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Abstract

In this paper, we consider a three-dimensional inverse heat conduction problem
(IHCP) in a falling film experiment. The wavy film is heated electrically by a thin
constantan foil and the temperature on the back side of this foil is measured by
high resolution infrared (IR) thermography. The transient heat flux at the inacces-
sible film side of the foil is determined from the IR data and the electrical heating
power. The IHCP is formulated as a mathematical optimization problem, which is
solved with the conjugate gradient method. In each step of the iterative process
two direct transient heat conduction problems must be solved. We apply a one step
θ-method and piecewise linear finite elements on a tetrahedral grid for the time and
space discretization, respectively. The resulting large sparse system of equations is
solved with a preconditioned Krylov subspace method. We give results of simulated
experiments, which illustrate the performance and tuning of the solution method,
and finally present the estimation results from temperature measurements obtained
during falling film experiments.
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1 Introduction

The modeling of kinetic phenomena in multiphase systems leads to problems
of model structure and parameter identification, which belong to the class of
inverse problems [14]. A challenging problem relates to the transport mecha-
nisms in inverse heat and mass transfer problems.

In this paper, we focus on the heat transfer into a falling film. Fig. 1 shows
the schematic representation of the falling film experiment operated in our
research. It consists of the fluid cycle with a loudspeaker to produce 2D-waves
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Fig. 1. Schematic representation of the falling film experiment

with a certain frequency, the laminar wavy falling film travelling along one
side of a thin heating foil (with electrical heating via the DC power supply)
and the infrared camera for taking temperature measurements on the foil back
side with high resolution in space and time [1,12]. There are two alternatives
for modeling the electrical heating at the back side of the thin constantan foil.
We could consider a volumetric source term in the heat conduction equations
or alternatively – as done in this paper – we can assume that we have a con-
stant boundary heat flux. We use the temperature measurements to estimate
the heat flux on the film side of the foil as a function of space and time with
the remaining initial and boundary conditions assumed to be known. This is
a model-free estimation problem, since no further assumptions on the heat
transfer mechanism are made. In subsequent steps the estimated heat flux
can be correlated with other quantities in the falling film such as the mean
film temperature and the flow regime to obtain a better understanding of the
related kinetic phenomena. The goal is not only the solution of this particu-
lar inverse heat transfer problem, but also to gain a better understanding of
solution methods for multidimensional non-linear inverse problems in multi-
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phase flow systems. Such an understanding is essential as a basis for future
investigations of more complex inverse transport problems such as heat trans-
fer through the falling film, mass transfer from the film to the gas phase, or
reaction inside the film.

The identification problem of estimating the heat flux on the film surface
is coupled with the fluid dynamics of the falling film. This coupling results
in an inverse problem of very high complexity. In this paper, we consider a
simplified, but still challenging and interesting problem in which we decouple
the heat transfer from the fluid dynamics. We investigate the unsteady heat
transfer from the heating foil to the falling film. The considered inverse heat
conduction problem consists of determining the heat flux qc(x, t) on the film
side of the foil Γ2 from measurement data Tm, which are taken on the foil
back side Γ1. These measurements are clearly influenced by the transport
phenomena in the falling film and by the surface wave pattern. Fig. 2 shows
the schematic representation of the three-dimensional plate Ω ⊂ R

3 with heat
addition on Γ1 and heat transfer on Γ2.
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Fig. 2. Schematic representation of the 3D heating foil

Many studies related to IHCPs have already been published (cf. [2,5] and the
references therein). Most literature on numerical solution methods is restricted
to one or two space dimensions. For problems in three space dimensions only
few publications are available [6,10,19]. In these papers only simulated data
with few point-wise measurement locations have been used. Recently, an effi-
cient method for the solution of transient 3D IHCPs has been published and
applied to experimental investigations of pool boiling [13]. In contrast to this
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filter-based method of limited space-time resolution, in this paper we investi-
gate an optimization-based solution of the 3D IHCP for the reconstruction of
boundary heat fluxes with high resolution in space and time employing high
resolution spatio–temporal temperature measurements. Although the prob-
lem geometry is simple, there is a numerical complication caused by the plate
thickness (25 µm), which is very small compared to its other dimensions. Due
to this geometric anisotropy one has to be careful in the choice of the solution
methods for the direct problems.

The paper is organized as follows. The inverse problem is formulated as an
optimization problem in Section 2. In Section 3 the solution method based on
conjugate gradients (CG) is introduced. The solution methods for the direct
problems that occur in the optimization procedure are discussed in Section
4. Some test examples for the validation of the IHCP solver are presented in
Section 5, while results employing experimental measurement data are given in
Section 6. Section 7 contains some conclusions and remarks concerning future
work.

2 Formulation of the inverse problem

We consider the domain Ω shown in Fig. 2 with boundary ∂Ω = Γ1 ∪ Γ2 ∪
Γr, where Γ1,Γ2 and Γr denote the measurement side, the film side and the
remaining boundaries of the heating foil. The direct problem consists of the
following heat conduction equation for the temperature T

∂T

∂t
(x, t) = a∆T (x, t), (x, t) ∈ Ω × [t0, tf ], (1)

T (x, t0) =T0(x), x ∈ Ω, (2)

−λ
∂T

∂n
(x, t) = qh(x, t), (x, t) ∈ Γ1 ∪ Γr × [t0, tf ], (3)

−λ
∂T

∂n
(x, t) = qc(x, t), (x, t) ∈ Γ2 × [t0, tf ], (4)

where T0, qh and qc are the initial and boundary conditions, respectively. The
outer normal on the boundary is denoted by n. The initial and final times are
denoted by t0 and tf , respectively. The known material properties density ρ,
specific heat c and heat conductivity λ enter the thermal diffusivity a = λ

ρc
,

which is assumed to be constant, since the experimental temperature range is
very small.

The inverse problem corresponds to the estimation of the heat flux qc on Γ2

on the basis of suitable measurement data Tm on Γ1, under the assumption
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that the values of T0 and qh are known. This is a typical example of an inverse
heat conduction problem.

In this work we consider an optimization-based formulation, since it can easily
be adapted to more complex situations. The unknown quantity qc is deter-
mined in such a way that

J(x, t; qc) :=
1

2
‖T (x, t; qc)|Γ1

− Tm(x, t)‖2
L2

→ min (5)

with T (x, t; qc) given by (1) − (4).

To emphasize the dependence of T on the boundary heat flux qc we refer to
the solution of (1)-(4) as T (x, t; qc). The corresponding norm in (5) is defined
by

‖ · ‖2
L2

:=
∫ tf

t0

∫

Γ1

(·)2dx dt. (6)

Regularization [7] is only introduced via the discretization and suitable stop-
ping criteria for the optimization algorithm. This strategy is discussed below
in more detail. An alternative approach is to add a regularizing term R(qc) to
the objective function J , which penalizes the variation of qc. This method will
be considered in future work.

3 Minimization algorithm

For the solution of the least squares problem (5) many methods are available
[2,3,7]. Here, we use the conjugate gradient (CG) method (see [7,16] for details),
which is very efficient in terms of the number of iterations compared to other
semi-iterative methods, if the discrepancy principle is chosen as a stopping
rule [7]. For nonlinear problems, some variants of this algorithm are available
in the literature [16].

The CG method solves the minimization problem by setting up an iteration
sequence for the unknown function qc (see Fig. 3). Here, the solution at iter-
ation n is updated from the previous one until some stopping conditions are
fulfilled. For the determination of the search direction the so-called conjugate
gradients are used. So we have to calculate the gradient of the functional (5)
to compute the search direction. The gradient is defined as the first order
Fréchet derivative of the functional at some point qc ∈W , where W is a suit-
able function space. We consider the space W of continuous and piecewise
linear functions on Γ2 which is due to the discretization of the domain Ω with
P1-elements on a tetrahedral grid. If the functional increment at some point
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qc is given by

J(qc + δqc) − J(qc) =
∫ tf

t0

∫

Γ2

∇J(x, t) δqc(x, t) dx dt+ o(‖δqc‖) (7)

with qc + δqc ∈ W , then the function ∇J(x, t) is the functional gradient at qc.

The CG procedure, illustrated in Fig. 3, comprises the following calculation
steps:

(i) Set n = 0 and choose a starting value q0
c ∈W , e.g. q0

c ≡ 0.
(ii) Calculate the objective function. If the convergence conditions are satis-

fied stop, otherwise continue.
(iii) Calculate the new search direction pn = ∇J(qn

c ) + γnpn−1. The gradient
∇J(qn

c ) is obtained from the solution of the adjoint problem (cf. Section
3.1). The conjugate coefficient γn, n ≥ 1, is determined from the expres-
sion

γn = −

∫ tf
t0

∫

Γ2
∇J(qn

c ) [∇J(qn−1
c ) −∇J(qn

c )] dx dt
∫ tf
t0

∫

Γ2
[∇J(qn−1

c )]2 dx dt
(8)

and γ0 = 0.
(iv) Calculate the step length along the search direction by solving the one-

dimensional optimization problem

µn = argminµ≥0J(qn
c − µpn). (9)
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Fig. 3. CG method - iterative procedure
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In our case µn is given by

µn =

∫ tf
t0

∫

Γ2
[T (x, t; qn

c ) − Tm(x, t)]S(x, t) dx dt
∫ tf
t0

∫

Γ2
[S(x, t)]2 dx dt

, (10)

with S being the solution of the sensitivity problem (cf. Section 3.2).
(v) Update the approximation

qn+1
c = qn

c − µnpn. (11)

Increase n by one and go back to (ii).

Two difficulties arise in applying this solution approach. First we have to
calculate the functional gradient and second we have to solve the optimization
problem in (9) to find a step length along the descent direction. In the next
section we discuss these two issues.

3.1 Adjoint problem

In the iterative gradient-based procedure, we need the gradient ∇J(x, t) to
calculate the descent direction pn. It can be shown that the identity

∇J(x, t) = ψ(x, t)|Γ2
(12)

holds, where the adjoint variable ψ is the solution of the adjoint problem

∂ψ

∂t
(x, t) =−a∆ψ(x, t), (x, t) ∈ Ω × [t0, tf ], (13)

ψ(x, tf) = 0, x ∈ Ω, (14)

−λ
∂ψ

∂n
(x, t) = [T (x, t; qc) − Tm(x, t)] , (x, t) ∈ Γ1 × [t0, tf ], (15)

−λ
∂ψ

∂n
(x, t) = 0, (x, t) ∈ Γ2 ∪ Γr × [t0, tf ]. (16)

We do not give a derivation of the identity in (12) since it follows from standard
procedures [2]. For the adjoint problem we do not have an initial condition,
but rather a condition at final time tf . By introducing a new time variable
tb = tf − t, we get an equation system which has the same structure as the
original direct problem (1)-(4), however, with different initial and boundary
conditions.
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3.2 Sensitivity problem

The step length µn along the search direction pn is obtained from the solution
of the sensitivity problem given by

∂S

∂t
(x, t) = a∆S(x, t), (x, t) ∈ Ω × [t0, tf ], (17)

S(x, t0) = 0, x ∈ Ω, (18)

−λ
∂S

∂n
(x, t) = 0, (x, t) ∈ Γ1 ∪ Γr × [t0, tf ], (19)

−λ
∂S

∂n
(x, t) = pn(x, t), (x, t) ∈ Γ2 × [t0, tf ]. (20)

Again, it has the same structure as the direct problem (1)-(4), but with dif-
ferent initial and boundary conditions.

In the iterative process, three direct heat conduction problems, the direct, ad-
joint and sensitivity problems, have to be solved. To calculate the correspond-
ing solutions the same software code can be used, since all of the mentioned
problems have the same structure. In many publications on the CG method,
the three direct problems are solved at each iteration. Actually, in the par-
ticular case of linear problems only the solutions of two direct problems are
needed in each optimization iteration (see Fig. 3) because of the identity

T (qn+1
c ) = T (qn

c ) − µnS, (21)

where S is the solution of the sensitivity problem (17)-(20). So the direct
problem (1)-(4) is only solved once at the very beginning (i.e. n = 0). This
results in a substantial reduction of the computational time.

4 Solution of the direct problems

The solution of the direct 3D heat conduction equations is computed using
the software package DROPS (cf. [8]), which is based on multilevel nested
grids and finite element discretization methods. Some aspects of the numeri-
cal methods implemented in DROPS are briefly described in this section. For
the time discretization, a standard one step θ-method is used [15]. Piecewise
linear finite elements on a tetrahedral grid are employed for the space dis-
cretization [17]. The resulting discrete systems of equations are solved with a
preconditioned Krylov subspace method.

We outline the finite element method that is used for the space discretization.
It is based on a variational formulation of the direct problem: For t ∈ [t0, tf ]
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find T (t) ∈ V such that

(
∂T (t)

∂t
, v) + (a∇T (t),∇v) = −

a

λ

∫

∂Ω

qv dσ ∀ v ∈ V . (22)

Here V is a suitable function space (the Sobolev space H1(Ω)) and (u, v) :=
∫

Ω u · v dx denotes the L2(Ω) scalar product. For notational convenience we
introduce the bilinear form α(u, v) := (a∇u,∇v) and the functional β(t; v)
which is defined by the right hand side in (22). The variational problem can
be rewritten in compact form as

(
∂T (t)

∂t
, v) + α(T (t), v) = β(t; v) ∀ v ∈ V .

For the discretization we use a triangulation T of Ω which consists of tetrahe-
dra. The finite element space Vh ⊂ V consists of continuous piecewise linear
functions. The degrees of freedom are located at the vertices of the tetrahe-
dra. Let {ϕi}1≤i≤N be the standard nodal basis of the space Vh. The discrete
problem is then given as follows: Find Th ∈ Vh such that

(
∂Th(t)

∂t
, ϕi) + α(Th(t), ϕi) = β(t;ϕi) ∀ 1 ≤ i ≤ N . (23)

This is a system of coupled ordinary differential equations. For the time dis-
cretization a one step θ-scheme is applied. The time step size is denoted by τ
and the approximate solution at time tk is denoted by T k

h . Then given T k
h , we

get the approximate solution T k+1
h ≈ T (tk+1, ·) by solving the problem

(T k+1
h , ϕi) + θτ α(T k+1

h , ϕi) = (T k
h , ϕi) − (1 − θ)τ α(T k

h , ϕi)

+ θτ β(tk+1;ϕi) + (1 − θ)τ β(tk;ϕi),

∀ 1 ≤ i ≤ N.

(24)

The parameter 0 ≤ θ ≤ 1 controls the implicitness of the scheme. In particular,
θ = 0 yields the explicit Euler scheme, θ = 1 the implicit Euler scheme and
θ = 0.5 leads to the Crank-Nicholson scheme. Because of the strong stiffness
of the system in (23) only implicit schemes (θ 6= 0) should be used to solve
the instationary heat conduction problems. The implicit Euler scheme is only
first order accurate (i.e. the discretization error is O(τ)), but is strongly A-
stable. The Crank-Nicholson scheme is of order two, is A-stable, but does not
have the strong A-stability property, which may lead to stability problems in
certain situations. In the remainder of this paper we only consider θ = 0.5 and
θ = 1.

Let u ∈ R
N be the coefficient vector of the representation of Th =

∑N
i=1 uiϕi

in the nodal basis. Equation (24) then represents a linear system of equations
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for the unknown function T k+1
h , which can be written as

[M + θτA]uk+1 = [M − (1 − θ)τA]uk + θτ bk+1 + (1 − θ)τ bk .

Here M denotes the mass matrix and A the stiffness matrix

Mij := (ϕj , ϕi) , Aij := α(ϕj, ϕi)

and bk,bk+1 are the right hand sides with

bk
i = β(tk;ϕi) , bk+1

i = β(tk+1;ϕi) .

The system matrix M + θτA is symmetric positive definite, thus a precondi-
tioned conjugate gradient (PCG) method can be applied to solve this system
of linear equations [18]. For the simulations presented in this paper we use the
SSOR method for preconditioning.

At the end of this section, we briefly comment on the performance of the de-
veloped solver, because we consider a very thin heating foil. In this context we
mention the properties of the applied triangulation technique and the arising
degenerated tetrahedra (see Fig. 4 and 5). The standard kind of triangula-

Fig. 4. Triangulation of the unit cube
Fig. 5. Triangulation of a geometrical
anisotropic domain

tion used within the software package DROPS avoids large angles inside the
faces as well as between two faces of each tetrahedron, independent of the
geometry dimension (for more information see [8]). Taking into consideration
the so-called maximum angle principle (see [4,11]) we do not expect a loss
of quality with respect to the discretizations of the involved direct heat con-
duction problems in the case of increasing anisotropy. This is confirmed by
numerical experiments. However, we expect that the efficiency of the PCG
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solver decreases with increasing geometrical degeneracy, which has been ob-
served in numerical experiments, too. In this paper, we will not analyze these
observations in more detail.

5 Simulation examples for method and code validation

The DROPS code as well as the optimization method were validated via var-
ious simulations. Some results of these case studies are given in this section.
Results obtained with experimental data are presented in the next section.

In the following simulations, we applied the implicit Euler scheme for the
time discretization to avoid stability problems (the method is strongly A-
stable as already mentioned above). However, a comparison with the second
order Crank-Nicholson scheme showed no substantial differences with respect
to the quality of the obtained heat flux estimations. The material properties
chosen in this section do not reflect the real experimental data of Section 6 as
we focus on method and code validation.

5.1 Example 1: Continuous and time varying heat flux

In Examples 1 and 2 we consider the domain Ω := 10 × 40 × 100 mm3.
The material properties for these cases are lumped in the parameter a =
10−4 m2

s
. For the time discretization (implicit Euler scheme) we use the time

step size τ = 0.01 s and apply 200 time steps. The initial and known boundary
conditions consist of a constant temperature distribution T (x, t0) = 20 ◦C, x ∈
Ω, a constant heat flux qh(x, t) = 2 kW

m2 , (x, t) ∈ Γ1 × [t0, tf ] for heat addition
and perfectly isolated boundaries on Γr (cf. the notation of Section 2). For the
start approximation within the optimization procedure, we choose q0

c (x, t) =
0 kW

m2 , (x, t) ∈ Γ2 × [t0, tf ] (see Fig. 3).

In this first example a uniform space discretization with 35937 unknowns
is applied (corresponding to an initial grid triangulation with 32 × 32 × 32
parallelepipeds and 196608 tetrahedra, for more details cf. [8]). As a basis
of this simulation we choose a shape of the heat flux, which represents an
intuitive approximation of the real quantity in the falling film experiment.
This heat flux is denoted by qex

c (x, t), (x, t) ∈ Γ2 × [t0, tf ] and has a sinusoidal
pattern over the space coordinate in the flow direction of the falling film (i.e.
the z-direction). The wavy pattern is assumed to be time dependent, such that
the waves travel along the z-direction over time

qex
c (x, y, z; t) = sin

(

4π
(

z

100
+

t

200

))

kW

m2
, (x, y, z) ∈ Γ2, t ∈ [t0, tf ].
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5.1.1 Estimation with error-free measurements

First we present the estimation results of the boundary heat flux with error-
free measurements. As measurement data we take the temperature T ex

m ob-
tained from the solution of the direct heat conduction problem with the chosen
quantity qex

c as the corresponding boundary condition on Γ2.

In Fig. 6 (a), the objective functional is plotted over the number of optimiza-
tion iterations, whereas a snapshot (at one point in time) of the estimated
heat flux at the end of the optimization is presented in Fig. 6 (b).
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Fig. 6. (a) Objective functional (b) estimated heat flux q200
c

We observe the well known convergence behavior of the applied CG method in
terms of a more rapid decrease of the objective functional at the beginning of
the iterative process followed by stagnation at a certain level. Plot (b) shows
that the estimated heat flux is, like the exact quantity, constant in y-direction.
Therefore, we restrict the following plots to a cut through the y-axis to look
at the estimation quality in more detail.

Both exact and estimated heat fluxes are given in Fig. 7 over the z-direction
for constant y = 20 mm (i.e. in the middle of the y-coordinate) and different
numbers of time steps applied, which are denoted by ndt. Except for a region
at final time the recovered heat flux is of high quality, since there are only little
visible deviations compared to the exact quantity. At final time, the estima-
tion quality decreases, due to the fact that the solution of the adjoint problem
(i.e. the gradient of the objective functional) is zero and therefore causes no
improvement of the start approximation for t = tf . The effect of the iterative
CG method is presented in Fig. 8. Here the error free and estimated heat
fluxes are shown at the fixed time level ndt = 100 and different iterations
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of the optimization, which are denoted by nopt. We clearly observe that the
estimation quality increases with a rising number of optimization steps, since
we use error-free temperature measurements. To stop the iterations, we con-
sider the usual proceeding and specify a small threshold parameter ǫ for the
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objective function, i.e.

J(qn
c ) < ǫ. (25)

From Fig. 6 (a) we see that about 80 iterations are needed to satisfy the
stopping rule (25) with ǫ = 10−6. Clearly, smaller values of ǫ lead to more
iterations.

5.1.2 Estimation in the presence of measurement errors

In this section, we perturb the exact temperature T ex
m , obtained as described

in the previous section, using an artificial measurement error ω. We assume
the perturbed temperature Tm given by

Tm = T ex
m + σω,

with σ being the standard deviation of the measurement error to be the corre-
sponding measurement data. The values of ω are generated from a zero mean
normal distribution with variance one. The parameter σ is used to control the
error amount added to the exact data. In the case of measurement errors, we
cannot expect that the objective functional becomes arbitrarily small. To find
an appropriate ǫ to stop the iterations, we can use known parameter choice
rules from the inverse problems literature [7].

The discrepancy principle suggests that we stop the iterations, when the resid-
ual approximately equals σ. From (5), we get the following expression for the
threshold parameter ǫ in (25)

ǫ = κ(tf − t0)A1σ,

where A1 is the surface of Γ1 and κ > 1 is a parameter. In the following
simulations we used κ = 1.02. A detailed discussion of this method is given
in [7]. For σ = 0.25 we obtain the optimal result after nopt = 40 iterations
using the above considered stopping rule. The estimates and the corresponding
temperatures are given in Fig. 9. A good reconstruction of the exact heat flux
is achieved. By performing further iterations, the estimated heat flux begins
to oscillate and the estimation quality decreases. Similar results have been
obtained with higher values of the noise level σ.

An alternative stopping criterion is to use heuristic rules such as the L-curve
[9], which is a parameterized plot of the residual against a solution norm. For
σ = 0.25, the L-curve is shown in Fig. 10. The best compromise is found at
the point of the L-curve with maximum curvature. For the considered case,
the optimal value is about nopt = 40 iterations, i.e. the result is comparable
to the one obtained by the discrepancy principle.
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5.2 Example 2: Discontinuous and steady state heat flux

In this section we present a simulation based on a heat flux qex
c that is time

independent and discontinuous on Γ2. Thus this heat flux does not belong to
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the Sobolev space H1(Ω). It has the representation

qex
c (x, y, z; t) =







0 kW
m2 for (x, y, z) ∈ Γ0,

−3 kW
m2 else,

with Γ0 := {(x, y, z) ∈ Γ2 | y ∈ [10, 30] ∨ z ∈ [20, 80]} (see Fig. 11 (a)).

We again consider the situation described in the first paragraph of Example 1,
but this time we use a quasi-uniform discretization with 36057 unknowns (cor-
responding to an initial triangulation with 16× 20× 100 parallelepipeds with
respect to the space coordinates). We consider these data with focus on the
real falling film experiment, where we choose a fine space discretization (res-
olution) in the flow direction (z-coordinate) and relatively coarse resolutions
in the other directions (see Section 6).
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Fig. 11. Exact (a) and estimated (b) heat flux

The obtained estimation result is given in Fig. 11 (b). The objective functional
shows the same typical behaviour as already described in Example 1 and
therefore we do not give the plot here. Both, exact and estimated solutions of
the inverse problem are given in Fig. 12 (a) and (b) for cuts through the y-
axis and the z-axis respectively (y = 0 and z = 0). Again, results for different
iteration numbers of the optimization procedure are shown.

Due to the discontinuities of the error free boundary heat flux, oscillations
appear in the piecewise continuous approximations with an increasing number
of optimization iterations applied. A comparison of both plots with 100 (a)
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and 20 (b) unknowns in the corresponding space directions respectively shows
a better approximation quality for the case with higher space resolution.

The number of unknowns needed to reach the desired accuracy should be kept
as small as possible for efficiency reasons. Instead of refining the whole grid, it
may be better to use locally refined grids. Local grid refinement leads to good
approximation properties, while at the same time the number of unknowns
is severely decreased compared to the global refinement case. The multilevel
refinement algorithm, which is implemented in DROPS, makes it easy to use
such locally refined triangulations. The solution of the considered IHCP on
such grids remains a challenging task for future investigations. In this context,
suitable error estimators have to be developed that are based on the spatial
behaviour of the unknown quantity, which is not the solution of the direct
problems (i.e. the temperature distributions) but the corresponding boundary
condition on Γ2.
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Fig. 12. 2D plots of the heat fluxes for y = 0 (a) and z = 0 (b) at different
optimization steps nopt

The temperature distributions corresponding to the estimated quantities are
shown in Fig. 13 (a) and (b) together with the exact values for different opti-
mization steps. The plots show that we obtain high proximities to the exact
temperature distributions after only few optimization iterations in contrast
to the corresponding heat fluxes. This example shows, that the value of the
functional is in general not a good measure for the quality of the estimation.
The fit of the temperatures may be almost perfect, even though the estimated
heat flux is quite different from the exact one. This largely unavoidable effect
is due to the ill-posedness of inverse heat conduction problems caused by the
strong smoothing properties of the direct problem.
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Fig. 13. 2D plots of the temperatures for y = 0 (a) and z = 0 (b) at different
optimization steps nopt

6 Estimation results with measurement data

In this section, we present an estimation case study for the real falling film
experiment employing high resolution temperature measurements. These are
taken with an IR camera on the back side Γ1 of the constantan foil, which has
a thickness of 25 µm. The main idea behind choosing a very small heating foil
consists in reaching a small temperature gradient across the foil thickness, i.e.
the temperatures on both sides of the foil should be nearly identical. In that
case, the measured data will be a good estimate of the temperature on the
inaccessible film side of the foil. The measurement section has the dimension
19.5 × 39 mm2. Hence, we define the domain Ω := 0.025 × 19.5 × 39 mm3.
Due to this geometric anisotropy, we have to use degenerated finite elements
(see Section 4).

The measurement data are taken with a sampling frequency of 500 Hz and a
space resolution of 100 × 200 pixel. These technical data translate to a time
step size of τ = 2 ms in the one step θ-scheme and a space discretization of
100×200 unknowns in the y-z-plane in the case of a one by one allocation, i.e. if
we consider the same resolution for the measurement data and the numerical
simulation. For the space discretization in the x-direction only 5 unknowns
are used, which turns out to be an appropiate choice. To investigate the effect
of the discretization on the temperature profile, we solved the direct problem
for 5 and 9 unknowns in x-direction, respectively. As no additional frequencies
appeared using the finer space mesh, we conclude that already the coarser grid
is appropriate for the resolution of the temperature changes in that direction.
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Altogether we get a space discretization with 472824 tetrahedra. The final
time of the experiment is tf = 0.3 s, which corresponds to 150 temperature
frames that are taken with the IR camera in order to observe the influence of
some waves flowing off with the laminar falling film.

The electrical heating generates a constant heat flux qh(x, t) = 6.4 kW
m2 , (x, t) ∈

Γ1 × [t0, tf ]. For the start approximation, we choose q0
c (x, t) = qh, (x, t) ∈

Γ2× [t0, tf ], because we expect qc and qh to have the same order of magnitude,
due to the very thin heating foil. The other boundaries of the space domain
are assumed to be perfectly isolated and the initial temperature distribution
corresponds to the first temperature frame assumed to be constant across the
foil thickness. The material properties of the foil are

ρ = 8900
kg

m3
, c = 410

J

kg K
, λ = 23

W

m K
.

resulting in a thermal diffusivity of a = 6.3 · 10−6 m2

s
.

In Fig. 14 the measured temperature distribution over the y-z-plane at a cer-
tain point in time is shown. The plot clearly shows that these data are per-
turbed by a large amount of noise. Without going into more detail here, we
mention the measurement preprocessing applied to the experimental data of
the falling film. In order to remove the effect of the convective heat transport
in the flow direction of the falling film, a reference picture is subtracted from
all the temperature frames taken with the IR camera.

Fig. 14. Measured temperature data

A typical observation in the context of inverse problems deals with the effect of
noise in the given input data with respect to the number of optimization iter-
ations. Fig. 15 shows the evolution of the corresponding objective functional,
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which decreases rapidly in the first iterations and flattens in the following
steps. Although the temperature residual gets smaller, the quality of the cor-
responding estimated heat flux gets worse because of oscillations that appear
with a rising number of optimization steps. This is an important reason why
we have to investigate suitable regularization methods.
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Fig. 15. Objective functional over iterations

In Fig. 16, the optimal solution computed on the basis of measured input
data is presented over the given time interval. Here the estimated heat flux
q15
c is plotted for different time values. The discrepancy principle as described

above has been used as a stopping rule resulting in nopt = 15 iterations.
The estimated standard deviation of the measurement error is σ = 0.02. As a
reference for the quality of the calculated result the measured temperature and
the temperature determined by the computed heat flux are shown as well. The
L-curve for this case is shown in Figure 17. We see that the optimal estimate
is also obtained after 15 iterations, though the maximum curvature point is
not very much exposed.

Looking at the solution over the time interval we observe that the estimated
heat flux shows a wavy structure moving along in the flow direction of the
falling film (i.e. the z-direction) with the same frequency as the film waves.
This can be traced back to the influence of the wavy film surface whose varying
thickness effects the amount of heat that is transferred from the foil to the
film. The quality of the approximation decreases at the end of time, since the
solution of the adjoint problem is zero at final time and therefore causes no
improvement of the corresponding iterative solution.
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Fig. 16. Estimation result after 15 iterations at different time steps: Heat flux esti-
mate q15

c (a), measured (dashed line) and estimated temperature (solid line) (b)

7 Conclusions and future work

The conjugate gradient method has successfully been applied to the 3D tran-
sient inverse heat conduction problem in a falling film experiment to estimate
the boundary heat flux at the film side of the heating foil from high resolution
temperature measurements taken with an infrared camera at the foil back side.
Simulation studies show that a time-dependent heat flux can be adequately
predicted from the measurements within few iterations of the CG algorithm.
The quality of the estimation depends on the level of the measurement error.

Future work will be devoted to the more complex problem of estimating the
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Fig. 17. L-curve for the measurement data

heat flux on the wavy surface of the falling film. For this task, we need to
address momentum equations in addition to the energy equation including
convective terms. The same algorithm can also be used for this case. More-
over, using the estimation procedure we can perform an optimal design of
the experimental setup and determine conditions to enhance the information
content of the measurements.
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[13] T. Lüttich, A. Mhamdi, and W. Marquardt. Design, formulation and solution
of multi-dimensional inverse heat conduction problems. Accepted: Numerical

Heat Transfer , Part B, 2004.

[14] W. Marquardt. Model-based experimental analysis: A systems approach to
mechanistic modeling of kinetic phenomena. In R. Agrarwal C. A. Floudas,
editor, Proceedings of FOCAPD, pages 165–183, 2004.

[15] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential

Equations. Cambridge University Press, Cambridge, New York, Melbourne,
1994.

[16] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, Berlin,
Heidelberg, New York, 1999.

[17] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential

Equations. Springer, Berlin, Heidelberg, 1994.

23



[18] Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM,
Philadelpha, PA, 2003.

[19] C. Yang and C. Chen. Inverse estimation of the boundary condition in three–
dimensional heat conduction. J. Phys. D. Appl. Phys., 30(15):2209–2216, 1997.

24


