ph, p̃h) = 0. Hence, due to

(20) we have ph ∈ Q⊥
0,h iff (ph, p̃) = 0. From the definition of p̃ and c1 + c2 = 0 we get

(ph, p̃) = 0 ⇔ 1

|Ω1|
c1 −

1

|Ω2|
c2 = 0 ⇔ (

1

|Ω1|
+

1

|Ω2|
)c1 = 0 ⇔ c1 = c2 = 0

and thus the result of the lemma holds.
Based on the decomposition (21) we introduce an h-dependent norm on Q:

‖p‖Q,h := (‖p0,h‖2 + ‖p⊥0,h‖2
ν)

1

2 for p ∈ Q

We define the quantity

µ̃h :=
‖p̃ − p̃h‖

‖p̃‖ ,

which measures the error made by approximating p̃ in the finite element pressure space.
In particular, µ̃h = 0 if Qh contains piecewise constant finite elements. In general we have
µ̃h = O(h̃

1

2 ), where h̃ is the maximal diameter of the elements in Th that have a nonempty
intersection with Γ. We will assume µ̃h ≤ 1

2
.

The following continuity results hold:
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Lemma 3 There exists a constant C independent of h and ε such that for all u ∈ V, p ∈
Q the following inequalities hold

|(div u, p)| ≤ C‖u‖V(‖p‖2
Q,h +

µ̃2

h

ε
‖p0,h‖2)

1

2 (22)

|(div u, p)| ≤ C(‖u‖V + µ̃h‖∇u‖)‖p‖Q,h. (23)

Proof. For p ∈ Q we use the decomposition p = p0,h + p⊥0,h. First we prove the estimate

(22). For the component p⊥0,h the Cauchy inequality gives for any u ∈ V:

(div u, p⊥0,h) ≤ ‖ν 1

2 div u‖‖p⊥0,h‖ν ≤
√

d‖u‖V‖p⊥0,h‖ν . (24)

For the component p0,h = α p̃h define p0 := α p̃ ∈ Q0. From ‖p0,h − p0‖ = µ̃h‖p0‖ and
µ̃h ≤ 1

2
it follows that ‖p0‖ ≤ (1 − µ̃h)

−1‖p0,h‖ ≤ 2‖p0,h‖. Now using the Stokes formula
and a trace theorem, we have for any u ∈ V:

|(div u, p0,h)| ≤ |(div u, p0)| + |(div u, p0,h − p0)|

≤ 2|
∫

Γ

u·n d s| ‖p0‖L∞(Ω) + ‖div u‖‖p0,h − p0‖

≤ c1‖u|Γ‖L2(Γ) ‖p0‖ +
√

d ‖∇u‖ µ̃h‖p0‖
≤ c2 ‖u‖H1(Ω1)‖p0,h‖ +

√
d ε−

1

2‖u‖V 2 µ̃h‖p0,h‖
≤ c3‖∇u‖Ω1

‖p0,h‖ + 2
√

d µ̃hε
− 1

2‖u‖V‖p0,h‖
≤ (c3 + 2

√
d µ̃hε

− 1

2 )‖u‖V‖p0,h‖.

Taking a sum of the latter inequality and (24) proves (22).
The estimate (23) is proved using similar arguments. For the component p⊥0,h we already

have the estimate (24). For the component p0,h we get using an estimate as in (12):

|(div u, p0,h)| ≤ |(div u, p0)| + |(div u, p0,h − p0)|
≤ c‖u‖V ‖p0,h‖ +

√
d ‖∇u‖ 2 µ̃h‖p0,h‖

≤ C(‖u‖V + µ̃h‖∇u‖)‖p0,h‖.

Taking a sum of this inequality and (24) we obtain (23).

We now prove a discrete infsup stability result.

Theorem 2 There exists a constant C > 0 independent of h and ε such that

sup
uh∈Vh

(div uh, ph)

‖uh‖V

≥ C‖ph‖Q,h for all ph ∈ Qh

8
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Proof. The proof uses arguments very similar to those used in the proof of theorem 1.
Fix an arbitrary ph = p0,h + p⊥0,h ∈ Qh. From lemma 2 we get (p⊥0,h, 1)Ωi

= 0, for i = 1, 2.
Hence, we can apply the LBB stability result in each subdomain. This yields

‖p⊥0,h‖2
ν = (div ũh, p

⊥
0,h) and c‖ũh‖V ≤ ‖p⊥0,h‖ν , ũh = u1 + u2,

for suitable functions u1 ∈ Vh with u1 = 0 on Ω2 and u2 ∈ Vh with u2 = 0 on Ω1. For
the component p0,h the LBB condition gives a function ūh ∈ Vh such that

‖p0,h‖2 = (div ūh, p0,h) and β̂ ‖∇ūh‖ ≤ ‖p0,h‖.
Therefore we have for any α > 0 and δ > 0

(div (ũh + αūh), ph) ≥ (1 − δα
√

d

2β̂
)‖p⊥0,h‖2

ν + α(1 −
√

d

2β̂δ
)‖p0,h‖2.

Therefore setting u = ũ + α0ū, δ =
√

d β̂−1 and α0 = 2β̂2

β̂2+d
we get

‖ph‖2
Q,h ≤ c (div uh, ph) and c‖uh‖2

V
≤ ‖p⊥0,h‖2

ν + ‖p0,h‖2 = ‖ph‖2
Q,h.

Now one can use standard arguments (cf. [11]) to derive continuity and stability results
for the bilinear form a(·, ·). It is convenient to introduce the product norm

‖|u, p‖| = (‖u‖2
V

+ ‖p‖2
Q,h)

1

2 {u, p} ∈ V × Q

Lemma 3 and theorem 2 yield the following continuity and stability results:

Theorem 3 There exist constants C and c > 0 independent of h and of ε such that

a(u, p;vh, qh) ≤ C(‖u‖2
V

+ µ2
h‖∇u‖2 + ‖p‖2

Q,h +
µ̃2

h

ε
‖p0,h‖2)

1

2‖|vh, qh‖|

for all {u, p} ∈ V × Q, {vh, qh} ∈ Vh × Qh and

sup
{vh,qh}∈Vh×Qh

a(uh, ph;vh, qh)

‖|vh, qh‖|
≥ c ‖|uh, ph‖| for all {uh, ph} ∈ Vh × Qh

As for the continuous problem we get as a direct corollary that the discrete problem (19)
has a unique solution {uh, ph} and the inequality

‖|uh, ph‖| ≤ c−1‖f‖V′

h

holds, with the constant c from theorem 3. Moreover, if f ∈ L2(Ω)d, then using the
Cauchy inequality and the Poincare inequality (17) we obtain the a-priori estimate:

‖|uh, ph‖| ≤ c−1 CP‖ν− 1

2 f‖.
Using the continuity and the infsup results in theorem 3 we can prove a discretization

error bound.

9
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Theorem 4 Let {u, p} be the solution of the continuous problem (5) and {uh, ph} the
solution of the discrete problem (19). The following holds with a constant C independent
of h and of ε:

‖u− uh‖2
V

+ ‖p − ph‖2
Q,h ≤ C

(

min
vh∈Vh

(‖u− vh‖2
V

+ µ̃2
h‖∇(u − vh)‖2)

+ min
qh∈Qh

(‖p − qh‖2
Q,h +

µ̃2
h

ε
‖(p − qh)0,h‖2)

)

Proof. For arbitrary vh ∈ Vh, qh ∈ Qh define e := u−vh, eh = uh−vh, g := p−qh, gh :=
ph − qh. The Galerkin orthogonality property yields

a(eh, gh; zh, rh) = a(e, g; zh, rh) for all {zh, rh} ∈ Vh × Qh .

Using this in combination with the continuity and infsup results we obtain, for suitable
{zh, rh} ∈ Vh × Qh:

‖|eh, gh‖| ≤ c−1a(eh, gh; zh, rh)

‖|zh, rh‖|
= c−1 a(e, g; zh, rh)

‖|zh, rh‖|

≤ c−1C(‖e‖2
V

+ µ̃2
h‖∇e‖2 + ‖g‖2

Q,h +
µ̃2

h

ε
‖g0,h‖2)

1

2 .

Now combine this with the triangle inequality ‖|u−uh, p−ph‖| ≤ ‖|eh, gh‖|+‖|e, g‖|.
Based on the result in theorem 4 and using approximation properties of the finite

element spaces one can derive further bounds for the discretization error. For such an
analysis one needs regularity results for the continuous Stokes interface problem. As far
as we know, this regularity issue is largely unsolved.

Remark 2 In the bound in theorem 4 in addition to the norm ‖|e, g‖|2 = ‖e‖2
V

+ ‖g‖2
Q,h

two terms with µ̃h occur. In remark 3 we give an indication that in the analysis as
presented in this paper these terms can not be avoided. This, however, is not the case
if instead of the space V × Q one uses the (less standard) space V × M , where M :=
{ p ∈ L2(Ω) | (p, 1)ν = 0 } with scalar product (·, ·)M = (·, ·)ν. An analysis for the space
V × M is presented in [12]. This analysis uses a splitting M = M0 ⊕ M⊥M

0 , where M0

is a one-dimensional space and M⊥M

0 is the orthogonal complement of this space w.r.t.
(·, ·)M . It turns out that then perturbation terms like those with µ̃h in theorem 4 can be
avoided. For the discretization error we can prove a bound of the form (theorem 3.6 in
[12]):

‖u− uh‖2
V

+ ‖p − ph‖2
M ≤ C( min

vh∈Vh

‖u− vh‖2
V

+ min
qh∈Mh

‖p − qh‖2
M)

This shows that for a theoretical analysis the nonstandard space M seems to be more
natural than Q = L2

0(Ω).

10
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4 Preconditioners for the Schur complement

In this section we discuss several preconditioners for the Schur complement. For this
we first introduce the standard matrix-vector formulation of the discrete problem (19).

In practice the discrete space Qh for the pressure is constructed by taking a standard
finite element space, which we denote by Q+

h (for example, continuous piecewise linear
functions) and then adding an orthogonality condition:

Qh = { ph ∈ Q+
h | (ph, 1) = 0 }

We assume standard (nodal) bases in Vh and Q+
h . The bilinear forms (ν∇·,∇·), (div ·, ·)

yield stiffness matrices A ∈ R
n×n, B ∈ R

m×n, with n := dim(Vh), m := dim(Q+
h ). Let

M ∈ R
m×m be the mass matrix of Q+

h w.r.t. (·, ·) and JQ : R
m → Q+

h the finite element
isomorphism (y ∈ R

m contains the nodal values of JQy).
The matrix-vector formulation of the problem (19) is given by

(

A BT

B 0

)(

x
y

)

=

(

f
0

)

(25)

The Schur complement is denoted by S := BA−1BT . Note that both S and the matrix
in (25) are singular and have a one-dimensional kernel. Define the constant vector e :=
(1, . . . , 1)T ∈ R

m. Then we have ker(S) = span{e}. To treat this singularity we need the
space

(Me)⊥ := { y ∈ R
m | 〈y, Me〉 = 0 } ,

where 〈·, ·〉 denotes the standard Euclidean scalar product. Since

Qh = { JQy | y ∈ (Me)⊥ }

we get the following matrix-vector representation of the discrete problem:

Find (x, y) ∈ R
n × (Me)⊥ such that (25) holds (26)

In preconditioned MINRES and (inexact) Uzawa type of methods for solving (26) one
needs good preconditioners QA of A and QS of S. It is known that if for QA we take a
symmetric multigrid V -cycle then we have (cf. [5, 7, 20])

(1 − σA)QA ≤ A ≤ QA,

with a constant σA < 1 independent of h and of ε.
Below we introduce preconditioners for S. Theorem 2 and estimate (22) imply

c1‖ph‖Q,h ≤ sup
uh∈Vh

(div uh, ph)

‖uh‖V

≤ c2 (‖ph‖2
Q,h +

µ̃2
h

ε
‖p0,h‖2)

1

2 for ph ∈ Qh (27)

11
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with c1 > 0, c2 independent of ε and h. From the definition of the Schur complement it
follows that for arbitrary y ∈ R

m we have

〈Sy, y〉 = sup
uh∈Vh

(div uh, JQy)2

‖uh‖2
V

(28)

Let G be the mass matrix of Q+
h w.r.t. the scalar product induced by the L2-orthogonal

decomposition in (21):

(ph, qh)Q,h := (p0,h, q0,h) + (p⊥0,h, q
⊥
0,h)ν , ph, qh ∈ Q+

h

The vector representation of p̃h ∈ Qh from (20) is denoted by p̃. i.e., JQp̃ = p̃h.

Theorem 5 The spectral equivalences

c2
1〈Gy, y〉 ≤ 〈Sy, y〉 ≤ c2

2(1 +
µ̃2

h

ε
)〈Gy, y〉 ∀ y ∈ (Me)⊥ (29)

c2
1〈Gy, y〉 ≤ 〈Sy, y〉 ≤ c2

2〈Gy, y〉 ∀ y ∈ (Me)⊥ ∩ (Mp̃)⊥ (30)

hold with c1, c2 as in (27).

Proof. From the definition of the mass matrix G we get

〈Gy, y〉 = 〈JQy, JQy〉Q,h = ‖JQy‖2
Q,h for all y ∈ R

m (31)

We also have

‖ph‖2
Q,h +

µ̃2
h

ε
‖p0,h‖2 ≤ (1 +

µ̃2
h

ε
)‖ph‖2

Q,h (32)

Note that JQy = ph ∈ Qh iff y ∈ (Me)⊥. The result in (29) now follows from (27),(28),(31)
and (32). For y ∈ R

m let JQy =: ph = p0,h + p⊥0,h with p0,h ∈ span(p̃h) and (p⊥0,h, p̃h) = 0.

For y ∈ (Mp̃)⊥ we have 〈y, Mp̃〉 = 0 and thus (ph, p̃h) = 0. This implies p0,h = 0 and thus
the term with µ̃h in (27) vanishes. This yields the result in (30).

We note that the deterioration (for ε ↓ 0) of the upper bound in (29) is not a serious
problem, because it is caused by the one-dimensional subspace span(Mp̃) (cf. (30)). If
we apply a Krylov subspace solver with a preconditioner G for S then already after a few
iterations this one-dimensional subspace does not influence the effective spectral condition
number anymore.

From
〈Gy, y〉 = (JQy, JQy)ν ∀ y ∈ (Me)⊥ ∩ (Mp̃)⊥

we see that on the (m − 2)-dimensional subspace (Me)⊥ ∩ (Mp̃)⊥ the mass matrix G
coincides with the mass matrix corresponding to the scalar product (·, ·)ν. The latter mass
matrix, which is denoted by Mν , is easier to construct than G. Hence, Mν is a further
candidate preconditioner for S. Furthermore, the next lemma shows that either the matrix
Mν can be replaced by a cheap diagonal preconditioner or a good approximation of M−1

ν y
can be obtained efficiently by applying a preconditioned CG method with a diagonal
matrix as preconditioner .

12
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Lemma 4 Define the diagonal matrix M̄ν by (M̄ν)ii =
∑m

j=1(Mν)ij (diagonal lumping).
Then for all y ∈ R

m we have

C3〈M̄νy, y〉 ≤ 〈Mνy, y〉 ≤ C4〈M̄νy, y〉

with constants C3 > 0 and C4 independent of ε and h.

Proof. The proof follows from applying the analysis from [19]. The details are given in
[12].

Summarizing, we discussed the following three preconditioners for the Schur comple-
ment S:

G : the mass matrix w.r.t. (·, ·)Q,h (33)

Mν : the mass matrix w.r.t. (·, ·)ν (34)

M̄ν : the diagonal matrix such that M̄νe = Mνe (35)

For the preconditioner G we have a spectral equivalence result on the whole pressure space
(Me)⊥ as in (29). For all three preconditioners we have uniform spectral bounds on the
subspace (Me)⊥ ∩ (Mp̃)⊥, as in (30).

Remark 3 We performed a simple numerical experiment to show that the result in (29)

is sharp, in the sense that the term
µ̃2

h

ε
can not be avoided. We consider a 1D Stokes

problem with Ω = (0, 1), Ω2 = (1
4
, 3

4
) and P2isoP1 − P1 finite elements on a uniform

grid. In this case we have µ̃2
h ∼ h. In table 1 we show the values of 〈Sy, y〉/〈Gy, y〉 for

y = p̃ ∈ (Me)⊥.

h

ε 1/16 1/32 1/64
10−2 5.0 3.5 2.7
10−4 3.1 102 1.6 102 8.1 101

10−6 3.1 104 1.6 104 7.9 103

Table 1: Estimates for upper bound in (29).

These results show a behaviour consistent with
µ̃2

h

ε
∼ h

ε
. If instead of the spaces Q and

Qh we use slightly different spaces M and Mh as explained in remark 2 then it is possible
to avoid the deterioration (for ε ↓ 0) as in the upper bound in (29). In [12] (theorem 4.1)
it is shown that on the space Mh ∩ (Mνe)

⊥ the mass matrix Mν is uniformly spectrally
equivalent to S.

13
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5 Numerical experiments

In this section we present results of a few numerical experiments. We consider a Stokes
interface problem as in (1)-(3) with

Ω = (0, 1)3, Ω2 = (0,
1

2
)3

For the discretization we start with a uniform tetrahedral grid with h = 1
2

and we apply
regular refinements to this starting triangulation. The resulting triangulations satisfy
the conformity condition (18). For the finite element discretization we used the LBB
stable pair of Hood-Taylor P2 − P1. We performed computations for the cases h = 1/16,
h = 1/32 and with varying ε ∈ (0, 1]. Note that for h = 1/32 we have approximately
7.5·105 velocity unknowns and 3.3·104 pressure unknowns (n ≈ 7.5·105, m ≈ 3.3·104). We
consider the problem in (26). In the iterative method we take a fixed arbitrary starting
vector (x0, y0), with y0 ∈ (Me)⊥.
We use a preconditioned MINRES method. For this we consider a symmetric positive
definite preconditioner

K̃ =

(

QA 0
0 QS

)

for K :=

(

A BT

B 0

)

Define the norm ‖w‖K̃ := 〈K̃w, w〉 1

2 for w ∈ R
n+m. Given a starting vector w0 with corre-

sponding error e0 := w∗−w0, then in the preconditioned MINRES method one computes
the vector wk ∈ w0 + span{K̃−1Ke0, . . . , (K̃−1K)ke0} which minimizes the preconditioned
residual ‖K̃−1K(w∗ − w)‖K̃ over this subspace. For an efficient implementation of this
method we refer to the literature. From the literature (cf. [18]) it is known that the con-
vergence of the preconditioned MINRES method is fast if we have good preconditoners QA

of A and QS of S. For the preconditioner QA we take one iteration of a standard multigrid
V-cycle with one pre- and one post-smoothing iteration with a symmetric Gauss-Seidel
method. We take QS ∈ {M, G, Mν, M̄ν}.

As a stopping criterion we use

∥

∥

∥
K̃−1(K

(

xk

yk

)

−
(

f
0

)

)
∥

∥

∥

K̃
≤ 10−6

∥

∥

∥
K̃−1(K

(

x0

y0

)

−
(

f
0

)

)
∥

∥

∥

K̃
(36)

Note that for QS = M the iterands wk = (xk, yk) of the preconditioned MINRES
method satisfy yk ∈ (Me)⊥ and thus yk converges to the solution y ∈ (Me)⊥ as desired in
(26). However, for QS ∈ {G, Mν , M̄ν}, one in general has yk /∈ (Me)⊥. This inconsistency

is easily repaired by using the projection yk → yk − 〈Myk,e〉
〈Me,e〉

e. Note that this projection

does not influence the residual in (36), since e ∈ ker(BT ).
For QS ∈ {M, G, Mν} the systems with matrix QS that occur in each MINRES iteration
are solved using a CG method. This inner CG iteration is stopped if its starting residual

14
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has been reduced by a factor 103 (in the Euclidean norm).
A matrix-vector multiplication Gy can be computed as follows. Let p̃ be the piecewise
constant function as in (7) and {φi}1≤i≤m the standard nodal basis in Q+

h . Define p0, b0 ∈
R

m, α0 ∈ R by

b0 = ((p̃, φ1), . . . , (p̃, φm))T , Mp0 = b0, α0 = 〈b0, p0〉−1

A straightforward computation yields the representation

G = α0b0b
T
0 + (I − α0b0p

T
0 )Mν(I − α0p0b

T
0 )

for the mass matrix G. Using this one can compute Gy efficiently.

In table 2, for different choices of the preconditioner QS, we show the number of iter-
ations needed to satisfy the stopping criterion (36).

h 1/16 1/32
ε 1 10−2 10−4 10−6 1 10−2 10−4 10−6

QS = M 48 370 1242 1500 42 340 1201 1488
QS = G 48 54 64 71 42 49 58 69
QS = Mν 48 53 63 67 42 49 58 66
QS = M̄ν 62 68 98 157 50 58 85 116

Table 2: # preconditioned MINRES iterations.

As expected, the preconditioner QS = M is not satisfactory for small ε values. The pre-
conditiners QS = G and QS = Mν result in a very similar convergence behaviour of the
preconditioned MINRES method. The latter, however, is easier to implement. Finally
note that for QS = M̄ν there is some deterioration of the rate of convergence for small ε
values.
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