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Abstract. We consider saddle point problems that result from the finite element discretization
of stationary and instationary Stokes equations. Three efficient iterative solvers for these problems
are treated, namely the preconditioned CG method introduced by Bramble and Pasciak, the pre-
conditioned MINRES method and a method due to Bank et al. We give a detailed overview of
algorithmic aspects and theoretical convergence results. For the method of Bank et al a new con-
vergence analysis is presented. A comparative study of the three methods for a 3D Stokes problem
discretized by the Hood-Taylor P2 − P1 finite element pair is given.
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1. Introduction. We consider a class of Stokes equations on a bounded con-
nected polyhedral Lipschitz domain Ω in d-dimensional Euclidean space. We use the
notation V := H1

0 (Ω)d for the velocity space and M = L2
0(Ω) := { p ∈ L2(Ω) |

∫

Ω
p(x) dx =

0 } for the pressure space. The variational problem is as follows: given f ∈ L2(Ω)d

find {u, p} ∈ V × M such that

{

(∇u,∇v) + ξ(u,v) − (div v, p) = (f ,v) for v ∈ V,
(div u, q) = 0 for q ∈ M .

(1.1)

with a constant ξ ≥ 0. Here and in the remainder the L2 scalar product and associated
norm are denoted by (·, ·), ‖ · ‖, respectively. The zero order term ξ(u,v) is included
in view of implicit time integration methods applied to instationary Stokes equations.
For the discretization of this problem we use a pair of conforming LBB stable finite
element spaces. This results in a saddle point problem of the form

(

A BT

B 0

)(

x
y

)

=

(

f
0

)

(1.2)

Many different iterative methods for solving this discrete problem are known. One can
apply multigrid techniques to the whole coupled system in (1.2), cf. [15, 27, 28]. Most
other approaches are based on the prominent classical Uzawa method. This Uzawa
method requires that A−1x can be computed exactly ([1]). In many variants of this
method, which are often called inexact Uzawa methods, one tries to avoid the exact
inversion by using an inner iterative method, for example, a Jacobi-like iteration
(Arrow-Hurwicz algorithm, [1]) or a multigrid method, cf. [24]. We also mention
(variants of) the preconditioned MINRES method [21, 22, 23, 26] and the method
from [2]. A different approach is presented in [3]. There the indefinite problem (1.2)
is reformulated as a symmetric positive definite problem. For most of these methods
theoretical convergence analyses are known, cf. [2, 3, 5, 12, 21, 23, 24, 26, 29]. In
[11] the performance of a few of these methods is compared by means of systematic
numerical experiments for a stationary 2D Stokes problem.

In this paper we consider three representative methods from the large class of
inexact Uzawa methods, namely the preconditioned CG method from [3] (denoted by
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BPCG), the preconditioned MINRES method from [21, 23, 26] (denoted by PMIN-
RES) and the method from [2] (denoted by MGUZAWA). The topics treated in this
paper are the following:

• For these three methods we discuss costs per iteration, known theoretical
convergence results and some implementation issues. This makes it possible
to make a fair comparison of these methods.

• For the MGUZAWA method we present a convergence analysis. This analysis
is much simpler than the analyses presented in [2, 29]. The result that we
obtain is different from the ones in [2, 29] and gives a better explanation of the
observation that if one uses a very good preconditioner for A (like multigrid)
then even with a very low accuracy in the inner iteration the MGUZAWA
method converges (cf. remark 7).

• We present a comparative study of the performance of the three methods.
For this we consider a Stokes problem as in (1.1) in 3D. We treat both the
stationary (ξ = 0) and instationary (ξ > 0) case. For the discretization we
apply the popular Hood-Taylor P2 − P1 finite element pair. As a precondi-
tioner for A a standard multigrid method is used. For the Schur complement
preconditioner we use the mass matrix for the stationary case and a more
sophisticated preconditioner analyzed in [4] for the instationary case.

The main results of this paper are a detailed comparative study of the three fast
iterative solvers for a 3D Stokes problem and a new convergence analysis for the
MGUZAWA method.

The paper is organized as follows. In section 2 we formulate the standard Galerkin
discretization of the Stokes problem. In section 3.1 we consider the BPCG method.
An efficient implementation of this method is discussed and a main convergence re-
sult known from the literature is formulated. In section 3.2 the PMINRES method is
treated. Also for this method a known convergence result is given. In section 3.3 we
discuss the MGUZAWA method and give an effcient implementation of this method.
In section 4 a convergence analysis of this method is given. Theorem 4.3 contains the
main theoretical result of this paper. In section 5 we discuss the preconditioners for
the A-block and for the Schur complement. In section 6 results of numerical experi-
ments are presented that illustrate the performance of the three methods. Finally, in
section 7 we give some conclusions.

2. The discrete Stokes equations. For the discretization of the Stokes prob-
lem (1.1) we assume a family of triangulations {Th} in the sense of [9, 10] and a pair

of finite element spaces Vh ⊂ V and Mh ⊂ M that is LBB stable with a constant β̂
independent of h:

inf
qh∈Mh

sup
vh∈Vh

(div vh, qh)

‖∇vh‖‖qh‖
≥ β̂ > 0 (2.1)

The Galerkin discretization is as follows: Find {uh, ph} ∈ Vh × Mh such that
{

(∇uh,∇vh) + ξ(uh,vh) − (div vh, ph) = (f ,vh) for vh ∈ Vh,
(div uh, qh) = 0 for qh ∈ Mh .

(2.2)

In practice the discrete space Mh for the pressure is constructed by taking a standard
finite element space, which we denote by M+

h (for example, continuous piecewise linear
functions) and then adding an orthogonality condition:

Mh = { ph ∈ M+
h | (ph, 1) = 0 }
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Note that dim(Mh) = dim(M+
h )− 1. Let n := dim(Vh), m := dim(M+

h ). We assume
standard (nodal) bases in Vh and M+

h and corresponding isomorphisms

JV : R
n → Vh, , JM : R

m → M+
h .

Let the stiffness matrices D ∈ R
n×n, B ∈ R

m×n and the mass matrix M ∈ R
m×m be

given by

〈Dx, y〉 = (∇JV x,∇JV y) for all x, y ∈ R
n ,

〈Bx, y〉 = (div JV x, JMy) for all x ∈ R
n, y ∈ R

m ,

〈Mx, y〉 = (JMx, JMy) for all x, y ∈ R
m .

(2.3)

Here 〈·, ·〉 denotes the standard Euclidean scalar product. The discrete problem has
a matrix-vector representation of the form

(

A BT

B 0

)(

x
y

)

=

(

f
0

)

, A := D + ξM , (2.4)

with f such that 〈f, y〉 = (f , JV y) for all y ∈ R
n. We introduce the notation

K =

(

A BT

B 0

)

, S := BA−1BT .

Define the constant vector e := J−1
M 1 = (1, . . . , 1)T ∈ R

m. Note that BT e = 0 and
that both the Schur complement S and the matrix K are singular and have a one-
dimensional kernel. For the Schur complement this kernel is ker(S) = span{e}. Note
that

(JMy, 1) = 0 ⇔ (JMy, JMe) = 0 ⇔ 〈My, e〉 = 0 . (2.5)

Hence, with e⊥M := { y ∈ R
m | 〈y,Me〉 = 0 } we have Mh = { JMy | y ∈ e⊥M } and

we get the following matrix-vector representation of the discrete problem (2.2):

Find x ∈ R
n, y ∈ e⊥M such that (2.4) holds. (2.6)

3. Iterative solvers. In this section we describe three iterative solvers for the
problem (2.6). The first two methods, a preconditioned conjugate gradient method
(BPCG) and a preconditioned minimal residual method (PMINRES) are known from
the literature and often used in practice. The third method, which may be less known,
is a simple variant of the Uzawa method as presented in [2]. In section 4 a convergence
analysis of this method is given.

In all three solvers we need symmetric positive definite preconditioners QA of A and
QS of S. The quality of these preconditioners is described by the following spectral
equivalences. Let γA > 0, ΓA, γS > 0, ΓS be such that

γAQA ≤ A ≤ ΓAQA , (3.1)

γSQS ≤ S ≤ ΓSQS on e⊥M . (3.2)

In section 5 we will discuss concrete choices for the preconditioners QS and QA.
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3.1. Preconditioned conjugate gradient method. We describe the precon-
ditioned conjugate gradient (BPCG) method introduced in [3]. For this method we
need the following assumption on the preconditioner QA

0 < QA < A , (3.3)

i.e., γA > 1 in (3.1). Clearly, using some suitable scaling one can always satisfy the
condition (3.3). Premultiplication of (2.4) by the matrix

G =

(

Q−1
A 0

BQ−1
A −I

)

yields an equivalent system

K̂

(

x
y

)

= G

(

f
0

)

, K̂ := GK =

(

Q−1
A A Q−1

A BT

BQ−1
A A − B BQ−1

A BT

)

. (3.4)

Due to the assumption (3.3) the bilinear form
[(

x1

x2

)

,

(

y1

y2

)]

= 〈(A − QA)x1, y1〉 + 〈x2, y2〉 (3.5)

defines an inner product. In [3] it is shown that the matrix K̂ is symmetric and positive

definite on R
n × e⊥M with respect to this inner product. The matrix

K̃ :=

(

I 0
0 QS

)

is also symmetric positive definite with respect to this scalar product. Hence we can
apply the preconditioned CG method in the scalar product

[

·, ·
]

and with precondi-

tioner K̃ to the linear system in (3.4). The algorithm is as follows:















































































v0 =

(

x0

y0

)

a given starting vector ; r̄0 :=

(

f
0

)

− Kv0 , r0 := Gr̄0

for k ≥ 0 (if rk 6= 0) :

Solve zk from K̃zk = rk .

β
(n)
k :=

[

zk, rk
]

, βk := β
(n)
k /β

(n)
k−1 (β0 := 0)

pk := zk + βk pk−1 (p0 := z0)

α
(d)
k :=

[

K̂pk,pk
]

, αk := β
(n)
k /α

(d)
k

vk+1 := vk + αk pk

rk+1 := rk − αk K̂pk

(3.6)

This is the standard PCG algorithm. We now discuss an efficient implementation of
this algorithm based on ideas from [11]. In particular we want to avoid the evaluation
of QA. We use indizes 1 and 2 to denote the first and second vector components,
respectively (as in (3.5)). First note that due to the structure of K̃ we have zk

1 = rk
1 .

We introduce r̄k
1 := QArk

1 and d := Ark
1 . We then have

[

zk, rk
]

= 〈(A − QA)zk
1 , rk

1〉 + 〈zk
2 , rk

2〉

= 〈(A − QA)rk
1 , rk

1〉 + 〈zk
2 , rk

2〉

= 〈d, rk
1〉 − 〈r̄k

1 , rk
1〉 + 〈zk

2 , rk
2〉 .

(3.7)
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Also define sk := Apk
1 . From pk = zk + βkpk−1 it follows that for sk we have the

relation

sk = Ark
1 + βk sk−1 = d + βk sk−1 .

With
(

t
u

)

:= Kpk =

(

sk + BT pk
2

Bpk
1

)

,

(

y
z

)

:= K̂pk =

(

Q−1
A t

BQ−1
A t − u

)

we obtain
[

K̂pk,pk
]

= 〈(A − QA)y,pk
1〉 + 〈z,pk

2〉

= 〈y,Apk
1〉 − 〈t,pk

1〉 + 〈z,pk
2〉 = 〈y, sk〉 − 〈t,pk

1〉 + 〈z,pk
2〉 .

(3.8)

Finally note that for r̄k
1 we have the recursion

r̄k+1
1 := r̄k

1 − αk (Kpk)1 = r̄k
1 − αkt .

Summarizing we then obtain the following efficient implementation of the BPCG
algorithm:























































































































v0 =

(

x0

y0

)

a given starting vector ; r̄0 :=

(

f
0

)

− Kv0 , r0 := Gr̄0

for k ≥ 0 (if rk 6= 0) :

Solve zk
2 from QSzk

2 = rk
2 , zk

1 := rk
1 .

d := Ark
1

β
(n)
k := 〈d, rk

1〉 − 〈r̄k
1 , rk

1〉 + 〈zk
2 , rk

2〉, βk := β
(n)
k /β

(n)
k−1 (β0 := 0)

pk := zk + βk pk−1 (p0 := z0) , sk = d + βk sk−1 (s0 := d)
(

t
u

)

:=

(

sk + BT pk
2

Bpk
1

)

,

(

y
z

)

:=

(

Q−1
A t

BQ−1
A t − u

)

α
(d)
k := 〈y, sk〉 − 〈t,pk

1〉 + 〈z,pk
2〉, αk := β

(n)
k /α

(d)
k

vk+1 := vk + αk pk

rk+1 := rk − αk

(

y
z

)

, r̄k+1
1 := r̄k

1 − αk t

(3.9)

In this algorithm we do not need the evaluation of QA and only one evaluation of
Q−1

A per iteration. Furthermore, per iteration we need one evaluation of Q−1
S , two

matrix-vector products with B, one with BT and one with A.

We want to use this algorithm to solve the problem (2.6). Then it is desirable that
the iterands vk = (xk, yk) are such that yk ∈ e⊥M holds. Therefore we assume that
the preconditioner QS satisfies the consistency condition

QSe = α Me , α ∈ R . (3.10)

¿From this assumption it follows that y0 ∈ e⊥M implies yk ∈ e⊥M for all k ≥ 1.
Moreover, if (3.10) holds then K̃−1K̂ is bijective on R

n × e⊥M . We now formulate a
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main convergence result for the BPCG algorithm due to [3, 29]. Let κ∗(K̃
−1K̂) be

the spectral condition number of the matrix K̃−1K̂ on the subspace R
n × e⊥M . This

quantity plays a key role in the convergence analysis of the PCG method.
Theorem 3.1. Assume that (3.1), (3.2), (3.3) and (3.10) hold. For x ∈ R define

g(x) =
1

2
(1 + x) +

1

2

√

(1 + x)2 − 4xΓ−1
A .

For the BPCG method we have

κ∗(K̃
−1K̂) ≤

ΓS

γS

ΓAg(ΓS)g(γS)

ΓS

. (3.11)

Proof. We can apply theorem 4.1 in [29] in the subspace R
n × e⊥M . This yields

κ∗(K̃
−1K̂) ≤ (1 − ρ1)/(1 − ρ2), with

ρ1 :=
2 − (1 + ΓS)ΓA

2
−

√

(2 − (1 + ΓS)ΓA)2

4
+ ΓA − 1 ,

ρ2 :=
2 − (1 + γS)ΓA

2
+

√

(2 − (1 + γS)ΓA)2

4
+ ΓA − 1 .

Elementary manipulations show that (1 − ρ1)/(1 − ρ2) = ΓS

γS

ΓAg(ΓS)g(γS)
ΓS

holds.

Remark 1. Note that ΓA ≥ 1 and thus 1
2 (1 + x) + 1

2 |1− x| ≤ g(x) ≤ 1
2 (1 + x) +

1
2 |1 + x|. Hence, 1 ≤ g(x) ≤ 1 + x if x ∈ [0, 1] and x ≤ g(x) ≤ 1 + x if x ≥ 1. From

this it follows that for the factor C(γS ,ΓS) := g(ΓS)g(γS)
ΓS

in (3.11) we have

1

ΓS

≤ C(γS ,ΓS) ≤
4

ΓS

if ΓS ≤ 1 ,

1 ≤ C(γS ,ΓS) ≤ 2 +
2

ΓS

≤ 4 if γS ≤ 1 ≤ ΓS ,

γS ≤ C(γS ,ΓS) ≤ 3 + γS ≤ 4γS if 1 ≤ γS .

¿From this we see that although the condition number of the preconditioned Schur
complement κ∗(Q

−1
S S) ≤ ΓS/γs is independent of the scaling of the preconditioner

QS , the bound for the condition number κ∗(K̃
−1K̂) in (3.11) does depend on the

scaling of QS . A poor scaling (i.e., ΓS ¿ 1 or γS À 1) leads to a large upper bound.
We consider an example, which shows that this bound is sharp. Take QA = Γ−1

A A
and QS = Γ−1S (on e⊥) with ΓA > 1 and Γ > 0. Then (3.2) is fulfilled with
γS = ΓS = Γ. A simple computation shows that σ∗(K̃

−1K̂) = {Γ/g(Γ),ΓA,ΓAg(Γ)}

and thus κ∗(K̃
−1K̂) = ΓA

g(Γ)2

Γ , which agrees with the bound in (3.11). Hence

κ∗(K̃
−1K̂) ≥ ΓA

Γ if Γ ≤ 1 and κ∗(K̃
−1K̂) ≥ ΓAΓ if Γ ≥ 1. Note, however, that

although κ∗(K̃
−1K̂) is large if Γ ¿ 1 or Γ À 1 the BPCG method will converge in

three iterations because σ∗(K̃
−1K̂) contains only three elements.

3.2. Preconditioned minimal residual method. In this section we consider
a preconditioned minimal residual (PMINRES) method for solving the discretized
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Stokes problem. This class of methods has been developed in [20, 21, 23]. We consider
a symmetric positive definite preconditioner

K̃ =

(

QA 0
0 QS

)

(3.12)

for K. Define the norm ‖v‖K̃ := 〈K̃v, v〉
1
2 for v ∈ R

n+m. Given a starting vector v0

with corresponding error e0 := v∗ − v0, then in the preconditioned MINRES method
one computes the vector vk ∈ v0 + span

{

K̃−1Ke0, . . . , (K̃−1K)ke0
}

which minimizes

the preconditioned residual ‖K̃−1K(v∗ − v)‖K̃ over this subspace.
An efficient implementation of this method can be derived using the Lanczos algo-
rithm and Givens rotations. For such an implementation we refer to the literature,
e.g. [19, 14]. In an efficient implementation of this method one needs per iteration
one evaluation of Q−1

A , one evaluation of Q−1
S and one matrix-vector product with K.

We assume that the preconditioner QS satisfies the consistency condition (3.10). Then
it follows that the approximations yk of the discrete pressure are in the subspace e⊥M

if the starting vector y0 is in this subspace.

Note that for this algorithm one does not need the scaling condition (3.3) for QA. We
give two main theoretical convergence results on the PMINRES algorithm from the
literature (cf. [14, 21, 23]).

Theorem 3.2. Let v0 = (x0, y0) be a given starting vector with y0 ∈ e⊥M . For

vk, k ≥ 0, computed in the PMINRES algorithm we define r̃k = K̃−1
(

(f, 0) − Kvk
)

.

The following holds:

‖r̃k‖K̃ = min
pk∈Pk;pk(0)=1

‖pk(K̃−1K)r̃0‖K̃

≤ min
pk∈Pk;pk(0)=1

max
λ∈σ∗(K̃−1K)

|pk(λ)| ‖r̃0‖K̃ ,
(3.13)

where σ∗(·) denotes the spectrum on the subspace R
n × e⊥M .

Theorem 3.3. Assume that (3.1), (3.2) and (3.10) hold. For the spectrum of

the preconditioned matrix K̃−1K we have:

σ∗(K̃
−1K) ⊂

[ 1

2

(

γA −
√

γ2
A + 4ΓSΓA

)

,
1

2

(

γA −
√

γ2
A + 4γSγA

)

]

⋃

[

γA ,
1

2

(

ΓA +
√

Γ2
A + 4ΓSΓA

)

]

(3.14)

From the results in these theorems it follows that the rate of convergence of the
PMINRES method is robust with respect to variation in the parameters h and ξ if
the spectral constants γS ,ΓS , γA,ΓA do not depend on these parameters. Moreover
we can expect faster convergence if we have better preconditioners.

Remark 2. Related to the scaling we consider the same example as in remark 1:
QA = Γ−1

A A, QS = Γ−1S (on e⊥). We then have γA = ΓA, γS = ΓS = Γ. A simple

computation yields σ∗(K̃
−1K) = { 1

2

(

ΓA−
√

Γ2
A + 4ΓΓA

)

,ΓA, 1
2

(

ΓA+
√

Γ2
A + 4ΓΓA

)

}.
This shows that for this example the result in (3.14) is sharp. Furthermore, the
scaling of QS has a significant influence on the endpoints of the intervals in (3.14).
However, for this example, the PMINRES method will converge in three iterations
since σ∗(K̃

−1K) contains only three elements.
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3.3. An inexact Uzawa method. A basic method for saddle point problems
is the Uzawa method. This method is closely related to the block factorization

K =

(

A 0
B −I

)(

I A−1BT

0 S

)

Solving the problem K

(

x
y

)

=

(

f
0

)

by block forward-backward substitution yields

the equivalent problem:

1. Solve Az = f . (3.15)

2. Solve Sy = Bz , y ∈ e⊥M . (3.16)

3. Solve Ax = z − BT y . (3.17)

In the Uzawa method one applies an iterative solver (e.g., CG) to the Schur comple-
ment system in step 2. The A-systems that occur in each iteration of this method and
in the steps 1 and 3 are solved sufficiently accurate using some fast Poisson solver.
Here we reconsider a simple variant of this method which was introduced in [2]. Let
QA be a preconditioner of A as in (3.1). We use this preconditioner in the steps 1
and 3 and also for the approximation of the Schur complement is step 2. For this we
introduce the notation

Ŝ := BQ−1
A BT (3.18)

Note that Ŝ : e⊥M → e⊥ is bijective. We use a (nonlinear) approximate inverse of
Ŝ denoted by Ψ : e⊥ → e⊥M . For each w ∈ e⊥, Ψ(w) is an approximation to the
solution z∗ ∈ e⊥M of Ŝz = w. We assume that

‖Ψ(w) − z∗‖Ŝ ≤ δ‖z∗‖Ŝ for all w ∈ e⊥ (3.19)

holds with some δ < 1. In our experiments Ψ will be the PCG method.
Let (xk, yk) be a given approximation to the solution (x, y). Note that using the block
factorization of K we get

(

x
y

)

=

(

xk

yk

)

+

(

I −A−1BT S−1

0 S−1

)(

A−1 0
BA−1 −I

)

(

(

f
0

)

− K

(

xk

yk

)

)

(3.20)

With A−1 ≈ Q−1
A , S−1w ≈ Ŝ−1w ≈ Ψ(w) and rk

1 := f − Axk − BT yk we obtain the
(nonlinear) iterative method

xk+1 = xk + Q−1
A rk

1 − Q−1
A BT Ψ

(

B(Q−1
A rk

1 + xk)
)

yk+1 = yk + Ψ
(

B(Q−1
A rk

1 + xk)
) (3.21)
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We obtain the following algorithmic structure:







































































v0 =

(

x0

y0

)

a given starting vector, y0 ∈ e⊥M ; r01 := f − Ax0 − BT y0

for k ≥ 0 :

w := xk + Q−1
A rk

1 (3.22)

z := Ψ(Bw) ∈ e⊥M (3.23)

xk+1 := w − Q−1
A BT z (3.24)

yk+1 := yk + z (3.25)

rk+1
1 := rk

1 − A(xk+1 − xk) − BT z (3.26)

This is the same method as the one presented in section 4 in [2]. An obvious choice
for Ψ(Bw), which is also used in our experiments, is the following:

Ψ(Bw) =

{

Result of ` PCG iterations with startvector 0 and
preconditioner QS applied to Ŝy = Bw.

(3.27)

Remark 3. We comment on some implementation issues and on the arithmetic
costs per iteration of the algorithm (3.22)-(3.27). In each iteration of the PCG al-
gorithm in (3.27) one needs an evaluation of Q−1

S and of Ŝ = BQ−1
A BT . Thus per

PCG iteration we need one evaluation of Q−1
S , one of Q−1

A and a matrix-vector mul-
tiplication with B and with BT . In the PCG method one computes approximations
z0 = 0, z1, . . . , z` =: z. For these approximations we have a recursion of the form
zi+1 = zi + αip

i (cf. algorithm (3.6)) and the vectors Ŝpi = B(Q−1
A (BT pi)) are

computed. Hence the vectors z̄i := BT zi, ẑi := Q−1
A z̄i can be computed by cheap

recursions (AXPY operations). Using this approach in the PCG algorithm we can
obtain z̄` = BT z` = BT z and ẑ` = Q−1

A z̄` = Q−1
A BT z with negligible computational

costs. Hence for the computation of BT z and Q−1
A BT z in (3.24), (3.26) we do not need

significant arithmetic work. Summarizing, per outer iteration of the algorithm (3.22)-
(3.27) we need ` + 1 evaluations of Q−1

A , ` evaluations of Q−1
S , ` + 1 matrix-vector

multiplications with B, ` matrix-vector multiplications with BT and one matrix-vector
multiplication with A.

Clearly an important issue in the algorithm is the stopping criterion for the inner
iteration. ¿From the analysis presented in section 4 it follows that for an efficient
method this stopping criterion should depend on the accuracy of the preconditioner
QA. A very efficient Poisson solver is the multigrid method. Thus for the precondi-
tioner QA we propose the following:

Q−1
A w =

{

One symmetric multigrid V -cycle iteration, using one
symmetric Gauss-Seidel iteration for pre- and post-
smoothing, with startvector 0 applied to Ax = w.

(3.28)

The convergence factor per iteration of this method typically is between 0.1 and 0.2.
¿From the analysis (cf. remark 4) we deduce the following two possibilities for the
stopping criterion of the PCG method:

• Let ri be the residual in the PCG algorithm. We stop the PCG iteration if

‖r`‖2 ≤ σacc‖r
0‖2 is satisfied, with a given σacc ∈ [0.2, 0.6]. (3.29)
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• We use a fixed low number of iterations: ` ∈ [1, 4].

4. Analysis of the inexact Uzawa algorithm. The inexact Uzawa method
has been analyzed in [2, 29]. Here we present an alternative analysis. This analysis is
much simpler as those presented in [2] and [29] and the result is different. In remark 7
we discuss the main differences with the results from [2, 29].

For simplicity we assume that for the preconditioner QA we have

A ≤ QA, i.e. γAQA ≤ A ≤ QA (4.1)

We make the scaling assumption A ≤ QA because, opposite to the scaling condition
in (3.3), it is fulfilled for the multigrid preconditioner in (3.28). Moreover, it improves
the presentation of the analysis. However, this scaling assumption is not essential

neither for the algorithm nor for the convergence analysis.
In the analysis we use the following natural norms:

‖x‖Q := ‖Q
1
2

Ax‖ = 〈QAx, x〉
1
2 for x ∈ R

n, ‖y‖Ŝ := ‖Ŝ
1
2 y‖ = 〈Ŝy, y〉

1
2 for y ∈ e⊥M

For the error in algorithm (3.22)-(3.26) we use the notation

ek =

(

x
y

)

−

(

xk

yk

)

=:

(

ek
1

ek
2

)

.

Note that ek
2 ∈ e⊥M holds.

Lemma 4.1. For w as in (3.22) we have the bound

〈Ŝ−1Bw,Bw〉
1
2 ≤ (1 − γA)‖ek

1‖Q + ‖ek
2‖Ŝ .

Proof. For y ∈ range(Ŝ) = range(B) define ‖y‖Ŝ−1 = 〈Ŝ−1y, y〉
1
2 . Note that for

the exact discrete solution x we have Bx = 0. Using this and the definition in (3.22)
we get

Bw = Bxk − Bx + BQ−1
A (Aek

1 + BT ek
2) = −B(I − Q−1

A A)ek
1 + Ŝek

2 .

Hence,

〈Ŝ−1Bw,Bw〉
1
2 = ‖Bw‖Ŝ−1 ≤ ‖B(I − Q−1

A A)ek
1‖Ŝ−1 + ‖Ŝek

2‖Ŝ−1

≤ ‖Ŝ− 1
2 B(I − Q−1

A A)Q
− 1

2

A ‖‖Q
1
2

Aek
1‖ + ‖Ŝ

1
2 ek

2‖ .

Now note that

‖Ŝ− 1
2 B(I − Q−1

A A)Q
− 1

2

A ‖ ≤ ‖Ŝ− 1
2 BQ

− 1
2

A ‖‖Q
1
2

A(I − Q−1
A A)Q

− 1
2

A ‖

and

‖Ŝ− 1
2 BQ

− 1
2

A ‖2 = ρ(Ŝ− 1
2 BQ−1

A BT Ŝ− 1
2 ) = ρ(I) = 1 ,

‖Q
1
2

A(I − Q−1
A A)Q

− 1
2

A ‖ = ρ(I − Q
− 1

2

A AQ
− 1

2

A ) ≤ 1 − γA .
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This completes the proof.
We now formulate the main convergence result.

Theorem 4.2. Consider the inexact Uzawa method (3.22)-(3.27) with Ψ such

that (3.19) holds. For the error ek = (ek
1 , ek

2) we have the bounds

‖ek+1
1 ‖Q ≤ (1 − γA)‖ek

1‖Q + ‖ek+1
2 ‖Ŝ , (4.2)

‖ek+1
2 ‖Ŝ ≤ (1 − γA)(1 + δ)‖ek

1‖Q + δ‖ek
2‖Ŝ (4.3)

with γA from (4.1) and δ from (3.19).

Proof. For the error component ek+1
1 we have the relations

ek+1
1 = x − xk+1 = x − w + Q−1

A BT z

= x − xk − Q−1
A (Aek

1 + BT ek
2 − BT z)

= (I − Q−1
A A)ek

1 − Q−1
A BT (ek

2 − z)

= (I − Q−1
A A)ek

1 − Q−1
A BT ek+1

2 .

Hence,

‖ek+1
1 ‖Q ≤ ‖I − Q

− 1
2

A AQ
− 1

2

A ‖‖ek
1‖Q + ‖Q

− 1
2

A BT Ŝ− 1
2 ‖‖ek+1

2 ‖Ŝ

In combination with

‖I − Q
− 1

2

A AQ
− 1

2

A ‖ ≤ 1 − γA , ‖Q
− 1

2

A BT Ŝ− 1
2 ‖ = 1 .

this proves the inequality in (4.2). For the error component ek+1
2 we obtain

ek+1
2 = y − yk+1 = ek

2 − z = (ek
2 − Ŝ−1Bw) + (Ŝ−1Bw − z) . (4.4)

Using Bx = 0 we get

‖ek
2 − Ŝ−1Bw‖Ŝ = ‖ek

2 − Ŝ−1B(xk + Q−1
A Aek

1 + Q−1
A BT ek

2)‖Ŝ

= ‖ek
2 + Ŝ−1B(I − Q−1

A A)ek
1 − Ŝ−1BQ−1

A BT ek
2‖Ŝ

= ‖Ŝ−1B(I − Q−1
A A)ek

1‖Ŝ

≤ ‖Ŝ− 1
2 BQ

− 1
2

A ‖‖I − Q
− 1

2

A AQ
− 1

2

A ‖‖ek
1‖Q

≤ (1 − γA)‖ek
1‖Q . (4.5)

Furthermore, using (3.19) and lemma 4.1 we also have

‖Ŝ−1Bw − z‖Ŝ = ‖Ŝ−1Bw − Ψ(Bw)‖Ŝ ≤ δ ‖Ŝ−1Bw‖Ŝ

= δ 〈Ŝ−1Bw,Bw〉
1
2 ≤ δ

(

(1 − γA)‖ek
1‖Q + ‖ek

2‖Ŝ

)

.
(4.6)

Combination of the results in (4.4), (4.5), (4.6) proves the inequality in (4.3).
As a simple consequence of this theorem we obtain the following convergence result:

Theorem 4.3. Define

µA := 1 − γA, g(µA, δ) := 2µA + δ(1 + µA) . (4.7)



12 J. PETERS, V. REICHELT AND A. REUSKEN

Consider the inexact Uzawa method (3.22)-(3.27) with Ψ such that (3.19) holds. For

the error ek = (ek
1 , ek

2) we have the bounds

max
{

‖ek+1
1 ‖Q, ‖ek+1

2 ‖Ŝ

}

≤ g(µA, δ) max
{

‖ek
1‖Q, ‖ek

2‖Ŝ

}

, (4.8)

‖ek
1‖Q + ‖ek

2‖Ŝ ≤ 3
1

2

(g(µA, δ) +
√

g(µA, δ)2 − 4µAδ

2

)k

(‖e0
1‖Q + ‖e0

2‖Ŝ) . (4.9)

Proof. Define the matrix

C =

(

µA(2 + δ) δ
µA(1 + δ) δ

)

.

Due to theorem 4.2 we obtain
(

‖ek+1
1 ‖Q

‖ek+1
2 ‖Ŝ

)

≤ C

(

‖ek
1‖Q

‖ek
2‖Ŝ

)

.

¿From ‖C‖∞ = g(µA, δ) we obtain the result in (4.8). A simple (MAPLE) compu-
tation yields the eigenvector decomposition C = VDV−1 with a diagonal matrix D.
From this we get

ρ(C) =
1

2

(

g(µA, δ) +
√

g(µA, δ)2 − 4µAδ
)

max
0<µA,δ<1

‖V‖1‖V
−1‖1 ≤ 3

1

2

¿From this the result in (4.9) follows.

Corollary 4.4. Clearly, the bound for the contraction factor in (4.8) and the
bound for the asymptotic convergence factor in (4.9) depend only on µA and δ and
the bounds are monotonic functions of these parameters. Note that for µA → 0 we
obtain the contraction factor of the exact Uzawa method: g(0, δ) = δ. We also have
g(µA, δ) ≥ 1

2

(

g(µA, δ) +
√

g(µA, δ)2 − 4µAδ
)

and

g(µA, δ) < 1 iff 0 ≤ δ <
1 − 2µA

1 + µA

, (4.10)

1

2

(

g(µA, δ) +
√

g(µA, δ)2 − 4µAδ
)

< 1 iff 0 ≤ δ < 1 − 2µA . (4.11)

Hence, for µA < 1
2 and δ sufficiently small (as quantified in (4.10), (4.11)) we have a

convergent method.
Remark 4. We comment on the important special case where we take for Q−1

A a
symmetric multigrid V-cycle as in (3.28). Then µA is the contraction number (w.r.t.
the norm ‖ · ‖A) of this multigrid method. It is known from numerical experiments
that typically we have 0.1 ≤ µA ≤ 0.2. The result in (4.11) shows that for µA ≈ 0.15
we have a convergent method if for the accuracy of the inner method we take δ . 0.7.
Clearly it is not efficient to use a very small value for δ. We comment on the choice
of this parameter δ. We consider the case µA = 0.1. For the contraction number in
(4.8) we then have g(0.1, δ) = 0.2 + 1.1δ. For a given eps ¿ 1 let k be such that

g(0.1, δ)k ≈ eps .
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Then

k ≈
ln(eps)

ln(0.2 + 1.1δ)

holds. We use the ansatz (cf. (3.27)) δ = β` with some β < 1. From remark 3 it
follows that the arithmetic costs are dominated by k(`+1) evaluations of Q−1

A . Hence,
one wants to minimize

k(` + 1) ≈
ln(eps)

ln β

ln δ + ln β

ln(0.2 + 1.1δ)
=: kUzawaK(β, δ)

where kUzawa := ln(eps)/ ln β is the number of iterations of the exact Uzawa method
(µA = 0). For different β values the function δ → K(β, δ) is given in figure 4.1.
We see that an almost optimal value for δ is obtained in a very broad range. For

0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14

beta=0.5

beta=0.8

beta=0.95

Fig. 4.1. Function δ → K(β, δ) for β = 0.5, 0.8, 0.95

other µA values (< 0.2) one observes a similar behaviour.

In the PCG method (3.27) we use a preconditioner QS of Ŝ. We assume that (3.2)
and (3.10) hold. Using (4.1) it follows that

γAγSQS ≤ Ŝ ≤ ΓSQS (4.12)

holds.
Remark 5. Note that opposite to the BPCG method treated in section 3.1 and

the PMINRES method treated in section 3.2 the scaling of the preconditioner QS does
not influence the rate of convergence of the inexact Uzawa method (cf. the remarks 1
and 2).

In the convergence analysis we use the norm
√

‖x‖2
Q + ‖y‖2

Ŝ
=: ‖|(x, y)|‖ on R

n × e⊥M (4.13)

Remark 6. If we consider a stationary Stokes problem then the norm in (4.13)
is very natural. In this setting one usually takes QS = M (pressure mass matrix as in
(2.3)). Then the constants γA, γS ,ΓS can be shown to be independent of h and from
this one obtains

c1

(

‖∇JV x‖2+‖JMy‖2
)

1
2 ≤ ‖|(x, y)|‖ ≤ c2

(

‖∇JV x‖2+‖JMy‖2
)

1
2 ∀ (x, y) ∈ R

n×e⊥M
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with constants c1 > 0 and c2 independent of h. Now note that the norm (uh, ph) →
(

‖∇uh‖
2 + ‖ph‖

2
)

1
2 is the canonical one on Vh × Mh.

We indicate how the norm of the error, ‖|ek|‖ = (‖ek
1‖Q + ‖ek

2‖
2
Ŝ
)

1
2 , can be esti-

mated from quantities that are available in the inexact Uzawa algorithm (3.22)-(3.26).
Let K̃ be the symmetric positive definite block diagonal matrix as in (3.12) with QA

such that (4.1) holds. From (4.12) we get

γAγS‖v‖
2
K̃
≤ ‖|v|‖2 ≤ ΓS‖v‖

2
K̃

for all v ∈ R
n × e⊥M (4.14)

Note that K̃ : R
n × e⊥M → R

n × e⊥ is bijective. ¿From this and from theorem 3.3
with ΓA = 1 we obtain

‖K̃− 1
2 KK̃− 1

2 w‖ ≤
1

2

(

1 +
√

1 + 4ΓS

)

‖w‖ =: c1(ΓS)‖w‖ for all w ∈ R
n × e⊥

‖K̃− 1
2 KK̃− 1

2 w‖ ≥ min
{

γA,
1

2

(

√

γ2
A + 4γSγA − γA

)}

‖w‖

=: c2(γS , γA)‖w‖ for all w ∈ R
n × e⊥

This then yields

‖|v|‖2
K̃

=
〈K̃v, v〉

〈K̃−1Kv,Kv〉
〈K̃−1Kv,Kv〉 ≤ c2(γS , γA)−2〈K̃−1Kv,Kv〉 ∀ v ∈ R

n × e⊥M

‖|v|‖2
K̃

=
〈K̃v, v〉

〈K̃−1Kv,Kv〉
〈K̃−1Kv,Kv〉 ≥ c1(ΓS)−1〈K̃−1Kv,Kv〉 ∀ v ∈ R

n × e⊥M

In combination with (4.14) we then obtain

c2(γS , γA)2Γ−1
S ‖|v|‖ ≤ 〈K̃−1Kv,Kv〉 ≤ c1(ΓS)2γ−1

A γ−1
S ‖|v|‖ ∀ v ∈ R

n × e⊥M

Hence we can use 〈K̃−1Kek,Kek〉 as a measure for the error ‖|ek|‖2. Let (rk
1 , rk

2) =
rk = Kek be the residual. Then we have

‖|ek|‖2 ∼ 〈K̃−1rk, rk〉 = 〈Q−1
A rk

1 , rk
1〉 + 〈Q−1

S rk
2 , rk

2〉 (4.15)

Note that Q−1
A rk

1 is available from (3.22) and Q−1
S rk

2 can be computed (or approxi-
mated accurately) with relatively low costs.

Remark 7. We discuss the main differences of our convergence result and those
in [2, 29]. In [2], theorem 10, and [29], theorem 5.5, an inequality of the form

‖|ek+1|‖∗ ≤ gB(µA, δ)‖|ek|‖∗

is proved. The norms ‖| · |‖∗ used in [2] and [29] are different and also differ from the
norm ‖| · |‖ in (4.13) that is used in our analysis. A not so nice property of the norms
‖| · |‖∗ is that they depend on the (nonlinear) function Ψ. In case of the PCG method
as in (3.27) the norm then depends on the iteration index `. In [2] a bound of the
form

gB(µA, δ) = max
{

µA,
2δ

1 − δ

}

(4.16)
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is proved. In [29] a more general setting is considered. However, in the special case
of the inexact Uzawa method (3.22)-(3.26) the bound has a similar form as in (4.16).
If we compare gB(µA, δ) with our bound g(µA, δ) = 2µA + δ(1 + µA) then it is clear
that the bounds are quite different. For gB(µA, δ) < 1 one needs µA < 1 and δ < 1

3 ,

whereas for g(µA, δ) < 1 we need µA < 1
2 and δ < 1−2µA

1+µA
. In the extreme case δ = 0

we have gB(µA, 0) = 1
2g(µA, 0), whereas if µA = 0 we get g(0, δ) = 1

2 (1 − δ)gB(0, δ).
We are particularly interested in the case where for QA we take a multigrid method.
Therefore, as an example we consider µA = 0.1. Then we have

g(0.1, δ) < 1 if δ < 0.72

gB(0.1, δ) < 1 if δ <
1

3
g(0.1, δ) < gB(0.1, δ) if δ > 0.16

The bound gB(µA, δ) is better for “small” δ-values, whereas the bound g(µA, δ) is
better for “larger” δ-values. In our opinion, the bound g(µA, δ) gives a better expla-
nation of the observation (that has been made in many numerical experiments) that
if one uses a very good preconditioner QA (such as multigrid) then even with (very)
low accuracy in the inner iteration the inexact Uzawa method converges.

5. Preconditioners. In this section we discuss the choice of the preconditioners
QA and QS . In particular we want that for the preconditioners the constants γS , ΓS ,
γA, ΓA in the spectral equivalences (3.2) and (3.1) are independent of the parameters
h and ξ.
It is known that if for QA we take a symmetric multigrid V -cycle, QA = QMG, then
we have (cf. [6, 15, 16])

(1 − µMG)QMG ≤ A ≤ QMG, (5.1)

with a constant µMG < 1 independent of h. In [18] it is shown that for H2-regular
problems µMG is also independent of ξ. Note if we use a scaling QMG → αQMG with
α < 1 − µMG then we obtain a preconditioner that satisfies (3.3). In the numerical
experiments in section 6 we will use a (scaled) symmetric multigrid V -cycle as in
(3.28).

It is well-known that for the case ξ = 0 the pressure mass matrix M is an appro-
priate preconditioner for S. ¿From the discrete LBB property (2.1) and the fact that
for arbitrary y ∈ R

m, we have (if ξ = 0)

〈Sy, y〉 = sup
uh∈Vh

(div uh, JMy)2

‖∇uh‖2
, (5.2)

it follows that M is uniformly (w.r.t. h) spectrally equivalent to S on the subspace
e⊥M :

β̂2M ≤ S ≤ dM on e⊥M (5.3)

with β̂ the LBB constant from (2.1). The lumped mass matrix M̄ is the diagonal
matrix with diagonal entries M̄ii =

∑m
j=1 Mij . In [25] it is proved that this matrix

is uniformly in h spectrally equivalent to M and thus also (for ξ = 0) to S on the
subspace e⊥M . A further elementary observation is

M̄e = Me (5.4)
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Hence, both for QS = M and QS = M̄ the consistency condition (3.10) is fulfilled.

For the case ξ À 1 the (lumped) mass matrix is not an appropriate preconditioner for
the Schur complement. In [4, 8, 17] robust (w.r.t. h and ξ) preconditioning strategies
are introduced. We briefly explain the method from [4].

For g ∈ L2(Ω) consider the Neumann problem: find w ∈ H1(Ω) ∩ M such that

(∇w,∇φ) = (g, φ) for all φ ∈ H1(Ω) ∩ M (5.5)

Let Th be the stiffness matrix of the Galerkin discretization of this problem in M+
h ⊂

H1(Ω):

〈Thx, y〉 = (∇JMx,∇JMy) for all x, y ∈ R
m

Note that ker(Th) = span(e) and that Th : e⊥M → e⊥ is bijective. We define
Q̃−1

S : e⊥ → e⊥M by:

Q̃−1
S =

{

M−1 + ξT−1
h , if ξ ≤ h−2,

ξh2M−1 + ξT−1
h , if h−2 ≤ ξ

(5.6)

In the analysis it is convenient to extend Q̃−1
S on R

m by defining Q̃−1
S Me := e. In

practice, however, this extension is not needed. Note, that for ξ = 0 we get Q̃S = M.

In [4] it is shown that Q̃S is uniformly in h and ξ spectrally equivalent to S. We
rephrase the main theorem 4.1 of [4] (for the special case Sh = Wh in [4]):

Theorem 5.1. Assume that for ξ = 0 and for all f ∈ L2(Ω)d the solution

(u, p)T of (1.1) satisfies the regularity condition ‖u‖2 + ‖p‖1 ≤ C‖f‖ with a constant

C independent of f . Assume that the problem (5.5) is H2-regular. Furthermore, for

the pair of finite element spaces (Vh,Mh) we assume that the LBB condition (2.1)
is satisfied, that M+

h ⊂ H1(Ω), 1 ∈ M+
h and that the following approximation and

inverse properties hold with constants C independent of h:

inf
w∈Vh

‖v − w‖1 ≤ Ch‖v‖2 for all v ∈ (H2(Ω) ∩ H1
0 (Ω))d,

inf
q∈M+

h

‖p − q‖ ≤ Ch‖p‖1 for all p ∈ H1(Ω),

‖v‖s ≤ Ch−1‖v‖s−1 for all v ∈ Vh, s ∈ {0, 1},

‖p‖ ≤ Ch−1‖p‖−1 for all p ∈ Mh

Then there are constants C0 > 0, C1 independent of h and ξ, such that

C0〈y, Q̃−1
S y〉 ≤ 〈SQ̃−1

S y, Q̃−1
S y〉 ≤ C1〈y, Q̃−1

S y〉 for all y ∈ e⊥ (5.7)

Note that many pairs of finite element spaces satisfy the assumptions in this theorem.
In our experiments we use such a pair, namely the Hood-Taylor P2 − P1 pair.
Although the Laplace problem for the pressure that has to be solved in each applica-
tion of Q̃−1

S is much smaller than the problems involving A or QA, often it is inefficient
to solve it exactly. Let QT be a preconditioner for Th that is spectrally equivalent to
Th, uniformly in h. Instead of Q̃−1

S in (5.6) one can then use

Q−1
S :=

{

M−1 + ξQ−1
T , if ξ ≤ h−2,

ξh2M−1 + ξQ−1
T , if h−2 ≤ ξ

(5.8)
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In [4] (remark 4.1) it is shown that for this preconditioner a result as in (5.7) holds
with constants C0 > 0 and C1 independent of h and ξ. Hence, the preconditioner QS

as in (5.8) is spectrally equivalent to S (on e⊥M ) uniformly in h and ξ.
In the numerical experiments in section 6 for QT we use a symmetric multigrid V-cycle
method.

6. Numerical experiments. In this section we present a comparison of the
three iterative solvers discussed above. These solvers are denoted by BPCG (algo-
rithm 3.9), PMINRES (section 3.2) and MGUZAWA (algorithm (3.22)-(3.27)). We
consider a problem as in (1.1) on the unit cube Ω = (0, 1)3. For the discretization we
start with a uniform tetrahedral grid with h = 1

2 and we apply regular refinements
to this starting triangulation. For the finite element discretization we used the LBB
stable pair of Hood-Taylor P2 − P1, i.e. continuous piecewise quadratics for the ve-
locity and continuous piecewise linears for the pressure. We performed computations
for the cases h = 1/16, h = 1/32. Note that for h = 1/32 we have approximately
7.5·105 velocity unknowns and 3.3·104 pressure unknowns (n ≈ 7.5·105, m ≈ 3.3·104).
We consider the linear system as in (2.4) with solution (x, y) = 0. We take a fixed
arbitrary starting vector (x0, y0), with y0 ∈ e⊥M .
The iteration is stopped after a reduction of the Euclidean norm of the starting resid-
ual by a factor 106, i.e., ‖rk‖ ≤ 10−6‖r0‖, with rk = (f, 0) − K(xk, yk).

Experiments for the case ξ = 0. We apply the BPCG, PMINRES, MGUZAWA
methods described above. For the preconditioner QA we use one multigrid V-cycle
iteration as in (3.28). For the preconditioner QS for the Schur complement we use
one multigrid V-cycle iteration as in (3.28), but now applied to the mass matrix M.

For the BPCG method we need a suitable scaling of QA. To determine the scal-
ing parameter, we compute λ̃ ≈ λmax(I − Q−1

MGA) by a few power-iterations and use

QA := (1 − α λ̃)QMG, α ∈ [1, λ̃−1), as scaled preconditioner. The approximation
λ̃ satisfies λ̃ ≤ λmax(I − Q−1

MGA), hence we take α ≥ 1. In our experiments we use
α = 1.1. Although not negligible, the arithmetic costs for determining this scaling
parameter are not taken into account in the tables presented below. The PMINRES
method is parameter free. In the MGUZAWA method we have to chose a stopping
criterion for the inner iteration. We use the one in (3.29) with σacc = 0.5. For all three
methods the costs are dominated by the evaluations of Q−1

A . Therefore to measure
the arithmetic costs we count the number of Q−1

A evaluations, which is denoted by
#QMG. Results are presented in table 6.1.

h = 1/16 h = 1/32
BPCG 29 29

PMINRES 49 49
MGUZAWA 33 30

Table 6.1

#QMG for the three methods.

In figure 6.1 we give the convergence behaviour of ‖rk‖ for the case h = 1/32. Note
that in the MGUZAWA method in each iteration we have an inner iteration. In ta-
ble 6.2 we give the number of inner iterations per outer iteration.
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Fig. 6.1. Convergence behaviour of ‖rk‖ for the case h = 1/32.

k 1 2 3 4 5 6 7 8 9 10 11 12
# inner it. 1 1 1 2 1 2 1 2 1 1 3 2

Table 6.2

Number of inner iterations in MGUZAWA, h = 1/32.

The behaviour of the BPCG method depends on the scaling parameter α in (1 −
α λ̃)QMG. In table 6.3 we show the dependence of #QMG on this scaling parameter
for λ̃ = λmax(I − Q−1

MGA). The convergence of the MGUZAWA method depends on
σacc. In table 6.4 we show the dependence of #QMG on this parameter.

α 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.5 2.0
#QMG div div 28 28 29 30 31 32 36

Table 6.3

Dependence of BPCG method on scaling parameter; h = 1/32.

σacc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
#QMG 38 33 34 30 30 29 30 30 52

Table 6.4

Dependence of MGUZAWA method on σacc; h = 1/32.
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According to remarks 1, 2, 5 the bounds for the convergence rates of BPCG and
PMINRES depend on the scaling parameter ρ if we use ρQS (ρ > 0) as a precon-
ditioner for the Schur complement. The convergence rate of MGUZAWA does not
depend on the scaling of QS . Table 6.5 shows #QMG for different values of ρ.

ρ 10−4 10−2 1.0 102 104

BPCG 110 58 29 44 45
PMINRES 135 91 49 30 40

MGUZAWA 30 30 30 30 30
Table 6.5

Dependence of #QMG on the scaling of QS ; h = 1/32.

Experiments for the case ξ > 0. We again apply the three methods described
above. For the preconditioner QA we use the same multigrid V-cycle iteration as for
the case ξ = 0. For the preconditioner for the Schur complement we use the one in
(5.8). For QT we apply one multigrid V-cycle iteration with one symmetric Gauss-
Seidel pre- and post-smoothing iteration. For the BPCG method we take the same
scaling of QA as we used for the case ξ = 0. Note that this may not be the optimal
scaling if ξ > 0. In the MGUZAWA method we take σacc = 0.6. In the tables 6.6 and
6.7 we present results for ξ = h−1 and ξ = h−2.

h = 1/16 h = 1/32
BPCG 29 28

PMINRES 48 48
MGUZAWA 26 29

Table 6.6

#QMG for the three methods; ξ = h−1.

h = 1/16 h = 1/32
BPCG 26 24

PMINRES 44 41
MGUZAWA 27 25

Table 6.7

#QMG for the three methods; ξ = h−2

7. Concluding remarks. In this paper we considered three fast iterative meth-
ods for discretized Stokes equations. The BPCG method is a preconditioned CG
method applied to a transformed system and with a special scalar product. The
PMINRES method is a standard preconditioned minimal residual method. The
MGUZAWA method results from an approximation of an exact block factorization of
the matrix K (cf. (3.20),(3.21)). The MGUZAWA algorithm has the structure of an
outer-inner iteration. Thus for this method a stopping criterion (tolerance parameter)
for the inner iteration is needed. The PMINRES method is parameter free. In the
BPCG method a scaling parameter for the preconditioner QA has to be determined.
If for QA we use a multigrid solver then for all three methods the costs per iteration
are dominated by the evaluations of Q−1

A . In the BPCG and the PMINRES method
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one needs one Q−1
A evaluation per iteration. In the MGUZAWA method ` + 1 Q−1

A

evaluations per iteration are needed (`: # inner iterations). For all three methods con-
vergence analyses are available in which bounds for the rate of convergence are derived
that depend only on the constants in the spectral equivalences γAQA ≤ A ≤ ΓAQA,
γSQS ≤ S ≤ ΓSQS . For the MGUZAWA method we presented a convergence anal-
ysis that shows that if one uses a multigrid preconditioner for A then for the inner
iteration a very low accuracy is already sufficient to have a convergent and efficient
method. In this convergence analysis we use a natural norm.

In the numerical experiments for the stationary case, all three methods have a
rate of convergence independent of h. In our experiments the BPCG method and
MGUZWA have almost the same efficiency. The PMINRES method is less efficient.
The latter method, however, is the most robust one. It is parameter free and converges
even without preconditioning. From table 6.3 we conclude that the performance of
the BPCG-method depends only mildly on α (provided α ≥ 1). Thus, we need only
a rough approximation λ̃ ≈ λmax(I −Q−1

A A) to obtain an efficient solver. The results
in table 6.4 show that the MGUZAWA method is efficient for a broad range of σacc-
values. Note that the method converges even for large σacc values. This confirms the
theory in section 4.
The rate of convergence of both BPCG and PMINRES depend on the scaling of QS ,
whereas for the MGUZAWA method this is not the case. For particular choices of this
scaling it may happen that the PMINRES method is more efficient than the BPCG
method (cf. table 6.5).

The experiments for the instationary case demonstrate the effectiveness of the
preconditioner in (5.8). The rate of convergence is independent of h for ξ = h−1 and
ξ = h−2. If instead of the preconditioner in (5.8) one uses QS = M̄, for ξ = h−2 all
three solvers would need several hundred to thousand iterations.
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