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Abstract. In this paper we analyze a parallel version of a multilevel red/green local refinement
algorithm for tetrahedral meshes. The refinement method is similar to the approaches used in
the UG-package [33] and by Bey [11, 12]. We introduce a new data distribution format that is
very suitable for the parallel multilevel refinement algorithm. This format is called an admissible
hierarchical decomposition. We will prove that the application of the parallel refinement algorithm to
an input admissible hierarchical decomposition yields an admissible hierarchical decomposition. The
analysis shows that the data partitioning between the processors is such that we have a favourable
data locality (e.g., parent and children are on the same processor) and at the same time only a small
amount of copies.
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1. Introduction. In the field of numerical solution methods for partial differ-
ential equations adaptive discretization methods gain growing acceptance. In such
adaptive methods both simplicial and hexahedral meshes are used. In this paper
we only consider the former class and we restrict ourselves to the three dimensional
situation, i.e., we treat tetrahedral meshes (which we also call triangulations). For
well-known reasons one usually requires these meshes to fulfill a stability and consis-
tency condition. The stability condition means that in a repeated refinement process,
the interior angles of all tetrahedra that are generated must be uniformly bounded
away from zero. A triangulation is called consistent if the intersection of any two tetra-
hedra from the triangulation is either empty, a common face, a common edge or a
common vertex. Several refinement algorithms are known that satisfy both conditions
for consistent input triangulations. These algorithms can be divided in two classes:
red/green refinement methods (for example, [11, 13, 27, 35]) and bisection methods
(for example, [1, 26, 28, 30, 31, 32]). For a discussion of the main differences between
these classes of methods we refer to the literature (e.g., [11, 13, 32]). In this paper
we only consider a multilevel tetrahedral red/green refinement method. The idea of a
multilevel refinement (and coarsening) strategy was introduced by Bastian [6] and
further developed in [8, 11, 13, 24, 25, 35]. This grid refinement technique is used
in UG [33]; for an overview we refer to [7, 9]. Similar techniques are used in several
other packages, for example, in KASKADE [23], DROPS [18], PML/MG [29].

To be able to summarize some interesting properties of a multilevel refinement al-
gorithm we first have to introduce a few notions. A sequence of triangulations
M = (T0, . . . , TJ) of some domain Ω is called a multilevel triangulation if: 1. each
tetrahedron in Tk (k ≥ 1) is either in Tk−1 or it is obtained by a (red or green) re-
finement of its parent in Tk−1; 2. if a tetrahedron in Tk is not refined when going to
Tk+1, then it remains unrefined in all Tℓ, ℓ > k. Such a multilevel triangulation has
nice structural properties. For example, the whole sequence M can be uniquely re-
constructed from T0 and TJ . A related property is that all the information on M can
be represented in a natural way using a hierarchical decomposition H = (G0, . . . ,GJ ),
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G0 := T0, Gk := Tk \ Tk−1, k ≥ 1. The hierarchical surplus on level k, Gk, consists
of all tetrahedra in M that are on the same level k. In the implementation of the
refinement algorithm this hierarchical decomposition plays a key role.

Now assume that based on some error indicator certain tetrahedra in the finest
triangulation TJ are marked for refinement. In many refinement algorithms one then
modifies the finest triangulation TJ resulting in a new one, TJ+1. Using such a strategy
(which we call a one-level method) the new sequence (T0, . . . , TJ+1) is in general
not a multilevel triangulation because the nestedness property 1 does not hold. We
also note that when using such a method it is difficult to implement a reasonable
coarsening strategy. In multilevel refinement algorithms the whole sequence M is
used and as output one obtains a sequence M′ = (T ′

0 , . . . , T ′
J′), with T ′

0 = T0 and
J ′ ∈ {J − 1, J, J + 1}. In general one has T ′

k 6= Tk for k > 0. We list a few important
properties of this method:

• Both the input and output are multilevel triangulations.
• The method is stable and consistent.
• Local refinement and coarsening are treated in a similar way.
• The implementation uses only the hierarchical decomposition of M. This

allows relatively simple data structures without storage overhead.
• The costs are proportional to the number of tetrahedra in TJ .

For a detailed discussion of these and other properties we refer to the literature
([6, 11, 12, 24]).

The multilevel structure of the refinement algorithm allows an efficient paralleliza-
tion of this method. Such parallel multilevel refinement algorithms are known in the
literature ([6, 24, 25]) and it has been shown that such a multilevel approach can have
a high parallel efficiency even for very complex applications ([24, 7, 9, 10]). Clearly,
a main problem related to the parallelization is how to store the distributed data on
the different processors1 of the distributed memory machine in a suitable way: One
has to find a good compromise between storage overhead on the different processors
and the costs of communication between the processors. The main topic of this paper
is related to this issue. We will introduce a new data partitioning format that can
be used in combination with a parallel multilevel refinement algorithm. Using this
format, which is called an “admissible hierarchical decomposition”, we can prove that
the data partitioning between the processors is such that we have a favourable data
locality (e.g., parent and children are on the same processor) and at the same time
only a small amount of copies. We consider one particular variant of a parallel multi-
level refinement algorithm. This method, that will be described in detail, is a parallel
version of the serial algorithm discussed in [11]. We will prove that the application of
the parallel refinement algorithm to an input admissible hierarchical decomposition
yields an admissible hierarchical decomposition. This then proves that favourable
data partitioning properties are preserved by the parallel refinement algorithm.
We do not know of any paper in which for a parallel multilevel refinement algorithm
theoretical results related to important data partitioning properties (data locality,
storage overhead) are presented.

The UG-package offers a very general parallel software-platform for solving CFD
problems using multilevel mesh refinement with many different element types (tri-
angles, quadrilaterals, tetrahedra, pyramids, prisms, hexahedra) in combination with

1here ‘processor’ means CPU with associated memory
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parallel multigrid methods and dynamic load balancing (cf. [9]). In our analysis we
are not able to treat such generality. We restrict ourselves to the theoretical analysis
of a parallel multilevel refinement for tetrahedral meshes only. However, we believe
that it is possible to derive similar results in a more general setting (eg., with other
element types). The very important issue of load balancing is only briefly addressed
in remark 9. We note that the data partitioning format that is introduced in this
paper differs from but is similar to the one used in the UG-package (cf. remark 7).
The parallel multilevel refinement algorithm that is treated in this paper is similar
but not identical to the ones known in the literature (cf. remarks 4 and 7). We note,
however, that a comparison with known methods is hard (or even impossible) due to
the fact that usually only high-level versions of these methods are described in the
literature (e.g. in [7]). These high-level descriptions are sufficient for explaining the
principles underlying these methods. In the present paper, however, for the theoret-
ical analysis a very precise description of the algorithm is necessary. Here we follow
the presentation as in [11, 12], where theoretical properties of a serial multilevel re-
finement algorithm are derived.

This paper is organized as follows. In section 2 we collect some definitions. To
make the paper more self-contained and in view of a better understanding of the par-
allel algorithm we decided to give a rather detailed description of the serial method
(section 3). In section 4 we introduce and analyze the admissible hierarchical decom-
position. Furthermore, the parallel multilevel refinement algorithm is presented. In
section 4.1 we summarize the main new results of this paper. In section 5 a theo-
retical analysis is given which proves that the application of the parallel refinement
algorithm to an input admissible hierarchical decomposition yields an admissible hi-
erarchical decomposition. Finally, in section 6 we give results of a few numerical
experiments.

2. Definitions and notation. In this section we collect notations and defini-
tions that will be used in the remainder of this paper. Let Ω be a polyhedral domain
in R

3.
Definition 1 (Triangulation). A finite collection T of tetrahedra T ⊂ Ω is called

a triangulation of Ω (or Ω) if the following holds:
1. vol(T ) > 0 for all T ∈ T ,
2.

⋃

T∈T T = Ω,
3. int(S) ∩ int(T ) = ∅ for all S, T ∈ T with S 6= T .

Definition 2 (Consistency). A triangulation T is called consistent if the inter-
section of any two tetrahedra in T is either empty, a common face, a common edge
or a common vertex.

Definition 3 (Stability). A sequence of triangulations T0, T1, T2, . . . is called
stable if all angles of all tetrahedra in this sequence are uniformly bounded away from
zero.

It is known that for finite element discretizations in many cases the weaker (max-
imal angle) condition “all angles of all tetrahedra are uniformly bounded away from
π” would be sufficient. However, using the latter condition, stronger requirements on
the robustness of iterative solvers are needed, which can be avoided when using the
minimal angle condition in definition 3.

Definition 4 (Refinement). For a given tetrahedron T a triangulation K(T )
of T is called a refinement of T if |K(T )| ≥ 2 and any vertex of any tetrahedron
T ′ ∈ K(T ) is either a vertex or an edge midpoint of T . In this case T ′ is called a
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child of T and T is called the parent of T ′. A refinement K(T ) of T is called regular if
|K(T )| = 8, otherwise it is called irregular . A triangulation Tk+1 is called refinement
of a triangulation Tk 6= Tk+1 if for every T ∈ Tk either T ∈ Tk+1 or K(T ) ⊂ Tk+1 for
some refinement K(T ) of T .

Definition 5 (Multilevel triangulation). A sequence of consistent triangulations
M = (T0, . . . , TJ) is called a multilevel triangulation of Ω if the following holds:

1. For 0 ≤ k < J : Tk+1 is a refinement of Tk.
2. For 0 ≤ k < J : T ∈ Tk ∩ Tk+1 ⇒ T ∈ TJ .

The tetrahedra T ∈ TJ are called the leaves of M. Note that T is a leaf iff T has
no children in M. A tetrahedron T ∈ M is called regular if T ∈ T0 or T resulted
from a regular refinement of its parent. Otherwise T is called irregular. A multilevel
triangulation M is called regular if all irregular T ∈ M are leaves (i.e., have no
children in M).

Remark 1. Let M be a multilevel triangulation and Vk (0 ≤ k ≤ J) be the
corresponding finite element spaces of continuous functions p ∈ C(Ω̄) such that p|T ∈
Pq for all T ∈ Tk (q ≥ 1). The refinement property 1 in definition 5 implies nestedness
of these finite element spaces: Vk ⊂ Vk+1.

Definition 6 (Hierarchical decomposition of M). Let M = (T0, . . . , TJ ) be a
multilevel triangulation of Ω. For every tetrahedron T ∈ M a unique level number
ℓ(T ) is defined by ℓ(T ) := min{ k | T ∈ Tk }. The set Gk ⊂ Tk

Gk := {T ∈ Tk | ℓ(T ) = k }

is called the hierarchical surplus on level k (k = 0, 1, . . . , J). Note that G0 = T0, Gk =
Tk \ Tk−1 for k = 1, . . . , J . The sequence H = (G0, . . . ,GJ ) is called the hierarchical
decomposition of M. Note that the multilevel triangulation M can be reconstructed
from its hierarchical decomposition.

Remark 2. The hierarchical decomposition induces simple data structures in a
canonical way. The tetrahedra of each hierarchical surplus Gk are stored in a separate
list. Thus every tetrahedron T ∈ M is stored exactly once since T has a unique level
number ℓ(T ). By introducing unique level numbers also for vertices, edges and faces,
these subsimplices can be stored in the same manner: For a subsimplex S the level
number ℓ(S) is defined as the level of its first appearance. Additionally, the objects
are linked to certain corresponding objects by pointers (e.g., a tetrahedron is linked
to its vertices, edges, faces, children and parent).

3. A serial multilevel refinement algorithm. In this section we describe a
refinement algorithm which is, apart from some minor modifications, the algorithm
presented in [11, 12]. This method is based on similar ideas as the refinement algo-
rithms in [4, 6, 7]. At the end of this section (remark 4) we discuss the differences
between the method presented here and the one from [11, 12]. We give a rather de-
tailed description of the algorithm to facilitate the presentation of the parallel version
of this method that is given in section 4.3. The refinement strategy is based on a
set of regular and irregular refinement rules (also called red and green rules, due to
[2, 4, 3, 5]). The regular and irregular rules are local in the sense that they are applied
to a single tetrahedron. These rules are applied in a (global) refinement algorithm
(section 3.3) that describes how the local rules can be combined to ensure consistency
and stability.

3.1. The regular refinement rule. Let T be a given tetrahedron. For the
construction of a regular refinement of T it is natural to connect midpoints of the
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edges of T by subdiving each of the faces into four congruent triangles. This yields
four subtetrahedra at the corners of T (all similar to T ) and an octahedron in the
middle. For the subdivision of this octahedron into four subtetrahedra with equal
volume there are three possibilities corresponding to the three diagonals that connect
opposite vertices of the octahedron. One has to be careful in choosing an appropriate
subdivision since in [35] it has been shown that the wrong choice may lead to a
sequence of triangulations that is not stable. A stable tetrahedral regular refinement
strategy, based on an idea from [17], is presented in [11, 13]. We recall this method.

Let T = [x(1), x(2), x(3), x(4)] be a tetrahedron with ordered vertices x(1), x(2),
x(3), x(4) and

x(ij) :=
1

2
(x(i) + x(j)) , 1 ≤ i < j ≤ 4,

the midpoint of the edge between x(i) and x(j). The regular refinement K(T ) :=
{T1, . . . , T8} of T is constructed by the (red) rule

T1 := [x(1), x(12), x(13), x(14)] , T5 := [x(12), x(13), x(14), x(24)] ,

T2 := [x(12), x(2), x(23), x(24)] , T6 := [x(12), x(13), x(23), x(24)] ,
T3 := [x(13), x(23), x(3), x(34)] , T7 := [x(13), x(14), x(24), x(34)] ,

T4 := [x(14), x(24), x(34), x(4)] , T8 := [x(13), x(23), x(24), x(34)] .

(3.1)

In [13] it is shown that for any T the repeated application of this rule produces a
sequence of consistent triangulations of T which is stable. For a given T all tetrahedra
that are generated in such a recursive refinement process form at most three similarity
classes.

3.2. Irregular refinement rules. Let T be a given consistent triangulation.
We select a subset S of tetrahedra from T and assume that the regular refinement
rule is applied to each of the tetrahedra from S. In general the resulting triangulation
T ′ will not be consistent. The irregular (or green) rules are used to make this new
triangulation consistent. For this we introduce the notions of an edge counter and
edge refinement pattern. The edge counter C(E), that depends on T and S, assigns
an integer value to each of the edges E of T as follows: C(E) = m if the edge E is
an edge of precisely m elements from S. Hence, the edge E has been refined when
going from T to T ′ iff C(E) > 0 holds. Related to this, for T ∈ T we define the edge
refinement pattern R(T ) as follows. Let E1, . . . , E6 be the ordered edges of T . We
define the 6-tuple

R = (r1, . . . , r6) ∈ {0, 1}6

by: ri = 0 if C(Ei) = 0 and ri = 1 if C(Ei) > 0. This edge refinement pattern
describes a local property in the sense that it is related to a single tetrahedron and its
value directly follows from the values of the edge counter. For T ∈ S we have R(T ) =
(1, . . . , 1). For T ∈ T \ S the case R(T ) = (0, . . . , 0) corresponds to the situation that
the tetrahedron T does not contain any vertices from T ′ at the midpoints of its edges.
For each of the 26 − 1 possible patterns R 6= (0, . . . , 0) there exists a corresponding
refinement K(T ) of T (in the fashion of (3.1)) for which the vertices of the children
coincide with vertices of T or with the vertices at the midpoints on the edges Ei

with ri = 1. This refinement, however, is not always unique. This is illustrated in
figure 3.1.
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Fig. 3.1. Non-unique face refinement

To obtain a consistent triangulation in which the subdivision of adjacent faces
matches special care is needed. One way to ensure consistency is by introducing a
so-called consistent vertex numbering:

Definition 7 (Consistent vertex numbering). Let T1 and T2 be two adjacent
tetrahedra with a common face F = T1 ∩ T2 and local vertex ordering

Tl = [x
(1)
l , x

(2)
l , x

(3)
l , x

(4)
l ], l = 1, 2.

Let the vertex set of F be given by

{x
(i1)
1 , x

(i2)
1 , x

(i3)
1 } = {x

(j1)
2 , x

(j2)
2 , x

(j3)
2 } .

Without loss of generality we assume i1 < i2 < i3 and j1 < j2 < j3. The pair (T1, T2)
has a consistent vertex numbering if

x
(ik)
1 = x

(jk)
2 , k = 1, 2, 3

holds, i.e., if the ordering of the vertices of F induced by the vertex numbering of
T1 coincides with the one induced by the vertex numbering of T2. A consistent
triangulation T has a consistent vertex numbering if every two neighboring tetrahedra
have this property.

We note that a consistent vertex numbering can be constructed in a rather simple
way. Consider an (initial) triangulation T̃ with an arbitrary numbering of its vertices.
This global numbering induces a canonical local vertex ordering which is a consistent
vertex numbering of T̃ . Furthermore, each refinement rule can be defined such that
the consistent vertex numbering property of the parent is inherited by its children
by prescribing suitable local vertex orderings of the children. (3.1) is an example of
such a rule. Using such a strategy a consistent triangulation T̃ ′ that is obtained by
refinement of T̃ according to these rules also has a consistent vertex numbering.

Assumption 1. In the remainder of this paper we always assume that the initial
triangalution T0 is consistent and has a consistent vertex numbering.

Assume that the given triangulation T has a consistent vertex numbering. For
a face with a pattern as in figure 3.1 one can then define a unique face refinement
by connecting the vertex with the smallest number with the midpoint of the opposite
edge. For each edge refinement pattern R ∈ {0, 1}6 we then have a unique rule.
We emphasize that if the edge refinement pattern is known for the application of
the regular or irregular rules to a given tetrahedron no information from neighboring
tetrahedra is needed. Clearly, for parallelization this is a very nice property.

Up to now we discussed how the consistency of a triangulation can be achieved
by the choice of suitable irregular refinement rules based on the consistent vertex
numbering property. We will now explain how the regular and irregular rules can be
combined in a repeated refinement procedure to obtain a stable sequence of consistent
triangulations. The crucial point is to allow only the refinement of regular tetrahedra,
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i.e. children of irregularly refined tetrahedra, also called green children, are never
refined. If such a green child T is marked for refinement, instead of refining T the
irregular refinement of the parent will be replaced by a regular one. As the application
of the regular rule (3.1) creates tetrahedra of at most 3 similarity classes (cf. [17, 13]),
the tetrahedra created by a refinement procedure according to this strategy belong
to an a-priori bounded number of similarity classes. Hence the obtained sequence of
triangulations is stable.

3.3. The multilevel refinement algorithm. In this section we describe how
the regular and irregular refinement rules are used in a multilevel refinement algorithm
(as in [18, 11, 12]).

We first illustrate the difference to one-level refinement methods. For ease of
presentation, we use triangles instead of tetrahedra in our examples. In one-level
methods (as in [2, 4, 3, 5]) there is a loop over all triangles in the finest triangulation
TJ . Each triangle is processed, based on a (small) number of (red and green) re-
finement rules. If necessary (e.g., to maintain consistency), neighboring triangles are
refined, too. In general the family of triangulations T0, . . . , TJ that is constructed will
not be nested. We emphasize that, although in the implementation of such one-level
methods a multilevel (tree) structure may be used, there is no loop over the different
triangulations T0, . . . , TJ in the family. As a simple example, consider the following
multilevel triangulation (T0, T1):
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T0 T1

In T1 two triangles are marked (by shading) for further refinement. The one-
level method from [4] uses the finest triangulation T1 as input and applies a regular
refinement rule followed by irregular refinement rules:
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red green

T1

T2

Fig. 3.2. One-level red/green refinement

As output one obtains a consistent triangulation T2 which is not a refinement
of T1 (in the sense of definition 4). Related to this we note that the finite element
spaces corresponding to T1, T2 are not nested (cf. remark 1) and that it is not obvious
how to construct a hierarchical decomposition of the sequence T0, T1, T2. These are
disadvantages if one uses such grid refinement techniques in combination with multi-
grid solvers for the numerical solution of partial differential equations. An advantage
of the one-level method compared to the multilevel strategy discussed below is its
simplicity. In multilevel refinement algorithms both the input and the output are
multilevel triangulations (definition 5). In the implementation only the hierarchical
decompositions of these multilevel triangulations are used.

We now introduce the notions of status and mark of a tetrahedron that will be
used in the subroutines of the multilevel refinement algorithm. Let M = (T0, . . . , TJ )
be a multilevel triangulation that has been constructed by applying the regular and
irregular refinement rules and let H = (G0, . . . ,GJ) be the corresponding hierarchical
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decomposition. Every tetrahedron T ∈ H is either a leaf of M (i.e., T ∈ TJ) or it has
been refined. The label status is used to describe this property of T :

For T ∈ H : status(T ) =











NoRef if T is a leaf of M

RegRef if T is regularly refined in M

IrregRef if T is irregularly refined in M

We note that the label IrregRef contains the number of the irregular refinement rule
(one out of 63) that has been used to refine T , i.e., the binary representation of
status(T ) coincides with the edge refinement pattern of T .

In adaptive refinement an error estimator (or indicator) is used to mark certain
elements of TJ for further refinement or for deletion. For this the label mark is used:

For T ∈ H : mark(T ) =











Ref if T ∈ TJ is marked for refinement

Del if T ∈ TJ is marked for deletion

status(T ) otherwise

We describe a multilevel refinement algorithm known in the literature. The basic
form of this method was introduced by Bastian [6] and developed further in the
UG-group [7, 9, 24, 25, 33]. We use the presentation as in [11, 12], which is shown in
figure 3.3.
The input of SerRefinement consists of a hierarchical decomposition G0, . . . ,GJ in

Algorithm SerRefinement(G0, . . . ,GJ )
for k = J, . . . , 0 do // phase I

DetermineMarks(Gk); (1)
MarksForClosure(Gk); (2)

for k = 0, . . . , J do if Gk 6= ∅ then // phase II
if k > 0 then MarksForClosure(Gk); (3)
if k < J then Unrefine(Gk); (4)
Refine(Gk); (5)

if GJ = ∅ then J := J − 1; (6)
else if GJ+1 6= ∅ then J := J + 1; (7)

Fig. 3.3. Serial multilevel refinement algorithm.

which all refined tetrahedra T are labeled by mark(T ) = status(T ) according to their
status and the unrefined T ∈ TJ have mark(T ) ∈ {NoRef, Ref, Del}. The output is
again a hierarchical decomposition, where all tetrahedra are marked according to their
status.
The main idea underlying the algorithm SerRefinement is illustrated using the mul-
tilevel triangulation (T0, T1) from above. The hierarchical decomposition and the
corresponding marks are shown in figure 3.4.

Note that for the two shaded triangles in G1 we have status(T ) 6= mark(T ). For
all other triangles status(T ) = mark(T ) holds. In phase I of the algorithm (top–down:
(1),(2)) only marks are changed.

Once phase I has been completed the marks have been changed such that mark(T ) ∈
{NoRef, RegRef, IrregRef} holds for all T ∈ H. We emphasize that all green children in
G̃1 have mark(T ) = NoRef, as they are not refined because of stability reasons. Instead
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G0

G1

mark(T ) = NoRef

mark(T ) = RegRef

mark(T ) = IrregRef

mark(T ) = Ref

Fig. 3.4. Input hierarchical decomposition.

G̃0 G̃1

Fig. 3.5. After phase I.

the corresponding irregular refined parents in G̃0 are labeled by mark(T ) = RegRef.
In the second phase (bottom–up: (3)-(5)) the actual refinement (unrefinement is not
needed in our example) is constructed:

Gnew
0 Gnew

1 Gnew
2

Fig. 3.6. Output hierarchical decomposition.

In the output hierarchical decompositionH = (G
new

0 ,G
new

1 ,G
new

2 ) we have mark(T ) =
status(T ) for all T ∈ H. The output multilevel triangulation M = (T

new

0 , T
new

1 , T
new

2 )
is regular (cf. definition 5) and is given by

T
new

0 = G
new

0 , T
new

1 = G
new

1 , T
new

2 = G
new

2 ∪ {T ∈ G
new

1 | mark(T ) = NoRef } .

Note that T
new

0 = T0, T
new

1 6= T1 (!) and that the new finest triangulation T
new

2 is the
same as the triangulation T2 in figure 3.2 resulting from the one-level algorithm.

Below we describe the subroutines used in algorithm SerRefinement. A detailed
discussion of these subroutines is given in [11, 12].

DetermineMarks. In this subroutine only marks are changed. The new values
of the marks that are changed are of the type RegRef or NoRef. The value mark(T ) =
RegRef is assigned if

• T is a regular leaf with mark(T ) = Ref

• T has been irregularly refined (status(T ) = IrregRef) and at least one of its
children is marked for refinement (either by mark(child) = Ref or by a certain
edge refinement pattern)

The value mark(T ) = NoRef is assigned if
• status(T ) = RegRef and all children of T are marked for deletion (mark(T ′) =

Del for all T ′ ∈ K(T ))
• T has been irregularly refined (status(T ) = IrregRef) and none of its children

is marked for refinement
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The subroutine is described in detail in figure 3.7. Another important task of De-

Function DetermineMarks(Gk)
for T ∈ Gk do

if status(T ) = NoRef then

if T is regular and mark(T ) = Ref then

mark(T ) := RegRef; (1)
increase edge counters; (2)

if k = 0 and mark(T ) = Del then mark(T ) := NoRef; (3)

else if status(T ) = RegRef then

if ∀T ′ ∈ K(T ) : mark(T ′) = Del then

mark(T ) := NoRef; (4)
decrease edge counters; (5)

for T ′ ∈ K(T ) do

if mark(T ′) = Del then mark(T ′) := NoRef ; (6)

else // status(T ) = IrregRef

if ∃T ′ ∈ K(T ) : mark(T ′) = Ref

or an edge of a child, which is not an edge of T ,
is marked for refinement then

mark(T ) := RegRef; (7)
increase edge counters; (8)

else mark(T ) := NoRef; (9)
for T ′ ∈ K(T ) do mark(T ′) := NoRef; (10)

Fig. 3.7. Subroutine DetermineMarks.

termineMarks is the book-keeping of the edge counters. If a tetrahedron is to be
regularly refined the counters of its edges are increased. Similarly, if all children of a
regularly refined tetrahedron are removed the edge counters of its edges are decreased.

MarksForClosure. In this subroutine an appropriate irregular refinement rule
is determined for an element T ∈ Gk to avoid hanging nodes. The tetrahedron T
must be regular (irregular elements are never refined) and it should not be marked
for regular refinement. The subroutine is described in figure 3.8.

Function MarksForClosure(Gk)
for T ∈ Gk do

if T is regular and mark(T ) 6= RegRef then

Determine the edge refinement pattern R
of T (using the edge counters); (1)

if R = (0, . . . , 0) and mark(T ) = Del then

do nothing;
// NoRef-mark is set in DetermineMarks(Gk−1)

else

mark(T ) := R; (2)

Fig. 3.8. Subroutine MarksForClosure.

Unrefine. In the call of this subroutine on level k all the tetrahedra, vertices,
edges and faces on level k + 1 that are not needed anymore (due to changed marks)
are removed. More details are given in figure 3.9. We note that for an efficient
implementation one could check also for the case status(T ) 6= NoRef and mark(T ) 6=
status(T ) whether certain already known objects (tetrahedra, edges, etc.) on level
k + 1 can be reused in the refinement.
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Function Unrefine(Gk)
Label all tetrahedra, vertices, edges and faces on level k + 1 for deletion; (1)

for T ∈ Gk do if (status(T ) 6= NoRef and mark(T ) = status(T )) then

Remove all deletion labels of the
children of T and of their vertices, edges, faces; (2)

Remove all tetrahedra, vertices, edges and faces on level k + 1
that are labeled for deletion; (3)

Fig. 3.9. Subroutine Unrefine.

Refine. In the subroutine Refine, if mark(T ) 6= status(T ), an appropriate refine-
ment of T , based on mark(T ), is made and new objects (tetrahedra, vertices, edges
and faces) are created on level k + 1. For k = J , a new hierarchical surplus GJ+1 is
constructed. The refined tetrahedron T is labeled with its new status. After appli-
cation of the subroutine Refine on level k all tetrahedra on this level have a status

which corresponds to their mark. Leaves are given the status NoRef. Further details
are presented in figure 3.10.

Function Refine(Gk)
if k = J then Gk+1 := ∅; (1)

for T ∈ Gk do

if mark(T ) 6= status(T ) then

Refine T according to mark(T ); (2)
status(T ) := mark(T ); (3)
for T ′ ∈ K(T ) do

Find existing vertices, edges and faces of T ′; (4)
create missing vertices, edges and faces of T ′; (5)
status(T ′) := NoRef; (6)

Fig. 3.10. Subroutine Refine.

Remark 3. When applying the subroutines to Gk, for any T ∈ Gk one only needs
information that is directly connected with T (e.g., mark(T )), information about a
possible parent (to decide, for example, whether T is regular or not) and if T is not
a leaf, information about the children of T .

Remark 4. As already noted above, algorithm SerRefinement is very similar
to the method of Bey ([11, 12]). There are, however, some differences. We use a
complete set of 64 refinement rules, whereas Bey uses a much smaller number of green
rules, which may cause a domino effect. In view of data locality and parallelization
we wanted to avoid this effect. Concerning the implementation there are two major
differences to the approach of Bey. Firstly, in our implementation faces are explicitly
represented in the data structure, which simplifies the access from one tetrahedron to
its four neighbor tetrahedra. Secondly, each vertex, edge and face is stored only once
(and not on every level where corresponding tetrahedra occur).
The algorithm used in UG [7] (cf. [6, 7, 24]) is of the same V-cycle structure but
more general as it can deal with other element types such as hexahedra, prisms and
pyramids, too. A complete set of refinement rules is used for each element type.
Faces are not represented, which saves memory on the one hand, but on the other
hand introduces so called horizontal ghosts in the parallel data structure (cf. remark
7 below).

4. Parallelization of the multilevel refinement method.
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4.1. Introduction. In many applications (for example, CFD) the computa-
tional complexity is very high and one wants to use parallel machines. Here we
only consider distributed memory machines which use message passing (MPI). In this
section we reconsider the local refinement algorithm SerRefinement and present a
version, which is called ParRefinement, that is suitable for such a machine. For a
given input-multilevel triangulation the parallel method produces the same output-
multilevel triangulation as the serial method. In this sense the “computational part”
of the algorithm is not changed. In the parallel case load has to be distributed uni-
formly among the processors, so in practice an adaptive parallel refinement algorithm
is combined with dynamic load balancing and data migration between the processors.
One main issue related to the parallelization of the algorithm SerRefinement is to find
an appropriate distributed storage of data with regard to data locality. Note that an
overlapping distribution of the elements is necessary, due to the fact that parents and
children are linked by pointers. Consider, for example, the situation in which a parent
T and its child T ′ are stored on different processors, say p and q. Since pointers from
one local memory to another are not allowed in a distributed memory setting, we have
to use a copy to realize this pointer. One could store a copy of T on processor q to
represent the link between T and T ′ as a pointer on processor q. If one does not allow
such ghost copies, all ancestors and descendants of a tetrahedron must be on the same
processor. This would cause very coarse data granularity, poor load balancing and
hence low parallel efficiency.

One main topic of this paper is the introduction and analysis of a new data
distribution format that is very suitable for parallelization of the multilevel refinement
algorithm. This data distribution format is such that the following holds:

1. Let T ∈ Gk be an element from the hierarchical surplus on level k. Then T is
stored on one processor, say p, as a so called master element. In certain cases
(explained below) a ghost copy of T is stored on one other processor, say q.

2. The children of T (if they exist) are all stored as masters either on processor
p or, if T has a ghost copy, on processor q. For T ∈ Gk, k > 0, the parent of
T or a copy of it is stored on processor p.

In multilevel refinement a crucial point is that for a tetrahedron T one needs infor-
mation about all children of T . Due to property 2 this information is available on the
local processor (p or q) without communication. The first property shows that in a
certain sense the overlap of tetrahedra is small.

The new data distribution format will be made mathematically precise by a formal
specification of a so-called admissible hierarchical decomposition. This is presented in
section 4.2. In section 4.3 we introduce the parallel version of the multilevel refinement
algorithm (ParRefinement).

The main results concerning the admissible hierarchical decomposition and the
parallel multilevel refinement method can be summarized as follows:

a. An admissible hierarchical decomposition has the desirable properties 1 (small
storage overhead) and 2 (data locality) from above. This is proved in sec-
tion 4.2.

b. The application of the algorithm ParRefinement to an admissible hierarchical
decomposition results in an admissible hierarchical decomposition. This is
proved in section 5.

c. Given an admissible hierarchical decomposition one can apply a suitable load
balancing and data migration algorithm such that after data migration one
still has an admissible hierarchical decomposition. We comment on this in
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remark 9 below.

4.2. Admissible hierarchical decomposition. Let the sequence M = (T0, . . . , TJ)
of triangulations be a multilevel triangulation and H = (G0, . . . ,GJ ) the correspond-
ing hierarchical decomposition. In this section we introduce a particular format for
the distribution of the tetrahedra in H among processors on a parallel machine. We
assume that the processors are numbered 1, . . . , P .

For the set of elements in the hierarchical surplus on level k that are stored on
processor p we introduce the notation

Gk(p) := {T ∈ Gk | T is stored on processor p }

and we define

H(p) := (G0(p), . . . ,GJ (p)) .

In general the intersection Gk(p) ∩ Gk(q), p 6= q, may be nonempty. Also note that in
general H(p) is not a hierarchical decomposition (in the sense of definition 6). The
sequence

H̃ = (H(1), . . . ,H(P )) (4.1)

is called a distributed hierarchical decomposition (corresponding to H).
For each level k and processor p we introduce a set of master elements, Mak(p) ⊂

Gk(p), and a set of ghost elements, Ghk(p) ⊂ Gk(p). In the formulation of the condi-
tions below we use: K(T ) := ∅ if status(T ) = NoRef, and MaJ+1(p) := ∅.

We now formalize the conditions on data distribution as follows.
Definition 8 (Admissible hierarchical decomposition). The distributed hierar-

chical decomposition H̃ is called an admissible hierarchical decomposition if for all
k = 1, . . . , J the following conditions are fulfilled:

(A1) Partitioning of Gk(p): The sets of masters and ghosts form a disjoint
partitioning of Gk(p):

∀ p Mak(p) ∪ Ghk(p) = Gk(p) and Mak(p) ∩ Ghk(p) = ∅

(A2) Existence: Every element from Gk is represented as a master element on
level k:

Gk =

P
⋃

p=1

Mak(p)

(A3) Uniqueness: Every element from Gk is represented by at most one master
element on level k:

∀ p1, p2 : Mak(p1) ∩ Mak(p2) 6= ∅ ⇒ p1 = p2

(A4) Child–parent locality: A child master element and its parent (as master
or ghost) are stored on the same processor:

∀ p ∀T ∈ Gk ∀T ′ ∈ K(T ) : T ′ ∈ Mak+1(p) ⇒ T ∈ Gk(p)

(A5) Ghosts are parents: Ghost elements always have children:

∀ p ∀T ∈ Ghk(p) : K(T ) 6= ∅
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(A6) Ghost–children locality: A ghost element and its children are stored on
the same processor:

∀ p ∀T ∈ Ghk(p) : K(T ) ⊂ Mak+1(p)

Remark 5. Consider a consistent initial triangulation T0 = G0 with a nonover-
lapping distribution of the tetrahedra: G0(p) ∩ G0(q) = ∅ for all p 6= q. In this case
all tetrahedra can be stored as masters and there are no ghosts. Then the distributed
hierarchical decomposition H̃ = ((G0(1)), . . . , (G0(P ))) is admissible.

Two elementary results are given in:

Lemma 4.1. Let H̃ as in (4.1) be a distributed hierarchical decomposition. The
following holds:

1. If the conditions (A3), (A5) and (A6) are satisfied then for any element from
Gk there is at most one corresponding ghost element:

∀T ∈ Gk ∀ p, q : T ∈ Ghk(p) ∩ Ghk(q) ⇒ p = q

2. If the conditions (A1), (A2), (A3), (A4) and (A6) are satisfied then all chil-
dren of a parent are stored as master elements on one processor:

∀T ∈ Gk ∃ p : K(T ) ⊂ Mak+1(p)

Proof.

1. Take T ∈ Gk and p, q such that T ∈ Ghk(p) ∩ Ghk(q). Then because of
(A5) and (A6) we obtain ∅ 6= K(T ) ⊂ Mak+1(p) ∩ Mak+1(q) . From (A3) we
conclude p = q.

2. Take T ∈ Gk. For K(T ) = ∅ nothing has to be proven, so we consider
K(T ) 6= ∅. Choose T ′ ∈ K(T ) ⊂ Gk+1. Then because of (A2)

∃ p : T ′ ∈ Mak+1(p) ,

and due to (A4) T is also stored on processor p: T ∈ Gk(p). From (A1)
it follows that T is stored either as a ghost element or a master element
on processor p. First consider T ∈ Ghk(p). Then (A6) implies K(T ) ⊂
Mak+1(p), qed.
Now consider the case T ∈ Mak(p). Suppose another child T ′′ ∈ K(T ),
T ′′ 6= T ′, is not stored as master element on processor p, i.e. T ′′ /∈ Mak+1(p).
From (A2) it follows that there is a processor q, q 6= p, with T ′′ ∈ Mak+1(q),
and (A4) yields T ∈ Gk(q). From T ∈ Mak(p), (A3) and (A1) we obtain
T ∈ Ghk(q) and hence (A6) yields K(T ) ⊂ Mak+1(q). In particular we have
T ′ ∈ Mak+1(q) and thus

T ′ ∈ Mak+1(p) ∩ Mak+1(q) ,

with p 6= q. This is a contradiction to (A3). Hence for all children T ′′ ∈ K(T )
T ′′ ∈ Mak+1(p) holds.
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Remark 6. Due to the conditions (A2) and (A3) every tetrahedron T ∈ H can
be assigned a unique processor on which T is stored as a master element. In other
words, we have a well-defined function master : H → {1, . . . , P} that is given by

master(T ) = p ⇔ T ∈ Maℓ(T )(p) .

Let T ∈ Mak(p) be a parent master element. From the second result in lemma 4.1
and (A4) it follows that either all children are masters on the same processor p as T ,
or they are masters on some other processor q. In the latter case, the element T has
a corresponding ghost element on processor q. Due to this property, in the parallel
refinement algorithm below we use the strategy:

If a parent tetrahedron T has a ghost copy then operations that involve
children of T are performed on the processor on which the ghost and the
children are stored.

(4.2)

From condition (A4) it follows that a child master element has its parent (as ghost or
as master) on the same processor. Therefore we use the strategy:

Operations that involve the parent of T are performed on the processor
on which the master element of T and its parent are stored.

(4.3)

The first result in lemma 4.1 shows that every T ∈ H has at most one ghost copy.
Moreover, due to (A5) all leaves (T ∈ TJ ) have no ghost copies. In this sense the
overlap of tetrahedra between the processors is small.

Remark 7. Comparing the distribution of the element data in UG ([6, 24]) with
our approach, there are many similarities, but also some important differences. Of
course in UG there are also ghost copies. For each UG master element its parent and
neighbors (possibly as ghosts) are stored on the same processor. Related to this the
ghosts are divided in two classes: vertical ghosts (overlap of parents) and horizontal
ghosts (overlap of neighbors). In our approach we only have vertical ghosts, as we
do not store copies of neighbors. Instead we have an overlapping storage of faces.
Another significant difference is that in UG the children K(T ) of a common parent T
might be stored on different processors, whereas in our case the children K(T ) are all
on the same processor. Hence, in UG there might be up to |K(T )| ghost copies of T ,
whereas our format allows at most one.
The different data distribution formats have an impact on the actual algorithms.
Hence, although the structure of our method is the same as the approach used in UG
(V-cycle), there are significant differences in the parallel refinement methods. These
are revealed only if one compares detailed descriptions of the algorithms (which are
usually not presented in the literature). As one concrete example, we mention that
in our algorithm there is no transfer of new horizontal ghosts like in UG (cf. [24]).

4.3. Parallel multilevel refinement algorithm. In figure 4.1 the parallel ver-
sion of algorithm SerRefinement is given. For the subroutines that are new compared
to the serial version of the refinement algorithm we use a different font.

The structure of the algorithm is the same as in the serial case. As for the
serial algorithm, all tetrahedra T in the input have a corresponding mark(T ) ∈
{NoRef, RegRef, IrregRef, Ref, Del}. In the output distributed hierarchical decomposi-
tion all tetrahedra have marks in the set {NoRef, RegRef, IrregRef}. Below we discuss
the subroutines used in the algorithm ParRefinement. Most of these subroutines are
modifications of the subroutines (with the same name) that are used in the serial
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Algorithm ParRefinement(G0(p), . . . ,GJ(p))
for k = J, . . . , 0 do // phase I

DetermineMarks(Gk(p)); (1)
CommunicateMarks(Gk(p)); (2)
AccumulateEdgeCounter(Gk(p)); (3)
MarksForClosure(Gk(p)); (4)

for k = 0, . . . , J do if Gk(p) 6= ∅ then // phase II
if k > 0 then MarksForClosure(Gk(p)); (5)
if k < J then Unrefine(Gk(p)); (6)
Refine(Gk(p)); (7)

DetermineNewestLevel(); (8)

Fig. 4.1. Parallel multilevel refinement algorithm.

algorithm in section 3.3. For these we only explain the main differences between the
parallel and the serial versions.

Let us first explain some notions that are used in the following to describe certain
parallelization aspects: An object is said to be stored on a processor boundary, if it
is stored on several processors at the same time. For these objects one often needs
communication: The exchange of messages between corresponding local copies of
objects on processor boundaries is called interface communication. The correlation
of local copies and the corresponding global objects is realized by global identification
numbers: Local copies (on different processors) with the same global ID represent the
same global object.

The set of master elements on processor p which have ghost elements on some
other processor is defined by

HasGhk(p) := Mak(p) ∩
⋃

q=1,...,P

Ghk(q) .

This set plays an important role in the description of the subroutines for the parallel
case. We note that if a tetrahedron T has a corresponding ghost element on some
other processor then for certain operations which involve T , its children or its parent,
one has to decide whether these are performed using T or the ghost copy of T . This
decision is based on the two strategies (4.2) and (4.3) formulated in remark 6.

DetermineMarks. This subroutine is presented in figure 4.2 and is almost the
same as for the serial case. Only T ∈ Gk(p) \ HasGhk(p) are involved in the block
(4)–(10) since access to the children is needed (cf. (4.2)). In (5) and (8) edge counters
are updated only by master tetrahedra to avoid multiple updates. The condition if
T is regular can be checked without communication. For this it is important to note
that ghost elements are always regular : if a ghost element T was irregular, it would
not have any children, which contradicts (A5). For a master element its parent is
stored on the same processor (cf. (A4)). Hence no communication is needed in this
subroutine.

CommunicateMarks. This subroutine is given in figure 4.3. The marks from
the ghost copies are communicated to the corresponding master tetrahedra (interface
communication). Once this information is available, the marks and edge counters
of the tetrahedra T ∈ HasGhk(p) which where not treated in DetermineMarks are
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Function DetermineMarks(Gk(p))
for T ∈ Gk(p) do

if status(T ) = NoRef then

if T is regular and mark(T ) = Ref then

mark(T ) := RegRef; (1)
increase edge counters; (2)

if k = 0 and mark(T ) = Del then

mark(T ) := NoRef; (3)

else if T /∈ HasGhk(p) then

if status(T ) = RegRef then

if ∀T ′ ∈ K(T ) : mark(T ′) = Del then

mark(T ) := NoRef; (4)
if T /∈ Ghk(p) then decrease edge counters; (5)

for T ′ ∈ K(T ) do

if mark(T ′) = Del then

mark(T ′) := NoRef; (6)

else // status(T ) = IrregRef

if ∃T ′ ∈ K(T ) : mark(T ′) = Ref

or an edge of a child, which is not an edge of T ,
is marked for refinement then

mark(T ) := RegRef; (7)
if T /∈ Ghk(p) then increase edge counters; (8)

else

mark(T ) := NoRef; (9)
for T ′ ∈ K(T ) do

mark(T ′) := NoRef; (10)

Fig. 4.2. Subroutine DetermineMarks; parallel case.

modified, if necessary. Note that, due to (A5), for T ∈ HasGhk(p) always status(T ) 6=
NoRef holds.

Function CommunicateMarks(Gk(p))
for T ∈ Ghk(p) do

mT := mark(T ); (1)

for ( q = 1, . . . , P, q 6= p ) do

send {mT : T ∈ Ghk(p) ∩ Mak(q)}
to processor q; (2)

Receive corresponding messages
from other processors; (3)

for T ∈ HasGhk(p) do

mark(T ) := mT ; (4)
if status(T ) = RegRef then

if mT 6= RegRef then

decrease edge counters; (5)
else // status(T ) = IrregRef

if mT = RegRef then

increase edge counters; (6)

Fig. 4.3. Subroutine CommunicateMarks.

AccumulateEdgecounter. For an edge E that is stored on several processors
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the value of its edge counter C(E) is stored in a distributed manner, i.e. each local
copy stores a contribution of the global value. Thus in order to obtain the global
counter value C(E) on each local copy of E, the local values have to be added up
among the local copies. For this purpose interface communication involving the edges
is needed.

MarksForClosure. This subroutine is the same as the one in the serial case in
figure 3.8 (one only has to replace Gk by Gk(p)). Since after the call of AccumulateEdge-
counter(Gk(p)) the edge refinement pattern is available on each tetrahedron T ∈
Gk(p) the marks can be set without communication.

Unrefine. This subroutine is shown in figure 4.4. In the first for-loop T ∈
HasGhk(p) are skipped since in (2) access to the children is needed (see (4.2)). Ghost
elements that are marked for no refinement are deleted in (3) in order to ensure (A5).
The second for-loop (4) is needed because it may happen that for T ′ ∈ Ghk+1(p) there
is no parent on the same processor that removed the deletion labels from T ′ in (2).
Note that the deletion of local objects that have copies on other processors causes
communication since all copies have to be informed about the local deletion.

Function Unrefine(Gk(p))
Label all tetrahedra, vertices, edges and faces on level k + 1 for deletion; (1)

for T ∈ Gk(p) \ HasGhk(p) do if status(T ) 6= NoRef then

if mark(T ) = status(T ) then

Remove all deletion labels of the
children of T and of their vertices, edges, faces; (2)

else if T ∈ Ghk(p) and mark(T ) = NoRef then

Remove T and its vertices, edges, faces,
that are not needed anymore by other tetrahedra; (3)

for T ∈ Ghk+1(p) do

Remove all deletion labels of T and of its vertices, edges, faces; (4)

Remove all tetrahedra, vertices, edges and faces on level k + 1,
that are labeled for deletion; (5)

Fig. 4.4. Subroutine Unrefine; parallel case.

Refine. This subroutine is given in figure 4.5. It is almost the same as for the
serial case except that the for-loop only iterates over Gk(p) \HasGhk(p), cf. (4.2). We
emphasize that local objects created on processor boundaries have to be identified
with each other. Consider, for example, an unrefined edge E which is stored on two
different processors, say p and q, with a counter C(E) that has changed and is now
positive. Then for both local copies of E new midvertices Vp and Vq are created
independently on processor p and q, respectively. The information that Vp and Vq

represent the same global object has to be communicated between the processors p
and q by identifying both midvertices with each other. The identification of edges and
faces can be done in a similar way. In our implementation we use the DDD library to
take care of this identification (cf. remark 10).

DetermineNewestLevel. In this subroutine, which is described in figure 4.6,
the new global finest level index ∈ {J − 1, J, J + 1} is determined. For this an
MPI− Allreduce operation is used in (4).

Remark 8. Note that all communication in ParRefinement is done per level, so
the number of communication steps is proportional to J . The amount of communi-
cation depends on the number of overlapping objects, i.e. the number of ghost copies
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Function Refine(Gk(p))
if k = J then Gk+1(p) := ∅; (1)

for T ∈ Gk(p) \ HasGhk(p) do

if mark(T ) 6= status(T ) then

Refine T according to mark(T ), i.e.
create children of T as master elements; (2)
status(T ) := mark(T ); (3)
for T ′ ∈ K(T ) do

Find existing vertices, edges and faces of T ′; (4)
create missing vertices, edges and faces of T ′; (5)
status(T ′) := NoRef; (6)

Fig. 4.5. Subroutine Refine; parallel case.

Function DetermineNewestLevel()
if GJ(p) = ∅ then Jp := J − 1; (1)
else if GJ+1(p) 6= ∅ then Jp := J + 1; (2)
else Jp := J ; (3)

Determine J ′ := max1≤p≤P Jp ; (4)

if Jp < J ′

for k = Jp + 1, . . . , J ′
do

Gk(p) := ∅; (5)

Fig. 4.6. Subroutine DetermineNewestLevel.

and the size of the processor boundaries.

Remark 9. We note that ghost copies are not created within the parallel refine-
ment algorithm. These are generated only in a data migration procedure that is used
for load balancing. It is clear that for efficient parallel (local) multilevel refinement
the issue of dynamic load balancing is of major importance (cf. [8, 24]). In this paper
we do not discuss the load balancing and data migration algorithm that we use. This
will be presented in a separate paper. The main idea is as follows. The load balancing
is performed by means of a graph partitioning method which assumes the dual graph
G of a triangulation as input. In order to ensure that the children of a common parent
are all assigned to the same processor, they are combined to one multi-node, inducing
a reduced dual graph G′ which is then passed to the graph partitioner. Based on the
output of the graph partitioning method certain tetrahedra are migrated and certain
ghost copies are created. It can be shown that given an input admissible hierarchi-
cal decomposition the data migration algorithm is such that its output is again an
admissible hierarchical decomposition.

Remark 10. We briefly comment on some implementation issues. The manage-
ment of the distributed data is handled by the library DDD (which stands for dynamic
distributed data), which has been developed by Birken [14, 15]. This library is also
used in the package UG [7] for the same task. The behaviour of DDD can be ad-
justed to the user’s requirements by means of several user-defined handler functions.
The functionality of DDD includes the deletion of objects and the transfer of local
objects from one processor to another (transfer module), interface communication
across processor boundaries (interface module) and the identification of local objects
from different processors (identification module). All communication is bundled such
that the number of exchanged messages is kept small. All parallel communication
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and administration actions occuring in ParRefinement (e.g., the accumulation of edge
counters by interface communication, the consistent deletion of local objects or the
identification of local objects with each other) can be handled by DDD.

5. Analysis of the parallel refinement algorithm. In this section we analyze
the algorithm ParRefinement applied to an input admissible hierarchical decomposi-
tion

H̃old = (Hold(1), . . . ,Hold(P )) (5.1)

as in (4.1) with Hold(p) = (Gold
0 (p), . . . ,Gold

J (p)). The main result we prove (theo-
rem 5.7) is that the output of this algorithm

H̃new = (Hnew(1), . . . ,Hnew(P )) (5.2)

is again an admissible hierarchical decomposition.
First we prove that the algorithm ParRefinement is well-defined:
Theorem 5.1. The algorithm ParRefinement applied to an admissible hierarchi-

cal decomposition is well-defined.
Proof. We have to show that all data that are needed in the subroutines of Par-

Refinement applied to Gk(p) are available on processor p. By definition a tetrahedron
T ∈ Gk(p) is stored (as master or ghost) on processor p. A tetrahedron is always stored
together with its vertices, edges and faces. Hence information on these subsimplices
is available on processor p if the tetrahedron is available on processor p.

For T ∈ Gk(p) the two critical points are references to its parent and references to
its children. The former is needed only to check the condition if T is regular, which
occurs at several places.

We first consider this condition. If T is a ghost element then it must be regular
(hence the condition must be fulfilled), since if we assume T to be irregular then T has
no children and a contradiction follows from (A5). If T is a master element, then due
to (A4) its parent is stored (as ghost or master) on processor p. Hence the reference
to its parent is available on processor p and the condition can be checked.

We now consider the references to the children of T that occur at several places
in the subroutines. A look at the subroutines shows that such a reference is needed
only for T ∈ Gk(p) \ HasGhk(p). Such a T is either a master element (on processor
p) which does not have a ghost copy on another processor or a ghost element. In
the former case it follows using (A4) that children of T must be master elements on
processor p. If T is a ghost element then it follows from (A6) that the children are
stored on processor p. We conclude that in all cases the references to children are
available on processor p.

It is straightforward to check that for a given hierarchical decomposition of an
input multilevel triangulation the serial algorithm SerRefinement and its parallel ver-
sion ParRefinement yield the same output triangulation. In [11, 12] it is proved that
this output is again a multilevel triangulation. Hence the distributed hierarchical
decomposition in (5.2), which corresponds to the output multilevel triangulation is
well-defined. In the remainder of this section we will prove that this output dis-
tributed hierarchical decomposition is admissible. We first show that the condition
(A1) is satisfied. Here and in the remainder we always assume that the input dis-
tributed hierarchical decomposition (5.1) is admissible.

Lemma 5.2. The output distributed hierarchical decomposition (5.2) of algorithm
ParRefinement satisfies condition (A1).
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Proof. The new set Gnew
k (p) is obtained from the old one Gold

k (p) by removing
elements (in Unrefine) and by creating new master elements (in Refine). The removal
of elements does not destroy property (A1). If a new tetrahedron T is added to Gold

k (p)
we obtain G′

k(p) := Gk(p) ∪ {T } and the partitioning

Ma′k(p) := Mak(p) ∪ {T } , Gh′
k(p) := Ghk(p) ,

which still has property (A1).
In order to prove that the other conditions (A2)-(A6) also hold we need a few

lemmas. We use the notation F (T ) for the parent of T .
Lemma 5.3. Let k ≥ 1 and let T ∈ Gnew

k be a tetrahedron such that T /∈ Gold
k .

Then the following holds:

∃ p : T ∈ Manew
k (p) (5.3)

T ∈ Manew
k (p) ⇒ F (T ) ∈ Gnew

k−1(p) (5.4)

Proof. A new tetrahedron T ∈ Gnew
k \Gold

k can only be constructed in the subrou-
tine Refine. There it is created as a master element on some processor p. Hence, the
result (5.3) holds.

Let T ∈ Manew
k (p) be a new master element which has a parent, i.e., it is obtained

by applying a refinement rule to its parent F (T ) ∈ Gold
k−1. Since T is on processor p, this

refinement must be performed in the call of the subroutine Refine(Gold
k−1(p)), and thus

F (T ) ∈ Gold
k−1(p). The element F (T ) can only be removed in the subroutine Unrefine

on level ℓ < k. This can not happen because the second phase of the refinement
algorithm ((5)-(7)) is a bottom-up procedure. We conclude that F (T ) ∈ Gnew

k−1(p)
holds.

Lemma 5.4. Let k ≥ 0. For T ∈ Gnew
k ∩ Gold

k the following holds:

T ∈ Maold
k (p) ⇔ T ∈ Manew

k (p) (5.5)

T ∈ Gold
k (p) and Knew(T ) 6= ∅ ⇒ T ∈ Gnew

k (p) (5.6)

Proof. Consider a tetrahedron T ∈ Gold
k ∩ Gnew

k . The result in (5.5) follows from
the fact that nowhere in the algorithm ParRefinement a tetrahedron is moved from
one processor to another or a master element is changed to a ghost element.

We now consider (5.6). If T ∈ Maold
k (p) then the result directly follows from

(5.5). Hence, we only have to consider a ghost element T ∈ Ghold
k (p) with Knew(T ) 6=

∅. Because the tetrahedron T has children in H̃new we have marknew(T ) 6= NoRef.
Assume that T /∈ Gnew

k (p) holds. Since tetrahedra are not moved between processors
it follows that T has been removed from Gold

k (p). This can be caused only by the
assignments (5) in Unrefine(Gold

k−1(p)) or (3) in Unrefine(Gold
k (p)). We first consider

the latter case. From the bottom-up structure of the second phase of the refinement
algorithm it follows that mark(T ) is not changed after the call of Unrefine(Gold

k (p)).
Thus, in this call we have mark(T ) 6= NoRef and the assignment (3) is not applied.

We now treat the other case. As outlined above we only have to consider a ghost
element T ∈ Ghold

k (p). Thus assignment (4) in Unrefine(Gold
k−1(p)) is applied to T and

so T won’t be removed in assignment (5) of this routine. Since there are no other cases
left, we conclude that T is not removed from Gold

k (p), which yields a contradiction.
The result in (5.5) shows that master elements from T ∈ Gnew

k ∩ Gold
k remain on

the same processor. The result in (5.6) yields that elements from T ∈ Gnew
k ∩ Gold

k
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that are refined in H̃new remain on the same processor. The refinement condition
Knew(T ) 6= ∅ is necessary (there may be ghost elements in Gold

k that are removed).
The next lemma shows that ghost elements in Gnew

k on processor p must be ghost
elements in Gold

k on the same processor.
Lemma 5.5. The following holds:

T ∈ Ghnew
k (p) ⇒ T ∈ Ghold

k (p)

Proof. This can be concluded from the following two properties. Firstly, tetrahe-
dra are not moved from one processor to another. Secondly, new tetrahedra (created
in the subroutine Refine) always are masters.

We now formulate a main result of our analysis.
Theorem 5.6. Let the input hierarchical decomposition H̃old be admissible, i.e.,

it satisfies the conditions (A1)-(A6) for the levels k = 0, . . . , J . Then for the output
hierarchical decomposition H̃new the conditions (A2) -(A6) are satisfied for the levels
k = 0, . . . , J − 1.

Proof. Note that the levels k = 0, . . . , J − 1 exist in H̃new. Since the distributed
input hierarchical decomposition H̃old is admissible we can use that on the levels
k = 0, . . . , J the conditions (A1)-(A6) hold for H̃old. These properties are denoted by
(A1)old-(A6)old.

(A2). By definition we have Gnew
k =

⋃P

p=1 G
new
k (p) and Manew

k (p) ⊂ Gnew
k (p).

From this we get
⋃P

p=1 Manew
k (p) ⊆ Gnew

k . For the other inclusion ⊇ we consider

T ∈ Gnew
k . If T ∈ Gold

k then using (A2)old we have:

∃ p T ∈ Maold
k (p)

and thus, from lemma 5.4 it follows that T ∈ Manew
k (p) holds. Now consider the case

T /∈ Gold
k . On level 0 no new tetrahedra are created and thus k ≥ 1 must hold. From

lemma 5.3 we obtain:

∃ p T ∈ Manew
k (p) .

We conclude that the inclusion
⋃P

p=1 Manew
k (p) ⊇ Gnew

k holds, too.
(A3). We have to prove:

∀ p, q : Manew
k (p) ∩ Manew

k (q) 6= ∅ ⇒ p = q (5.7)

This will be proved using an induction argument. For k = 0 we have Manew
0 (r) =

Maold
0 (r) for r = 1, . . . , P . Thus the result (5.7) for k = 0 follows from (A3)old.
Now we take k ≥ 1 and assume that the result in (5.7) holds for the lower levels

ℓ, 0 ≤ ℓ < k. Consider T ∈ Manew
k (p) ∩ Manew

k (q).
If T ∈ Gold

k , then from lemma 5.4 we obtain

T ∈ Maold
k (p) and T ∈ Maold

k (q) .

From (A3)old it follows that p = q holds.
We now treat the other, more involved case T /∈ Gold

k . Then T must have a parent
F (T ). From lemma 5.3 we get

F (T ) ∈ Gnew
k−1(p) ∩ Gnew

k−1(q) .

This parent can be stored as master or as ghost. We analyze the three possible
situations:
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1. Both on procesor p and processor q the parent F (T ) is stored as a master
element: F (T ) ∈ Manew

k−1(p) ∩ Manew
k−1(q). From (5.7) on level k − 1 it follows

that p = q holds.
2. Both on procesor p and processor q the parent F (T ) is stored as a ghost

element: F (T ) ∈ Ghnew
k−1(p) ∩ Ghnew

k−1(q). From lemma 5.5 it follows that

F (T ) ∈ Ghold
k−1(p) ∩ Ghold

k−1(q) .

From the first result in lemma 4.1 we conclude that p = q holds.
3. Assume that F (T ) is stored as ghost on one processor and as a master on

another one:

F (T ) ∈ Ghnew
k−1(p) and F (T ) ∈ Manew

k−1(q) , p 6= q.

From lemma 5.5 we get F (T ) ∈ Ghold
k−1(p) and thus also F (T ) ∈ Gold

k−1. Appli-

cation of lemma 5.4 yields F (T ) ∈ Maold
k−1(q) and we conclude:

F (T ) ∈ HasGhold
k−1(q) . (5.8)

The new tetrahedron T ∈ Manew
k (q) can only be created as refinement of F (T )

in instruction (2) in the call of the subroutine Refine(Gold
k−1(q)). However, this

instruction is only performed if F (T ) /∈ HasGhold
k−1(q). Thus we obtain a

contradiction with (5.8). We conclude that this third case can not occur.
(A4). Take T ∈ Gnew

k . If Knew(T ) = ∅ there is nothing to prove. We consider the
situation Knew(T ) 6= ∅, T ′ ∈ Knew(T ) with T ′ ∈ Manew

k+1(p).
We first treat the case T ′ ∈ Gold

k+1. Then for its parent T we have T ∈ Gold
k

and T ′ ∈ Kold(T ). Take q such that T ′ ∈ Maold
k+1(q). Using lemma 5.4 we get

T ′ ∈ Manew
k+1(q). From the uniqueness property (A3) we conclude q = p. We thus

have T ′ ∈ Maold
k+1(p), and together with (A4)old this yields T ∈ Gold

k (p). Now note that
Knew(T ) 6= ∅ and use the second result in lemma 5.4. This implies

T ∈ Gnew
k (p) .

We now consider the case T ′ /∈ Gold
k+1. From lemma 5.3 we obtain:

∃ q T ′ ∈ Manew
k+1(q) .

Due to the uniqueness property (A3) we have q = p. Application of the second result
in lemma 5.3 yields

T = F (T ′) ∈ Gnew
k (p) .

So in both cases we have that the parent T is stored on the same processor p as T ′.
(A5). Take T ∈ Ghnew

k (p). Lemma 5.5 implies

T ∈ Ghold
k (p) ,

and Kold(T ) 6= ∅ because of (A5)old. Assume that Knew(T ) = ∅ holds. This implies
marknew(T ) = NoRef. In the second phase of the refinement algorithm the mark of
T is not changed after the call of Unrefine(Gk(p)), and thus mark(T ) = NoRef during
this call. In the instruction (2) of this call the element T is then removed, which
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implies T /∈ Ghnew
k (p). We obtain a contradiction and conclude that Knew(T ) 6= ∅

holds.
(A6). Take T ∈ Ghnew

k (p). Lemma 5.5 implies T ∈ Ghold
k (p). From (A5)old it

follows that Kold(T ) 6= ∅. From (A5) we have Knew(T ) 6= ∅. Let

T ′ ∈ Knew(T ) ⊂ Gnew
k+1

be one of the children of T in H̃new.
First consider the case T ′ ∈ Kold(T ). Due to T ∈ Ghold

k (p) and (A6)old we get
T ′ ∈ Maold

k+1(p) and lemma 5.4 yields T ′ ∈ Manew
k+1(p).

We now treat the other case, T ′ /∈ Kold(T ). Since F (T ′) = T ∈ Ghold
k (p) the new

child tetrahedron T ′ must have been created in Refine(Gk(p)), instruction (2). Thus
T ′ ∈ Manew

k+1(p) holds.
We conclude that Knew(T ) ⊂ Manew

k+1(p).
Finally, we prove the main result:
Theorem 5.7. The output distributed hierarchical decomposition (5.2) of algo-

rithm ParRefinement satisfies the conditions (A1)-(A6).
Proof. The result concerning (A1) follows from lemma 5.3. It remains to prove

that the conditions (A2) – (A6) are satisfied for the sets Gnew
k (p), k = 0, . . . , Jnew.

Note that Jnew ∈ {J − 1, J, J + 1}. We consider these three cases.
Jnew = J− 1. For this situation the desired result is proved in theorem 5.6.
Jnew = J. From theorem 5.6 it follows that the sets Gnew

k (p), k = 0, . . . , J − 1
satisfy the conditions (A2) -(A6), hence we only have to consider Gnew

J (p). First note

that, due to (A5)old we have Gold
J (p) = Maold

J (p), i.e., the input finest level contains
only master elements. Now consider an element T ∈ Gnew

J (p). Then either T ∈ Gold
J (p),

in which case T is a master element or T is a child of some element F (T ) ∈ Gnew
J−1. In

the latter case T is created in Refine (2) and must be a master element. We conclude
that Gnew

J (p) = Manew
J (p) and Ghnew

J (p) = ∅, i.e., there are no ghost elements in the
output on level J . One easily verifies that for this situation the conditions (A1)-(A6)
are satisfied for level J (as for G0 in remark 5).

Jnew = J + 1. The arguments used in the case Jnew = J still hold and thus it
follows that the conditions (A1)-(A6) hold for the levels k = 0, . . . , J . We only have to
consider the set Gnew

J+1(p). This set contains only new tetrahedra, i.e. elements which
are created in Refine (2) by refinement of elements from Gnew

J . Thus all these elements
are masters: Gnew

J+1(p) = Manew
J+1(p) and Ghnew

J+1(p) = ∅. The same argument as used in
the case Jnew = J yields that the conditions (A1)-(A6) are satisfied for Gnew

J+1(p).

6. Numerical experiments. In this section we present results of a few nu-
merical experiments. The computations were executed on the RWTH SunFire SMP
cluster, using up to 64 900-MHz-processors. 1 GB RAM per processor was reserved
by the batch system when starting a parallel job. The SMP nodes are connected to
each other by Gigabit Ethernet, messages between processors of the same node are
exchanged through the shared memory. Because of the multi-user mode one can not
expect optimal runtimes. All runs were performed twice, then for each number of
processors P the average of the measured runtimes was taken. The parallel runtimes
are compared to the serial runtime in terms of the following definition to obtain a
rough measure for the scalability of the parallel algorithm.

Definition 9 (Scaled efficiency). Consider an algorithm of complexity O(n)
where n denotes the characteristic problem size. For a given number of processor P
let Tn(P ) denote the runtime of the parallel algorithm on P processors for a problem
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of total size n. Choose a fixed local problem size n′ (based on the memory available
per processor). The ratio

Esc
n′ (P ) :=

Tn′(1)

TP ·n′(P )

of serial runtime to parallel runtime on P processors for a fixed local problem size n′

is called the scaled efficiency.
Note that the refinement algorithm is of complexity O(n) where n is the number

of tetrahedra.

6.1. Experiment 1: global refinement. First, we consider the global refine-
ment of the unit cube Ω = [0, 1]3. For P processors the initial triangulation T0 consists
of P ·384 tetrahedra. Thus, the problem size grows proportional to the processor num-
ber and we have a fixed local problem size. This triangulation is refined globally four
times. The resulting finest triangulation T4 then consists of P · 1 572 864 tetrahedra,
the whole final multilevel triangulation M contains P · 1 797 504 tetrahedra.

The parallel runtimes (in seconds) for the last refinement step and the scaled
efficiency for several numbers of processors P are shown in table 6.1. Satisfactory
efficiencies are obtained and thus the parallel refinement algorithm turns out to be
scalable for uniform refinement (at least, up to P = 64 processors).

P 1 2 4 8 16 32 64
T (P ) 69.45 70.96 71.31 73.42 79.48 86.48 94.79

Esc(P ) 100% 98% 97% 95% 87% 84% 80%
Table 6.1

Experiment 1: global refinement, last refinement step.

6.2. Experiment 2: local refinement. In the second and third experiment
we treat a problem with local refinement. In the second experiment we do not use
load balancing, whereas in the third experiment a load distribution is used. We again
consider the unit cube Ω = [0, 1]3 with the same initial triangulation as in experiment
1. Let B ⊂ Ω be the ball with radius r = 0.3 centered at (0.4, 0.4, 0.4). Before
applying the refinement algorithm only those tetrahedra are marked for refinement,
whose barycenter is located within B. This is repeated four times. The parallel
runtimes (in seconds) for the last refinement step are presented in table 6.2. After the
last refinement the number of tetrahedra per processor ranges from 384 up to 927 832.
Due to this heavy load imbalance between the processors two effects can be observed.
On the one hand efficiency is very poor even for fairly low processor numbers due to
the fact that for some processors the local grid is refined almost uniformly whereas
on other processors only few tetrahedra are refined. Thus some of the processors are
idle waiting for others with much more computational load. On the other hand a
large amount of the available memory will not be used, so the theoretical maximum
problem size nmax, which is determined by the overall memory supply of the parallel
machine, cannot be reached without a suitable load balancing strategy.

6.3. Experiment 3: local refinement with load balancing. Because of the
disadvantages mentioned above it is clear, that one has to use load balancing to obtain
better efficiency and better memory utilization. In the third experiment we consider
the situation as in experiment 2 but now additionally apply load balancing before
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P 1 2 4 8 16 32 64
T (P ) 7.44 11.11 17.03 29.42 42.52 57.06 112.23

Esc(P ) 100% 67% 44% 25% 17% 13% 7%
Table 6.2

Experiment 2: local refinement without load balancing, last refinement step.

Fig. 6.1. Distributed tri-
angulation.

Fig. 6.2. Interior. Fig. 6.3. Detail.

the last refinement step. In contrast to the previous two experiments ghost copies
appear which are created during the load balancing phase. The parallel runtimes (in
seconds) for the last refinement step are shown in table 6.3. One of course obtains
much better results as for the imbalanced case in table 6.2. Nevertheless we get worse
efficiency with local refinement as compared to the results for uniform refinement in
table 6.1. This is not surprising as there is more communication (because of the ghost
copies) and at the same time much less computational work: The average number of
tetrahedra per processor after the last refinement step is about 200 000 whereas in the
first experiment this number is about 1.8 · 106.

P 1 2 4 8 16 32 64
T (P ) 8.07 8.63 9.37 10.47 12.14 14.73 23.97

Esc(P ) 100% 94% 86% 77% 67% 55% 34%
Table 6.3

Experiment 3: local refinement with load balancing, last refinement step.

Figures 6.1–6.3 show the distributed triangulation on P = 4 processors after the last
refinement.

Remark 11. In an adaptive parallel CFD code the parallel multilevel refinement
algorithm is used in combination with discretization routines (creation of the stiffness
matrix) and solution routines (iterative solvers). Usually the bulk of the arithmetic
work is needed in the solution routine. In such a setting a deterioration of the parallel
efficiency as in table 6.3 will probably hardly influence the overall parallel efficiency.
The latter is mainly determined by the parallel efficiency of the solution method. Ex-
periments with the UG-package have shown that even for very complex problems a
parallel multilevel grid refinement method in combination with dynamic load balanc-
ing and fast iterative solvers can have a high overall parallel efficiency (cf. [9, 10, 24]).
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