
GRAD-DIV STABLILIZATION FOR STOKES EQUATIONSMAXIM A. OLSHANSKII� AND ARNOLD REUSKEN yAbstra
t. In this paper a stabilizing augmented Lagrangian te
hnique for the Stokes equationsis studied. The method is 
onsistent and hen
e does not 
hange the 
ontinuous solution. We showthat this stabilization improves the well-posedness of the 
ontinuous problem for small values ofthe vis
osity 
oeÆ
ient. We analyze the in
uen
e of this stabilization on the a

ura
y of the �niteelement solution and on the 
onvergen
e properties of the inexa
t Uzawa method.AMS subje
t 
lassi�
ations. 65N30, 65N22, 76D07Key words. Stokes equations, �nite elements, augmented Lagrangian, inexa
t Uzawa1. Introdu
tion. This paper provides an analysis of the e�e
ts of a parti
ularstabilizing term that 
an be added to the Stokes equations. We 
onsider the variationalStokes problem: given f 2 H�1(
)d �nd (u; p) 2 H10 (
)d�L2(
) with R
 p(x) dx = 0su
h that�(ru;rv) + �(u; v) + �(div u; div v) + (div v; p) = f(v) for v 2 H10 (
)d;(div u; q) = 0 for q 2 L2(
) ; (1.1)with parameters � 2 (0; 1℄; � � 0; � � 0, where (�; �) stands for the L2 s
alar produ
t.To simplify the presentation, we restri
t ourselves to the two 
ases � = 0, � = 1. Inthis paper we study the e�e
ts of the term (div u; div v) on the numeri
al solution ofthe Stokes problem. In the strong formulation this term is represented by the di�er-ential operator rdiv and, as we will show, adding this term has a stabilizing e�e
tfor small � values. This explains why we 
all this a \rdiv stabilization". Note thatthe unique solution of the problem (1.1) does not depend on �. Adding the 
onsistentrdiv term to the Stokes equations is not a new idea. This stabilization term is 
on-sidered at several pla
es in the literature. In [9℄ it is proposed and analyzed in thegeneral framework of augmented Lagrangian methods. Indeed, in the saddle pointformulation of the Stokes problem, adding the rdiv term results in an augmentedLagrangian. In [9℄ it is shown that this in general improves the rate of 
onvergen
e ofdes
ent type iterative methods for solving the saddle point problem. In [4℄, [10℄ thein
uen
e of the rdiv term on the 
onvergen
e of iterative solvers for the Stokes andNavier-Stokes problems is studied. In [10℄ it is demonstrated that for the in
ompress-ible Navier-Stokes equations with high Reynolds numbers the additional rdiv termimproves the performan
e of nonlinear iterations. The analysis in [4℄ shows that forblo
k-diagonal and blo
k-triangular pre
onditioning of the Stokes problem this termdoes not lead to 
onvergen
e improvement if it is used in the residual 
al
ulationonly, while not a�e
ting the pre
onditioner. We note that in this paper we 
onsidera pre
onditioner for the Stokes problem whi
h depends on �.In [21℄ it is shown that using this stabilization in the mixed formulation of thePoisson equation improves the rate of 
onvergen
e of a suitably pre
onditioned MIN-RES method.In the literature on the �nite element method for in
ompressible Navier-Stokesequations this term sometimes o

urs in an error analysis of the streamline di�usion� Dept. Me
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2 M. A. OLSHANSKII AND A. REUSKENor Petrov-Galerkin �nite element method (e.g. [15℄, [20℄). From the analysis, however,it is not 
lear whether this term plays a key role or is introdu
ed for te
hni
al reasonsonly.In the papers mentioned ([9, 4, 21℄) the e�e
t of the rdiv stabilization on therate of 
onvergen
e of iterative methods for solving the dis
retized Stokes equationshas been studied. We observed that there are also interesting e�e
ts 
on
erning the
ontinuous problem and the quality of the �nite element dis
retization and, to ourknowledge, there is no theoreti
al explanation for this known in the literature. Thispaper tries to �ll this gap. In pra
ti
al implementations � = 0 is the usual 
hoi
e. Inthis paper we try to make 
lear when � > 0 leads to a (signi�
ant) improvement.We analyze the in
uen
e of the rdiv term on the 
ontinuous problem, the �niteelement dis
retization and the iterative solution of the dis
rete problem. Con
erningthe 
ontinuous problem we show that although taking � > 0 in (1.1) does not 
hangethe 
ontinuous solution it has a 
lear positive e�e
t on the stability of the bilinearform 
orresponding to (1.1). We will show that for � > 0 the 
ontinuous problem isuniformly (w.r.t. �) well-posed in the natural energy norm. This is not true for the
ase � = 0. The main new result presented in this paper 
on
erns �nite element errorbounds for the problem (1.1). We use LBB stable 
onforming �nite element spa
esfor dis
retization and show that for � # 0 the dis
retization error bounds be
omesigni�
antly better if a rdiv stabilization is used. Numeri
al experiments show thatthe theoreti
al upper bounds predi
t the 
orre
t behaviour. We also analyze an Uzawatype iterative method for solving the dis
rete problem and draw a similar 
on
lusionas in [9℄, namely that the rate of 
onvergen
e of the outer iteration for solving theS
hur 
omplement equation for the pressure in general in
reases due to the rdivterm. However, for � # 0, the inner velo
ity problem be
omes more sti� if we userdiv stabilization.We will present results of numeri
al experiments whi
h 
on�rm our theoreti
alanalysis. Based on the theory and the results of the experiments our 
on
lusion isthat by adding the rdiv term the Stokes problem with � � 1 
an be solved upto a pres
ribed a

ura
y with signi�
antly lower arithmeti
 
osts. We note thatnumeri
al experiments (in e.g. [12℄) have shown that similar positive e�e
ts of therdiv stabilization o

ur in (linearized) Navier-Stokes equations with high Reynoldsnumbers.As usual for a stabilization method a proper value of the stabilization parameter,� in our 
ase, is important. In the present paper we only brie
y address this issue.Results of numeri
al experiments related to this parameter 
hoi
e 
an be found in[12℄.Finally we have two remarks on s
aling arguments. First, for the 
ase � =0; � = 0 a 
ommon s
aling argument using ~p = ��1p; ~f = ��1f leads to a parameterindependent Stokes problem with a new pressure variable and righthand side. One
an then use known results for this Stokes problem (in (u; ~p)) and transform ba
k tothe (u; p) variables. For example, a typi
al dis
retization error bound of the formku� uhk1 + k~p� ~phk0 � Ch(kuk2 + k~pk1)immediately yieldsku� uhk1 + 1� kp� phk0 � Ch(kuk2 + 1� kpk1) ; (1.2)with a 
onstant C that is independent of �. If, however, we take � > 0 there are twoparameters and the problem 
an not be redu
ed to a parameter independent standard



GRAD-DIV STABILIZATION FOR STOKES 3Stokes problem by a simple s
aling argument. One 
ould use a s
aling to eliminateone of the parameters. This then results in a parameter dependent problem withs
aled variables. We found that the analysis is most transparent if one does not applya s
aling but 
onsiders the problem (1.1) in the original variables (u; p). Therefore wewill not use s
aling arguments.Se
ondly, another s
aling argument relates the problem (1.1) with � = 1 to a transient-like problem. Let (u; p) be the solution of (1.1) with � = 1. De�ne ~� := ��t ; ~� := ��t ;and ~u := �t u. Then the pair (~u; p) satis�es~�(r~u;rv) + 1�t(~u; v) + ~�(div ~u; div v) + (div v; p) = f(v) for v 2 H10 (
)d;(div ~u; q) = 0 for q 2 L2(
) : (1.3)For the 
ase � = 0 this type of problem o

urs if one applies an impli
it time integra-tion method (with a time step �t) to a standard unsteady Stokes problem. Resultsfor the problem (1.1), like for example �nite element dis
retization error bounds, im-mediately yield 
orresponding results for the problem (1.3) (
f. remark 4). Thesedis
retization error bounds are fairly sharp if one 
onsiders arbitrary f 2 H�1(
)dand show a 
lear stabilizing e�e
t due to the rdiv term. If, however, the problem(1.3) 
orresponds to a time-dis
retized unsteady Stokes problem the righthand side fhas a spe
ial stru
ture and our general bounds are too pessimisti
. For su
h dis
reteunsteady problems other te
hniques for analyzing the dis
retization error whi
h takeinto a

ount the evolutionary nature of the problem (as in [19℄, [7℄) should be used.Our analysis does not yield satisfa
tory dis
retization error bounds for the unsteady
ase with a time step �t tending to zero. The results we obtain 
on
erning the ef-�
ien
y of the inexa
t Uzawa iterative solver for the �nite element dis
retization of(1.3) are satisfa
tory, even for the 
ase �t tending to zero (remark 6).The paper is organized as follows. In x2 we present two simple linear algebraresults that will be used further on. In x3 we 
onsider the variational formulationof the Stokes problem and show that adding the rdiv term leads to a uniformly(for � # 0) well-posed problem in a natural norm. Finite element dis
retization errorbounds are presented in x4. The 
onvergen
e of the inexa
t Uzawa iterative methodfor solving the dis
rete problem is dis
ussed in x5. Finally in x6 some numeri
al resultsare presented that illustrate important e�e
ts of rdiv stabilization.2. Preliminaries. We �rst derive two elementary linear algebra results relatedto a matrix A of saddle point type:A = �A BTB 0 � ; Rn�n 3 A = AT > 0;B 2 Rm�n ; m < n; rank(B) = m: (2.1)We use the notation h�; �i for the eu
lidean s
alar produ
t. The eu
lidean norm isdenoted by k � k. We de�ne the energy s
alar produ
t hx; yiA = hAx; yi and energynorm kxk2A = hx; xiA. The spe
tral 
ondition number of a regular matrix C is denotedby �(C) = kCkkC�1k. The following quantities will play an important rolep� := supy2Rm; x2Rn hBx; yikxkAkyk ; p
 := infy2Rm supx2Rn hBx; yikxkAkyk : (2.2)Here and in the remainder we always take infx or supx over nonzero elements. Thefollowing elementary result is known in the literature (see [22℄). For 
ompleteness wealso show a proof.



4 M. A. OLSHANSKII AND A. REUSKENLemma 2.1. Let �min(BA�1BT ) and �max(BA�1BT ) be the smallest and largesteigenvalues of the S
hur 
omplement BA�1BT . Then the following holds:
 = �min(BA�1BT ); � = �max(BA�1BT ) :Proof. Note thatsupx hBx; yi2kxk2Akyk2 = supx hBA� 12x; yi2kxk2kyk2 = supx hx;A� 12BT yi2kxk2kyk2= kA� 12BT yk2kyk2 = hBA�1BT y; yihy; yi :Hen
e 
 = infy hBA�1BT y; yihy; yi = �min(BA�1BT ) ;� = supy hBA�1BT y; yihy; yi = �max(BA�1BT ) :Using this lemma we derive an elementary result 
on
erning the spe
tral 
onditionnumber of a pre
onditioned version of the matrix A. Similar results are known in theliterature (e.g., the equality (2.5) 
an be found in [1℄).Lemma 2.2. De�neP := �A� 12 00 I�A�A� 12 00 I� = � I A� 12BTBA� 12 0 � : (2.3)Assume that 
 > 0 holds. Then P is invertible andkPk = 12(p1 + 4� + 1) (2.4)kP�1k = 2minf2 ; p1 + 4
 � 1g : (2.5)Proof. With C := BA� 12 we obtainP = � I CTC 0 � :Note that C has a nontrivial kernel. For v 2 Ker(C), v 6= 0, we have P �v0� = �v0�,hen
e 1 2 �(P). For � 2 �(P), � 6= 1, we have� I CTC 0 ��v1v2� = ��v1v2� ; with v2 6= 0 :This holds i� �(� � 1) 2 �(CCT ). Let �1 � �2 � : : : � �m be the eigenvalues ofCCT = BA�1BT . We then obtain�(P) n f1g = � 12(1�p1 + 4�j) �� 1 � j � m	 :



GRAD-DIV STABILIZATION FOR STOKES 5Hen
e the largest eigenvalue of P is given bykPk = 12(1 +p1 + 4�m) = 12(1 +p1 + 4�) :Due to lemma 2.1 and the assumption 
 > 0 we have that �1 > 0 holds. Hen
e P isinvertible and the largest eigenvalue of the inverse is given bykP�1k = max�1 ; max1�j�m 2���1�p1 + 4�j����1	= max�1 ; 2���1�p1 + 4�1����1	= 2minf2 ; p1 + 4
 � 1g :These results show that the quantities 
 and � 
ompletely determine �(BA�1BT )and �(P). Note that the former depends only on the quotient �=
, whereas for thelatter this is not the 
ase. The result in lemma 2.2 will be used below.3. The 
ontinuous Stokes equations. We 
onsider a standard variationalformulation of the Stokes problem in a domain 
 in d-dimensional Eu
lidean spa
e(d = 2; 3). We use the notationsX := H10 (
)d; M := f f 2 L2(
) j Z
 f(x) dx = 0 g: (3.1)The L2 s
alar produ
t and asso
iated norm are denoted by (�; �); k � k, respe
tively.Before we turn to the Stokes problem in (1.1) we �rst 
onsider a more general setting.We introdu
e two 
ontinuous bilinear forms:a(�; �) : X �X ! R; b(�; �) : X �M ! R :We assume that a(�; �) is symmetri
 andX-ellipti
 and that the bilinear form b satis�esthe infsup 
ondition: infq2M supv2X b(v; q)krvkkqk � � > 0: (3.2)We 
onsider the standard saddle point problem: Given f 2 X 0 �nd (u; p) 2 X �Msu
h that � a(u; v) + b(v; p) = f(v) for v 2 X;b(u; q) = 0 for q 2M : (3.3)Using the bilinear form � : (X �M)� (X �M)! R,�(u; p; v; q) := a(u; v) + b(v; p) + b(u; q) ;the problem (3.3) 
an be rewritten as: Find (u; p) 2 X �M su
h that�(u; p; v; q) = f(v) for all (v; q) 2 X �M : (3.4)



6 M. A. OLSHANSKII AND A. REUSKENOn X we introdu
e the norm indu
ed by the bilinear form a: kukX := a(u; u) 12 foru 2 X . On M we use the L2-norm k � k and on the produ
t spa
e we use the normjk(u; p)kj = (kuk2X + kpk2) 12 :We introdu
e the notationp� := supv2X;q2M b(v; q)kvkXkqk ; p
 := infq2M supv2X b(v; q)kvkXkqk : (3.5)Note that �; 
 are used in (2.2) to denote similar quantities. Below the symbols �; 
always refer to the quantities in (3.5). The infsup 
ondition (3.2) implies 
 > 0. Weemphasize that if the bilinear forms a(�; �) and b(�; �) 
orrespond to the Stokes problem(as in (3.9) below), then the infsup 
onstant � from (3.2) does not depend on anyparameters, whereas � and 
 depend on the parameters �; � and �. The quantities �and 
 
ompletely determine the 
ontinuity and stability of the bilinear form �:Theorem 3.1. For all (u; p); (v; q) 2 X �M we havej�(u; p; v; q)j � 12(p1 + 4�+ 1)jk(u; p)jk jk(v; q)jk (3.6)and sup(v;q)2X�M �(u; p; v; q)jk(v; q)kj � 18 minf1 ; 
g jk(u; p)kj : (3.7)Proof. We de�ne � := 12 (p1 + 4� + 1) and note thatj�(u; p; v; q)j = ja(u; v) + b(v; p) + b(u; q)j� kukXkvkX + � 12 kvkXkpk+ � 12 kukXkqk� �kuk2X + �� kuk2X + �kpk2� 12 �kvk2X + �� kvk2X + �kqk2� 12= �jk(u; p)kjjk(v; q)kj :This proves the result in (3.6).For (f; g) 2 X 0 �M 0 let (u; p) 2 X �M be the solution of�(u; p; v; q) = f(v) + g(q) for all (v; q) 2 X �M :The mapping (f; g) ! (u; p) is bije
tive. A standard analysis (e.g. in [8℄ x 4.1, [14℄,x 7.4.1) yields the following sharp bounds on the norms of u and p:kukX � kfkX0 + 2
� 12 kgkM 0 ;kpk � 
� 12 �kfkX0 + kukX� � 2
� 12 (kfkX0 + 
� 12 kgkM 0) :Hen
e jku; pkj � kukX + kpk � 2�1 + 
� 12 ��kfkX0 + 
� 12 kgkM 0�= 2�1 + 
� 12 �� supv2X f(v)kvkX + 
� 12 supq2M g(q)kqk �� 4�1 + 
� 12 �maxf1 ; 
� 12 g sup(v;q)2X�M f(v) + g(q)kvkX + kqk� 4�1 + 
� 12 �maxf1 ; 
� 12 g sup(v;q)2X�M �(u; p; v; q)jk(v; q)kj :



GRAD-DIV STABILIZATION FOR STOKES 7Let z = 
� 12 2 (0;1). A simple 
omputation yields14(1 + z)maxf1 ; zg � 18maxf1 ; z2g = 18 minf1 ; z�2g :This proves the result in (3.7).The result in (2.4) shows that the bound in (3.6) is sharp. The inverse of theinfsup 
onstant in (3.7) behaves like O(
�1) for 
 ! 0. The same behaviour kP�1k =O(
�1) for 
 ! 0 is observed in (2.5). In this sense, the result in (3.7) is sharp, too.The results in Theorem 3.1 show that the 
ondition numberC(
;�) := 4(p1 + 4� + 1)minf1 ; 
g (3.8)
an be used as a measure for the well-posedness of the 
ontinuous problem (3.4) inthe norm jk � kj.We now 
onsider the Stokes problem (1.1) with � 2 f0; 1g. Note that the uniquesolution of this problem does not depend on �, sin
e div v 2 M for all v 2 X .Continuity and stability results for the problem (1.1) are known in the literature (e.g.[8℄). However, in the literature the parameters � and � are then treated as �xed
onstants (usually � = 0). Here we allow these parameters to vary and analyze thethe dependen
e of the 
ondition number (i.e. the well-posedness) on the parameters� and �. Hen
e, for the bilinear forms a and b in (3.3) we now takea(u; v) := �(ru;rv) + �(u; v) + �(div u; div v) for u; v 2 X ;b(u; q) := (div u; q) for u 2 X; q 2M : (3.9)Note that b satis�es the infsup 
ondition (3.2) and a is symmetri
 and X-ellipti
.The norm k � kX depends on the parameters �; �; �. In the next theorem we des
ribethe dependen
e of the 
ondition number C(
;�) on the parameters �; �; �. We usekdiv uk � kruk for u 2 X and the Friedri
hs inequalitykuk � 
F kruk for all u 2 X :Theorem 3.2. The following holdsC(
;�) � 4(p5 + 1)�2 maxf�2 ; � + �gminf1 ; p� + �g =: C0(�; �) if � = 0 ; (3.10)C(
;�) � 4(p5 + 1)�2 maxf�2 ; � + 
2F + �gminf1 ; p� + �g =: C1(�; �) if � = 1; (3.11)with � de�ned in (3.2).Proof. We take � 2 [0; 1℄. Fromkuk2X � (� + �
2F + �)kruk2 (3.12)and the infsup property (3.2) we obtain
 � �2� + �
2F + � :Using kuk2X � (� + �)kdiv uk2



8 M. A. OLSHANSKII AND A. REUSKENand the Cau
hy-S
hwarz inequality yields� � 1� + � : (3.13)Using the inequality p1 + 4x+ 1 � (p5 + 1)maxf1 ; pxg we obtain4p1 + 4� + 1minf1 ; 
g � 4(p5 + 1)maxf1 ; � 12 gminf1 ; 
g � 4(p5 + 1) maxf1 ; 1p�+� gminf1 ; �2�+�
2F+�g= 4(p5 + 1)�2 maxf�2 ; � + �
2F + �gminf1 ; p� + �g :Taking � 2 f0; 1g yields the bounds in (3.10) and (3.11) .Corollary 1. We 
onsider a few interesting 
ases.� � = 0; � = 0: The fun
tion � ! C0(�; 0) behaves like �� 12 for � # 0 and hen
eis unbounded for � # 0.� � = 0; � = �0 > 0. The fun
tion � ! C0(�; �0) is bounded for � # 0, hen
ethe problem is uniformly well-posed in the normjk(u; p)kj = ��kruk2 + �0kdivuk2 + kpk2� 12 : (3.14)� � = 1; � = 0. The fun
tion � ! C1(�; 0) is unbounded for � # 0.� � = 1; � = �0 > 0. The bound is 
ontrolled for � # 0, hen
e we have uniformwell-posedness in the normjk(u; p)kj = ��kruk2 + kuk2 + �0kdiv uk2 + kpk2� 12 : (3.15)From these results we see that adding the term (div u; div v) in the variational Stokesproblem makes the problem well-posed in the 
orresponding natural norm jk(�; �)kjuniformly for � 2 (0; 1℄. Although adding the (div u; div v) term does not 
hange thesolution of the Stokes problem it yields robust (i.e. uniform w.r.t. �) stability bounds.Remark 1. For � = 1 and � # 0 the Stokes problem is singularly perturbed.As a well-posed limit (� = 0; � = 0) problem one 
an take the mixed formulationof the Poisson equation with Neumann boundary 
onditions. This limit problem invariational form uses the spa
e H(div )�M (M as in (3.1)), with norm(u; p)! �kuk2 + kdivuk2 + kpk2� 12 : (3.16)In the analysis of the Stokes problem we use the normjk(u; p)kj = ��kruk2 + kuk2 + �kdivuk2 + kpk2� 12 : (3.17)Note that in the limit 
ase � = 0 the latter norm is equivalent to the norm in (3.16)only for � > 0. In this sense the rdiv term is a natural stabilizing term for the Stokesproblem if � # 0.Remark 2. For the 
ase � = 0; � # 0; � = 0 uniform well-posedness with respe
tto a spe
ial norm 
an be proved. It is well-known that the standard Stokes problem,



GRAD-DIV STABILIZATION FOR STOKES 9(1.1) with � = 1; � = � = 0; is well-posed in the norm (u; ~p) ! (kruk2 + k~pk2) 12 onX �M . A s
aling argument as dis
ussed in the introdu
tion then immediately yieldsuniform well-posedness in the (anisotropi
) normjk(u; p)kj� := �kruk2 + 1�2 kpk2� 12 : (3.18)It 
an be shown, using a similar analysis as presented above, that for the 
orresponding
onditon number C�(
;�) the uniform boundC�(
;�) � 4q1 + 4�� + 1minf1 ; �
g � C for � 2℄0; 1℄; (3.19)holds. The norm jk � kj� in (3.18) has a stronger anisotropy than the norm in (3.14),and using the latter results in a better 
ontrol of the velo
ity variable as � # 0.4. Finite element dis
retization using grad-div stabilization. We now
onsider the dis
retization of the variational Stokes problem using a family of pairs ofLBB stable �nite element spa
es Xh � X; Mh � M indexed by some mesh size pa-rameter h. In this se
tion we use standard arguments to derive a sharp dis
retizationerror bound and we show that for � # 0 taking � = �0 > 0 instead of � = 0 has a 
learstabilizing e�e
t.Before we turn to the dis
rete Stokes problem we �rst 
onsider the Galerkindis
retization of the more general variational problem (3.3) or, equivalently, (3.4).We assume that the �nite element pair (Xh;Mh) is LBB stable with a 
onstant �̂independent of h: infqh2Mh supvh2Xh b(vh; qh)krvhkkqhk � �̂ > 0 : (4.1)The dis
rete problem is as follows: �nd (uh; ph) 2 Xh �Mh su
h that�(uh; ph; vh; qh) = f(vh) for all (vh; qh) 2 Xh �Mh : (4.2)We introdu
e the dis
rete analog of the quantity 
 :p
h := infqh2Mh supvh2Xh b(vh; qh)kvhkXkqhk :From (4.1) it follows that 
h > 0 holds. For the analysis below we introdu
e theformulation of the dis
rete problem as a linear system in Rn+m . For this we assumestandard bases in Xh and Mh and 
orresponding isomorphismsJX : Rn ! Xh; n := dim(Xh); JM : Rm !Mh; m := dim(Mh) :Let the sti�ness matri
es A 2 Rn�n ; B 2 Rm�n and the mass matrix M̂ 2 Rm�m begiven by hAx; yi = a(JXx; JXy) for all x; y 2 Rn ;hBx; yi = b(JXx; JMy) for all x 2 Rn ; y 2 Rm ;hM̂x; yi = (JMx; JMy) for all x; y 2 Rm : (4.3)We now prove an infsup property of � on Xh �Mh:



10 M. A. OLSHANSKII AND A. REUSKENLemma 4.1. The following holds:inf(uh;ph)2Xh�Mh sup(vh;qh)2Xh�Mh �(uh; ph; vh; qh)jk(uh; ph)jk jk(vh; qh)jk= 12 minf 2;p1 + 4
h � 1 gProof. With ~B := M̂� 12B we obtainp
h := infy2Rm supx2Rn hBx; yihAx; xi 12 hM̂y; yi 12= infy2Rm supx2Rn h ~Bx; yikxkAkyk : (4.4)Let L := � I A� 12 ~BT~BA� 12 0 �. Note thatinf(uh;ph)2Xh�Mh sup(vh;qh)2Xh�Mh �(uh; ph; vh; qh)jk(uh; ph)jk jk(vh; qh)jk= infz2Rn+m supw2Rn+m 
� I A� 12BT M̂� 12M̂� 12BA� 12 0 � z; w�kzkkwk= infz2Rn+m supw2Rn+m hLz;wikzkkwk = infz2Rn+m kLzkkzk = kL�1k�1 :We now apply lemma 2.2.Due to the 
ontinuity result (3.6) and the infsup result in the previous lemma we
an prove a dis
retization error bound using standard arguments.Theorem 4.2. Let (u; p) be the solution of the 
ontinuous problem (3.4) and(uh; ph) be the solution of the dis
rete problem (4.2). The following holds:jk(u� uh; p� ph)jk � �1 + Ĉ(
h;�)� minvh2Xh;qh2Mh jk(u� vh; p� qh)jk ;with Ĉ(
h;�) := p1 + 4� + 1minf 2;p1 + 4
h � 1 g : (4.5)Proof. For arbitrary vh 2 Xh; qh 2 Mh de�ne e := u � vh; eh = uh � vh; g :=p� qh; gh := ph � qh The Galerkin orthogonality property yields�(eh; gh;wh; rh) = �(e; g;wh; rh) for all (wh; rh) 2 Xh �Mh :Using this in 
ombination with the 
ontinuity and infsup results we obtain, for suitable(wh; rh) 2 Xh �Mh:jk(eh; gh)jk � 2minf 2;p1 + 4
h � 1 g �(eh; gh;wh; rh)jk(wh; rh)jk= 2minf 2;p1 + 4
h � 1 g �(e; g;wh; rh)jk(wh; rh)jk� p1 + 4� + 1minf 2;p1 + 4
h � 1 gjk(e; g)jk :



GRAD-DIV STABILIZATION FOR STOKES 11Now 
ombine this with the triangle inequality jk(u � uh; p � ph)jk � jk(eh; gh)jk +jk(e; g)jk.We now 
onsider the Stokes problem, i.e., in the remainder of this se
tion thebilinear forms a and b are as in (3.9). Note that the bilinear form a(�; �) dependson � and that opposite to the 
ontinuous problem the dis
rete solution in generaldepends on �, unless div vh 2 Mh for all vh 2 Xh. Thus if one uses a spa
e Xh ofdivergen
e free �nite elements, the dis
rete solution does not depend on �. For theStokes problem we have, for all (u; p) 2 X �M12(� 12 kruk+ � 12 kdiv uk+� 12 kuk+kpk) � jk(u; p)kj � (� 12 + � 12 )kruk+� 12 kuk+kpk :Using this in 
ombination with theorem 4.2 yields the dis
retization error bound� 12 kr(u� uh)k+ � 12 kdiv (u� uh)k+ � 12 ku� uhk+ kp� phk � (4.6)2(1 + Ĉ(
h;�))� minvh2Xhf(� 12 + � 12 )kr(u� vh)k+ � 12 ku� vhkg+ minqh2Mh kp� qhk� :We now analyze the dependen
e of the fa
tor Ĉ(
h;�) on the parameters �; �; � andthe mesh size parameter h.Theorem 4.3. The following holds:Ĉ(
h;�) � 14�̂2 (p5 + 1)2maxf�̂2 ; � + �gminf1 ; p� + �g =: Ĉ0(�; �) if � = 0 ; (4.7)Ĉ(
h;�) � 14�̂2 (p5 + 1)2maxf�̂2 ; � + 
2F + �gminf1 ; p� + �g =: Ĉ1(�; �) if � = 1 : (4.8)Proof. We take � 2 [0; 1℄. Note that for x � 0:p1 + 4x+ 1 � (p5 + 1)maxf 1;px gp1 + 4x� 1 � (p5� 1)minf 1; x g :Hen
e, Ĉ(
h;�) � 14(p5 + 1)2maxf1 ; p�gminf1 ; 
hg (4.9)holds. Using the Friedri
hs inequality we obtainkuhkX = �kruhk2 + �kuhk2 + �kdiv uhk2 � (� + �
2F + �)kruhk2 :From the LBB property it follows that
h � �̂2� + �
2F + � : (4.10)From (3.13) we have the bound � � 1� + � : (4.11)



12 M. A. OLSHANSKII AND A. REUSKENUsing the results (4.10) and (4.11) in (4.9) and taking � 2 f0; 1g yields the results in(4.7), (4.8).The bounds for Ĉ(
h;�) in theorem 4.3 are of the same form as the bounds forC(
;�) in theorem 3.2. Hen
e the results in 
orollary 1 apply here, i.e., Ĉ0(�; 0) andĈ1(�; 0) are unbounded for � # 0, whereas for �0 > 0 the fa
tors Ĉ0(�; �0) and Ĉ1(�; �0)are uniformly bounded for � # 0. Due to theorem 4.2 this has dire
t 
onsequen
es forthe dis
retization error bounds. To make this more 
lear we 
onsider a 
on
rete �niteelement pair. As an example we take the LBB stable pair of 
onforming P1isoP2/P0�nite elements (pie
ewise linear velo
ity on a re�ned grid / pie
ewise 
onstant for thepressure). We use standard approximation properties of these spa
es and assume thatthe solution (u; p) of the Stokes problem is suÆ
iently regular. We use the notationk � kk for the norm on the Sobolev spa
e Hk(
) (k = 1; 2). The results in (4.6) andtheorem 4.3 yield the following dis
retization error bounds for � 2 (0; 1℄:� For � = 0; � = 0:� 12 kr(u� uh)k+ kp� phk � C�� 12 h(� 12 kuk2 + kpk1) : (4.12)� For � = 0; � = 1:� 12 kr(u� uh)k+ kdiv (u� uh)k+ kp� phk � Ch(kuk2 + kpk1) : (4.13)� For � = 1; � = 0:� 12 kr(u�uh)k+ku�uhk+kp�phk � C�� 12h(� 12 kuk2+kuk1+kpk1) : (4.14)� For � = 1; � = 1:� 12 kr(u�uh)k+kdiv (u�uh)k+ku�uhk+kp�phk � Ch(kuk2+kpk1) : (4.15)Note that for small � the bounds for the 
ase with rdiv -stabilization (� = 1) aresigni�
antly better than for the 
ase � = 0. These bounds indi
ate that the largerthe H1-norm of the pressure is 
ompared to the H2-norm of the velo
ity, the moreimportant the stabilizing rdiv term is. Also note that for the 
ase with rdiv -stabilization the term kdiv (u � uh)k is 
ontrolled, wheras for � = 0 this is not the
ase.Remark 3. For the 
ase � = 0; � = 0 the s
aling argument dis
ussed in the intro-du
tion immediately yields a (sharp) dis
retization error bound. For the P1isoP2/P0�nite elements this results in (
f. (1.2))kr(u� uh)k+ ��1kp� phk � Ch(kuk2 + ��1kpk1) : (4.16)For small � values this bound is better than the one in (4.12) but worse than theresult for the problem with rdiv -stabilization in (4.13).Remark 4. Using the s
aling ~� = ��t , ~� = ��t , ~u = �t u the results for � = 1 in(4.14) and (4.15) immediately yield 
orresponding results for the transient-like Stokesproblem in (1.3). Let (~uh; ph) be the dis
rete solution that results from the Galerkindis
retization using P1isoP2/P0 �nite element spa
es applied to (1.3). The results in(4.14), (4.15) 
an be reformulated as~� 12 kr(~u� ~uh)k+ 1p�tk~u� ~uhk+p�tkp� phk �8<: C hp~��t(~� 12 k~uk2 + 1p�tk~uk1 +p�tkpk1) ; if � = 0;Ch( 1p�tk~uk2 +p�tkpk1) if � = 1 : (4.17)



GRAD-DIV STABILIZATION FOR STOKES 13From the numeri
al experiments in se
tion 6 it 
an be seen that the results in (4.14)and (4.15) are fairly sharp and hen
e the results in (4.17) are sharp, too. These results,however, are too pessimisti
 for �t� 1 in the 
ontext of unsteady problems. As waspointed in the introdu
tion, to obtain more reliable error bounds other te
hniqueswhi
h take into a

ount the evolutionary nature of the problem should be used.Remark 5. Clearly if we introdu
e the rdiv term we have to 
hose a reasonablevalue for the parameter �. Numeri
al experiments have shown that the e�e
t of thestabilization is not very sensitive with respe
t to this 
hoi
e, although � should notbe too large. An indi
ation for a reasonable value 
an be obtained as follows. Assumethat minvh2Xh kr(u� vh)k � minqh2Mh kp� qhk (for our example of P1isoP2/P0 FEthis is the 
ase if kuk2 � kpk1), and assume that � = 0 and � is suÆ
iently small(a
tually � � �̂2 already suÆ
es). Then the balan
e between velo
ity and pressureterms in the righthand side of (4.6) is preserved if � = O(1). The 
onstant Ĉ in(4.6) also depends on �. The 
hoi
e � = �̂2 minimizes Ĉ . Moreover, under 
ertainassumptions on the domain 
 and triangulation it is known that �̂2 = O(1) holds(
f. [6℄). Therefore, with the above assumptions the 
hoi
e � � �̂2 is reasonable.Numeri
al experiments presented in [12℄ with 
ommon ben
hmark problems ( driven
avity and ba
kward fa
ing step) show that for � 2 [0:1; 0:2℄ one obtains good results.Note that for a unit square and P1isoP2/P0 FE we have �̂ � 0:44.5. Pre
onditioning the dis
rete problem. In this se
tion we dis
uss theiterative solution of the dis
rete problem (4.2). We restri
t ourselves to iterativemethods of inexa
t Uzawa type. For this 
lass of methods applied to the stationaryStokes problem 
onvergen
e analyses are known (e.g., [1℄, [3℄). Also for other iterativemethods based on 
onjugate or minimal residual te
hniques there are 
onvergen
eanalyses available (
f. [16℄, [18℄ and the referen
es therein). In all these analysesone assumes �xed values for � and �, usually � = 0, and one does not analyze thedependen
e of the 
onvergen
e behaviour on variation in these parameters. Below, forthe inexa
t Uzawa method we study how the rate of 
onvergen
e depends on variationin the parameters �; � and �.The e�e
t of adding the term (div u; div v) on the 
onvergen
e speed of gradienttype of methods for solving the saddle point problem asso
iated to (4.2) is analyzedin [9℄. In the terminology of [9℄ the addition of the term (div u; div v) yields a 
or-responding augmented Lagrangian. In [9℄ it is shown that gradient type of methods,like the exa
t Uzawa method, have a higher rate of 
onvergen
e when applied to theproblem with an augmented Lagrangian. In this se
tion we will draw a similar 
on-
lusion for the inexa
t Uzawa method.Finally note that for the 
ase � = 1, � = 0, � > 0 (the transient-like Stokes problem)robustness results 
on
erning the 
onvergen
e of Uzawa type of methods are given in[2℄, [11℄.We 
onsider a linear system of the form�A BTB 0 ��xy� = �fg� (5.1)with sti�nes matri
es A and B as in (4.3). We 
onsider a method of an inexa
tUzawa type as analyzed in [3℄,[23℄. For this we assume symmetri
 positive de�nitepre
onditioners QA of A and QS of the S
hur 
omplement S := BA�1BT . We assumethat QA and QS are s
aled su
h that QA � A and QS � S are positive semide�nite.



14 M. A. OLSHANSKII AND A. REUSKENFurthermore, let 
onstants �A; �S 2 [0; 1) be su
h that(1� �A)hQAx; xi � hAx; xi for all x 2 Rn ; (5.2)(1� �S)hQSy; yi � hSy; yi for all y 2 Rm : (5.3)Note that sin
e QA and QS are positive de�nite su
h �A and �S always exist. Theinexa
t Uzawa method is as follows: for x0 2 Rn ; y0 2 Rm given, (xi; yi); i = 1; 2; : : :is determined by xi+1 = xi +Q�1A (f � (Axi +BT yi)) ;yi+1 = yi +Q�1S (Bxi+1 � g) : (5.4)In [3℄ it is shown that for the error ei := �x� xiy � yi� the inequality[jeij℄ � �i[je0j℄ for i = 0; 1; 2; : : :holds, where [j � j℄ is a suitable problem dependent norm and� = �S(1� �A) +p�2S(1� �A)2 + 4�A2 � 1� 12(1� �S)(1� �A) : (5.5)From these results we see that one obtains fast 
onvergen
e of the inexa
t Uzawamethod if one uses good pre
onditioners QA and QS .For our analysis we introdu
e the dis
rete analog of the quantity �:p�h := supvh2Xh;qh2Mh b(vh; qh)kvhkXkqhk :Lemma 5.1. Let M̂h be the mass matrix as in (4.3) and QS := �hM̂h, thenQS � S is positive semide�nite and for �S := 1� 
h�h the inequality (5.3) holds.Proof. Note that with ~B := M̂� 12B:p�h = supx2Rn;y2Rm hBx; yihAx; xi 12 hM̂y; yi 12= supx2Rn;y2Rm h ~Bx; yikxkAkyk : (5.6)The relations (4.4), (5.6), and lemma 2.1 imply
hI � ~BA�1 ~BT � �hI;and thus for QS = �hM̂h 
h�hQS � S � QS :Thus QS � S is positive semide�nite and (5.3) holds with �S = 1� 
h�h .The results in lemma 5.1 and (5.5) show that for fast 
onvergen
e of the Uzawamethod it is favourable to have small �S values, i.e., small values for �h
�1h . We now
onsider the Stokes problem, i.e., in the remainder we assume that the bilinear forms



GRAD-DIV STABILIZATION FOR STOKES 15a and b are as in (3.9). We analyze, for � 2 f0; 1g, the dependen
e of �h
�1h on theparameters �; �; h. We assume that the �nite element spa
es Xh are su
h that theinverse inequality krvhk � 
Ih�1kvhk for all vh 2 Xh (5.7)holds, with a 
onstant 
I that does not depend on h.Lemma 5.2. The following holds:�h
h � �̂�2 if � = 0; (5.8)�h
h � �̂�2 � + 
2F + �� + 
�2I h2 + � if � = 1 : (5.9)Proof. Using the inverse inequality it follows thatkuhk2X = �kruhk2 + �kuhk2 + �kdivuhk2 � (� + �
�2I h2 + �)kdiv uhk2 :Hen
e we get, due to b(vh; qh) � kdiv vhkkqhk,�h � 1� + �
�2I h2 + � : (5.10)A lower bound for 
h is given in (4.10). Now 
ombine these bounds for �h and 
hand take � 2 f0; 1g.From the results in (5.8) and lemma 5.1 it follows that for � = 0 and for all �values the s
aled mass matrix QS = �hM̂h is a good pre
onditioner for the S
hur
omplement. For this 
hoi
e we have 1� �S > 
0 > 0 with a 
onstant 
0 independentof � and h.For the 
ase � = 1 the result in (5.9) yields�h
h = O(h�2) for h # 0; � � h2; � = 0 ; (5.11)hen
e a rapid growth for h! 0 and suÆ
iently small �. In this 
ase a simple s
aledmass matrix is not appropriate and one needs spe
ial pre
onditioners for the S
hur
omplement as dis
ussed in [2℄, [11℄, [5℄. For � = � = 1 we have�h
h � 2 + 
2F2 + 
�2I h2 for all � 2 (0; 1℄; (5.12)and thus for the s
aled mass matrix we have (as for the 
ase � = 0) 1� �S > 
0 > 0with a 
onstant 
0 independent of � and h.Remark 6. We apply the robustness result for the 
ase � = � = 1 to thetransient-like problem (1.3) using the s
aling argument dis
ussed in the introdu
tion.Let L = �A BTB 0 �be the �nite element sti�ness matrix as in (5.1) 
orresponding to the original problem(1.1) for the 
ase � = � = 1. Its S
hur 
omplement is denoted by S. From the analysis



16 M. A. OLSHANSKII AND A. REUSKENabove we have that, uniformly for h; � 2 (0; 1℄, the s
aled mass matrix QS is a goodpre
onditioner for S (lemma 5.1).The same �nite element dis
retization applied to the problem (1.3) with ~� = 1�t ; ~� =��t yields the sti�ness matrix Lt = � 1�tA BTB 0 �with S
hur 
omplement St = �tS. Hen
e, uniformly for h; � 2 (0; 1℄ and �t 2 (0; 1℄the s
aled mass matrix �tQS is a good pre
onditioner for St.Besides a good pre
onditoner QS for the S
hur 
omplement one also needs a pre-
onditioner QA of A. The sti�ness matrix A is given byhAx; yi = �(rJXx;rJXy) + �(JXx; JXy) + �(div JXx; div JXy) for all x; y 2 Rn ;with JX : Rn ! Xh the �nite element isomorphism. For the 
ase � = 0 one 
anuse a multigrid method as a pre
onditioner for A. It is known ([13℄) that a standardmultigrid method results in a pre
ondioner QA of A with (1��A)QA � A � QA witha 
onstant �A < 1 independent of h; � 2 (0; 1℄; � � 0. Hen
e, for the 
ase � = 0 (nostabilization) a good (i.e., robust w.r.t. variation in the parameters) pre
onditionerfor A is known.Opposite to this, a robust pre
onditioner QA of A for the 
ase with rdiv -stabilization(� = 1) is an open problem. For � = 1 additional sti�ness is introdu
ed due to thediv operator whi
h in general has a large kernel. A suitable robust pre
onditionerfor this 
ase is a topi
 of 
urrent resear
h. Te
hniques as presented in [17℄ may beappli
able in this setting.Summarizing, we have the following results 
on
erning the 
onvergen
e of the in-exa
t Uzawa method. For fast 
onvergen
e one needs good (robust w.r.t. varia-tion in parameters) pre
onditioners of S and A. We restri
t ourselves to the 
ases� 2 f0; 1g; � 2 f0; 1g:� � = � = 0: the s
aled mass matrix QS is a good pre
onditioner for S.Multigrid is a good pre
onditioner for A.� � = 0; � = 1: the pre
onditoner QS is not robust (for � � h2 # 0). Moresophisti
ated pre
onditioning te
hniques whi
h lead to robust pre
onditoners,like the methods in [2, 11℄, should be used. Multigrid is a good pre
onditionerfor A.� � = 1; � 2 f0; 1g: the s
aled mass matrix QS is a good pre
onditioner for S.A robust pre
onditioner for A is not known, yet.6. Numeri
al experiments. As a test example we take the Stokes equations(3.3) on 
 = (0; 1) � (0; 1). The right handside f is taken su
h that the 
ontinuoussolution is: u1(x; y) = 4(2y � 1)x(1� x);u2(x; y) = �4(2x� 1)y(1� y);p(x; y) = 3(x3 + y3 � 0:5):Note that the 
ontinuous solution is independent of the parameters �; �. For thedis
retization we use a uniform triangulation with mesh size h. For Xh �Mh we



GRAD-DIV STABILIZATION FOR STOKES 17take P1isoP2-P0 �nite element pair (pie
ewise-
onstant pressure and pie
ewise-linear
ontinuous velo
ity on a on
e re�ned triangulation). This pair is known to be LBBstable, i.e. 
ondition (4.1) holds.The dis
rete problem is solved using the inexa
t Uzawa method from the previousse
tion. For the S
hur 
omplement pre
onditioner QS we take the pressure massmatrix (indentity in our 
ase) s
aled by (� + 
�2I h2u�+ �)�1, 
f. (5.10). Here hu = h2is the size of velo
ity element. We take 
I = 2p2 for the 
onstant from (5.7). Thisvalue 
an be found from a spe
tral upper bound for the dis
rete Lapla
ian in a unitsquare. If a reasonable bound for 
I is not available, the term 
�2I h2u� 
an be ignored.This will result in a smaller value of 1� �S in (5.3).For the pre
onditioner QA we use a standard multigrid V-
y
le method. Theprolongations and restri
tions are the 
anoni
al ones. We used 2 pre- and 2 post-smoothings with a symmetri
 blo
k-Gauss-Seidel iteration.For the stopping 
riterion in the inexa
t Uzawa iteration (5.4) we take a redu
tionof the relative residual by at least a fa
tor 105. To illustrate the performan
e of thesolver we show in tables 6.1-6.2 Niter , the total number of inexa
t Uzawa iterationsrequired to satisfy the stopping 
riterion. As was dis
ussed in the previous se
tion,the quantities �A and �S form (5.2){ (5.3) 
hara
terize the rate of 
onvergen
e of(5.4). An estimate for �S was obtained in lemma 5.1. The value of �A depends onthe performan
e of the multigrid method for the velo
ity problem, whi
h de�nes QA.The values  
d in the tables are estimates for the 
ontra
tion number of the multigridmethod. Sin
e we use two iterations of the multigrid method for solving the velo
ityproblem we have �A �  2
d. Table 6.1Dependen
e on �: h = 1=32, � = 0vis
osityParameter Quantity 1 10�2 10�4kr(u� uh)k 5.0e-2 4.4e-0 4.0e+2ku� uhk 4.1e-4 3.7e-2 3.7e-0�=0 kp� phk 3.5e-2 3.5e-3 3.5e-3Niter 38 38 38 
d 0.06 0.06 0.06kr(u� uh)k 4.7e-2 3.8e-1 5.5e-1ku� uhk 3.8e-4 3.4e-3 5.0e-3�=0.1 kp� phk 3.8e-2 3.8e-3 3.4e-3Niter 36 13 312 
d 0.06 0.30 0.96Niter- total number of inexa
t Uzawa iterations, 
d - 
onvergen
e fa
tor in the MG-pre
onditioner for A.Tables 6.1 and 6.2 present error norms and 
onvergen
e data for the problemwith � = 0 solved on meshes with h = 132 and h = 164 , respe
tively. For the problemwithout rdiv -stabilization (� = 0) the O(��1) dependen
e of the error in velo
ityas predi
ted by our theory is 
learly seen. For the stabilized problem (� = 0:1) thisdependen
e is mu
h milder (analyti
al estimate was O(�� 12 )). Note that the error in
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e on �: h = 1=64, � = 0vis
osityParameter Quantity 1 10�2 10�4kr(u� uh)k 2.5e-2 2.0e-0 2.0e+2ku� uhk 1.0e-4 9.5e-3 9.5e-1�=0 kp� phk 1.7e-2 1.2e-3 1.2e-3Niter 39 36 34 
d 0.06 0.06 0.06kr(u� uh)k 2.4e-2 1.8e-1 2.5e-1ku� uhk 9.8e-5 8.5e-4 5.0e-3�=0.1 kp� phk 1.9e-2 1.9e-3 1.7e-3Niter 37 12 414 
d 0.06 0.34 0.98Niter- total number of inexa
t Uzawa iterations, 
d - 
onvergen
e fa
tor in the MG-pre
onditioner for A.pressure is insensitive both to vis
osity and stabilization, whi
h is in agreement with(4.16) (for � = 0) and with (4.13) (for � > 0). Comparing results from tables 6.1and 6.2, we observe approximately O(h) 
onvergen
e in velo
ity gradients and inpressure and O(h2) in velo
ity, as expe
ted from theory. The slow 
onvergen
e of theUzawa method for stabilized equations with small � is 
aused by the poor 
onvergen
eof the multigrid method for the velo
ity problem (see the values of  
d). It is 
learthat in pra
ti
e (for small � values) this multigrid solver should not be used. AneÆ
ient alternative for this multigrid solver is a topi
 of 
urrent resear
h.In the table 6.3 we show results for � = 1. In this 
ase, as predi
ted by theresults in (4.14), (4.15), for small � values due to the rdiv term one obtains mu
hsmaller dis
retization errors both for pressure and velo
ity . We also observe a strongdeterioration of the 
onvergen
e of the inexa
t Uzawa method for the 
ase � = 0.This is probably due to the fa
t that for � ! 0; h ! 0 the s
aled mass matrix isnot a good pre
onditioner for the S
hur 
omplement (
f. (5.11) and the dis
ussion inse
ton 5).Con
luding remarks. We summarize the e�e
t of rdiv stabilization. For the
ontinuous problem the stabilization does not 
hange the solution but enhan
es thestability of the 
orresponding bilinear form. For the 
ase � = �0 > 0 the problem isuniformly (for � # 0) well-posed in the natural norm (3.14).For the �nite element dis
retization the stabilization 
hanges the dis
rete solutionand results in better error bounds. For example, for the P1isoP2/P0 �nite elementswe have (with � = 0) the sharp bound kr(u� uh)k � Ch(kuk2 + ��1kpk1) for � = 0and kr(u�uh)k � C�� 12 h(kuk2+ kpk1) for � = 1. Our analysis does not yield sharpdis
retization error bounds for a time-dis
retized problem as in (1.3) if �t # 0.The rdiv stabilization in
uen
es the 
onvergen
e behaviour of the inexa
t Uzawaiterative solver . The main results are summarized at the end of se
tion 5A
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e on �: h = 1=64, � = 1vis
osityParameter Quantity 1 10�2 10�4kr(u� uh)k 2.5e-2 2.0e-0 1.7e+2ku� uhk 1.0e-4 9.3e-3 7.6e-1�=0 kp� phk 1.7e-2 2.8e-3 1.6e-1Niter 39 124 3829 
d 0.05 2.6e-2 1.7e-3kr(u� uh)k 2.4e-2 1.9e-1 3.6e-1ku� uhk 9.8e-5 8.4e-4 1.6e-3�=0.1 kp� phk 1.9e-2 1.9e-3 1.7e-3Niter 37 20 217 
d 0.05 0.34 0.97Niter- total number of inexa
t Uzawa iterations, 
d - 
onvergen
e fa
tor in the MG-pre
onditioner for A.ported partially by the Russian Foundation for Basi
 Resear
h grant No 02-01-0615linked to proje
t 02-01-00592.The authors thank the referees for several 
omments whi
h lead to a 
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