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Abstract. In this paper, an incremental approach for the identification of a model for trans-
port coefficients in convection-diffusion systems on the basis of high-resolution measurement data is
presented. The transport is represented by a convection term with known convective velocity and
by a diffusion term with an unknown, generally state-dependent transport coefficient. The identifi-
cation of the transport model for this transport coefficient constitutes an ill-posed nonlinear inverse
problem. We present a novel decomposition approach in which this inverse problem is split into
a sequence of inverse subproblems. In the first identification step of this incremental approach a
source is estimated by solving an affine-linear inverse problem by means of the conjugate gradient
method. In the second identification step a nonlinear inverse problem has to be solved in order to
reconstruct a transport coefficient. A Newton-type method using the conjugate gradient method in
its inner iteration is used to solve this nonlinear inverse problem of coefficient estimation. Finally, in
the third identification step a transport model structure is proposed and identified on the basis of the
model-free transport coefficient reconstructed in the two previous steps. The ill-posedness of each
inverse problem is examined by using artificially perturbed transient simulation data and appropri-
ate regularization techniques. The identification methodology is illustrated for a three-dimensional
convection-diffusion equation which has its origin in the modeling and simulation of energy transport
in a laminar wavy film flow.
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1. Introduction. Let Ω ⊂ R
3 be a computational domain, with boundary parts

∂Ω = ΓD ∪ΓN , where the indices D and N indicate the Dirichlet and Neumann parts
of the boundary, respectively. We consider the convection-diffusion equation

∂ρu

∂t
+∇ · (ρuw)−∇ · (a∇u) = 0 in Ω× (t0, tf ] , (1.1a)

with initial and boundary conditions

u(x, t0) = u0(x) , x ∈ Ω ,

u(x, t) = gD(x, t) , (x, t) ∈ ΓD × [t0, tf ] ,
∂u

∂n
(x, t) = gN (x, t) , (x, t) ∈ ΓN × [t0, tf ] .

(1.1b)

The scalar state variable u(x, t) represents, e. g. specific enthalpy in case of energy
transport or mass density in case of mass transport. ρ(x, t) stands for the density
of the fluid. The vector field w(x, t) ∈ R

3 represents velocity and is assumed to be
known. The scalar function a( · ) denotes the unknown, in general state-dependent,
transport coefficient.

The transport coefficient describes complicated transport phenomena, for which
a multitude of competing candidate model structures can be formulated on the basis
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of different assumptions and theories. Experimental data should be used to estimate
parameters that occur in these candidate models and to discriminate between the
competing candidate models using some reasonable measure of model validity.

The identification of transport coefficients from appropriate measurement data,
such as temperature or concentration, belongs to the class of ill-posed inverse prob-
lems. Many studies on the estimation of transport coefficients are available. One
possible solution technique is the so-called equation error method [12, 19, 28]. In
that approach the transient measurement data are inserted in the model (1.1) which
is then interpreted as a system of equations for the unknown coefficient. The inte-
gration of these equations results in a direct relationship between the measured data
and the unknown coefficient values. This relationship is frequently quite complicated
and the transport coefficient has to be determined using special problem-adapted
methods. Thus, equation error methods are rather problem-dependent. Another
well-established technique for the identification of transport coefficients, as a function
of states and time, relies on an optimization-based formulation which is used in the
framework of a coefficient inverse problem, cf. [2]. In this approach, the reconstruc-
tion of the transport coefficient in model (1.1) uses suitable transient measurement
data um(x, t) , (x, t) ∈ Ω× [t0, tf ]. It is often assumed that the initial and boundary
conditions of the problem are known. Quite some literature is available on the subject
(cf. [3, 11, 30] and the references therein); the treatment, however, is typically re-
stricted to one or two space dimensions. Furthermore, these studies do not aim at the
reconstruction of a suitable transport model (structure and parameters) for transport
coefficients.

In the so-called simultaneous approach, problem (1.1) for the identification of a
model (structure and parameters) for the transport coefficient is solved for each model
candidate using, for example, one of the above mentioned techniques. This leads to a
large number of complex estimation problems. As a consequence, the discrimination
between competing transport model candidates requires high computational effort.
Furthermore, if a model candidate for the transport coefficient contains uncertainty
or structural errors, this approach often yields biased or poor estimates [31]. Often
satisfactory results can only be achieved if the correct model structure for the trans-
port coefficient is known. In the present work, in contrast, we use a fundamentally
different, so-called incremental approach [23] for the identification of a structured
model for the transport coefficient.

In the incremental identification approach, incremental modeling interplays with
the incremental identification. In incremental modeling, the structure of a model
to be identified is refined step by step by specifying submodels gradually in a se-
quence of successive refinement levels. Consequently, more transparency concerning
the individual decisions during the modeling process can be gained. The incremental
identification of a model reflects the steps of incremental modeling straightforwardly
by splitting up the identification problem into a sequence of subproblems. The dis-
crimination between the candidate models turns out to become more flexible as the
replacement of a submodel on a certain model refinement level affects only the sub-
models on the following levels. Often this also leads to benefits in terms of less compu-
tational effort. The incremental strategy already proved to be an efficient and robust
alternative for the mechanistic modeling of kinetic phenomena in multi-phase systems
[24], the reconstruction of diffusion coefficients in liquids [6] and the identification of
complex reaction kinetics in homogeneous systems [9].

In this paper, we present and investigate the incremental method of modeling and
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identification for the class of inverse transport coefficient problems described by eq.
(1.1). The application of the incremental approach to this class of problems is new.
As a first step in the analysis of this technique we show, based on simulated data
assuming a time- and space-dependent transport coefficient, that this coefficient can
be reconstructed without using any a-priori knowledge on its functional representa-
tion. We assume, however, that the model structure for the parametric model of this
transport coefficient is known. Nevertheless, the incremental identification technique
can be directly applied for the case when the model structure is unknown and has
to be determined from the data and prior knowledge on candidate model structures.
Furthermore, in case of different model candidates for the transport coefficient, the
additional procedure of model discrimination does not affect the overall technique
described in this paper. We analyse this identification approach and show that the
method yields satisfactory results if we add noise to the data. These results indi-
cate that the incremental approach is a promising method for this class of transport
identification problems.

The paper is organized as follows. The incremental approach of modeling and
identification of transport phenomena is presented in Section 2. The optimization-
based formulations for the inverse problems arising in the first two steps of the identi-
fication procedure and the parameter estimation problem for the transport model in
the third step are given in Section 3. In that section, we also describe the conjugate
gradient solution method based on adjoint problems for gradient computation, which
we use to solve the inverse problem arising in the first step of the incremental identi-
fication. We give the description of the inexact Newton-type method with which we
solve the more complicated nonlinear inverse problem in the second step, as well. In
Section 4 we present results of extensive numerical experiments for the identification
of a model for the transport coefficient in a three-dimensional convection-diffusion
problem of type (1.1). This model problem is motivated by research on energy trans-
port in wavy films, using effective transport coefficients [8, 12, 32]. Section 5 contains
some conclusions and remarks concerning future work.

2. Incremental modeling and identification. The key idea of the incremen-
tal approach is the gradual refinement of the model structure during identification,
reflecting the incremental steps which are common in model development. The main
steps of model development and their relation to incremental model identification are
outlined in the following.

2.1. Incremental modeling. Incremental modeling aims at a generic and struc-
tured process for the development of model equations [23, 24]. The starting point is
the formulation of the balance equations. The balance equation for a scalar state
u(x, t), that denotes the specific quantity conserved, is given by

∂ρu

∂t
+∇ · j = 0 .

Here, j is the flux vector, that governs the rate of transfer of the conserved physical
quantity. This vector consists of a convective and diffusive part:

j = ρuw + q .

The use of the continuity equation

∂ρ

∂t
+∇ · ρw = 0 ,
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leads to the convection-diffusion equation

model B:
∂u

∂t
+ w · ∇u = −1

ρ
∇ · q in Ω× (t0, tf ] . (2.1)

We do not refine this equation any further, i. e. at this decision level no additional
assumptions are made about the potentially uncertain constitutive relation for the
diffusive flux vector q.

In the next step, the model is refined by specifying a functional form of the flux
q. Often a constitutive relation is used, for example, Fourier’s law in heat transfer or
Fick’s law in mass transfer, which can be cast as

model F : q = −a∇u in Ω× (t0, tf ] , (2.2)

with an unknown transport coefficient a. In empirical approaches one usually distin-
guishes different transport mechanisms, namely transport by turbulent or molecular
mechanisms, with or without convection [10]. Accordingly, the transport coefficient
in (2.2) is represented as a sum of two contributions - the known molecular part amol,
the molecular transport coefficient corresponding to molecular transport (e. g. heat
conduction through the fluid) and the unknown remaining part aw(x, t) capturing
the remaining transport effects (e. g. due to turbulence or other transport enhancing
effects). In the following, we call aw(x, t) the enhanced transport coefficient. Thus,

a(x, t) = amol + aw(x, t) , (x, t) ∈ Ω× [t0, tf ] . (2.3)

Consequently the flux law (2.2) can be written as

q = −(amol + aw)∇u in Ω× (t0, tf ] . (2.4)

In the final step of the incremental modeling procedure, a further refinement level
is added by specifying a constitutive relation for the enhanced transport coefficient to
close the model. We formulate it in a generic way,

model T : aw(x, t) = fw(u(x, t),x, t, θ) , (2.5)

to correlate aw with the state u and model parameters θ ∈ R
n.

2.2. Incremental identification. The incremental identification directly fol-
lows the steps of model development [24]. We assume throughout, that appropriate
transient measurement data at sufficiently high resolution in space x and time t are
available. A schematic picture of the procedure is given in Fig. 1.

We rewrite the balance equation (2.1) as

∂u

∂t
+ w · ∇u = F in Ω× (t0, tf ] , (2.6)

with

F (x, t) = −∇ · q(x, t) , (x, t) ∈ Ω× (t0, tf ] . (2.7)

Here, we have assumed for simplicity a constant density normalized to ρ = 1. In the
first step of the incremental identification procedure, the (artificial) source F (x, t)
is estimated, as a function of space and time, from the balance equation (2.6) with
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Fig. 1. Incremental modeling and identification of transport phenomena.

proper initial and boundary conditions, on the basis of suitable measurements um(x, t)
of the state u(x, t). This is a typical example of a source inverse problem [2].

The incremental identification at the next level uses the estimated source F (x, t)
as model-based measurement data together with the transient measurements um(x, t)
to reconstruct the transport coefficient aw(x, t). Hence aw(x, t) is to be estimated
from the equation

−∇ · ((amol + aw)∇u) = −F in Ω× (t0, tf ] , (2.8)

which corresponds to a coefficient inverse problem [2].
In the third step of the identification procedure the reconstructed coefficient

aw(x, t) is correlated with states as in (2.5) by solving a parameter estimation prob-
lem. Different model candidates involving the state u and model parameters θ can
be considered here. The measurement data are used to estimate parameters for each
candidate model. The best model is selected by carrying out a model discrimination
between candidates using some measure of model validity [31].

In this paper, we focus on the inverse problems that arise in the first two steps of
the incremental identification approach. In the third identification step we estimate
model parameters in a model structure for the transport coefficient which is assumed
to be known. In this paper, we restrict ourselves to the estimation of one given model
for the transport coefficient, i. e., we do not yet consider the discrimination issue
between competing model candidates.

For the numerical treatment of the source inverse problem in the first step it is
very convenient to consider a variant of (2.6) which uses the expression (2.8) for the
transport coefficient. This leads to

F (x, t) = ∇ · (amol∇u(x, t)) + Fw(x, t) , (x, t) ∈ Ω× [t0, tf ] . (2.9)

As a result, instead of F (x, t) it suffices to estimate the enhanced part Fw(x, t) of the
source term on the basis of transient measurement data um(x, t). Consequently, in
the first step of the identification procedure one has to reconstruct the source term
Fw(x, t) in the following convection-diffusion equation

model B:
∂u

∂t
+ w · ∇u−∇ · (amol∇u) = Fw in Ω× (t0, tf ] , (2.10a)
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with initial and boundary conditions

u(x, t0) = u0(x) , x ∈ Ω ,

u(x, t) = gD(x, t) , (x, t) ∈ ΓD × [t0, tf ] ,
∂u

∂n
(x, t) = gN (x, t) , (x, t) ∈ ΓN × [t0, tf ] .

(2.10b)

Compared to (2.6), we now have a convection-diffusion problem instead of a pure
convection problem. Due to the diffusion part, the numerical treatment becomes
easier. Furthermore, for u we can now use the same boundary conditions as in (1.1b).

In the second step of the incremental identification procedure, one has to deter-
mine the coefficient aw(x, t) in the diffusion equation,

model F : −∇ · (at
w∇ut) = −F t

w in Ω , (2.11a)

with boundary conditions

ut(x) = gt
D(x) , x ∈ ΓD ,

∂ut

∂n
(x) = gt

N(x) , x ∈ ΓN .
(2.11b)

Here, for a space and time dependent function ξ(x, t) we have introduced the notation
ξt(x) := ξ(x, t) , (x, t) ∈ Ω × [t0, tf ] to decouple the function values in time instants.
In (2.11) we thus have a stationary diffusion problem for each given t ∈ [t0, tf ].

In the third step of the identification procedure, the reconstructed coefficients
at

w(x) at selected times t ∈ [t0, tf ] have to be correlated with states ut(x) and param-
eters θ in the parametric model

model T : at
w(x) = fw(ut(x),x, t, θ) . (2.12)

We briefly compare the incremental identification approach to the established
simultaneous identification approach. For this purpose, we insert the relation (2.5)
into the flux model and insert the result into the convection-diffusion equation (1.1a),

model BFT :
∂u

∂t
+ w · ∇u−∇ · (f(u(x, t),x, t, θ)∇u) = 0 in Ω× (t0, tf ] ,

(2.13a)

with initial and boundary conditions

u(x, t0) = u0(x) , x ∈ Ω ,

u(x, t) = gD(x, t) , (x, t) ∈ ΓD × [t0, tf ] ,
∂u

∂n
(x, t) = gN (x, t) , (x, t) ∈ ΓN × [t0, tf ] .

(2.13b)

While the incremental approach decomposes the identification process for the trans-
port coefficient in three steps, in the simultaneous approach the models for the flux
(e.g. (2.2)) and for the transport coefficient (e.g. (2.5)) are collected in one equation
(2.13a). Hence, all the assumptions made during the modeling will simultaneously
influence the identification. Due to this, the level of uncertainty of the simultaneous
problem (2.13) has increased, leading to a higher risk of poor estimates.
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A further advantage of the incremental approach is that, for known velocity
w(x, t) and molecular transport coefficient amol, it suffices to reconstruct the source
Fw(x, t) at the first level and the enhanced transport coefficient aw(x, t) at the sec-
ond level only once. The complexity due to the elimination of candidate models for
the transport coefficient affects the third (final) level only, thus allowing for a more
systematic derivation of suitable candidate models.

Compared to the simultaneous problem (2.13), where a nonlinear coefficient in-
verse problem in space and time has to be solved, the incremental identification pro-
cedure has advantages from the optimization point of view. The reconstruction of the
source in the first step results in a dynamic optimization problem, which is affine-
linear in the unknown. The latter property implies that (compared to a strongly
nonlinear case) relatively simple and efficient optimization methods can be applied.
In the second step of the identification, we have to deal with a nonlinear coefficient in-
verse problem which, however, is of steady-state type for each given time t, cf. (2.11).
In this sense the incremental approach decouples dynamics and nonlinearity, which
has advantages for the numerical treatment of nonlinear inverse problems for evolution
equations in three dimensions. Furthermore, the - in the worst case - combinatorial
problem of identifying a suitable model structure is decoupled from the problem of
inversion of differential equations.

The estimation problems arising in the first two steps of the incremental approach
are typical inverse problems, ill-posed by nature. This raises, however, the question
of error propagation through the sequence of inverse problems. This issue is studied
for the illustrative model problem in Section 4.

3. Formulation and solution of the inverse problems. The inverse prob-
lems resulting in the three incremental steps are formulated as optimization problems
[1, 2, 25].

In the first step of the incremental identification procedure, the source Fw should
minimize the quadratic objective functional

J1(Fw) =
1
2

∫ tf

t0

∫
Ω

[u(x, t; Fw)− um(x, t)]2 dx dt , (3.1)

with suitable transient measurement data um(x, t) , (x, t) ∈ Ω×[t0, tf ]. Here u(x, t; Fw)
is the solution of the direct problem (2.10) with known initial condition u0 and bound-
ary conditions gD and gN . We use the notation u(x, t; Fw) to emphasize the depen-
dence of the function u on the unknown source Fw.

Similarly, the second identification step concerns the estimation of the enhanced
transport coefficients at

w(x) as a functions of space x at selected times t ∈ [t0, tf ],
using the previously estimated source F t

w(x) and the measurement data ut
m(x). The

optimization-based formulation of this coefficient inverse problem consists of the min-
imization of the objective functional

J2(at
w) =

1
2

∫
Ω

[
ut(x; at

w)− ut
m(x)

]2
dx . (3.2)

Here ut(x; at
w) denotes the solution of the direct problem (2.11) for given at

w.
Finally, in the third identification step, the reconstructed transport coefficients

at
w(x) at times t ∈ [t0, tf ] are further used in order to find the parametric model

f(ut(x),x, t, θ), θ ∈ R
n (cf. (2.12)). We formulate this problem as a standard least-
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squares problem, such that the model f( · ) minimizes the objective functional

J3(f(ut(x),x, t, θ)) =
1
2

∑
t

∫
Ω

[
at

w(x)− f(ut(x),x, t, θ)
]2

dx . (3.3)

This estimation problem depends strongly on the availability of candidate models
f( · ). In cases where no reasonable (structured) model can be formulated (i.e. the
model structure is unknown) a general parameterization capable of approximating
functions from a sufficiently large class should be introduced for the transport coef-
ficient aw and the model parameters θ should be estimated by means of data-driven
techniques [21]. In case of (structured) available model candidates, e.g. from physical
considerations and/or a priori knowledge, the parameters θ are to be estimated for
each candidate model. Subsequently, the adequacy of the different candidates has to
be quantified with the use of model discrimination approaches in order to choose the
best model for the transport coefficient [31].

3.1. Numerical solution strategy. For the solution of the optimization prob-
lem in the first step of the incremental approach, the conjugate gradient method is
used [15, 25]. The optimization problem in the second step is solved by means of
an inexact Newton-type method, which is an appropriate technique for a large class
of nonlinear inverse problems [14]. In this paper, regularization is only introduced
via spatial and temporal discretization and by means of a suitable stopping criterion
for the optimization algorithms. Hence, for a given fixed discretization, the num-
ber of optimization iterations serves as a regularization parameter [14]. Either the
heuristic L-curve method [20] or the discrepancy principle [14] is used to determine
an appropriate value of this parameter.

In the following subsections we assume H to be a given (Hilbert) space with scalar
product (·, ·)H and corresponding norm ‖·‖2H = (·, ·)H .

3.1.1. Estimation of the source Fw(x, t). For the minimization of the objec-
tive functional (3.1) with constraints (2.10) the conjugate gradient (CG) method is
used [1]. The algorithmic structure is as follows:

(i) Set n← 0 and choose an initial guess F 0
w ∈ H .

(ii) If the objective function satisfies a given tolerance criterion, stop, otherwise
continue .

(iii) Calculate the new search direction as

F̃n
w = ∇J1(Fn

w) + γnF̃n−1
w , (3.4a)

with

γn =
‖∇J1(Fn

w)‖2H∥∥∇J1(Fn−1
w )

∥∥2

H

, for n ≥ 1 and γ0 := 0 , (3.4b)

(iv) Calculate a step length μ by solving a one-dimensional minimization problem
resulting in

μn =

(
um − u(Fn

w), S1(F̃n
w)

)
H∥∥∥S1(F̃n

w )
∥∥∥2

H

, (3.5)

with u(Fn
w) the solution of the direct problem (2.10) and S1 the solution of

the sensitivity problem (3.7) below.
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(v) Update the approximation according to

Fn+1
w = Fn

w + μnF̃n
w . (3.6)

(vi) Set n← n + 1 and repeat the procedure starting with (ii).

In the CG method, one has to calculate the gradient of the objective functional
∇J1(Fn

w ). This gradient can be determined from the solution of an adjoint problem.
The calculation of the step length in (iv) requires the solution of the sensitivity prob-
lem. We do not give a derivation of the adjoint and the sensitivity problems, since
this can be found in the literature, e.g. [1].

The sensitivity problem corresponding to (2.10) is given by

∂S1

∂t
+ w · ∇S1 − amolΔS1 = F̃w in Ω× (t0, tf ] , (3.7a)

S1(x, t0) = 0 , x ∈ Ω ,

S1(x, t) = 0 , (x, t) ∈ ΓD × [t0, tf ] ,
∂S1

∂n
(x, t) = 0 , (x, t) ∈ ΓN × [t0, tf ] .

(3.7b)

where F̃w(x, t) is a perturbation of the unknown source Fw. This partial differential
equation has exactly the same structure as the corresponding direct problem (2.10),
only the initial and boundary conditions are different.

It can be shown that the gradient of the objective functional satisfies

∇J1(Fw) = ϕ1 in Ω× [t0, tf ] , (3.8)

where the adjoint variable ϕ1 is the solution of the adjoint problem

−∂ϕ1

∂t
−w · ∇ϕ1 − amolΔϕ1 = [u(Fw)− um] in Ω× [t0, tf ) , (3.9a)

ϕ1(x, tf ) = 0 , x ∈ Ω ,

ϕ1(x, t) = 0 , (x, t) ∈ ΓD × [t0, tf ] ,
∂ϕ1

∂n
(x, t) = 0 , (x, t) ∈ ΓN × [t0, tf ] .

(3.9b)

In contrast to the direct problem (2.10), we now have a condition at final time tf .
We do not give the derivation of the identity (3.8) since it follows from a standard
procedure, cf. [1]. Going backwards in time (by introducing a new time variable
tf − t), equation (3.9) shows exactly the same structure as the direct problem (2.10),
only with different initial and boundary conditions.

Thus, the CG algorithm for minimizing J1 requires the solution of three very
similar problems in every iteration, namely the direct, the adjoint and the sensitivity
problem. However, due to the linearity of the involved equations only two problems
- the sensitivity (3.7) and the adjoint (3.9) problem - have to be solved. Instead of
solving the direct problem (2.10) for u(x, t; Fw), the linear update formula

u(Fn+1
w ) = u(Fn

w) + μn
1S1(F̃n

w ) (3.10)

can be applied.
In [17] we have considered a similar inverse problem, where a boundary heat flux

in a nonstationary three-dimensional heat conduction problem has been estimated
from boundary temperature measurements in a falling film experiment. The solution
strategy presented there is of the same type as the source estimation described above.
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3.1.2. Estimation of the transport coefficients at
w(x). For the minimization

of the objective functional (3.2) with constraints (2.11) a Newton-type method is used.
The basic idea is the computation of a regularized approximation of the linearized
problem by an inner iteration, namely a CG method [18]. In case of inexact data the
regularizing effect of this algorithm comes, in analogy to the CG method above, from
appropriate termination of the iteration.

The general framework of the truncated Newton-CGNE method [18] is as follows:
(i) Set k ← 0 and choose an initial guess at 0

w ∈ H .
(ii) If the objective function satisfies a given tolerance criterion, stop, otherwise

continue .
(iii) Choose values n� > 1 and η ∈ (0, 1) and set

n← 0 ,

y = ut
m − u(at k

w ) ,

r0 = y ,

x0 = 0 ,

with u(at k
w ) the solution of the direct problem (2.11).

(iv) repeat (inner CG iteration)
(a) Calculate the new search direction as

ãt n
w = ϕ2(at k

w , rn) + βnãt n−1
w , (3.11a)

with

βn =

∥∥ϕ2(at k
w , rn)

∥∥2

H

‖ϕ2(at k
w , rn−1)‖2H

, for n ≥ 1 and β0 := 0 , (3.11b)

where ϕ2 denotes the solution of an adjoint problem (see (3.17) below).
(b) Calculate the optimal step length for the linearized problem by

αn =

(
rn, S2(at k

w , ãt n
w )

)
H

‖S2(at k
w , ãt n

w )‖2H
, (3.12)

with S2 the solution of a sensitivity problem (see (3.16) below).
(c) Update the inner iteration according to

xn+1 = xn + αnãt n
w , (3.13a)

rn+1 = rn − αkS2(at k
w , ãt n

w ) . (3.13b)

(d) Set n← n + 1.
until the stopping criterion

‖rn‖ < η ‖y‖ or n ≥ n� (3.14)

is satisfied.
(v) Update the approximation according to

at k+1
w = at k

w + xn . (3.15)

(vi) Set k ← k + 1 and repeat the procedure starting with (ii).
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According to the stopping rule (3.14) for the inner iteration, this method belongs
to the general class of inexact Newton methods [25]. Besides this stopping rule, the
difference between the inner iteration and the CG algorithm above is, that the gradient
of the objective functional ∇J1 is replaced by ϕ2 - the solution of a different adjoint
problem. It should be emphasized here that, for the nonlinear problems the relation
similar to (3.8) does not hold, cf. e.g. [2]. In the truncated Newton-CGNE method,
one has to solve an adjoint and a sensitivity problem in every inner iteration in
addition to the direct problem in every outer iteration. Due to the nonlinearity of the
estimation problem, a simple update formula similar to (3.10) is not available. The
adjoint and the sensitivity problems for the minimization of the functional (3.2) with
constraints (2.11) are stated next (for the derivation see e.g. [2]).

The sensitivity problem is given by

−∇ · (at
w∇St

2) = ∇ · (ãt
w∇ut) in Ω , (3.16a)

St
2(x) = 0 , x ∈ ΓD ,

∂St
2

∂n
(x) = 0 , x ∈ ΓN ,

(3.16b)

for each time t ∈ [t0, tf ]. St
2 = St

2(x; at
w, ãt

w) is the first order perturbation of the
function ut(x; at

w) caused by a perturbation ãt
w(x) of the enhanced transport coeffi-

cient at
w(x). ut = ut(x; at

w) in (3.16a) denotes the solution of the corresponding direct
problem (2.11) for a given value of at

w(x). This equation has the same structure as the
corresponding direct problem. Note, however, that apart from the different boundary
conditions one also has a specific right-hand side in this sensitivity equation, which
arises due to the nonlinearity of the coefficient inverse problem.

The adjoint variable ϕt
2 at time t is the solution of the adjoint problem

−∇ · (at
w∇ϕt

2) = [ut(x; at
w)− ut

m(x)] in Ω , (3.17a)

ϕt
2(x) = 0 , x ∈ ΓD ,

∂ϕt
2

∂n
(x) = 0 , x ∈ ΓN .

(3.17b)

This problem has the same structure as the direct problem (2.11).

3.1.3. Solution of the PDE problems. All resulting direct, sensitivity and
adjoint problems used in either of the optimization methods described above are
either of elliptic or parabolic (convection-diffusion) type. Hence, similar numerical
techniques can be employed for their solution. The three convection-diffusion prob-
lems (2.10), (3.7), (3.9) as well as the three steady-state diffusion problems (2.11),
(3.16), (3.17) are solved with the same software code in case of source and coefficient
estimation, respectively.

The solutions of all three 3D problems are calculated by means of the software
package DROPS [13]. DROPS is based on multi-level nested grids and conforming
finite element discretization methods. For time discretization a standard one-step
θ-method is used. For the space discretization piecewise linear finite elements on
a tetrahedral grid are employed. The resulting discrete systems of linear equations
are solved by suitable Krylov subspace methods. In case of the convection-diffusion
equations (2.10), (3.7), (3.9) we use a preconditioned Generalized Minimal Residuals
(GMRES) method. For the diffusion problems (2.11), (3.16), (3.17) a preconditioned
conjugate gradient (PCG) method is applied [29]. For the simulations presented in
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this paper the SSOR method is used for preconditioning. Other options, for example
multigrid solvers, are available in DROPS. In this paper we do not study efficiency
of these solvers for the direct, the sensitivity and the adjoint problems. We use a
fixed (quasi-uniform) mesh for discretization and prescribe a tolerance with which the
discrete linear systems are solved.

3.1.4. Identification of a transport model f(ut(x),x, t, θ). For the solution
of an unconstrained minimization problem (3.3) in the final step of the incremental
identification procedure, we use standard solution techniques for least-squares prob-
lems [25]. In our case study (cf. Section 4), we only consider a single model candidate
for the transport coefficient, hence implicitly assuming that the model structure is
known.

4. Illustrative case study. In this section, the incremental approach is illus-
trated for a problem motivated by the identification of energy transport in laminar
wavy film flows. The complex dynamics of the nonlinear surface waves typically
present in film flows [16, 26] renders a direct transient simulation in 3D numerically
very complicated and computationally expensive. Therefore, manageable approximate
descriptions, yet accurately modeling the underlying transport processes, have gained
increasing importance in the engineering literature to support the design of technical
systems [8]. A possible simplified model is as follows. In order to reduce the prob-
lem complexity, the 3D time-varying domain ΩW corresponding to the liquid phase is
mapped to a 3D time-invariant waveless domain Ω := (0, Lx)× (0, Ly)× (0, Lz) ⊂ R

3.
This reduction is compensated by the introduction of a space- and time-dependent ef-
fective transport coefficient aeff(x, t) [8, 12, 32] to capture all wave-induced transport
effects in this flat film geometry.

Such a flat film model is considered in the remainder. It consists of a convection-
diffusion system which describes energy transport in a single component fluid on the
flat (rectangular) domain Ω with boundary Γ = ∂Ω, with parts Γ = Γin ∪ Γwall ∪
Γout ∪ Γr defined as

Γin = {(x, y, z) ∈ Γ : x = 0} ⊂ ΓD − the inflow boundary ,

Γwall = {(x, y, z) ∈ Γ : y = 0} ⊂ ΓD − the wall boundary ,

Γout = {(x, y, z) ∈ Γ : x = Lx} ⊂ ΓN − the outflow boundary ,

Γr = Γ \ (Γin ∪ Γwall ∪ Γout) ⊂ ΓN − the remaining boundaries .

The state variable u(x, t) in (1.1) is the temperature T (x, t) and the transport co-
efficient a(x, t) is the effective thermal diffusivity aeff(x, t). The unit cube Ω =
(0, 1)3[mm3] is considered as computational domain for simplicity of presentation and
to avoid possible numerical complications due to anisotropy effects. x corresponds to
the flow direction of the falling film and y is the direction along the film thickness.
The velocity w(x, t) is given by a Nusselt-profile, i.e. w(x, t) = 4.2857(2y − y2) [27].
The initial condition is a constant, i.e. T (x, 0) = 15◦C ,x ∈ Ω. The known Dirichlet
boundary conditions are chosen as follows. The inflow temperature has a linear profile
in y and drops from 15◦C to 0◦C along the y axis over time, i.e.

Tin(x, t) = −30yt + 15 , (x, t) ∈ Γin × [t0, tf ] . (4.1a)

The wall temperature has a nonlinear profile in x and increases from 15◦C to 65◦C
along the x axis over time, i.e.

Twall(x, t) = 100
(
1− cos

(π

2
x
))

t + 15 , (x, t) ∈ Γwall × [t0, tf ] . (4.1b)
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At the Neumann boundaries Γout and Γr a zero diffusive flux condition is used, i.e.

∂T

∂n
(x, t) = 0 , (x, t) ∈ (Γout ∪ Γr)× [t0, tf ] . (4.1c)

The effective thermal diffusivity aeff is chosen to have a sinusoidal pattern over
the space coordinate in the flow direction of the falling film (i.e. the x−direction).
The wavy pattern is assumed to be time-dependent, such that the waves travel along
the x-direction starting from a constant value at the inflow boundary Γin (i.e. x =
0 mm). They propagate along the y− and z−directions with a larger gradient in the
y-direction (film thickness) starting from a constant value at the wall boundary Γwall

(i.e. y = 0 mm), and with a comparably low gradient in the z-direction:

aeff(x, t) = amol + aw(x, t) , (4.2a)

aw(x, t) = 5
(

1.1 +
y

5

(
sin

(
πx +

t

50

)
+ x +

xz

10

))
, (4.2b)

(x, y, z, t) ∈ Ω× [t0, tf ] .

The material properties of the fluid are lumped in the known constant molecular
thermal diffusivity amol = 0.35mm2

s , whereas the remaining part of the effective ther-
mal diffusivity aeff(x, t) represents the unknown wavy thermal diffusivity aw(x, t), the
transport coefficient capturing the wave-induced effects in the flat film model.

In this setting, a model fw(x, t, θ) (cf. (2.5)) for the ”true” wavy thermal diffu-
sivity aw(x, t) in (4.2b) can be formulated as

fw(x, t, θ) = 5 (ϑ1 + ϑ2y (sin (ϑ3x + ϑ4t) + 0.2x + ϑ5xz)) , (4.3)

(x, y, z, t) ∈ Ω× [t0, tf ] , θ ∈ R
5 ,

where the vector θ = (ϑ1, . . . , ϑ5) represents the vector of model parameters. A
comparison of (4.2b) and (4.3) reveals the true underlying value θex of this vector to
be

θex = (1.1, 0.2, π, 0.02, 0.1) . (4.4)

In order to generate high quality temperature simulation data the nonlinear direct
problem (2.13) with the ”true” effective thermal diffusivity given in (4.2) is solved on
a uniform fine grid with the spatial discretization consisting of 48× 48× 38 intervals
in x , y and z directions, respectively. This yields a space discretization with 89856
unknowns and 525312 tetrahedra.

For the solution of the inverse problems in the first two steps as well as for the
solution of the parameter estimation problem in the third step of the incremental
identification, we use the temperature data Tm on the coarser grid of resolution 24×
24 × 19 intervals in x , y and z directions, respectively, to avoid so-called ”inverse
crime” [22]. Furthermore, we assume to know the correct structure of the model.
This assumption does not hold in a real problem setting, where an appropriate model
structure has to be identified from the measurement data.

In the first step of the incremental identification procedure, we use the implicit
Euler scheme with time step τ = 0.01s and apply 50 time steps starting from the
initial time t0 = 0s (i.e. tf = 0.5s). For the initial approximation in the optimization
procedure, due to the lack of better information, we choose F 0

w(x, t) = 0 , (x, t) ∈
Ω× [0s, 0.5 s].
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In the second step of the incremental identification procedure, the same boundary
conditions (cf. (4.1)) are used. The time interval [0s, 0.5s] is subdivided in 50 time
steps and the estimation of the wavy thermal diffusivity is carried out separately for
each point in time. The initial time t0 = 0s is a singular point, because the initial
temperature is constant and no reconstruction is possible, since the coefficient is not
uniquely defined in this case (cf. (2.10)).

Fig. 1. Initial approximation for the wavy thermal diffusivity at
w at t = 0.01s and constant

z = 0.5 mm.

As expected, the choice of a suitable initial vector for the optimization method
is much more important for the nonlinear optimization problem in the second iden-
tification step than for the linear one in the first step. In our experiment, we use the
constant

at 0
w = 5.5 (4.5)

as initial guess for the wavy thermal diffusivity in the first time step t = 0.01s (cf. Fig.
1). This initial guess is very different from the true solution, but coincides with the
inflow (x = 0 mm) and wall (y = 0 mm) boundary conditions ΓD. The solution of the
adjoint problem (3.17) is always zero along these boundaries - a direct consequence of
the boundary conditions. From the truncated Newton-CGNE framework it follows,
that in case ϕ2 = 0 no update will be gained for the search direction in (3.11).
As a consequence, the inner iteration can not be improved by the formula (3.13a).
Subsequently, neither an update is possible in the outer iteration by (3.15). Hence,
with such a choice of the initial approximation for the wavy thermal diffusivity we
exclude from the estimation the boundaries where no information can be gained.

In the third step, the estimated functions at
w(x) at time instants t ∈ [0.01s, 0.5s],

are used as model-based measurement data to estimate the model parameters θ ∈ R
5

of the model (4.3) by solving the standard least-squares problem (3.3). The initial
guess θ0 = (0.5, 0.5, 0.5, 0.5, 0.5) is chosen in all of our computations.

Estimation results with error-free measurements will be considered first. Subse-
quently the estimation with artificially perturbed measurements will be analysed.

4.1. Estimation with error-free measurements. In Fig. 2 (a) the objective
functional J1(Fw) is plotted over the number of optimization iterations. In Fig. 2 (b),
the source Fw(x, t) is plotted as a function of x for fixed y = 0.5 mm and z = 0.5 mm
(i. e. at the middle of the y− and z−domain, respectively) at a certain time for different
numbers of optimization iterations denoted by nopt. Snapshots of the estimated
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Fig. 2. (a) Objective functional J1. (b) Estimated source Fw for different iterations nopt at
time t = 0.03s , y = 0.5 mm and z = 0.5 mm.

source F 200
w (x, t) at the end of the optimization procedure (nopt = 200) are presented

in Fig. 3. During the optimization the initial approximation at the boundaries Γin

(x = 0 mm) and Γwall (y = 0 mm) could not be improved, since the gradient of
the objective functional J1(Fw) is always zero along these boundaries. This follows
directly from the boundary conditions of the corresponding adjoint problem (3.9) and
the expression (3.8) for the gradient ∇J1(Fw).

The estimation of the wavy thermal diffusivities at
w(x) at times t ∈ [0.01s, 0.5s]

in the second step of the incremental approach, uses the estimated source F 200
w

t(x)
at iteration nopt = 200 and the temperature T t

m(x) at given time t. We choose
(4.5) as the initial approximation at time t = 0.01s. The subdivision in time gives
a flexibility to improve this initial approximation at later times. Therefore, we use
already computed estimates at time instants t as initial guesses for the next times
(t + τ). Note, that the initial value for time t = 0.01s restores the information lost at
the inflow and wall boundaries at which the source Fw(x, t) could not be reconstructed
in the first step.

The estimates of the wavy thermal diffusivity for z = 0.5 mm at selected times
are shown in Fig. 4 (a), whereas Fig. 4 (b) shows contour lines of the differences
between the exact and estimated quantities. The estimates in these figures have been
obtained as follows. At time t = 0.01s, 100 Newton (outer) iterations were applied,
whereas η = 0.8 and n� = 50 were used in the stopping rule (3.14) of the inner
iteration. The analysis of the results for later times t > 0.01s shows, that the solution
converges already in 5 Newton iterations. Moreover, it is not necessary to require

t = 0.01s t = 0.03s t = 0.4s

0 0.2 0.4 0.6 0.8 1
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Fig. 3. Estimated source Fw at different times for constant z = 0.5 mm with unperturbed
measurements for nopt = 200.
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Fig. 4. (a) Estimated (meshed surface) and exact (shaded surface) wavy thermal diffusivities
at

w, (b) deviation between exact and estimated wavy thermal diffusivities at
w at different times.

such a high number of inner iterations, because very good initial values are available
at later times. We found the values of η = 0.98 and n� = 20 most favourable for times
t > 0.01s.

A closer look at the results reveals that, independent of time, the estimation qual-
ity decreases in the x-direction (i.e. the direction of flow) by approaching the outflow
boundary Γout (i.e. x = 1 mm). This can be observed in Fig. 5, where the estimates
are presented exemplarily for t = 0.01s as a functions of y for x ∈ {0.2, 0.5, 1}mm
and z = 0.5 mm. The development of the estimates for different numbers of Newton
iterations nopt is shown in the figures, too. The reason of this distortion is, that at
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Fig. 5. Estimated wavy thermal diffusivity at
w at different Newton iterations nopt, time t =

0.01s, different x and constant z = 0.5 mm.

the outflow boundary Γout the estimation quality of the source Fw in the previous
step is impaired by the lack of information. At the outflow boundary, due to convec-
tion, there is not enough information to reconstruct the unknown founction from the
available data.

The estimates of the wavy thermal diffusivity at different numbers of Newton
iterations nopt as a functions of x for y ∈ {0.2, 0.5, 1}mm and z = 0.5 mm at time
t = 0.01s are presented in Fig. 6, whereas Fig. 7 shows the estimation results at
different numbers of Newton iterations for two later times t ∈ {0.03, 0.4}s. Because
of the very good initial approximation, at large times (e.g. for t = 0.4s in the figure)
the convergence is achieved even before reaching nopt = 5.

In the third identification step the model parameters θ ∈ R
5 are estimated us-

ing the reconstructed transport coefficients at
w(x) at times t ∈ [0.01s, 0.5s] and the

proposed model fw(x, t, θ) (cf. (4.3)). Fig. 8 (a) shows the deviations between the
reconstructed wavy thermal diffusivities at

w(x) and the optimal solution fw(x, t, θ�)
for selected times t ∈ {0.01, 0.03, 0.4}s. A high reconstruction quality is achieved.
The resulting optimal value for the model parameter vector

θ� = (1.12, 1.05, 3.12, 0.02, 0.06) , (4.6)

is in a good agreement with the exact value θex in (4.4). In Fig. 8 (b) the estimation
results for constant y = 0.5 mm and z = 0.5 mm at different identification steps
of an incremental approach are presented together with the ”true” wavy thermal
diffusivity at

w(x) (cf. (4.2b)) and their initial guesses for a detailed comparison. There
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Fig. 7. Estimated wavy thermal diffusivity at
w at different outer optimization iterations nopt,

two different times, three different y and constant z = 0.5 mm.

is an obvious bias which can be atributed to error propagation in the incremental
identification procedure [5]. This bias can be easily eliminated by a final simultaneous
step which converges quickly due to very good initial values [9].

4.2. Estimation in the presence of measurement errors. In this section,
we perturb the measured temperature Tm by an artificial measurement error ω. The
values of ω are generated from a zero mean normal distribution with variance one.
We compute the perturbed temperature T̃m by

T̃m = Tm + σω ,

with σ being the standard deviation of the measurement error. The parameter σ
is used to control the amount of error added to the exact data. We take the value
σ = 0.1 in the following simulation experiments.

In the presence of measurement errors, an increasing number of iterations even-
tually leads to a poorer estimation quality due to the undesirable effect that mea-
surement errors are resolved. Therefore, a compromise between the residual and the
solution norm has to be established by an appropriate regularization [20]. Besides
the (fixed) regularizing effect of time and space discretization, the number of opti-
mization iterations is used as a regularization parameter. An appropriate value for
this parameter can be obtained by the L-curve, which is a parameterized plot of the
residual against a smoothing norm of the solution.

The results of source term estimation will be presented first. The L-curve plot is
shown in Fig. 9. This curve suggests that nopt = 100 is a reasonable choice of the
regularization parameter for the given value of σ. The snapshots of the regularized
optimal estimates Fnopt

w (x, t) are shown in Fig. 10, for constant z = 0.5 mm. Due to
the errors in the measurements, the estimates are no longer smooth, but the qualitative
behaviour is the same as for the case without measurement noise (cf. Fig. 3).
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Fig. 8. (a) Deviation between the wavy thermal diffusivity estimated in the second step and the
model fw estimated in the third step of the incremental approach (b) ”true” wavy thermal diffusivity,
estimated wavy thermal diffusivity at

w in the second step and estimated model fw in the third step
of the incremental approach at different times for constant y = 0.5mm and z = 0.5 mm

The estimation Fnopt
w (x, t) obtained with perturbed data is compared to the es-

timates F 200
w (x, t) obtained with exact data in the previous section. The results are

shown in Fig. 11 as a function of x for fixed y = 0.5 mm , z = 0.5 mm and three
different t-values. The corresponding temperatures, presented in Fig. 12, are very
close as expected.

The regularization parameter can be determined alternatively using the discrep-
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Fig. 9. L-curve for source estimation based on perturbed measurements with σ = 0.1.

ancy principle [14]. Here the knowledge of the error’s magnitude is used to propose
the stopping condition for the objective functional: the iterationsis stopped when the
residual approximately equals the error level σ. Using (3.1), we get the condition

J1(Fn
w) < κ1(tf − t0)V σ , (4.7)

where V is the volume of Ω and κ1 > 1. For a value of κ1 = 1.01 the optimal number
of iterations is nopt = 16 for a given error σ = 0.1. The estimate obtained at this
point is smoother, however over-regularized, whereas the one suggested by the L-curve
method shows oscillations but is closer to the estimations obtained with unperturbed
data. Therefore, we took the estimates obtained by the L-curve principle in the next
identification step.

For the estimation of the wavy thermal diffusivities at
w(x) at times t ∈ [0.01s, 0.5s],

the regularized optimal solution Fnopt
w

t(x) and the measurement data T̃ t
m are used in

the corresponding direct problem (2.11) for a given time t. We apply the L-curve and
the discrepancy principle in order to find the optimal value for the number of Newton
iterations in the truncated Newton-CGNE method. We set the values η = 0.98 and
n� = 20 in the stopping rule (3.14) for the inner iteration for all times t ∈ [0.01s, 0.5s].
The stopping condition for the Newton iteration based on the discrepancy principle
is

J2(at k
w ) < κ2V σ . (4.8)
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Fig. 10. Estimated source Fw at different times for constant z = 0.5 mm with perturbed mea-
surements (σ = 0.1) for nopt = 100.
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Fig. 11. Estimated source Fw with unperturbed measurements for nopt = 200 and perturbed
measurements for σ = 0.1 for (nopt = 100) at different times.

In experiments we tried different values of κ2 > 1 and always observed that the es-
timates obtained by the discrepancy principle are smoother but still over-regularized,
whereas those suggested by the L-curve method contain oscillations but are closer
to the exact quantity. The same result has been observed for source estimation in
the first step for the example considered. A good understanding of the regularizing
effects of the CG method is well developed for linear problems [20], whereas a practi-
cal understanding of the regularizing effect for the truncated Newton-CGNE method
is rather speculative [18]. Nevertheless, the choice of an appropriate value for the
regularization parameter is rather problem-dependent and relies to a large extent on
user experience. In Fig. 13, the optimal regularized estimates for the chosen noise
level σ = 0.1 obtained from the L-curve method are presented as a function of x for
z = 0.5 mm and different values of y at selected times. Due to the reasons stated
above in the noise-free case, we see again, that estimation quality decreases near the
outflow at x = 1 mm. Here, in contrast to the noise-free case, the estimates computed
for t = 0.01 have been used as initial approximations for each later time t > 0.01s.

Finally, in order to estimate the model parameters θ ∈ R
5 in the model fw(x, t, θ)

(cf. (4.3)) the regularized optimal solutions at nopt
w (x) at times t ∈ [0.01s, 0.5s] are

used. In Fig. 14 (a) the deviations between the optimal regularized wavy thermal dif-
fusivity from the second step and the optimal, estimated model fw(x, t, θ�) in the third
step are presented for selected times. The resulted optimal value of the parameter
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Fig. 13. Estimated wavy thermal diffusivity at
w for noise level of σ = 0.1 after corresponding

optimal nopt iterations at different times for constant z = 0.5 mm and different y.

vector amounts to

θ� = (1.15, 1.08, 3.17, 0.09, 0.08) . (4.9)

In Fig. 14 (b) the estimations at different identification steps are presented once
more together with the ”true” wavy thermal diffusivity at

w(x) (cf. (4.2a)) for constant
y = 0.5 mm and z = 0.5 mm and selected times. The estimation quality has decreased
compared to the noise-free case above, however, a quite good reconstruction has been
achieved.

5. Conclusions. A novel method for the incremental identification of transport
models for transport coefficients in convection-diffusion systems is presented. The
simultaneous model is split into three hierarchically structured submodels. The iden-
tification problems in the first two steps (levels) have to be solved only once. The
model for the transport coefficient has to be estimated in the third step.

The approach is illustrated for the identification of a model for an effective thermal
diffusivity in a three dimensional convection-diffusion problem which is similar to a
flat film model used to investigate energy transport in laminar wavy film flows. The
first step of the incremental identification is rather easy to handle due to the linearity
of the corresponding source inverse problem. The results obtained with a CG method
at this level are quite satisfactory both for error-free and noisy measurements. The
second step of the identification is far more complex due to the strong nonlinearity and
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Fig. 14. (a) Deviation between the regularized wavy thermal diffusivity estimated in the second
step and the model fw estimated in the third step of the incremental approach at different times
for the noise-level σ = 0.1. (b) ”true” wavy thermal diffusivity, regularized wavy thermal diffusivity

anopt
w in the second step and estimated model fw in the third step of the incremental approach at

different times for constant y = 0.5 mm and z = 0.5mm for the noise-level σ = 0.1.

high degree of ill-posedness of the coefficient inverse problem that has to be solved.
The truncated Newton-CGNE method, belonging to the class of inexact Newton-
type methods, is used to solve this problem as it is known to be very suitable for
such nonlinear inverse problems [14]. For good results one needs, however, an initial
approximation which is sufficiently close to the solution. Finally, in the third step,
a single model for the effective thermal diffusivity is considered and the parameter
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estimation for it is carried out. The interplay between the tree steps both with and
without measurement errors is investigated by means of an illustrative case study.

We have, for the first time, successfully applied the concept of incremental model
identification to a complicated transport problem in 3D. This proof of concept should
not address the model discrimination issue in the third step of the incremental ap-
proach, where the best model is chosen from a set of candidate models by discrimi-
nating between the candidates using some reasonable model fit criterion [31].

Future work will address the following issues in addition to model discrimination.
Robust regularization techniques will be studied in more detail. Besides the number of
iterations, the discretization in space and time has a regularizing effect which needs
to be properly exploited in an appropriate discretization framework. Furthermore,
ill-posedness can be handled by adding a (Tikhonov) regularization term to the cor-
responding objective functional, cf. [14]. The interplay between such a regularization
on the level of the problem with those regularizing effects in the numerical method,
have to be analysed carefully (see e.g. [4, 7]). A further issue is a better theoretical
understanding of the error propagation through the sequence of inverse problems in
the incremental approach similar to [5]. Finally, in this paper we do not present a
detailed comparison with the simultaneous approach (as in [5]), which is also a topic
of current research.
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