
GRAD-DIV STABLILIZATION FOR STOKES EQUATIONSMAXIM A. OLSHANSKII� AND ARNOLD REUSKEN yAbstrat. In this paper a stabilizing augmented Lagrangian tehnique for the Stokes equationsis studied. The method is onsistent and hene does not hange the ontinuous solution. We showthat this stabilization improves the well-posedness of the ontinuous problem for small values ofthe visosity oeÆient. We analyze the inuene of this stabilization on the auray of the �niteelement solution and on the onvergene properties of the inexat Uzawa method.AMS subjet lassi�ations. 65N30, 65N22, 76D07Key words. Stokes equations, �nite elements, augmented Lagrangian, inexat Uzawa1. Introdution. This paper provides an analysis of the e�ets of a partiularstabilizing term that an be added to the Stokes equations. We onsider the variationalStokes problem: given f 2 H�1(
)d �nd (u; p) 2 H10 (
)d�L2(
) with R
 p(x) dx = 0suh that�(ru;rv) + �(u; v) + �(div u; div v) + (div v; p) = f(v) for v 2 H10 (
)d;(div u; q) = 0 for q 2 L2(
) ; (1.1)with parameters � 2 (0; 1℄; � � 0; � � 0, where (�; �) stands for the L2 salar produt.To simplify the presentation, we restrit ourselves to the two ases � = 0, � = 1. Inthis paper we study the e�ets of the term (div u; div v) on the numerial solution ofthe Stokes problem. In the strong formulation this term is represented by the di�er-ential operator rdiv and, as we will show, adding this term has a stabilizing e�etfor small � values. This explains why we all this a \rdiv stabilization". Note thatthe unique solution of the problem (1.1) does not depend on �. Adding the onsistentrdiv term to the Stokes equations is not a new idea. This stabilization term is on-sidered at several plaes in the literature. In [9℄ it is proposed and analyzed in thegeneral framework of augmented Lagrangian methods. Indeed, in the saddle pointformulation of the Stokes problem, adding the rdiv term results in an augmentedLagrangian. In [9℄ it is shown that this in general improves the rate of onvergene ofdesent type iterative methods for solving the saddle point problem. In [4℄, [10℄ theinuene of the rdiv term on the onvergene of iterative solvers for the Stokes andNavier-Stokes problems is studied. In [10℄ it is demonstrated that for the inompress-ible Navier-Stokes equations with high Reynolds numbers the additional rdiv termimproves the performane of nonlinear iterations. The analysis in [4℄ shows that forblok-diagonal and blok-triangular preonditioning of the Stokes problem this termdoes not lead to onvergene improvement if it is used in the residual alulationonly, while not a�eting the preonditioner. We note that in this paper we onsidera preonditioner for the Stokes problem whih depends on �.In [21℄ it is shown that using this stabilization in the mixed formulation of thePoisson equation improves the rate of onvergene of a suitably preonditioned MIN-RES method.In the literature on the �nite element method for inompressible Navier-Stokesequations this term sometimes ours in an error analysis of the streamline di�usion� Dept. Mehanis and Mathematis, Mosow State University, Mosow 119899, Russia;ay�olshan.msk.ruyInstitut f�ur Geometrie und Praktishe Mathematik, RWTH-Aahen, D-52056 Aahen, Germanyreusken�igpm.rwth-aahen.de 1



2 M. A. OLSHANSKII AND A. REUSKENor Petrov-Galerkin �nite element method (e.g. [15℄, [20℄). From the analysis, however,it is not lear whether this term plays a key role or is introdued for tehnial reasonsonly.In the papers mentioned ([9, 4, 21℄) the e�et of the rdiv stabilization on therate of onvergene of iterative methods for solving the disretized Stokes equationshas been studied. We observed that there are also interesting e�ets onerning theontinuous problem and the quality of the �nite element disretization and, to ourknowledge, there is no theoretial explanation for this known in the literature. Thispaper tries to �ll this gap. In pratial implementations � = 0 is the usual hoie. Inthis paper we try to make lear when � > 0 leads to a (signi�ant) improvement.We analyze the inuene of the rdiv term on the ontinuous problem, the �niteelement disretization and the iterative solution of the disrete problem. Conerningthe ontinuous problem we show that although taking � > 0 in (1.1) does not hangethe ontinuous solution it has a lear positive e�et on the stability of the bilinearform orresponding to (1.1). We will show that for � > 0 the ontinuous problem isuniformly (w.r.t. �) well-posed in the natural energy norm. This is not true for thease � = 0. The main new result presented in this paper onerns �nite element errorbounds for the problem (1.1). We use LBB stable onforming �nite element spaesfor disretization and show that for � # 0 the disretization error bounds beomesigni�antly better if a rdiv stabilization is used. Numerial experiments show thatthe theoretial upper bounds predit the orret behaviour. We also analyze an Uzawatype iterative method for solving the disrete problem and draw a similar onlusionas in [9℄, namely that the rate of onvergene of the outer iteration for solving theShur omplement equation for the pressure in general inreases due to the rdivterm. However, for � # 0, the inner veloity problem beomes more sti� if we userdiv stabilization.We will present results of numerial experiments whih on�rm our theoretialanalysis. Based on the theory and the results of the experiments our onlusion isthat by adding the rdiv term the Stokes problem with � � 1 an be solved upto a presribed auray with signi�antly lower arithmeti osts. We note thatnumerial experiments (in e.g. [12℄) have shown that similar positive e�ets of therdiv stabilization our in (linearized) Navier-Stokes equations with high Reynoldsnumbers.As usual for a stabilization method a proper value of the stabilization parameter,� in our ase, is important. In the present paper we only briey address this issue.Results of numerial experiments related to this parameter hoie an be found in[12℄.Finally we have two remarks on saling arguments. First, for the ase � =0; � = 0 a ommon saling argument using ~p = ��1p; ~f = ��1f leads to a parameterindependent Stokes problem with a new pressure variable and righthand side. Onean then use known results for this Stokes problem (in (u; ~p)) and transform bak tothe (u; p) variables. For example, a typial disretization error bound of the formku� uhk1 + k~p� ~phk0 � Ch(kuk2 + k~pk1)immediately yieldsku� uhk1 + 1� kp� phk0 � Ch(kuk2 + 1� kpk1) ; (1.2)with a onstant C that is independent of �. If, however, we take � > 0 there are twoparameters and the problem an not be redued to a parameter independent standard



GRAD-DIV STABILIZATION FOR STOKES 3Stokes problem by a simple saling argument. One ould use a saling to eliminateone of the parameters. This then results in a parameter dependent problem withsaled variables. We found that the analysis is most transparent if one does not applya saling but onsiders the problem (1.1) in the original variables (u; p). Therefore wewill not use saling arguments.Seondly, another saling argument relates the problem (1.1) with � = 1 to a transient-like problem. Let (u; p) be the solution of (1.1) with � = 1. De�ne ~� := ��t ; ~� := ��t ;and ~u := �t u. Then the pair (~u; p) satis�es~�(r~u;rv) + 1�t(~u; v) + ~�(div ~u; div v) + (div v; p) = f(v) for v 2 H10 (
)d;(div ~u; q) = 0 for q 2 L2(
) : (1.3)For the ase � = 0 this type of problem ours if one applies an impliit time integra-tion method (with a time step �t) to a standard unsteady Stokes problem. Resultsfor the problem (1.1), like for example �nite element disretization error bounds, im-mediately yield orresponding results for the problem (1.3) (f. remark 4). Thesedisretization error bounds are fairly sharp if one onsiders arbitrary f 2 H�1(
)dand show a lear stabilizing e�et due to the rdiv term. If, however, the problem(1.3) orresponds to a time-disretized unsteady Stokes problem the righthand side fhas a speial struture and our general bounds are too pessimisti. For suh disreteunsteady problems other tehniques for analyzing the disretization error whih takeinto aount the evolutionary nature of the problem (as in [19℄, [7℄) should be used.Our analysis does not yield satisfatory disretization error bounds for the unsteadyase with a time step �t tending to zero. The results we obtain onerning the ef-�ieny of the inexat Uzawa iterative solver for the �nite element disretization of(1.3) are satisfatory, even for the ase �t tending to zero (remark 6).The paper is organized as follows. In x2 we present two simple linear algebraresults that will be used further on. In x3 we onsider the variational formulationof the Stokes problem and show that adding the rdiv term leads to a uniformly(for � # 0) well-posed problem in a natural norm. Finite element disretization errorbounds are presented in x4. The onvergene of the inexat Uzawa iterative methodfor solving the disrete problem is disussed in x5. Finally in x6 some numerial resultsare presented that illustrate important e�ets of rdiv stabilization.2. Preliminaries. We �rst derive two elementary linear algebra results relatedto a matrix A of saddle point type:A = �A BTB 0 � ; Rn�n 3 A = AT > 0;B 2 Rm�n ; m < n; rank(B) = m: (2.1)We use the notation h�; �i for the eulidean salar produt. The eulidean norm isdenoted by k � k. We de�ne the energy salar produt hx; yiA = hAx; yi and energynorm kxk2A = hx; xiA. The spetral ondition number of a regular matrix C is denotedby �(C) = kCkkC�1k. The following quantities will play an important rolep� := supy2Rm; x2Rn hBx; yikxkAkyk ; p := infy2Rm supx2Rn hBx; yikxkAkyk : (2.2)Here and in the remainder we always take infx or supx over nonzero elements. Thefollowing elementary result is known in the literature (see [22℄). For ompleteness wealso show a proof.



4 M. A. OLSHANSKII AND A. REUSKENLemma 2.1. Let �min(BA�1BT ) and �max(BA�1BT ) be the smallest and largesteigenvalues of the Shur omplement BA�1BT . Then the following holds: = �min(BA�1BT ); � = �max(BA�1BT ) :Proof. Note thatsupx hBx; yi2kxk2Akyk2 = supx hBA� 12x; yi2kxk2kyk2 = supx hx;A� 12BT yi2kxk2kyk2= kA� 12BT yk2kyk2 = hBA�1BT y; yihy; yi :Hene  = infy hBA�1BT y; yihy; yi = �min(BA�1BT ) ;� = supy hBA�1BT y; yihy; yi = �max(BA�1BT ) :Using this lemma we derive an elementary result onerning the spetral onditionnumber of a preonditioned version of the matrix A. Similar results are known in theliterature (e.g., the equality (2.5) an be found in [1℄).Lemma 2.2. De�neP := �A� 12 00 I�A�A� 12 00 I� = � I A� 12BTBA� 12 0 � : (2.3)Assume that  > 0 holds. Then P is invertible andkPk = 12(p1 + 4� + 1) (2.4)kP�1k = 2minf2 ; p1 + 4 � 1g : (2.5)Proof. With C := BA� 12 we obtainP = � I CTC 0 � :Note that C has a nontrivial kernel. For v 2 Ker(C), v 6= 0, we have P �v0� = �v0�,hene 1 2 �(P). For � 2 �(P), � 6= 1, we have� I CTC 0 ��v1v2� = ��v1v2� ; with v2 6= 0 :This holds i� �(� � 1) 2 �(CCT ). Let �1 � �2 � : : : � �m be the eigenvalues ofCCT = BA�1BT . We then obtain�(P) n f1g = � 12(1�p1 + 4�j) �� 1 � j � m	 :



GRAD-DIV STABILIZATION FOR STOKES 5Hene the largest eigenvalue of P is given bykPk = 12(1 +p1 + 4�m) = 12(1 +p1 + 4�) :Due to lemma 2.1 and the assumption  > 0 we have that �1 > 0 holds. Hene P isinvertible and the largest eigenvalue of the inverse is given bykP�1k = max�1 ; max1�j�m 2���1�p1 + 4�j����1	= max�1 ; 2���1�p1 + 4�1����1	= 2minf2 ; p1 + 4 � 1g :These results show that the quantities  and � ompletely determine �(BA�1BT )and �(P). Note that the former depends only on the quotient �=, whereas for thelatter this is not the ase. The result in lemma 2.2 will be used below.3. The ontinuous Stokes equations. We onsider a standard variationalformulation of the Stokes problem in a domain 
 in d-dimensional Eulidean spae(d = 2; 3). We use the notationsX := H10 (
)d; M := f f 2 L2(
) j Z
 f(x) dx = 0 g: (3.1)The L2 salar produt and assoiated norm are denoted by (�; �); k � k, respetively.Before we turn to the Stokes problem in (1.1) we �rst onsider a more general setting.We introdue two ontinuous bilinear forms:a(�; �) : X �X ! R; b(�; �) : X �M ! R :We assume that a(�; �) is symmetri andX-ellipti and that the bilinear form b satis�esthe infsup ondition: infq2M supv2X b(v; q)krvkkqk � � > 0: (3.2)We onsider the standard saddle point problem: Given f 2 X 0 �nd (u; p) 2 X �Msuh that � a(u; v) + b(v; p) = f(v) for v 2 X;b(u; q) = 0 for q 2M : (3.3)Using the bilinear form � : (X �M)� (X �M)! R,�(u; p; v; q) := a(u; v) + b(v; p) + b(u; q) ;the problem (3.3) an be rewritten as: Find (u; p) 2 X �M suh that�(u; p; v; q) = f(v) for all (v; q) 2 X �M : (3.4)



6 M. A. OLSHANSKII AND A. REUSKENOn X we introdue the norm indued by the bilinear form a: kukX := a(u; u) 12 foru 2 X . On M we use the L2-norm k � k and on the produt spae we use the normjk(u; p)kj = (kuk2X + kpk2) 12 :We introdue the notationp� := supv2X;q2M b(v; q)kvkXkqk ; p := infq2M supv2X b(v; q)kvkXkqk : (3.5)Note that �;  are used in (2.2) to denote similar quantities. Below the symbols �; always refer to the quantities in (3.5). The infsup ondition (3.2) implies  > 0. Weemphasize that if the bilinear forms a(�; �) and b(�; �) orrespond to the Stokes problem(as in (3.9) below), then the infsup onstant � from (3.2) does not depend on anyparameters, whereas � and  depend on the parameters �; � and �. The quantities �and  ompletely determine the ontinuity and stability of the bilinear form �:Theorem 3.1. For all (u; p); (v; q) 2 X �M we havej�(u; p; v; q)j � 12(p1 + 4�+ 1)jk(u; p)jk jk(v; q)jk (3.6)and sup(v;q)2X�M �(u; p; v; q)jk(v; q)kj � 18 minf1 ; g jk(u; p)kj : (3.7)Proof. We de�ne � := 12 (p1 + 4� + 1) and note thatj�(u; p; v; q)j = ja(u; v) + b(v; p) + b(u; q)j� kukXkvkX + � 12 kvkXkpk+ � 12 kukXkqk� �kuk2X + �� kuk2X + �kpk2� 12 �kvk2X + �� kvk2X + �kqk2� 12= �jk(u; p)kjjk(v; q)kj :This proves the result in (3.6).For (f; g) 2 X 0 �M 0 let (u; p) 2 X �M be the solution of�(u; p; v; q) = f(v) + g(q) for all (v; q) 2 X �M :The mapping (f; g) ! (u; p) is bijetive. A standard analysis (e.g. in [8℄ x 4.1, [14℄,x 7.4.1) yields the following sharp bounds on the norms of u and p:kukX � kfkX0 + 2� 12 kgkM 0 ;kpk � � 12 �kfkX0 + kukX� � 2� 12 (kfkX0 + � 12 kgkM 0) :Hene jku; pkj � kukX + kpk � 2�1 + � 12 ��kfkX0 + � 12 kgkM 0�= 2�1 + � 12 �� supv2X f(v)kvkX + � 12 supq2M g(q)kqk �� 4�1 + � 12 �maxf1 ; � 12 g sup(v;q)2X�M f(v) + g(q)kvkX + kqk� 4�1 + � 12 �maxf1 ; � 12 g sup(v;q)2X�M �(u; p; v; q)jk(v; q)kj :



GRAD-DIV STABILIZATION FOR STOKES 7Let z = � 12 2 (0;1). A simple omputation yields14(1 + z)maxf1 ; zg � 18maxf1 ; z2g = 18 minf1 ; z�2g :This proves the result in (3.7).The result in (2.4) shows that the bound in (3.6) is sharp. The inverse of theinfsup onstant in (3.7) behaves like O(�1) for  ! 0. The same behaviour kP�1k =O(�1) for  ! 0 is observed in (2.5). In this sense, the result in (3.7) is sharp, too.The results in Theorem 3.1 show that the ondition numberC(;�) := 4(p1 + 4� + 1)minf1 ; g (3.8)an be used as a measure for the well-posedness of the ontinuous problem (3.4) inthe norm jk � kj.We now onsider the Stokes problem (1.1) with � 2 f0; 1g. Note that the uniquesolution of this problem does not depend on �, sine div v 2 M for all v 2 X .Continuity and stability results for the problem (1.1) are known in the literature (e.g.[8℄). However, in the literature the parameters � and � are then treated as �xedonstants (usually � = 0). Here we allow these parameters to vary and analyze thethe dependene of the ondition number (i.e. the well-posedness) on the parameters� and �. Hene, for the bilinear forms a and b in (3.3) we now takea(u; v) := �(ru;rv) + �(u; v) + �(div u; div v) for u; v 2 X ;b(u; q) := (div u; q) for u 2 X; q 2M : (3.9)Note that b satis�es the infsup ondition (3.2) and a is symmetri and X-ellipti.The norm k � kX depends on the parameters �; �; �. In the next theorem we desribethe dependene of the ondition number C(;�) on the parameters �; �; �. We usekdiv uk � kruk for u 2 X and the Friedrihs inequalitykuk � F kruk for all u 2 X :Theorem 3.2. The following holdsC(;�) � 4(p5 + 1)�2 maxf�2 ; � + �gminf1 ; p� + �g =: C0(�; �) if � = 0 ; (3.10)C(;�) � 4(p5 + 1)�2 maxf�2 ; � + 2F + �gminf1 ; p� + �g =: C1(�; �) if � = 1; (3.11)with � de�ned in (3.2).Proof. We take � 2 [0; 1℄. Fromkuk2X � (� + �2F + �)kruk2 (3.12)and the infsup property (3.2) we obtain � �2� + �2F + � :Using kuk2X � (� + �)kdiv uk2



8 M. A. OLSHANSKII AND A. REUSKENand the Cauhy-Shwarz inequality yields� � 1� + � : (3.13)Using the inequality p1 + 4x+ 1 � (p5 + 1)maxf1 ; pxg we obtain4p1 + 4� + 1minf1 ; g � 4(p5 + 1)maxf1 ; � 12 gminf1 ; g � 4(p5 + 1) maxf1 ; 1p�+� gminf1 ; �2�+�2F+�g= 4(p5 + 1)�2 maxf�2 ; � + �2F + �gminf1 ; p� + �g :Taking � 2 f0; 1g yields the bounds in (3.10) and (3.11) .Corollary 1. We onsider a few interesting ases.� � = 0; � = 0: The funtion � ! C0(�; 0) behaves like �� 12 for � # 0 and heneis unbounded for � # 0.� � = 0; � = �0 > 0. The funtion � ! C0(�; �0) is bounded for � # 0, henethe problem is uniformly well-posed in the normjk(u; p)kj = ��kruk2 + �0kdivuk2 + kpk2� 12 : (3.14)� � = 1; � = 0. The funtion � ! C1(�; 0) is unbounded for � # 0.� � = 1; � = �0 > 0. The bound is ontrolled for � # 0, hene we have uniformwell-posedness in the normjk(u; p)kj = ��kruk2 + kuk2 + �0kdiv uk2 + kpk2� 12 : (3.15)From these results we see that adding the term (div u; div v) in the variational Stokesproblem makes the problem well-posed in the orresponding natural norm jk(�; �)kjuniformly for � 2 (0; 1℄. Although adding the (div u; div v) term does not hange thesolution of the Stokes problem it yields robust (i.e. uniform w.r.t. �) stability bounds.Remark 1. For � = 1 and � # 0 the Stokes problem is singularly perturbed.As a well-posed limit (� = 0; � = 0) problem one an take the mixed formulationof the Poisson equation with Neumann boundary onditions. This limit problem invariational form uses the spae H(div )�M (M as in (3.1)), with norm(u; p)! �kuk2 + kdivuk2 + kpk2� 12 : (3.16)In the analysis of the Stokes problem we use the normjk(u; p)kj = ��kruk2 + kuk2 + �kdivuk2 + kpk2� 12 : (3.17)Note that in the limit ase � = 0 the latter norm is equivalent to the norm in (3.16)only for � > 0. In this sense the rdiv term is a natural stabilizing term for the Stokesproblem if � # 0.Remark 2. For the ase � = 0; � # 0; � = 0 uniform well-posedness with respetto a speial norm an be proved. It is well-known that the standard Stokes problem,



GRAD-DIV STABILIZATION FOR STOKES 9(1.1) with � = 1; � = � = 0; is well-posed in the norm (u; ~p) ! (kruk2 + k~pk2) 12 onX �M . A saling argument as disussed in the introdution then immediately yieldsuniform well-posedness in the (anisotropi) normjk(u; p)kj� := �kruk2 + 1�2 kpk2� 12 : (3.18)It an be shown, using a similar analysis as presented above, that for the orrespondingonditon number C�(;�) the uniform boundC�(;�) � 4q1 + 4�� + 1minf1 ; �g � C for � 2℄0; 1℄; (3.19)holds. The norm jk � kj� in (3.18) has a stronger anisotropy than the norm in (3.14),and using the latter results in a better ontrol of the veloity variable as � # 0.4. Finite element disretization using grad-div stabilization. We nowonsider the disretization of the variational Stokes problem using a family of pairs ofLBB stable �nite element spaes Xh � X; Mh � M indexed by some mesh size pa-rameter h. In this setion we use standard arguments to derive a sharp disretizationerror bound and we show that for � # 0 taking � = �0 > 0 instead of � = 0 has a learstabilizing e�et.Before we turn to the disrete Stokes problem we �rst onsider the Galerkindisretization of the more general variational problem (3.3) or, equivalently, (3.4).We assume that the �nite element pair (Xh;Mh) is LBB stable with a onstant �̂independent of h: infqh2Mh supvh2Xh b(vh; qh)krvhkkqhk � �̂ > 0 : (4.1)The disrete problem is as follows: �nd (uh; ph) 2 Xh �Mh suh that�(uh; ph; vh; qh) = f(vh) for all (vh; qh) 2 Xh �Mh : (4.2)We introdue the disrete analog of the quantity  :ph := infqh2Mh supvh2Xh b(vh; qh)kvhkXkqhk :From (4.1) it follows that h > 0 holds. For the analysis below we introdue theformulation of the disrete problem as a linear system in Rn+m . For this we assumestandard bases in Xh and Mh and orresponding isomorphismsJX : Rn ! Xh; n := dim(Xh); JM : Rm !Mh; m := dim(Mh) :Let the sti�ness matries A 2 Rn�n ; B 2 Rm�n and the mass matrix M̂ 2 Rm�m begiven by hAx; yi = a(JXx; JXy) for all x; y 2 Rn ;hBx; yi = b(JXx; JMy) for all x 2 Rn ; y 2 Rm ;hM̂x; yi = (JMx; JMy) for all x; y 2 Rm : (4.3)We now prove an infsup property of � on Xh �Mh:



10 M. A. OLSHANSKII AND A. REUSKENLemma 4.1. The following holds:inf(uh;ph)2Xh�Mh sup(vh;qh)2Xh�Mh �(uh; ph; vh; qh)jk(uh; ph)jk jk(vh; qh)jk= 12 minf 2;p1 + 4h � 1 gProof. With ~B := M̂� 12B we obtainph := infy2Rm supx2Rn hBx; yihAx; xi 12 hM̂y; yi 12= infy2Rm supx2Rn h ~Bx; yikxkAkyk : (4.4)Let L := � I A� 12 ~BT~BA� 12 0 �. Note thatinf(uh;ph)2Xh�Mh sup(vh;qh)2Xh�Mh �(uh; ph; vh; qh)jk(uh; ph)jk jk(vh; qh)jk= infz2Rn+m supw2Rn+m 
� I A� 12BT M̂� 12M̂� 12BA� 12 0 � z; w�kzkkwk= infz2Rn+m supw2Rn+m hLz;wikzkkwk = infz2Rn+m kLzkkzk = kL�1k�1 :We now apply lemma 2.2.Due to the ontinuity result (3.6) and the infsup result in the previous lemma wean prove a disretization error bound using standard arguments.Theorem 4.2. Let (u; p) be the solution of the ontinuous problem (3.4) and(uh; ph) be the solution of the disrete problem (4.2). The following holds:jk(u� uh; p� ph)jk � �1 + Ĉ(h;�)� minvh2Xh;qh2Mh jk(u� vh; p� qh)jk ;with Ĉ(h;�) := p1 + 4� + 1minf 2;p1 + 4h � 1 g : (4.5)Proof. For arbitrary vh 2 Xh; qh 2 Mh de�ne e := u � vh; eh = uh � vh; g :=p� qh; gh := ph � qh The Galerkin orthogonality property yields�(eh; gh;wh; rh) = �(e; g;wh; rh) for all (wh; rh) 2 Xh �Mh :Using this in ombination with the ontinuity and infsup results we obtain, for suitable(wh; rh) 2 Xh �Mh:jk(eh; gh)jk � 2minf 2;p1 + 4h � 1 g �(eh; gh;wh; rh)jk(wh; rh)jk= 2minf 2;p1 + 4h � 1 g �(e; g;wh; rh)jk(wh; rh)jk� p1 + 4� + 1minf 2;p1 + 4h � 1 gjk(e; g)jk :



GRAD-DIV STABILIZATION FOR STOKES 11Now ombine this with the triangle inequality jk(u � uh; p � ph)jk � jk(eh; gh)jk +jk(e; g)jk.We now onsider the Stokes problem, i.e., in the remainder of this setion thebilinear forms a and b are as in (3.9). Note that the bilinear form a(�; �) dependson � and that opposite to the ontinuous problem the disrete solution in generaldepends on �, unless div vh 2 Mh for all vh 2 Xh. Thus if one uses a spae Xh ofdivergene free �nite elements, the disrete solution does not depend on �. For theStokes problem we have, for all (u; p) 2 X �M12(� 12 kruk+ � 12 kdiv uk+� 12 kuk+kpk) � jk(u; p)kj � (� 12 + � 12 )kruk+� 12 kuk+kpk :Using this in ombination with theorem 4.2 yields the disretization error bound� 12 kr(u� uh)k+ � 12 kdiv (u� uh)k+ � 12 ku� uhk+ kp� phk � (4.6)2(1 + Ĉ(h;�))� minvh2Xhf(� 12 + � 12 )kr(u� vh)k+ � 12 ku� vhkg+ minqh2Mh kp� qhk� :We now analyze the dependene of the fator Ĉ(h;�) on the parameters �; �; � andthe mesh size parameter h.Theorem 4.3. The following holds:Ĉ(h;�) � 14�̂2 (p5 + 1)2maxf�̂2 ; � + �gminf1 ; p� + �g =: Ĉ0(�; �) if � = 0 ; (4.7)Ĉ(h;�) � 14�̂2 (p5 + 1)2maxf�̂2 ; � + 2F + �gminf1 ; p� + �g =: Ĉ1(�; �) if � = 1 : (4.8)Proof. We take � 2 [0; 1℄. Note that for x � 0:p1 + 4x+ 1 � (p5 + 1)maxf 1;px gp1 + 4x� 1 � (p5� 1)minf 1; x g :Hene, Ĉ(h;�) � 14(p5 + 1)2maxf1 ; p�gminf1 ; hg (4.9)holds. Using the Friedrihs inequality we obtainkuhkX = �kruhk2 + �kuhk2 + �kdiv uhk2 � (� + �2F + �)kruhk2 :From the LBB property it follows thath � �̂2� + �2F + � : (4.10)From (3.13) we have the bound � � 1� + � : (4.11)



12 M. A. OLSHANSKII AND A. REUSKENUsing the results (4.10) and (4.11) in (4.9) and taking � 2 f0; 1g yields the results in(4.7), (4.8).The bounds for Ĉ(h;�) in theorem 4.3 are of the same form as the bounds forC(;�) in theorem 3.2. Hene the results in orollary 1 apply here, i.e., Ĉ0(�; 0) andĈ1(�; 0) are unbounded for � # 0, whereas for �0 > 0 the fators Ĉ0(�; �0) and Ĉ1(�; �0)are uniformly bounded for � # 0. Due to theorem 4.2 this has diret onsequenes forthe disretization error bounds. To make this more lear we onsider a onrete �niteelement pair. As an example we take the LBB stable pair of onforming P1isoP2/P0�nite elements (pieewise linear veloity on a re�ned grid / pieewise onstant for thepressure). We use standard approximation properties of these spaes and assume thatthe solution (u; p) of the Stokes problem is suÆiently regular. We use the notationk � kk for the norm on the Sobolev spae Hk(
) (k = 1; 2). The results in (4.6) andtheorem 4.3 yield the following disretization error bounds for � 2 (0; 1℄:� For � = 0; � = 0:� 12 kr(u� uh)k+ kp� phk � C�� 12 h(� 12 kuk2 + kpk1) : (4.12)� For � = 0; � = 1:� 12 kr(u� uh)k+ kdiv (u� uh)k+ kp� phk � Ch(kuk2 + kpk1) : (4.13)� For � = 1; � = 0:� 12 kr(u�uh)k+ku�uhk+kp�phk � C�� 12h(� 12 kuk2+kuk1+kpk1) : (4.14)� For � = 1; � = 1:� 12 kr(u�uh)k+kdiv (u�uh)k+ku�uhk+kp�phk � Ch(kuk2+kpk1) : (4.15)Note that for small � the bounds for the ase with rdiv -stabilization (� = 1) aresigni�antly better than for the ase � = 0. These bounds indiate that the largerthe H1-norm of the pressure is ompared to the H2-norm of the veloity, the moreimportant the stabilizing rdiv term is. Also note that for the ase with rdiv -stabilization the term kdiv (u � uh)k is ontrolled, wheras for � = 0 this is not thease.Remark 3. For the ase � = 0; � = 0 the saling argument disussed in the intro-dution immediately yields a (sharp) disretization error bound. For the P1isoP2/P0�nite elements this results in (f. (1.2))kr(u� uh)k+ ��1kp� phk � Ch(kuk2 + ��1kpk1) : (4.16)For small � values this bound is better than the one in (4.12) but worse than theresult for the problem with rdiv -stabilization in (4.13).Remark 4. Using the saling ~� = ��t , ~� = ��t , ~u = �t u the results for � = 1 in(4.14) and (4.15) immediately yield orresponding results for the transient-like Stokesproblem in (1.3). Let (~uh; ph) be the disrete solution that results from the Galerkindisretization using P1isoP2/P0 �nite element spaes applied to (1.3). The results in(4.14), (4.15) an be reformulated as~� 12 kr(~u� ~uh)k+ 1p�tk~u� ~uhk+p�tkp� phk �8<: C hp~��t(~� 12 k~uk2 + 1p�tk~uk1 +p�tkpk1) ; if � = 0;Ch( 1p�tk~uk2 +p�tkpk1) if � = 1 : (4.17)



GRAD-DIV STABILIZATION FOR STOKES 13From the numerial experiments in setion 6 it an be seen that the results in (4.14)and (4.15) are fairly sharp and hene the results in (4.17) are sharp, too. These results,however, are too pessimisti for �t� 1 in the ontext of unsteady problems. As waspointed in the introdution, to obtain more reliable error bounds other tehniqueswhih take into aount the evolutionary nature of the problem should be used.Remark 5. Clearly if we introdue the rdiv term we have to hose a reasonablevalue for the parameter �. Numerial experiments have shown that the e�et of thestabilization is not very sensitive with respet to this hoie, although � should notbe too large. An indiation for a reasonable value an be obtained as follows. Assumethat minvh2Xh kr(u� vh)k � minqh2Mh kp� qhk (for our example of P1isoP2/P0 FEthis is the ase if kuk2 � kpk1), and assume that � = 0 and � is suÆiently small(atually � � �̂2 already suÆes). Then the balane between veloity and pressureterms in the righthand side of (4.6) is preserved if � = O(1). The onstant Ĉ in(4.6) also depends on �. The hoie � = �̂2 minimizes Ĉ . Moreover, under ertainassumptions on the domain 
 and triangulation it is known that �̂2 = O(1) holds(f. [6℄). Therefore, with the above assumptions the hoie � � �̂2 is reasonable.Numerial experiments presented in [12℄ with ommon benhmark problems ( drivenavity and bakward faing step) show that for � 2 [0:1; 0:2℄ one obtains good results.Note that for a unit square and P1isoP2/P0 FE we have �̂ � 0:44.5. Preonditioning the disrete problem. In this setion we disuss theiterative solution of the disrete problem (4.2). We restrit ourselves to iterativemethods of inexat Uzawa type. For this lass of methods applied to the stationaryStokes problem onvergene analyses are known (e.g., [1℄, [3℄). Also for other iterativemethods based on onjugate or minimal residual tehniques there are onvergeneanalyses available (f. [16℄, [18℄ and the referenes therein). In all these analysesone assumes �xed values for � and �, usually � = 0, and one does not analyze thedependene of the onvergene behaviour on variation in these parameters. Below, forthe inexat Uzawa method we study how the rate of onvergene depends on variationin the parameters �; � and �.The e�et of adding the term (div u; div v) on the onvergene speed of gradienttype of methods for solving the saddle point problem assoiated to (4.2) is analyzedin [9℄. In the terminology of [9℄ the addition of the term (div u; div v) yields a or-responding augmented Lagrangian. In [9℄ it is shown that gradient type of methods,like the exat Uzawa method, have a higher rate of onvergene when applied to theproblem with an augmented Lagrangian. In this setion we will draw a similar on-lusion for the inexat Uzawa method.Finally note that for the ase � = 1, � = 0, � > 0 (the transient-like Stokes problem)robustness results onerning the onvergene of Uzawa type of methods are given in[2℄, [11℄.We onsider a linear system of the form�A BTB 0 ��xy� = �fg� (5.1)with sti�nes matries A and B as in (4.3). We onsider a method of an inexatUzawa type as analyzed in [3℄,[23℄. For this we assume symmetri positive de�nitepreonditioners QA of A and QS of the Shur omplement S := BA�1BT . We assumethat QA and QS are saled suh that QA � A and QS � S are positive semide�nite.



14 M. A. OLSHANSKII AND A. REUSKENFurthermore, let onstants �A; �S 2 [0; 1) be suh that(1� �A)hQAx; xi � hAx; xi for all x 2 Rn ; (5.2)(1� �S)hQSy; yi � hSy; yi for all y 2 Rm : (5.3)Note that sine QA and QS are positive de�nite suh �A and �S always exist. Theinexat Uzawa method is as follows: for x0 2 Rn ; y0 2 Rm given, (xi; yi); i = 1; 2; : : :is determined by xi+1 = xi +Q�1A (f � (Axi +BT yi)) ;yi+1 = yi +Q�1S (Bxi+1 � g) : (5.4)In [3℄ it is shown that for the error ei := �x� xiy � yi� the inequality[jeij℄ � �i[je0j℄ for i = 0; 1; 2; : : :holds, where [j � j℄ is a suitable problem dependent norm and� = �S(1� �A) +p�2S(1� �A)2 + 4�A2 � 1� 12(1� �S)(1� �A) : (5.5)From these results we see that one obtains fast onvergene of the inexat Uzawamethod if one uses good preonditioners QA and QS .For our analysis we introdue the disrete analog of the quantity �:p�h := supvh2Xh;qh2Mh b(vh; qh)kvhkXkqhk :Lemma 5.1. Let M̂h be the mass matrix as in (4.3) and QS := �hM̂h, thenQS � S is positive semide�nite and for �S := 1� h�h the inequality (5.3) holds.Proof. Note that with ~B := M̂� 12B:p�h = supx2Rn;y2Rm hBx; yihAx; xi 12 hM̂y; yi 12= supx2Rn;y2Rm h ~Bx; yikxkAkyk : (5.6)The relations (4.4), (5.6), and lemma 2.1 implyhI � ~BA�1 ~BT � �hI;and thus for QS = �hM̂h h�hQS � S � QS :Thus QS � S is positive semide�nite and (5.3) holds with �S = 1� h�h .The results in lemma 5.1 and (5.5) show that for fast onvergene of the Uzawamethod it is favourable to have small �S values, i.e., small values for �h�1h . We nowonsider the Stokes problem, i.e., in the remainder we assume that the bilinear forms



GRAD-DIV STABILIZATION FOR STOKES 15a and b are as in (3.9). We analyze, for � 2 f0; 1g, the dependene of �h�1h on theparameters �; �; h. We assume that the �nite element spaes Xh are suh that theinverse inequality krvhk � Ih�1kvhk for all vh 2 Xh (5.7)holds, with a onstant I that does not depend on h.Lemma 5.2. The following holds:�hh � �̂�2 if � = 0; (5.8)�hh � �̂�2 � + 2F + �� + �2I h2 + � if � = 1 : (5.9)Proof. Using the inverse inequality it follows thatkuhk2X = �kruhk2 + �kuhk2 + �kdivuhk2 � (� + ��2I h2 + �)kdiv uhk2 :Hene we get, due to b(vh; qh) � kdiv vhkkqhk,�h � 1� + ��2I h2 + � : (5.10)A lower bound for h is given in (4.10). Now ombine these bounds for �h and hand take � 2 f0; 1g.From the results in (5.8) and lemma 5.1 it follows that for � = 0 and for all �values the saled mass matrix QS = �hM̂h is a good preonditioner for the Shuromplement. For this hoie we have 1� �S > 0 > 0 with a onstant 0 independentof � and h.For the ase � = 1 the result in (5.9) yields�hh = O(h�2) for h # 0; � � h2; � = 0 ; (5.11)hene a rapid growth for h! 0 and suÆiently small �. In this ase a simple saledmass matrix is not appropriate and one needs speial preonditioners for the Shuromplement as disussed in [2℄, [11℄, [5℄. For � = � = 1 we have�hh � 2 + 2F2 + �2I h2 for all � 2 (0; 1℄; (5.12)and thus for the saled mass matrix we have (as for the ase � = 0) 1� �S > 0 > 0with a onstant 0 independent of � and h.Remark 6. We apply the robustness result for the ase � = � = 1 to thetransient-like problem (1.3) using the saling argument disussed in the introdution.Let L = �A BTB 0 �be the �nite element sti�ness matrix as in (5.1) orresponding to the original problem(1.1) for the ase � = � = 1. Its Shur omplement is denoted by S. From the analysis



16 M. A. OLSHANSKII AND A. REUSKENabove we have that, uniformly for h; � 2 (0; 1℄, the saled mass matrix QS is a goodpreonditioner for S (lemma 5.1).The same �nite element disretization applied to the problem (1.3) with ~� = 1�t ; ~� =��t yields the sti�ness matrix Lt = � 1�tA BTB 0 �with Shur omplement St = �tS. Hene, uniformly for h; � 2 (0; 1℄ and �t 2 (0; 1℄the saled mass matrix �tQS is a good preonditioner for St.Besides a good preonditoner QS for the Shur omplement one also needs a pre-onditioner QA of A. The sti�ness matrix A is given byhAx; yi = �(rJXx;rJXy) + �(JXx; JXy) + �(div JXx; div JXy) for all x; y 2 Rn ;with JX : Rn ! Xh the �nite element isomorphism. For the ase � = 0 one anuse a multigrid method as a preonditioner for A. It is known ([13℄) that a standardmultigrid method results in a preondioner QA of A with (1��A)QA � A � QA witha onstant �A < 1 independent of h; � 2 (0; 1℄; � � 0. Hene, for the ase � = 0 (nostabilization) a good (i.e., robust w.r.t. variation in the parameters) preonditionerfor A is known.Opposite to this, a robust preonditioner QA of A for the ase with rdiv -stabilization(� = 1) is an open problem. For � = 1 additional sti�ness is introdued due to thediv operator whih in general has a large kernel. A suitable robust preonditionerfor this ase is a topi of urrent researh. Tehniques as presented in [17℄ may beappliable in this setting.Summarizing, we have the following results onerning the onvergene of the in-exat Uzawa method. For fast onvergene one needs good (robust w.r.t. varia-tion in parameters) preonditioners of S and A. We restrit ourselves to the ases� 2 f0; 1g; � 2 f0; 1g:� � = � = 0: the saled mass matrix QS is a good preonditioner for S.Multigrid is a good preonditioner for A.� � = 0; � = 1: the preonditoner QS is not robust (for � � h2 # 0). Moresophistiated preonditioning tehniques whih lead to robust preonditoners,like the methods in [2, 11℄, should be used. Multigrid is a good preonditionerfor A.� � = 1; � 2 f0; 1g: the saled mass matrix QS is a good preonditioner for S.A robust preonditioner for A is not known, yet.6. Numerial experiments. As a test example we take the Stokes equations(3.3) on 
 = (0; 1) � (0; 1). The right handside f is taken suh that the ontinuoussolution is: u1(x; y) = 4(2y � 1)x(1� x);u2(x; y) = �4(2x� 1)y(1� y);p(x; y) = 3(x3 + y3 � 0:5):Note that the ontinuous solution is independent of the parameters �; �. For thedisretization we use a uniform triangulation with mesh size h. For Xh �Mh we



GRAD-DIV STABILIZATION FOR STOKES 17take P1isoP2-P0 �nite element pair (pieewise-onstant pressure and pieewise-linearontinuous veloity on a one re�ned triangulation). This pair is known to be LBBstable, i.e. ondition (4.1) holds.The disrete problem is solved using the inexat Uzawa method from the previoussetion. For the Shur omplement preonditioner QS we take the pressure massmatrix (indentity in our ase) saled by (� + �2I h2u�+ �)�1, f. (5.10). Here hu = h2is the size of veloity element. We take I = 2p2 for the onstant from (5.7). Thisvalue an be found from a spetral upper bound for the disrete Laplaian in a unitsquare. If a reasonable bound for I is not available, the term �2I h2u� an be ignored.This will result in a smaller value of 1� �S in (5.3).For the preonditioner QA we use a standard multigrid V-yle method. Theprolongations and restritions are the anonial ones. We used 2 pre- and 2 post-smoothings with a symmetri blok-Gauss-Seidel iteration.For the stopping riterion in the inexat Uzawa iteration (5.4) we take a redutionof the relative residual by at least a fator 105. To illustrate the performane of thesolver we show in tables 6.1-6.2 Niter , the total number of inexat Uzawa iterationsrequired to satisfy the stopping riterion. As was disussed in the previous setion,the quantities �A and �S form (5.2){ (5.3) haraterize the rate of onvergene of(5.4). An estimate for �S was obtained in lemma 5.1. The value of �A depends onthe performane of the multigrid method for the veloity problem, whih de�nes QA.The values  d in the tables are estimates for the ontration number of the multigridmethod. Sine we use two iterations of the multigrid method for solving the veloityproblem we have �A �  2d. Table 6.1Dependene on �: h = 1=32, � = 0visosityParameter Quantity 1 10�2 10�4kr(u� uh)k 5.0e-2 4.4e-0 4.0e+2ku� uhk 4.1e-4 3.7e-2 3.7e-0�=0 kp� phk 3.5e-2 3.5e-3 3.5e-3Niter 38 38 38 d 0.06 0.06 0.06kr(u� uh)k 4.7e-2 3.8e-1 5.5e-1ku� uhk 3.8e-4 3.4e-3 5.0e-3�=0.1 kp� phk 3.8e-2 3.8e-3 3.4e-3Niter 36 13 312 d 0.06 0.30 0.96Niter- total number of inexat Uzawa iterations, d - onvergene fator in the MG-preonditioner for A.Tables 6.1 and 6.2 present error norms and onvergene data for the problemwith � = 0 solved on meshes with h = 132 and h = 164 , respetively. For the problemwithout rdiv -stabilization (� = 0) the O(��1) dependene of the error in veloityas predited by our theory is learly seen. For the stabilized problem (� = 0:1) thisdependene is muh milder (analytial estimate was O(�� 12 )). Note that the error in



18 M. A. OLSHANSKII AND A. REUSKENTable 6.2Dependene on �: h = 1=64, � = 0visosityParameter Quantity 1 10�2 10�4kr(u� uh)k 2.5e-2 2.0e-0 2.0e+2ku� uhk 1.0e-4 9.5e-3 9.5e-1�=0 kp� phk 1.7e-2 1.2e-3 1.2e-3Niter 39 36 34 d 0.06 0.06 0.06kr(u� uh)k 2.4e-2 1.8e-1 2.5e-1ku� uhk 9.8e-5 8.5e-4 5.0e-3�=0.1 kp� phk 1.9e-2 1.9e-3 1.7e-3Niter 37 12 414 d 0.06 0.34 0.98Niter- total number of inexat Uzawa iterations, d - onvergene fator in the MG-preonditioner for A.pressure is insensitive both to visosity and stabilization, whih is in agreement with(4.16) (for � = 0) and with (4.13) (for � > 0). Comparing results from tables 6.1and 6.2, we observe approximately O(h) onvergene in veloity gradients and inpressure and O(h2) in veloity, as expeted from theory. The slow onvergene of theUzawa method for stabilized equations with small � is aused by the poor onvergeneof the multigrid method for the veloity problem (see the values of  d). It is learthat in pratie (for small � values) this multigrid solver should not be used. AneÆient alternative for this multigrid solver is a topi of urrent researh.In the table 6.3 we show results for � = 1. In this ase, as predited by theresults in (4.14), (4.15), for small � values due to the rdiv term one obtains muhsmaller disretization errors both for pressure and veloity . We also observe a strongdeterioration of the onvergene of the inexat Uzawa method for the ase � = 0.This is probably due to the fat that for � ! 0; h ! 0 the saled mass matrix isnot a good preonditioner for the Shur omplement (f. (5.11) and the disussion inseton 5).Conluding remarks. We summarize the e�et of rdiv stabilization. For theontinuous problem the stabilization does not hange the solution but enhanes thestability of the orresponding bilinear form. For the ase � = �0 > 0 the problem isuniformly (for � # 0) well-posed in the natural norm (3.14).For the �nite element disretization the stabilization hanges the disrete solutionand results in better error bounds. For example, for the P1isoP2/P0 �nite elementswe have (with � = 0) the sharp bound kr(u� uh)k � Ch(kuk2 + ��1kpk1) for � = 0and kr(u�uh)k � C�� 12 h(kuk2+ kpk1) for � = 1. Our analysis does not yield sharpdisretization error bounds for a time-disretized problem as in (1.3) if �t # 0.The rdiv stabilization inuenes the onvergene behaviour of the inexat Uzawaiterative solver . The main results are summarized at the end of setion 5Aknowledgements. Part of this work was done by the �rst author while he wasvisiting the Vanderbilt University in fall 2001. For this author the work was also sup-
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