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Abstract

In this paper we consider a reaction-diffusion boundary value prob-
lem in a three-dimensional thin domain. The very different length
scales in the geometry result in an anisotropy effect. Our study is mo-
tivated by a parabolic heat conduction problem in a thin foil leading
to such anisotropic reaction-diffusion problems in each time step of an
implicit time integration method [7]. The reaction-diffusion problem
contains two important parameters, namely ε > 0 which parameterizes
the thickness of the domain and µ > 0 denoting the measure for the
size of the reaction term relative to that of the diffusion term. In this
paper we analyze the convergence of a multigrid method with a robust
(line) smoother. Both, for the W- and the V-cycle method we derive
contraction number bounds smaller than one uniform with respect to
the mesh size and the parameters ε and µ.
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1 Introduction

In this paper we study a reaction-diffusion boundary value problem on the
domain Ωε := [0, 1]2 × [0, ε] with 0 < ε ≤ 1. We use the notation (., .)0
and ‖.‖0 for the standard scalar product and norm in L2(Ωε). The scalar
products and corresponding norms in Hk(Ωε), k = 1, 2 are denoted by (., .)k
and ‖.‖k, respectively. Let the Dirichlet and Neumann boundaries of Ωε be
denoted by

ΓD := {(x, y, z) | (x, y) ∈ [0, 1]2, z ∈ {0, ε}},
ΓN := {(x, y, z) | (x, y) ∈ {0, 1}2, z ∈ [0, ε]},

(1)

and define Uε := {v ∈ H1(Ωε) | v = 0 on ΓD}. For µ > 0 we introduce the
bilinear form

a(u, v) := (∇u,∇v)0 + µ(u, v)0 for all u, v ∈ Uε.
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This bilinear form is continuous and elliptic on Uε. For given f ∈ L2(Ωε)
we consider the following problem: find u ∈ Uε such that

a(u, v) = (f, v)0 for all v ∈ Uε. (2)

For the discretization of this problem we use standard linear conforming
finite elements on a nested family of uniform tetrahedral grids. To obtain a
bound for the discretization error we use the Céa-lemma and a suitable inter-
polation operator. In a two-dimensional domain one can apply the standard
Lagrangian interpolation operator even for such anisotropic problems. For
the three-dimensonal case, however, this operator is not satisfactory. Instead
we use a modified Scott-Zhang interpolation operator which is introduced
in [1]. This operator conserves Dirichlet boundary conditions only on the
upper and lower faces of the domain Ωε. As far as we know there is no vari-
ant of this operator that handles the problem with pure Dirichlet boundary
conditions. Therefore we restrict our considerations to the combination of
Dirichlet and Neumann boundaries as in (1). Based on the modified Scott-
Zhang interpolation operator we derive a finite element discretization error
bound in which the dependence on the parameters ε and µ is explicit. To
solve the discrete problem we consider a multigrid method with a symmetric
z-line Gauss-Seidel smoother. The main topic of our paper is a convergence
analysis of this method. For the multigrid W-cycle we analyze the conver-
gence in the framework of the approximation and smoothing property. We
prove robustness of the multigrid W-cycle method in the sense that (for suf-
ficiently many smoothing iterations) its contraction number in the Euclidean
norm is bounded by a constant smaller than one independent of all the pa-
rameters. On the basis of [11] and [12] we also prove a robustness result for
the V-cycle multigrid method. Finally, we present numerical experiments
that illustrate these robustness properties.

In the literature the convergence of multigrid methods for anisotropic
pure diffusion problems, i.e. a problem as in (2) with µ = 0, has been studied
in [4, 10, 11, 12] and [13, 14]. In the latter papers the robustness of smoothers
is studied, whereas in the former the convergence of W-cycle and V-cycle
algorithms is analyzed. These convergence analyses of multigrid methods
are based on the standard Lagrangian interpolation operator and (thus) are
restricted to the two-dimensional case. In [2] a finite element method for
the Poisson problem on three-dimensional domains with anisotropic mesh
refinement is studied. For a multigrid scheme in which semicoarsening and
line smoothers are combined, robust convergence of the V-cycle is shown.
In all these analyses only the case µ = 0 is considered. In the present paper
we treat the three-dimensional case and consider the additional (reaction)
parameter µ > 0.
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2 Finite element discretization

From the Lax-Milgram lemma it follows that problem (2) has a unique
solution. Note, that the very different length scales in the (x, y)- and the
z-direction (for ε≪ 1) result in an anisotropy effect.

Remark 1 Instead of (2) we could also consider the weak formulation of the
following anisotropic reaction-diffusion problem on the unit cube Ω := [0, 1]3:







−uxx − uyy − λuzz + µu = f in Ω,
u = 0 on ΓD,

∂u
∂n

= 0 on ΓN ,

(3)

with a parameter λ = 1/ε2 ≥ 1. The discrete versions of both formulations
(2) and (3) lead to operators that have very similar anisotropy properties. In
this paper we consider (2) because our research is motivated by a parabolic
heat conduction problem in a foil, which is a domain of the form Ωε with
ε≪ 1 (cf. [7]). An implicit time integration method applied to this parabolic
problem leads to a problem of the form (2) in each time step.

For the discretization we apply a standard finite element method based on
a uniform family of nested triangulations. The uniform subdivision of the
domain is based on Kuhn’s triangulation, as illustrated in Fig. 1. A stable
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Figure 1: (a) Initial Kuhn triangulation T0 and (b) first refinement T1.

regular (red) refinement strategy results in a family of consistent, nested
triangulations (see [3]), which is denoted by {Tk}k≥0. With Tk we associate
the mesh size parameter hk = (1

2)k. Note that for all T ∈ Tk we have

hT := diam(T ) =
√

2hk,

ρT := sup{diam(S) |S is a ball contained in T} ∼ εhk.

Thus, this family of triangulations is regular in the sense that

σ := sup
k∈N

sup
T∈Tk

hT

ρT
<∞
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holds. However, σ ∼ ε−1 and thus σ → ∞ for ε ↓ 0. In Fig. 2 we show
one particular hexahedron on level k and a typical tetrahedron T ∈ Tk. Due
to the degeneracy of the given domain Ωε, inside the elements T arbitrarily
small angles appear for ε ↓ 0. On the other hand the maximum angles that
occur are right angles meaning that a maximum angle condition is satisfied
uniformly w.r.t. k and ε.
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Figure 2: (a) Hexahedron on level k and (b) typical tetrahedron T ∈ Tk.

For the discretization of (2) we use conforming finite elements and piece-
wise linear functions (P1-elements) with respect to the sequence of nested
triangulations {Tk}k≥0. This results in a hierarchy of nested finite element
spaces

Uε,0 ⊂ Uε,1 ⊂ . . . ⊂ Uε.

The discrete problem on level k is: find uk ∈ Uε,k such that

a(uk, vk) = (f, vk)0 for all vk ∈ Uε,k. (4)

Due to the fact that a maximum angle condition is satisfied the spaces
Uε,k are suitable for the spatial discretization of the parabolic problem from
which (after implicit time integration) problem (2) originates.

3 Interpolation bounds

In our convergence analysis of the multigrid method we need finite element
discretization error bounds. If we apply the standard approach based on
the Céa-lemma then a key ingredient for obtaining such bounds is a suitable
(quasi-)interpolation operator

Ik : H2(Ωε) → Uε,k, k = 0, 1, . . .

This operator Ik should be such that for all u ∈ H2(Ωε) the following error
bounds hold

‖u− Iku‖0 ≤ c1h
2
k|u|2, (5)

‖u− Iku‖1 ≤ c2hk|u|2, (6)
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with constants c1, c2 independent of ε (and, as usual, also of k, u). We refer
to [1] for an extensive treatment of interpolation operators for anisotropic
finite element spaces. Here we briefly discuss a few issues that are relevant for
the analysis in this paper. For the two-dimensional case uniform bounds as
in (5)-(6) hold for the standard nodal Lagrangian interpolation operator (cf.
corollary 2.1 in [1]). For three-dimensional problems the nodal Lagrangian
interpolation operator still satisfies the uniform bound (5), but a result as
in (6) does not hold in the anisotropic case (see example 2.1 together with
example 2.6 in [1]). However, for this operator the result in (6) “almost”
holds, in the following sense. For any p > 2 an estimate of the form

‖u− Iku‖W 1
p (Ωε) ≤ cphk|u|W 2

p (Ωε) for all u ∈W 2
p (Ωε),

holds, with cp independent of ε (cf. corollary 2.1 in [1]). Here Wm
p (Ωε)

denotes the usual Sobolev space of functions whose weak derivatives up to
order m belong to Lp(Ωε). For the Clément and Scott-Zhang interpolation
operators the uniform bound (5) holds but again (6) does not hold (cf.
example 3.1 and further comments in [1]). Thus, there is a need for other
(better) interpolation operators for anisotropic finite element spaces. Such
operators are presented in [1]. In particular a modification of the original
Scott-Zhang operator is introduced which can be shown to satisfy, for the
three-dimensional case, both uniform bounds (5) and (6). This operator is
needed in the finite element discretization error analysis in the next section
and therefore we describe how this operator is defined. A detailed discussion
of this operator and its properties can be found in [1] (section 3.4).

For the description of this modified Scott-Zhang operator we need some
additional notation. Let {Xi}1≤i≤ñk

denote the set of vertices of the tri-
angulation Tk including those on the entire boundary (i.e. in particular on
the Dirichlet boundary) and {φi}1≤i≤ñk

the corresponding standard nodal
basis which generates the finite element space Vε,k. Note that we consider ñk

vertices while nk denotes the dimension of the original finite element space
Uε,k. For an element T ∈ Tk we introduce the patch of surrounding elements

ST :=
⋃

{T ′ ∈ Tk | T̄ ′ ∩ T̄ 6= ∅}.

To each nodeXi we associate a planar subdomain σi ⊂ Ωε with the following
properties:

(P1) σi is parallel to the x, y-plane.

(P2) Xi ∈ σ̄i.

(P3) There exists a face E of some element T ∈ Tk such that the projection
of E on the x, y-plane is identical to the projection of σi.

(P4) If the projections of any two points Xi and Xj on the x, y-plane coin-
cide then so do the projections of σi and σj .
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In the triangulation Tk all the vertices are contained in planes z = l ε(1/2)k ,
l = 0, . . . , 2k, which are subdivided into faces (triangles). Such a subdivision
and the corresponding degrees of freedom are shown in Fig. 3 for the case
k = 1, l = 1.

τ1
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Figure 3: (a) T1 with plane z = ε
2 and (b) corresponding subdivision into

faces.

One possibility to select the subdomains σi is to assume a lexicographical
numbering of the faces (see Fig. 3 (b)) which should be the same in all the
planes and to associate to each node Xi the face with maximum number.
In this way the properties (P1)–(P3) are obviously satisfied (cf. shaded
face in Fig. 2 (b) for (P3)). Due to the refinement strategy used, on each
fixed level k the corresponding subdivisions into faces are identical for all
the planes and thus (P4) is fulfilled, too. Given these subdomains σi the
modified Scott-Zhang type interpolation operator Lk : H1(Ωε) → Vε,k from
[1] is based on the local L2-orthogonal projections on σi:

‖u− Πσi
u‖L2(σi) = min

v∈P1

‖u− v‖L2(σi), i = 1, . . . , ñk, for u ∈ H1(Ωε).

For u ∈ H1(Ωε) we define

Lku :=

ñk∑

i=1

aiφi, with ai := (Πσi
u)(Xi). (7)

In theorem 3.3 from [1] the following local stability and approximation prop-
erty of the operator Lk is given.

Theorem 1 The modified Scott-Zhang operator Lk defined in (7) satisfies
the following estimates for all T ∈ Tk and all u ∈W l

p(ST ):

|Lku|W m
q (T ) ≤ c(meas3 T )1/q−1/p|u|W m

p (ST ), (8)

|u− Lku|W m
q (T ) ≤ c(meas3 T )1/q−1/p

∑

|α|=l−m

h
|α|
k εα3 |Dαu|W m

p (ST ), (9)

with 0 ≤ m ≤ l, l = 1, 2. For (9) the numbers p, q ∈ [1,∞] must be such
that W l

p(T ) →֒Wm
q (T ). The constant c is independent of k and ε.
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Here |.|W m
p (T ) denotes the seminorm in the Sobolev space Wm

p (T ). Note

that the term h
|α|
k εα3 represents the product of the length scales of the

edges of T in the three coordinate directions. Due to the different length
scales being exploited in (9) estimates of this kind are called anisotropic
estimates. Theorem 3.3 in [1] is more general than the result formulated in
theorem 1. The former gives a similar result for more general (for example,
higher order,) polynomial finite elements in d-dimensional spaces, with d =
2, 3.

Corollary 1 The modified Scott-Zhang operator Lk defined in (7) satisfies
the following estimates

‖u− Lku‖0 ≤ c1h
2
k|u|2, (10)

|u− Lku|1 ≤ c2hk|u|2, (11)

for all u ∈ H2(Ωε) ∩ Uε and with constants c1, c2 independent of k and ε.
Moreover, Lk : H2(Ωε) ∩ Uε → Uε,k holds.

Proof: If in (9) we take p = q = 2, l = 2 and m ∈ {0, 1}, and sum
over all T ∈ Tk we obtain (using ε ≤ 1) the results in (10) and (11).
Take u ∈ H2(Ωε) ∩ Uε, i.e. u|ΓD

= 0. From the construction of the
modified Scott-Zhang operator Lk : H1(Ωε) → Vε,k in (7) it follows that
ai = (Πσi

u)(Xi) = 0 if Xi is a vertex on the Dirichlet boundary ΓD. Thus
(Lku)|ΓD

= 0 holds. Using Uε,k = {v ∈ Vε,k | v|ΓD
= 0} we conclude that

Lku ∈ Uε,k. ⋄

4 Finite element discretization error bound

In this section, using a standard approach, we derive a finite element dis-
cretization error bound that is uniform w.r.t. the parameters µ and ε.

Remark 2 Due to the special geometry of the considered domain Ωε one
can use the so-called Schwarz reflection principle (see [5] page 143) to show
that the solution u of (2) lies in H2(Ωε) taking into account the mixed
boundary conditions. The idea in applying this principle is to get the original
problem in a larger domain Ω̃ε ⊃⊃ Ωε with an extended right-hand side
f̃ that belongs to L2(Ω̃ε). This can be realized by even extension over
the Neumann boundaries and odd extension over the Dirichlet boundaries,
respectively. Using the inner regularity of the extended problem solution
finally leads to the desired result u ∈ H2(Ωε). Similar results for cases with
pure Neumann or Dirichlet boundary conditions can be found e.g. in [6].

We proceed with an elementary lemma.
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Lemma 1 For all u ∈ H2(Ωε) ∩ Uε the identity

|u|2 = ‖∆u‖0 (12)

holds.

Proof: It is sufficient to prove (12) in the dense subset C∞(Ωε) ∩ Uε. For u
from this space we have

|u|22 =

∫

Ωε

u2
xx + u2

yy + u2
zz + 2u2

xy + 2u2
xz + 2u2

yz dx dy dz. (13)

The unit outward pointing normal on the boundary Γε := ∂Ωε is denoted by
n = (nx, ny, nz)

T . On the sides of Ωε with normal n = (0, 0,±1)T , i.e. the
Dirichlet boundary, we have the identities ux = uxx = 0 and uy = uyy = 0.
On the sides with normal n = (0,±1, 0)T we have uy = 0 and thus uxy = 0.
Similar relations hold on the remaining Neumann boundaries. Integration
by parts yields

∫

Ωε

u2
xy dx dy dz =

∫

Γε

uxuxyny
︸ ︷︷ ︸

=0

dΓε −
∫

Ωε

uxuxyy dx dy dz

= −
∫

Γε

uxuyynx
︸ ︷︷ ︸

=0

dΓε +

∫

Ωε

uxxuyy dx dy dz.

Similar expressions can be derived for the mixed derivatives uxz and uyz in
(13). This yields

|u|22 =

∫

Ωε

u2
xx + u2

yy + u2
zz + 2uxxuyy + 2uxxuzz + 2uyyuzz dx dy dz

=

∫

Ωε

(uxx + uyy + uzz)
2 dx dy dz =

∫

Ωε

(∆u)2 dx dy dz = ‖∆u‖2
0

and thus the lemma is proved. ⋄

Lemma 2 Let u be the solution of the continuous problem (2). Then the
inequalities

‖u‖0 ≤ 1

µ
‖f‖0, (14)

|u|2 ≤ 2‖f‖0, (15)

hold.
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Proof: Setting v = u in (2) gives

µ‖u‖2
0 ≤ a(u, u) = (f, u)0 ≤ ‖f‖0‖u‖0,

and thus (14) holds. Since the solution u of (2) lies in H2(Ωε) (see remark 2)
we can write −∆u = f − µu. Using lemma 1 we get

|u|2 = ‖∆u‖0 = ‖f − µu‖0 ≤ ‖f‖0 + µ‖u‖0 ≤ 2‖f‖0,

which proves the result in (15). ⋄

Theorem 2 Let u be the solution of the continuous problem (2) and uk the
solution of the discrete problem (4). Then

‖u− uk‖0 ≤ c min

{
1

µ
, h2

k

}

‖f‖0 (16)

holds, with a constant c independent of f, ε, µ and k.

Proof: We use the notation ek = u−uk. Since a(ek, vk) = 0 for all vk ∈ Uε,k

we get
µ‖ek‖2

0 ≤ a(ek, ek) = a(u, ek) = (f, ek)0 ≤ ‖f‖0‖ek‖0

and thus

‖ek‖0 ≤ 1

µ
‖f‖0. (17)

Now we apply Nitsche’s duality argument and use the interpolation results
from corollary 1. Let w ∈ Uε be such that a(w, v) = (ek, v)0 for all v ∈ Uε.
From lemma 2 we get

|w|2 ≤ 2‖ek‖0. (18)

We also have (due to the Céa-lemma)

|ek|21 ≤ a(ek, ek) ≤ |u− Lku|21 + µ‖u− Lku‖2
0

≤ (c22h
2
k + µc21h

4
k)|u|22

≤ c(1 + µh2
k)h

2
k‖f‖2

0. (19)

Thus we get (with a constant c independent of k, ε and µ)

‖ek‖2
0 = a(w, ek) = a(w − Lkw, ek)

≤ |w − Lkw|1|ek|1 + µ‖w − Lkw‖0‖ek‖0

≤ (c2hk|ek|1 + µc1h
2
k‖ek‖0)|w|2

(17),(18)

≤ c(hk|ek|1 + h2
k‖f‖0)‖ek‖0

(19)

≤ c
(

[1 + µh2
k]

1

2h2
k‖f‖0 + h2

k‖f‖0

)

‖ek‖0

= c
(

[1 + µh2
k]

1

2 + 1
)

h2
k‖f‖0‖ek‖0.
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Hence, for h2
k ≤ 1

µ we obtain

‖ek‖0 ≤ c h2
k‖f‖0.

Combining this estimate with the one in (17) proves the theorem. ⋄

5 Multigrid convergence analysis

In this section we investigate the convergence behaviour of a multigrid
method applied to the discrete problem (4). We use the approach introduced
by Hackbusch (see [8]) based on the approximation and smoothing property.
It is well-known that the anisotropy in the discrete problem (4) causes stan-
dard pointwise relaxation methods as the damped Jacobi method or the
(symmetric) Gauss-Seidel method to smooth the error only in the direction
corresponding to the strong couplings. This causes a (strong) deterioration
in the rate of convergence of a multigrid method with such smoothers for
ε ↓ 0. One possibility to deal with this problem is to keep pointwise re-
laxation but to adapt the strategy of grid coarsening e.g. by doubling the
mesh size only in the directions in which the error is smooth. An alternative
approach, which is used in this paper, is to modify the smoothing procedure
from pointwise relaxation to linewise relaxation meaning that the unknowns
belonging to a line are updated simultaneously. Hackbusch (cf. [8]) intro-
duced the notion of a “robust smoother” for anisotropic problems. Such a
smoother should be a fast iterative (or even direct) solver for the discrete
problem in the limit case ε ↓ 0. In the problem that we consider in this pa-
per we do not only have the anisotropy parameter ε but also the parameter
µ in front of the reaction term.

In this section, using a fairly standard approach, we derive an approxima-
tion property, theorem 3, and a smoothing property for the symmetric z-line
Gauss-Seidel method, theorem 4, in which the dependence of the bounds on
ε, µ and k is explicit. Combination of these results immediately yields a
uniform bound (< 1 for sufficiently many smoothing iterations) for the con-
traction number of the two-grid method and of the W-cycle iteration.

We introduce the isomorphism

Pk : Xk := R
nk → Uε,k, Pkx =

nk∑

i=1

xiφi.

In order to establish the norm equivalence

c−1‖x‖ε ≤ ‖Pkx‖0 ≤ c‖x‖ε for all x ∈ Xk, (20)
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with a constant c independent of ε and k we use the scaled Euclidean scalar
product

〈x, y〉ε := εh3
k

nk∑

i=1

xiyi, ‖ · ‖2
ε := 〈·, ·〉ε.

Standard arguments yield that for this scaled norm indeed the uniform norm
equivalence (20) holds. Let the corresponding matrix norm (which is inde-
pendent of ε) be denoted by ‖ · ‖. Note that the adjoint P ∗

k : Uε,k → Xk

satisfies (Pkx, v)0 = 〈x, P ∗
k v〉ε for all x ∈ Xk, v ∈ Uε,k. The stiffness matrix

Ak on level k is defined by

〈Akx, y〉ε = a(Pkx, Pky) for all x, y ∈ Xk. (21)

In an interior grid point the discrete problem has the stencil given in Fig. 4.
Note that for a point on the Neumann boundary only certain off-diagonal

4 + 2/ε2

−1

−1 −1

−1

−1/ε2

−1/ε2

1/30

1/30

2/5

1/20 1/30

1/20

1/30

1/30

1/20

1/20

1/30

1/20

1/20

1/20

1/20

+µ×1
h2

k

×

Figure 4: 3D difference stencil.

stencil entries in the x, y-plane change which does not affect the further
analysis. For the prolongation and restriction in the multigrid method the
canonical choice

pk : Xk−1 → Xk, pk = P−1
k Pk−1 (22)

rk : Xk → Xk−1, rk = P ∗
k−1(P

∗
k )−1 =

(
hk

hk−1

)3

pT
k , (23)

is used. We use stationary linear iterative methods as smoothers and thus
these are of the form

xnew = xold −W−1
k (Akx

old − b).

The corresponding iteration matrix is denoted by

Sk = I −W−1
k Ak. (24)

We consider the damped z-line Jacobi method and the symmetric z-line
Gauss-Seidel method as smoothers. For the matrix representation of the
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discrete operator (see the stencil notation in Fig. 4) we assume a z-line
ordering of the grid points, i.e. within each line of unknowns in z-direction
(the z-lines) the vertices are numbered from bottom to top while the z-lines
themselves are ordered lexicographically in the x, y-plane. Let Nk := 2k −1.
The stiffness matrix can be decomposed as

Ak = Dk − Lk − LT
k ,

with the block-diagonal matrix Dk = blockdiag(D̂k) ∈ R
nk×nk and diagonal

blocks

D̂k =
1

ε2h2
k

tridiag(−1, 2,−1) +
4

h2
k

Ik +
µ

20
tridiag(1, 8, 1) ∈ R

Nk×Nk . (25)

Note that the upper and lower faces of Ωε are Dirichlet boundaries. The
matrix Lk is strictly lower block-triangular. The choice

Wk := ω−1Dk, ω ∈ (0, 1],

defines a (damped) line Jacobi smoother, and

Wk := (Dk − Lk)D
−1
k (Dk − LT

k ) (26)

yields the symmetric line Gauss-Seidel method. In the convergence analysis
and in the numerical experiments below we only consider the symmetric
line Gauss-Seidel method. Similar results, however, can be obtained for the
damped line Jacobi method if we use a damping factor ω = ω(ε, µ, k) such
that ω−1Dk ≥ Ak holds.

Based on these components a standard multigrid algorithm with ν1 pre- and
ν2 post-smoothing iterations can be formulated (see [9]) with an iteration
matrix that satisfies the recursion

M0(ν1, ν2) = 0,

Mk(ν1, ν2) = Sν2

k (I − pk(I −Mγ
k−1)A

−1
k−1rkAk)S

ν1

k , k = 1, 2, . . .
(27)

The choices γ = 1 and γ = 2 correspond to the V- and W-cycle, respec-
tively. Results of numerical experiments with this method are presented in
section 6.

We now turn to the convergence analysis of this multigrid method. All
constants (denoted by c or ci) that appear in the analysis are independent
of ε, µ and k.

The following lemma gives a result on the scaling of the stiffness matrix.

Lemma 3 Let Ak be the stiffness matrix from (21). Then the inequalities

c1

(
1

ε2h2
k

+ µ

)

≤ ‖Ak‖ ≤ c2

(
1

ε2h2
k

+ µ

)

, (28)

hold with constants c1 > 0, c2 independent of ε, µ and k.
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Proof: Let ei denote the ith basis vector in R
nk and Si := supp(φi) the

support of the nodal basis function φi. Then we have

(Ak)ii =
〈Akei, ei〉ε
〈ei, ei〉ε

= ε−1h−3
k a(φi, φi)

= ε−1h−3
k (|φi|21 + µ‖φi‖2

0)

= ε−1h−3
k

(∫

Ωε

(∇φi)
2dΩε + µ

∫

Ωε

φ2
i dΩε

)

∼ ε−1h−3
k

(
∫

Si

(
1

εhk

)2

dΩε + µ

∫

Si

1 dΩε

)

∼ ε−1h−3
k

(

εh3
k

1

ε2h2
k

+ µεh3
k

)

=
1

ε2h2
k

+ µ.

Thus, we have ‖Ak‖ ≥ (Ak)ii ≥ c1 (1/(ε2h2
k) + µ) with c1 > 0, yielding the

left inequality in (28). Using the inverse inequality

|Pkx|21 ≤ c ε−2h−2
k ‖Pkx‖2

0 (29)

we get

〈Akx, x〉ε = a(Pkx, Pkx) = |Pkx|21 + µ‖Pkx‖2
0

≤ c

(
1

ε2h2
k

+ µ

)

‖Pkx‖2
0 ≤ c2

(
1

ε2h2
k

+ µ

)

‖x‖2
ε .

Finally, we note that all the constants used in this proof are independent of
ε, µ and k. ⋄

Theorem 3 (Approximation property) Let Ak be the stiffness matrix
from (21) and pk, rk the prolongation and restriction from (22) and (23),
respectively. Then the approximation property

‖A−1
k − pkA

−1
k−1rk‖ ≤ c

1 + ε2µh2
k

ε2
min

{
1

µh2
k

, 1

}

‖Ak‖−1 (30)

holds with a constant c independent of ε, µ and k.

Proof: We consider an arbitrary yk ∈ Xk. Let w ∈ Uε, wk ∈ Uε,k and
wk−1 ∈ Uε,k−1 be such that

a(w, v) = ((P ∗
k )−1yk, v)0 for all v ∈ Uε,

a(wk, v) = ((P ∗
k )−1yk, v)0 for all v ∈ Uε,k, (31)

a(wk−1, v) = ((P ∗
k )−1yk, v)0 for all v ∈ Uε,k−1. (32)

13



Setting v = Pkyk ∈ Uε,k in (31) we get the identity

〈AkP
−1
k wk, yk〉ε

(21)
= a(wk, Pkyk)

= ((P ∗
k )−1yk, Pkyk)0 = 〈yk, yk〉ε.

Thus we obtain wk = PkA
−1
k yk. Using the same line of argumentation it

follows that wk−1 = Pk−1A
−1
k−1rkyk. We use theorem 2 with f := (P ∗

k )−1yk ∈
L2(Ωε) and obtain

‖w − wl‖0 ≤ cmin

{
1

µ
, h2

l

}

‖(P ∗
k )−1yk‖0 for l ∈ {k − 1, k}.

Using a triangle inequality and hk−1 = 2hk we get

‖wk − wk−1‖0 ≤ cmin

{
1

µ
, h2

k

}

‖(P ∗
k )−1yk‖0.

Due to the norm equivalence (20) we have

‖(A−1
k − pkA

−1
k−1rk)yk‖ε ≤ c ‖PkA

−1
k yk − PkpkA

−1
k−1rkyk‖0

= c ‖wk − wk−1‖0

≤ cmin

{
1

µ
, h2

k

}

‖(P ∗
k )−1yk‖0

≤ cmin

{
1

µ
, h2

k

}

‖yk‖ε,

and thus

‖A−1
k − pkA

−1
k−1rk‖ ≤ c min

{
1

µ
, h2

k

}

(33)

holds. Using the scaling property from lemma 3 one easily derives the bound
in (30). ⋄
We now turn to the smoothing property of the symmetric line Gauss-Seidel
method for which the matrix Wk in (26) is symmetric positive definite. We
start with an elementary lemma.

Lemma 4 Let Dk = blockdiag(D̂k) be the block-diagonal part of Ak. The
smallest eigenvalue of Dk is bounded from below by

λmin(Dk) ≥ c1

(
1

ε2
+

1

h2
k

+ µ

)

. (34)

For the lower block-triangular part Lk of Ak we have

‖Lk‖ ≤ c2

(
1

h2
k

+ µ

)

. (35)

The constants c1 > 0 and c2 are independent of ε, µ and k.
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Proof: Consider the diagonal blocks D̂k of Dk in (25). For the third term
in this representation we have

µ

20
λmin

(
tridiag(1, 8, 1)

)
≥ 3

10
µ.

Furthermore, for the smallest eigenvalue of the first summand in (25) we
have

ε−2h−2
k λmin

(
tridiag(−1, 2,−1)

)
= ε−2h−2

k 4 sin2
(π

2
(Nk + 1)−1

)

= 4ε−2h−2
k sin2(π2−k−1) ≥ c ε−2,

with c > 0 independent of ε and k. Since all three terms in (25) are sym-
metric positive definite we get the lower bound in (34). We now prove (35).
From Fig. 4 we see that the matrix Lk does not contain any entries depend-
ing on ε and that ‖Lk‖p ≤ c (h−2

k +µ), for p = 1,∞, holds with c indpendent
of k and µ. Thus we obtain

‖Lk‖2 ≤ ‖Lk‖1‖Lk‖∞ ≤ c (h−2
k + µ)2,

which completes the proof. ⋄
For the symmetric line Gauss-Seidel method we have

Wk = Ak + LkD
−1
k LT

k ≥ Ak. (36)

The following result can be found in [9].

Lemma 5 For all symmetric matrices B with 0 ≤ B ≤ I, the inequality

‖B(I −B)ν‖2 ≤ η0(ν) (ν ≥ 0)

holds, where the function η0(ν) is defined by

η0(ν) := νν/(ν + 1)ν+1 ≤ 1

eν + 1
.

Theorem 4 (Smoothing property) For the symmetric z-line Gauss-Seidel
smoother Sk defined by (24) and (36) the following property holds

‖AkS
ν
k‖ ≤ c

ε4

ν

(1 + µh2
k)

2

(
h2

k + ε2(1 + µh2
k)
)
(1 + ε2µh2

k)
‖Ak‖, ν = 1, 2, . . . (37)

with a constant c independent of ε, k, µ and ν.

Proof: The symmetric block Gauss-Seidel method corresponds to the split-
ting Ak = Wk − Rk with Rk := LkD

−1
k LT

k . Note that Rk = RT
k , Wk =

15



W T
k > 0 and Wk > Rk ≥ 0 holds, and thus σ(W−1

k Rk) ⊂ [0, 1). Moreover,

R
1

2

k is well-defined and

0 ≤ Ck := R
1

2

kW
−1
k R

1

2

k < I.

Using the identity (for ν ≥ 1)

AkS
ν
k = (Wk −Rk)(W

−1
k Rk)

ν = R
1

2

kC
ν−1
k (I − Ck)R

1

2

k

and lemma 5 with B = I − Ck we obtain

‖AkS
ν
k‖ ≤ ‖Rk‖η0(ν − 1) ≤ c

ν
‖Rk‖

with c being independent of all the parameters. Using the result in lemma 4
we get

‖Rk‖ ≤ ‖Lk‖‖D−1
k ‖‖LT

k ‖ = ‖Lk‖2λmin(Dk)−1

≤ c

(
1

h2
k

+ µ

)2( 1

ε2
+

1

h2
k

+ µ

)−1

= c
ε2(1 + µh2

k)
2

h2
k(ε

2 + h2
k + ε2µh2

k)
. (38)

In combination with the scaling property of ‖Ak‖ in lemma 3 we obtain the
bound in (37). ⋄
As a direct consequence of the approximation and smoothing property we
obtain the following main result.

Theorem 5 For the two-grid iteration matrix with ν1 = ν pre- and ν2 = 0
post-smoothing iterations with the symmetric z-line Gauss-Seidel method we
have

‖(I − pkA
−1
k−1rkAk)S

ν
k‖ ≤ CT

ν

ε2(1 + µh2
k)

h2
k + ε2(1 + µh2

k)
≤ CT

ν
, ν = 1, 2, . . . (39)

with CT independent of ε, µ, k, and ν.

Proof: From theorem 3 and theorem 4 we obtain

‖(I − pkA
−1
k−1rkAk)S

ν
k‖

≤ ‖A−1
k − pkA

−1
k−1rk‖‖AkS

ν
k‖

≤ c
1 + ε2µh2

k

ε2
min

{
1

µh2
k

, 1

}
ε4

ν

(1 + µh2
k)

2

(
h2

k + ε2(1 + µh2
k)
)
(1 + ε2µh2

k)

=
c

ν

ε2(1 + µh2
k)

h2
k + ε2(1 + µh2

k)
(1 + µh2

k)min

{
1

µh2
k

, 1

}

.

Finally, note that (1 + x)min{ 1
x , 1} ≤ 2 for all x > 0. ⋄

For the multigrid W-cycle we can apply theorem 10.6.25 from [9] and thus
obtain the following result.
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Theorem 6 For every fixed ψ ∈ (0, 1) there exists ν0 > 0 independent of
ε, µ and k such that for the iteration matrix Mk of the multigrid W-cycle
(γ = 2 in (27)) with symmetric z-line Gauss-Seidel smoothing we have

‖Mk(ν, 0)‖ ≤ ψ for all ν ≥ ν0.

From the first bound in (39) we see that for fixed k and µ the norm of the two-
grid iteration matrix tends to zero for ε ↓ 0. The same holds for the iteration
matrix of the multigrid W-cycle. Thus we expect very fast convergence of
the multigrid method for ε≪ 1. This is confirmed by numerical experiments
in the next section.

We now derive a convergence result for the multigrid V-cycle, based on

the analysis given in [12]. We use the energy norm ‖B‖A := ‖A
1

2

kBA
− 1

2

k ‖ for
B ∈ R

nk×nk . Note that this norm depends on the parameters k, µ and ε.

Theorem 7 Let Mk = Mk(ν, ν) be the iteration matrix of the multigrid V-
cycle (γ = 1 in (27)) with symmetric z-line Gauss-Seidel smoothing. There
exists a constant c independent of ε, µ and k such that

‖Mk‖A ≤ c

c+ ν
for all ν ≥ 1.

Proof: From theorem 2.1 in [12], with α = 1, γ = 1, it follows that

‖Mk‖A ≤ δ

1 + δ
with

δ := ρ(A−1
k − pkA

−1
k−1rk) ρ

(
Ak[(I − S2ν

k )−1 − I]
)
.

(40)

Theorem 2.3 in [12] yields

ρ
(
Ak[(I − S2ν

k )−1 − I]
)
≤ ρ(Rk)

2ν
.

Using the bounds in (33) and (38) we obtain

δ ≤ 1

2ν
‖A−1

k − pkA
−1
k−1rk‖ ‖Rk‖

≤ c

2ν
min

{
1

µ
, h2

k

}
ε2(1 + µh2

k)
2

h2
k(ε2 + h2

k + ε2µh2
k)

≤ c

2ν
min

{
1

µh2
k

, 1

}
(
1 + µh2

k

)
≤ c

2ν
max
x>0

[

min

{
1

x
, 1

}

(1 + x)

]

=
c

ν
.

Substitution of this result in (40) yields

‖Mk‖A ≤ c/ν

1 + c/ν
=

c

c+ ν
,

and thus the theorem is proved. ⋄
A very similar result holds for the V-cycle method with ν1 pre- and ν2 post-
smoothing iterations (with the symmetric z-line Gauss-Seidel method), if
ν1 + ν2 > 0 but not necessarily ν1 = ν2 (cf. [12]).
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6 Numerical experiments

In this section we present results of some numerical experiments using the
multigrid method with a symmetric z-line Gauss-Seidel smoother. The re-
sults confirm the robustness of the W- and the V-cycle multigrid algorithms
w.r.t. variation in the discretization parameter hk and the problem param-
eters ε and µ.

We consider a linear system with stiffness matrix Ak as in (21) and a
random right-hand side vector. The zero vector is used as starting vector.
For the stopping criterion we take a reduction of the relative residual by a
factor 106. The block problems arising within the smoother are solved with
a tridiagonal LU decomposition.

First we study the smoother without coarse grid correction (tables 1 and
2). In these and all other tables the numbers between the brackets give the
average residual reduction per iteration. In the tables 1 and 2 we observe
convergence phenomena as expected for the symmetric z-line Gauss-Seidel
method (GS).

For fixed parameters ε and µ (not too large) the rate of convergence
decreases with increasing refinement level. For fixed values of µ and k the
rate of convergence increases if ε decreases.

Table 1: Number of GS iterations and average reduction for µ = 1.

hk

ε 1/8 1/16 1/32 1/64

1 82(0.85) 279(0.95) 988(0.99) -
1e-1 3(0.11e-1) 6(0.1) 14(0.43) 42(0.77)
1e-3 1(0.5e-10) 1(0.27e-9) 1(0.15e-8) 1(0.85e-8)

Table 2: Number of GS iterations and average reduction for ε = 0.1.

hk

µ 1/8 1/16 1/32 1/64

1e-3 3(0.11e-1) 6(0.1) 14(0.43) 42(0.77)
1e+3 3(0.52e-2) 3(0.11e-1) 8(0.2) 23(0.61)
1e+6 8(0.18) 8(0.16) 7(0.14) 7(0.12)

We now turn to the W-cycle multigrid algorithm with ν1 = 2 pre- and
ν2 = 0 post-smoothing iterations. Table 3 shows very fast convergence for
ε ≪ 1 which is consistent with the first bound in (39). Furthermore, we
clearly observe a uniform upper bound < 1 for the reduction number w.r.t.
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variation in all three parameters.

Table 3: Number of W-cycle iterations and average reduction for µ = 1.

hk

ε 1/8 1/16 1/32 1/64

1 7(0.13) 7(0.11) 6(0.11) 6(0.98e-1)
1e-1 2(0.54e-4) 3(0.21e-2) 4(0.17e-1) 4(0.27e-1)
1e-3 1(0.36e-15) 1(0.52e-15) 1(0.86e-15) 1(0.11e-13)

Table 4: Number of W-cycle iterations and average reduction for ε = 0.1.

hk

µ 1/8 1/16 1/32 1/64

1e-3 2(0.55e-4) 3(0.21e-2) 4(0.17e-1) 4(0.27e-1)
1e+3 2(0.22e-4) 2(0.72e-4) 3(0.45e-2) 4(0.21e-1)
1e+6 4(0.21e-1) 4(0.19e-1) 3(0.12e-1) 3(0.86e-2)

Finally, in the tables 5 and 6 we show results for the V-cycle multigrid
algorithm with ν1 = 2 pre- and ν2 = 0 post-smoothing iterations. These
results show no significant differences compared to those for the W-cycle
algorithm.

Table 5: Number of V-cycle iterations and average reduction for µ = 1.

hk

ε 1/8 1/16 1/32 1/64

1 8(0.15) 8(0.15) 8(0.15) 8(0.15)
1e-1 2(0.54e-4) 3(0.21e-2) 4(0.17e-1) 4(0.3e-1)
1e-3 1(0.36e-15) 1(0.52e-15) 1(0.86e-15) 1(0.11e-13)

Table 6: Number of V-cycle iterations and average reduction for ε = 0.1.

hk

µ 1/8 1/16 1/32 1/64

1e-3 2(0.55e-4) 3(0.21e-2) 4(0.17e-1) 4(0.3e-1)
1e+3 2(0.22e-4) 2(0.72e-4) 3(0.45e-2) 4(0.2e-1)
1e+6 4(0.22e-1) 4(0.19e-1) 3(0.12e-1) 3(0.86e-2)
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