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Abstract

In this paper, we consider a transient inverse heat conduction problem (IHCP) defined on an
irregular three-dimensional (3D) domain in pool boiling experiments. Heat input to a circular
copper heater of 35 mm diameter and 7 mm thickness is provided by a resistance heating foil
pressed to the bottom of the heater. The heat flux at the inaccessible boiling side is estimated
from a number of temperature readings in the heater volume. These temperatures are measured
by some high-resolution microthermocouples, which are mounted 3.6 µm below the surface in
the test heater. The IHCP is formulated as a mathematical optimization problem and solved by
the conjugate gradient (CG) method. The arising PDE problems are solved using the software
package ”DROPS”. A simulation case study is used to validate the performance of the solution
approach. Finally, we apply the solution approach to the IHCP in pool boiling experiments. The
procedure enables the reconstruction of local instantaneous heat flux distribution on the heater
surface at different locations along the boiling curve.
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Nomenclature

Direct problems

Ω, ∂Ω 3D domain and its boundary ΓH heated boundary of Ω

ΓB boiling boundary of Ω ΓR remaining boundary of Ω

ΓM measurement plane inside Ω n outer normal on ∂Ω

Θ, T, Td temperature distribution in Ω Θ0 initial temperature distribution

Θm, Tm temperature measurement on ΓM qh input heat flux on ΓH

qb unknown heat flux on ΓB tf , t′ final and backwards times

λ thermal conductivity a thermal diffusivity

S sensitivity problem solution l adjoint problem solution

Optimization

J (continuous) objective functional ∇J gradient of the objective functional

P n descent direction (nth iteration) γn conjugate coefficient (nth iteration)

µn search step length (nth iteration) q̂b
n estimated heat flux (nth iteration)

Simulation case study

qex
b simulated exact heat flux α temporally varying term of qex

b

β spatially varying term of qex
b Θex

m generated error-free measurement data

J# (discrete) objective functional || · ||# solution norm

τ time step size ε threshold parameter

ω measurement error σ standard deviation

niter number of optimization iterations
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1 Introduction

Boiling heat transfer is hard to model and to predict due to its complex nature [1,2].

During the past decades, many investigations of boiling phenomena have been conducted

on the equipment or the macroscale, the meso- and microscopic as well as the molecular

scale. The dynamic behavior of a rising bubble plume is a typical phenomenon observed on

the macroscale of the heat transfer equipment, e.g. in a boiling vessel. It has been studied

extensively both theoretically and experimentally [3–5]. Dhir and Liaw [6] have developed

a unifying framework for nucleate and transition boiling on base of a macroscopic geometry

model of ”vapor stems”. Their model assumes that all heat conduced into the liquid

adjacent to the surface is used for evaporation at the interface of the vapor stems. On the

mesoscale, single bubbles growing on a heated plate or emerging out of the closed film

in film boiling have been studied in detail, e.g. [7–9]. On the microscale, the microlayer

theory proposed by Stephan and Hammer [10] predicts that most of the heat during

boiling is transferred in the micro-region of the three-phase contact line by evaporation.

Predicted peak heat fluxes in the microlayer are much larger (∼102) than the macroscopic

heat fluxes captured by the boiling curve. However, none of the mentioned approaches

have been fully validated yet because of lacking experimental and theoretical evidence.

Existing design methods are mostly based on correlations which are valid only for one

of the boiling regimes, i.e. nucleate boiling, critical heat flux, transition and film boiling.

Boiling heat flux has been considered to be correlated with many different parameters,

e.g. superheat, nucleation site density or bubble diameter in the nucleate boiling and

average vapor fraction or vapor velocity in transition boiling [11]. It is unclear yet which

parameters dominate the boiling heat transfer. A reliable prediction of boiling heat fluxes

on a theoretical basis as a function of superheat and other relevant parameters are still

not available, especially for higher heat fluxes.

An adequate understanding of the various physical effects can only be obtained if high res-

olution measurement techniques are employed [12]. One particular technique constitutes

of microthermocouples with the tips very near (3.6 µm) to the surface in a test heater.

The temperature readings in the heater volume provide indirect information on the sur-

face temperature, the surface heat flux distribution as well as the wetting characteristics

on the surface. This kind of experimental approach has been taken in recent years at TU

Berlin [12]. Fig. 1 depicts the experimental setup of the test heater with the thermocouple

array in the center. The test heater is made from high purity copper and is 7 mm thick. It

is cylindrical (diameter 35 mm, 5 mm high) in the top part and quadratic in the bottom
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part with 38 mm times 38 mm and 2 mm thick with the edges cut off. The heater surface

ΓB is horizontally positioned. Heat flux input qh is provided by a resistance heating foil,

which is pressed on the bottom of the heater. For electrical insulation, a 0.25 mm thick

sheet of aluminium nitride is located between foil and heater.

Fig. 1. The test heater and thermocouple tips. (adopted from [13])

In this work, the estimation of the local heat flux qb on the boiling surface ΓB from the

temperature readings Θm in the heater volume is considered. It belongs to the class of

IHCPs [14,15], which are ill-posed in the sense of Hadamard [16]. Hadamard gave the

definitions of ”well-posed problems” and ”ill-posed problems” in the early twentieth cen-

tury. Today, a large number of studies related to IHCPs have already been published. The

presented solution methods are mostly based on so-called regularization strategies, e.g.

Tikhonov regularization [17], space marching [18], function specification [14] and iterative

methods [19]. However, most of them are restricted to one or two space dimensions. Only

a few publications are available for IHCPs in three dimensions [20–24]. In [20], an inverse

method based on the symbolic approach was proposed to determine the boundary condi-

tion in three-dimensional inverse heat conduction problems. The authors in [22] solved the
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inverse problem using the sequential function specification method with the assumption

that future-boundary heat flux varies linearly with time. A filter-based inversion solution

method for multi-dimensional IHCPs, which extends the work [25], was presented in [24].

The solution method is based on the interpretation of IHCP in the frequency domain. The

authors of [21,23] propose a CG-based iterative regularization method for the solution of

3D IHCPs, which has been applied to the solution of an IHCP in a falling film experiment

and obtained good estimation results. In this work, we present a systematic approach

that infers the unmeasurable local boiling heat fluxes from point-wise high resolution

transient temperature measurements using a mathematical model. We formulate our es-

timation problems arising from pool boiling experiments for different boiling regimes as

3D IHCPs and solve them by applying a CG-based solution approach. The reconstructed

local boiling heat fluxes give a unifying description of the entire boiling curve.

In our previous work, we solved a similar IHCP to estimate the surface heat flux and the

surface temperature fields from temperature readings [13,26]. In contrast to this work,

only a 2D heat conduction model with unknown boundary conditions at the heater surface

has been set up before. The center part of the heater with the microthermocouple array

has been partially discretized by means of finite-elements to result in a large system

of ordinary differential equations (ODEs). Then linear model reduction techniques [27]

were employed to reduce the order of the obtained ODE system. Filter-based inversion

algorithms [24] have been constructed and applied to this model. Spatial discretization

of the heat conductor in three dimensions results in a much larger system of ODEs, such

that the model reduction step becomes computationally intractable.

To overcome the computational difficulties in our filter-based method, we consider in this

paper an alternative approach based on the methodology used in [23], where the spatial

domain is modelled in 3D. For our problem, an unstructured finite element discretization

is applied to the 3D geometry, since the measurement positions are non-uniformly dis-

tributed. The boundary conditions are well-defined at those boundaries where no boiling

is occurring. This model forms the core of a generalized least-squares problem to minimize

an error norm between model predictions and the actual temperature measurements at

the thermocouple tips. The inverse problem is solved by an adaptive method involving

the CG method for optimization and a multilevel finite-element method for the solution

of the arising PDE problems.

The paper is organized as follows. In Section 2, the mathematical formulation of the inverse

problem is given. We present a CG-based solution approach in Section 3. In Section 4, we
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first validate the performance of this solution approach by a simulation case study and

then apply it to the real measurement data from the pool boiling experiments. Finally, we

give some conclusions about the estimation results and remarks concerning future work.

2 Mathematical formulation of the inverse problem

We consider the general 3D domain Ω shown in Fig. 2, with boundary ∂Ω = ΓH∪ΓB∪ΓR,

where ΓH , ΓB and ΓR denote the heated boundary, the boiling boundary and the adiabatic

boundaries of Ω, respectively. The linear heat conduction problem for the temperature

Θ(x, t) is given by

∂Θ(x, t)

∂t
= ∇ · (a(x)∇Θ(x, t)), (x, t) ∈ Ω× [0, tf ], (1)

Θ(x, 0) = Θ0(x), x ∈ Ω, (2)

− λ(x)
∂Θ(x, t)

∂n
= qh(x, t), (x, t) ∈ ΓH × [0, tf ], (3)

− λ(x)
∂Θ(x, t)

∂n
= qb(x, t), (x, t) ∈ ΓB × [0, tf ], (4)

− λ(x)
∂Θ(x, t)

∂n
= 0, (x, t) ∈ ΓR × [0, tf ], (5)

where thermal conductivity λ ≡ λ(x) and thermal diffusivity a ≡ a(x) are functions of the

spatial coordinates x. The final time is denoted by tf . The outer normal on the boundaries

is denoted by n.

Fig. 2. The general 3D geometry and coordinates.

The inverse problem corresponds to the estimation of the unknown heat flux qb(x, t) on

ΓB using temperature measurements Θm(x, t) on ΓM , which are obtained by interpolating
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the pointwise temperature measurement Θm(xi, t) as shown in Fig. 1. In this work, only

a control volume which covers the 6× 6 microthermocouple (MTC) grid at the center of

the heater is considered. Since there are no experimental data for the initial temperature

distribution Θ0 available and the values of measured temperatures at the first time instant

are almost the same at the measurement positions, their average value is employed as an

estimate for Θ0(x). Errors in this estimate will result in an unsatisfactory estimation at

the first several time instants, however an overall good estimation quality throughout

the whole time interval can be ensured. The heat flux input qh was measured in the

experiments and its values are almost stationary and uniformly distributed in space,

hence we use a constant approximation in space and time for the computation. Zero heat

flux is assumed at the remaining lateral boundaries ΓR due to a lack of better information.

Due to the linearity, the equations (1)-(5) can be divided into a direct problem:

∂Td(x, t)

∂t
= ∇ · (a(x)∇Td(x, t)), (x, t) ∈ Ω× [0, tf ], (6)

Td(x, 0) = Θ0(x), x ∈ Ω, (7)

− λ(x)
∂Td(x, t)

∂n
= qh(x, t), (x, t) ∈ ΓH × [0, tf ], (8)

− λ(x)
∂Td(x, t)

∂n
= 0, (x, t) ∈ ΓB × [0, tf ], (9)

− λ(x)
∂Td(x, t)

∂n
= 0, (x, t) ∈ ΓR × [0, tf ], (10)

with known initial and boundary conditions and the remaining problem:

∂T (x, t)

∂t
= ∇ · (a(x)∇T (x, t)), (x, t) ∈ Ω× [0, tf ], (11)

T (x, 0) = 0, x ∈ Ω, (12)

− λ(x)
∂T (x, t)

∂n
= 0, (x, t) ∈ ΓH × [0, tf ], (13)

− λ(x)
∂T (x, t)

∂n
= qb(x, t), (x, t) ∈ ΓB × [0, tf ], (14)

− λ(x)
∂T (x, t)

∂n
= 0, (x, t) ∈ ΓR × [0, tf ], (15)

with the unknown boundary condition qb(x, t) and vanishing initial condition.

The temperatures Θ, Td, T in the problems (1)-(5), (6)-(10) and (11)-(15), respectively,

are related by

Θ(x, t) = Td(x, t) + T (x, t), (x, t) ∈ Ω× [0, tf ].
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With this decomposition, the inverse problem mentioned above is equivalent to estimate

qb in (11)-(15) using measurement data Tm, which are obtained by subtracting the solution

Td(x, t) of the direct problem (6)-(10) on ΓM from the original temperature measurement

Θm(x, t), i.e.

Tm(x, t) = Θm(x, t)− Td(x, t), (x, t) ∈ ΓM × [0, tf ].

3 Optimization-based solution approach

The direct problem (6)-(10) is computed using the software package DROPS [28]. The

solution of the considered inverse problem for qb is obtained by minimizing the objective

functional

J(qb) :=
∫ tf

0

∫

ΓM

[T (x, t; qb)− Tm(x, t)]2dx dt, (16)

where T (x, t; qb) refers to the temperature field determined as the solution of the problem

(11)-(15) for a certain qb.

The optimization problem (16) is solved by applying a standard iterative optimization

algorithm presented in [21,23], where the CG method [29,30] was used to estimate the

unknown quantities qb sequentially until a certain stopping condition is fulfilled.

3.1 The CG iteration

The CG iterative process to calculate an estimate q̂n+1
b of qb is:

q̂b
n+1(x, t) = q̂b

n(x, t)− µnP n(x, t), for n = 0, 1, 2, ... (17)

We choose q̂b
0 = 0, P 0 = ∇J0 as initial guesses. µn is the search step length in iteration

n. The conjugate search direction P n(x, t) is updated by

P n(x, t) = ∇Jn(x, t) + γnP n−1(x, t). (18)

The corresponding conjugate coefficient γn, n ≥ 1, is determined from

γn =

∫ tf
0

∫
ΓB

[∇Jn]2dx dt
∫ tf
0

∫
ΓB

[∇Jn−1]2dx dt
, (19)
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and γ0 = 0.

At each iteration step, there are two quantities to be evaluated, namely µn and the gradient

∇Jn. Their determination requires to solve the so-called sensitivity and adjoint problems

[15]. The iterative CG-process ends when a certain given stopping condition is fulfilled.

3.2 The sensitivity problem

The sensitivity problem is derived by standard arguments. It is assumed that a variation

δqb of qb results in a perturbation δT of T . In order to simplify notation, we denote δT by

S in the following. Replacing qb by qb + δqb and T by T +S in (11)-(15), then subtracting

the original direct problem, we obtain the sensitivity problem

∂S(x, t)

∂t
= ∇ · (a(x)∇S(x, t)), (x, t) ∈ Ω× [0, tf ], (20)

S(x, 0) = 0, x ∈ Ω, (21)

− λ(x)
∂S

∂n
(x, t) = 0, (x, t) ∈ ΓH × [0, tf ], (22)

− λ(x)
∂S

∂n
(x, t) = δqb(x, t), (x, t) ∈ ΓB × [0, tf ], (23)

− λ(x)
∂S

∂n
(x, t) = 0, (x, t) ∈ ΓR × [0, tf ], (24)

and the search step length

µn =

∫ tf
0

∫
ΓM

[T (x, t; q̂b
n)− Tm(x, t)]S(x, t)dx dt

∫ tf
0

∫
ΓM

[S(x, t)]2dx dt
.

In the software implementation, δqb is replaced by P n in each iteration n.

3.3 The adjoint problem

To get an expression for the gradient ∇Jn, we define a modified objective functional by

adding a term involving an adjoint function l(x, t) to (16), i.e.,

J(qb) =
∫ tf

0

∫

ΓM

[T (x, t; qb)− Tm(x, t)]2dx dt

+
∫ tf

0

∫

Ω
l(x, t){∇ · (a(x)∇T (x, t; qb))− ∂T (x, t; qb)

∂t
}dx dt. (25)

9



Applying calculus of variations, we obtain the adjoint problem

∂l(x, t)

∂t
= −∇ · (a(x)∇l(x, t))− f(x, t), (x, t) ∈ Ω× [0, tf ], (26)

l(x, tf ) = 0, x ∈ Ω, (27)

− λ(x)
∂l(x, t)

∂n
= 0, (x, t) ∈ ∂Ω× [0, tf ], (28)

where ∂Ω denotes the boundary of Ω and f ≡ f(x, t) is given by

f(x, t) =





2[T (x, t)− Tm(x, t)], (x, t) ∈ ΓM × [0, tf ];

0, (x, t) ∈ Ω \ ΓM × [0, tf ].

The gradient follows from

∇J(x, t)|ΓB
= [−a(x)

λ(x)
· l(x, t)]|ΓB

.

The non-zero property of λ guarantees that the above identity is well-defined. Hence the

solution of the adjoint problem results in values of ∇J |ΓB
.

The problem (26)-(28) is a final-time value problem. By introducing a new time variable

t′ = tf − t, it can be transformed to an initial value problem, which can be solved by

DROPS. Since our temperature measurements are taken inside the heater volume and

not on the boundary, the formulation of the adjoint problem here is different from that

in [23].

4 IHCP in pool boiling

In this section, we focus on a particular IHCP defined in a control volume covering thirty-

six MTCs in pool boiling experiments [12]. These MTCs have been arranged on an ap-

proximately 1× 1 mm2 sized quadratic grid at the center of the heater and 3.6 µm below

the heater surface. They are able to resolve the temperature fluctuations with sufficient

accuracy with respect to spatial and temporal dimension. Each thermocouple consists of

an insulated constantan thermocouple wire (φ 38 µm) which is embedded in the heater. A

copper layer of 2.5 µm thickness is sputtered on the surface to create a T -type thermocou-
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Fig. 3. Measured positions of 1 × 1 mm MTC array (adopted from [12])

ple. The thermocouple wires below the surface do not influence the surface characteristics

[12]. The schematic setup of the MTCs and the test heater section are depicted in Fig. 1.

The heater surface is coated with a pure gold layer of 1 µm thickness to prevent corrosion

and oxidation of the surface. As diffusion resistance a titanium layer of 0.1 µm thickness

is located between the copper layer and the gold layer.

The real XY-positions of all MTCs were determined using a calibrated microscope mea-

surement system [12]. The result for all 36 MTCs is shown in Fig. 3. Based on this

experimental setup, we define the irregular 3D heater volume shown in Fig. 4 which has

approximately the size 1× 1× 0.3 mm3 (in the direction x, y and z, respectively).

The discretization of the heater volume is performed with tetrahedral linear finite elements

and the positions of the 36 MTCs are located at grid vertices. The MTCs 1-6, 7, 12, 13,

18, 19, 24, 25, 30 and 31-36 form the boundary of ΓM . Besides, the mesh refinement also

considers the dimension of the thin gold and copper layer which are sputtered on top

of the heater to form the boiling surface. The titanium layer is neglected. The mesh of

the heater volume (see Fig. 4) from ΓB to ΓH is taken increasingly coarser due to the

fact that the variation of the temperature distribution in the heater volume decreases

rapidly as the location approaches ΓH . This unstructured discretization results in 2779

spatial unknowns and 12940 tetrahedra. Referring to the general 3D geometry shown in

Fig. 2, here ΓB = {(x, y, z) ∈ Ω, z = 0.3 mm}, ΓH = {(x, y, z) ∈ Ω, z = 0 mm} and the
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temperature measurements are taken on ΓM = {(x, y, z) ∈ Ω, z = 0.2964 mm} (3.6 µm

below the surface ΓB). ΓR corresponds to the remaining boundaries of Ω.

Fig. 4. Discretization model of the 3D heater volume.

Before processing the experimental data (see Section 4.2), a simulation case study is set up

in the following section to validate and assess the performance of the solution approach.

4.1 Simulation case study

In this simulation case study, the solution of the direct 3D heat conduction equations is

computed using the software package DROPS [28], which is based on multilevel nested

finite element discretization methods. The simulation time interval is chosen as 0 ≤ t ≤ 1

ms. For the time discretization, an one step θ-scheme [31] with a step size τ = 0.01 ms is

used. In this paper we choose θ = 0.5, which leads to the Crank-Nicholson scheme. Piece-

wise linear finite elements on a tetrahedral grid are employed for the space discretization

[32]. The resulting discrete systems of equations are solved with a preconditioned Krylov
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subspace method [33]. The parameters a = 0.115 mm2/ms and λ = 0.4 W/mm·K are

applied. The initial and known boundary conditions consist of a constant temperature

distribution Θ(x, 0) = 40 ◦C and a constant heat flux qh(x, t) = 0.1 W/mm2. For the

initialization of the optimization procedure, we choose q̂b
0(x, t) = 0, (x, t) ∈ ΓB × [0, 1].

The heat flux

qex
b (x, y, t) = α(t) · β(x, y), (x, y, t) ∈ ΓB × [0, 1]

is chosen for this study to simulate the dynamics of a heat flux peak on the heater surface.

The spatially and temporally varying terms are

α(t) =





7.5t− 3, t ∈ [0, 0.4),

18sin(5πt), t ∈ [0.4, 0.61),

4.6559t− 5.6559, t ∈ [0.61, 1]

and

β(x, y) =





0,
√

(x− 0.6)2 + (y − 0.4)2 > 0.35,
√

0.352 − (x− 0.6)2 − (y − 0.4)2,
√

(x− 0.6)2 + (y − 0.4)2 ≤ 0.35.

The functions α and β are illustrated in Fig. 5.

Fig. 5. The functions α (left) and β (right).
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4.1.1 Estimation with error-free measurements

In this subsection, we present the estimation results with error-free measurements. We

take the temperature Θex
m on ΓM obtained from the solution of the direct problem with

the known boundary condition qex
b as error-free measurement data. A discrete version of

the objective functional (16),

J#(q̂b
n) :=

Nt∑

i=1

Nm∑

j=1

1

Nm

[T (xj, ti; q̂b
n)− Tm(xj, ti)]

2 · τ, (29)

is evaluated, where Nt, Nm denote the number of time steps and mesh points on ΓM ,

respectively. ti are the time instants uniformly discretized with time step size τ in the

estimation time interval and xj ∈ ΓM are the corresponding spatial coordinates of the

mesh points. n denotes the number of iteration steps in the optimization procedure. Fig.

6 gives a plot of the objective functional over the optimization iterations and it shows

that the objective converges rapidly by applying the CG method.

Fig. 6. Convergence behavior.

The contour plots of estimated surface heat fluxes at time instant t = 0.5 ms for optimiza-

tion iterations niter = 11 and niter = 150 are shown in Fig. 7. The peak value of the exact

heat flux occurs at this time instant. 36 points positioned exactly above the 36 MTCs (see

Fig. 3) are selected on ΓB to observe the estimated heat flux q̂b over time t. Fig. 8 shows

the estimation results at two positions above the location of MTC 8 and 22 for different

number of optimization iterations niter. The exact heat flux above MTC 8 is zero, while

the one above MTC 22 undergoes a big variation over time. The estimated heat fluxes

above the other 34 MTCs show a similar quality. Since we use error-free measurement
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data, the quality of overall estimation result could be improved using more optimization

iterations.

Fig. 7. Contour plots of the exact (left), estimated heat flux for niter = 11 (middle) and estimated
heat flux for niter = 150 (right) at time instant t = 0.5 ms.

Fig. 8. Estimated surface heat flux q̂b above position of MTC 8 (left) and of MTC 22 (right) for
different number of optimization iterations niter.

From Fig. 7 we can observe that the estimated heat fluxes oscillate near the boundary

of the circle (center: (0.6, 0.4), radius: 0.35) as the number of optimization iterations

increases. This is due to the fact that the function of the exact heat flux is not differentiable

on the boundary of the region where function β is non-zero. Using a global higher space

resolution could decrease the oscillation of estimates near the circle boundary and hence

obtain better approximation quality. However, this will also result in higher computation

time. Instead of refining the whole grid, a method involving local grid refinement may be

preferred. This issue will be investigated in future work.

4.1.2 Estimation in the presence of measurement errors

The simulated measurement data are constructed by perturbing the exact temperature

Θex
m , obtained as in the previous section, with an artificial measurement error ω. The
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perturbed measurement temperature Θm is given by

Θm = Θex
m + σω,

where σ is the standard deviation of the measurement error. ω is generated from a zero

mean normal distribution with variance one. In this simulation case study, we choose

σ = 0.02, which results in a measurement error of approximately 10%.

In case of error corrupted temperature measurements, the estimation quality will become

worse if too many iterations are applied, although the value of the objective functional is

still getting smaller. This is an indication of fitting the noise due to an overparameteriza-

tion of the heat flux function representation. In order to find the best termination index,

we need a suitable stopping criterion which can be based on the well-known discrepancy

principle or the L-curve criterion [29,34].

Discrepancy principle & L-curve criterion

A suitable choice for a stopping criterion is a threshold for the objective functional, i.e.

J#(q̂b
n) < ε. (30)

The discrepancy principle suggests to stop the optimization procedure when the temper-

ature residual matches roughly the error magnitude, i.e.

|T (xi, t; q̂b
n)− Tm(xi, t)| ≈ σ. (31)

By substituting (31) and (30) into (29) we obtain

ε ≈ σ2tf . (32)

The application of this version of the discrepancy principle yields the best termination

index — iteration 12.

An alternative method for the choice of the best termination index is the L-curve criterion

[29,34], a heuristic rule, which uses a parameterized plot of the objective functional against

a solution norm. In this simulation case study, we select the solution norm

||q̂b
n||2# :=

Nt∑

i=1

Nb∑

j=1

1

Nb

[
d2q̂b

n(xj, t)

dt2
|t=ti ]

2 · τ, (33)
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Fig. 9. L-curve for estimation with perturbed measurements with error level σ = 0.02.

where Nt, Nb denote the number of time steps and mesh points on ΓB, respectively. xj ∈
ΓB are the corresponding spatial coordinates of the mesh points. The best compromise

for the heat flux estimation is found at the maximum curvature of the L-curve as shown

in Fig. 9. This maximum curvature arises at iteration 11.

The best termination index obtained by L-curve is very close to the one obtained by the

discrepancy principle. Moreover, in case the noise level of the measurement data is not

known in advance, the L-curve criterion is a better choice, because it does not require any

knowledge on the character of the measurement noise.

Estimation results

The contour plots of optimal (niter = 11) and overestimated (niter = 150) heat fluxes for

t = 0.5 ms are shown in Fig. 10. Fig. 11 shows the estimation results above positions of

MTC 8 and of MTC 22 for different number of optimization iterations niter.

In contrast to the results shown in Fig. 8, the estimated heat flux above position of MTC

8 already starts to oscillate in the first few iterations in a small range of values (see left

top row of Fig. 11), whereas the estimated heat flux above position of MTC 22 has not yet

been well approximated and continues to approach the exact one (see left bottom row of

Fig. 11). A similar shape pattern of the estimated heat fluxes above position of MTC 8 at
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iteration 5 shown in Fig. 8 (left) and Fig. 11 (left top row) can be observed, although the

latter oscillates. The optimal estimated heat flux is obtained at iteration 11. It captures

the major dynamics of the exact heat flux. For longer iterations, the estimated heat flux

oscillates and the estimation quality decreases rapidly as further iterations are performed.

The overestimated heat flux obtained in iteration 150 strongly oscillates over time and

space. It is very different from the exact one. This effect is due to the ill-posedness of the

considered IHCP.

Fig. 10. Contour plots of the exact (left), optimal estimated heat flux (middle) and overestimated
heat flux (right) at time instant t = 0.5 ms.

Fig. 11. Estimated surface heat flux q̂b above position of MTC 8 (top row) and of MTC 22
(bottom row) for different number of optimization iterations niter.
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4.2 Estimation with measurement data from pool boiling experiments

In the experiment carried out at TU Berlin [12], local processes in pool boiling along

the entire boiling curve have been investigated. Using a temperature controlled heater,

boiling curves for some test fluids have been evaluated [12,35]. In this section, we use the

obtained temperature measurement inside the heater to estimate the local heat flux qb at

the fluid/heater interface ΓB.

Fig. 12. Isopropanol boiling curve at psat = 0.1 MPa (adopted from [12])

We solve the 3D IHCPs along the isopropanol boiling curve (see Fig. 12). The mea-

surement data at 36 MTCs have been taken with a sampling frequency of 25 kHZ [13].

Correspondingly, for the time discretization, time step size τ = 0.04 ms in the one step

θ-scheme is applied. The estimation time interval is chosen from 0 to 30 ms. Since there

are more discretized mesh points (542) on ΓM than MTCs (36), the temperature values

at mesh points on ΓM not corresponding to MTC positions are obtained by spatially

interpolating the data measured at the 36 MTCs. The thermal diffusivity a and thermal

conductivity λ are modeled as functions of the spatial coordinates to account for the fact

that the heater is made of copper with thin sputtered gold (1 µm) layer on its top part

[12]. The titanium layer (0.1 µm) is neglected. Due to space limitations, we only present

the estimation results for three representative operating points 1, 2 and 3 in Fig. 12,
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which belong to the nucleate and transition boiling regimes. The macroscopic heat fluxes

captured by the boiling curve at these three operating points are around 0.288 MW/m2,

0.441 MW/m2 and 0.108 MW/m2, respectively. The operating point 2 is close to the point

where the critical heat flux occurs.

Fig. 13. L-curves for the data measured at operating point 1 (left), operating point 2 (middle)
and operating point 3 (right).

By applying the L-curve criterion, the best estimated boiling heat fluxes for the three

operating points are obtained at iteration 490, 715 and 310, respectively (see Fig. 13).

The estimation results (see Fig. 14-22) show that the temporal and spatial evaluation

of the surface heat flux differs significantly among the boiling regimes. Because of space

limitations, we only show representative contour plots of estimated surface heat fluxes in

special time intervals [22.24 ms, 22.52 ms], [10.96 ms, 11.24 ms] and [5 ms, 5.28 ms] for

the three operating points, respectively (see Fig. 14-16). During these three short time

intervals, the boiling heat fluxes above positions of MTC 22, 20 and 20 attain very high

values, much higher than the values of macroscopic heat fluxes captured by the boiling

curve shown in Fig. 12. The time evolution of estimated heat fluxes just above the MTC

positions are shown in Fig. 17, 19 and 21 for the considered operating points. The esti-

mated boiling heat fluxes above MTC positions 20-23 are compared with those obtained

in [13] (see Fig. 18, 20, 22). Their peak values and patterns are consistent. However, we

solve the IHCP in a 3D computational domain instead of a 2D one. Correspondingly, the

estimation results are also extended from two to three space dimensions. In the following,

we discuss the estimation results along the boiling curve in detail.
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Fig. 14. Operating point 1 — contour plot of optimal estimated surface boiling heat flux in the
time interval [22.24 ms, 22.52 ms].
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Fig. 15. Operating point 2 — contour plot of optimal estimated surface boiling heat flux in the
time interval [10.96 ms, 11.24 ms].
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Fig. 16. Operating point 3 — contour plot of optimal estimated surface boiling heat flux in the
time interval [5 ms, 5.28 ms].
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In low heat flux nucleate boiling (results are not shown here), the temporal and spa-

tial heat flux and surface temperature fluctuations are relatively moderate. The surface

temperature exhibits fluctuations between 0.1-0.3 K.

At higher heat fluxes in nucleate boiling, e.g. at operating point 1, both the number

of fluctuations per unit time and their amplitude increase. Frequent sharp temperature

drops with amplitudes up to 1.0-1.5 K are observed. Fig. 17 shows the time evolution of

the estimated heat fluxes above all the 16 MTCs which are not on the boundary of the

heater volume. Peak values of the surface heat flux at this operating point reach up to

5-6 MW/m2, which is much higher than the macroscopic value 0.288 MW/m2. From Fig.

14 we can see that the boiling heat flux above MTC position 22 reaches its maximum

at time instant t = 22.36 ms and the area of high heat fluxes covers only one or two

observation positions above MTCs. Hence, the temperature and heat flux fluctuations at

this operating point are probably caused by evaporating liquid-vapor structures such as

nucleating bubbles with dimensions smaller than the size of MTC array.

At operating point 2, which is close to critical heat flux, both the fluctuations and the

amplitudes of temperature drops continue to increase. Some longer periods of monotoni-

cally increasing temperature excursions up to 1.0-2.5 K can be observed to emerge in an

irregular pattern. In addition, frequent sharp temperature drops with typical amplitudes

up to 1.0-1.5 K can also be observed. Again, the temperature and heat flux fluctuations

are probably caused by the local evaporation of liquid-vapor structures. This can also be

confirmed by the estimation results shown in Fig. 15, where more local small areas with

high heat fluxes are observed. Peak values of surface heat flux at this operating point

reaches up to 6 MW/m2 (see Fig. 19).

At operating point 3 and higher heat fluxes in transition boiling, the number of fluctua-

tions per unit time decreases. However, larger temperature drops with amplitudes up to

2.0-3.0 K and temporal gradients of 10000 K/s are observed. Fig. 16 shows that the area

of high heat fluxes is more extended compared to that in nucleate boiling. This indicates

that the temperature and heat flux fluctuations become more correlated above the MTCs

as the average superheat of the boiling surface is increased and these sharp temperature

drops are probably due to a rewetting of the boiling surface. Fig. 21 shows the estimated

heat fluxes above positions of 16 MTCs, which are not on the boundary of the heater

volume. It also confirms the observation made from Fig. 16.

In summary, the time intervals with high temperature excursion continue to grow from
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high heat flux nucleate to transition boiling. Since time and space scales are coupled by

the velocity of the wetting and rewetting process, longer periods of the temperature ex-

cursions mean larger structures of a possibly non-wetting area on the MTC array, due

to the presence of a local vapour cluster for instance. Very similar patterns like the sin-

gle fluctuation can be repeatedly identified at high heat flux transition boiling, e.g. at

operating point 3. Generally, in high heat flux nucleate boiling at lower superheats, the

amplitudes of the heat flux fluctuations are smaller than those observed in transition boil-

ing. However, the number density of such temperature drops is much larger in the nucleate

than in transition boiling. The magnitude and the number density of these fluctuations

is therefore a feature of a particular boiling regime. In nucleate boiling the temperature

drops and the associated high heat fluxes are certainly caused by rapid local evaporation

at a nucleation site on the heater surface. In transition boiling, they are most likely caused

by liquid contacts rewetting highly superheated and vapour-covered surface spots.

The characteristic sizes of the liquid-vapor structures in the two-phase at the surface are

found to increase with increasing temperature superheats. Due to the spatial resolution

of the MTCs, we introduced more spatial points on the measurement plane to ensure a

reasonable accuracy of the discretized model. Interpolated temperature values at mesh

points not corresponding to MTC positions are used for the numerical computation. We

couldn’t distinguish microlayer regions with high heat fluxes as observed in single bubble

studies [10]. Similar to the estimation results in [13], negative heat fluxes in some time

intervals at all three operating points are also found in our 3D estimation results (see

Figs. 17-22). However, the time intervals in the 3D-case are very short. This may be an

indication that there might locally exist heat transferred back to the heater surface, or an

artefact of the numerical methods. The characteristics of temperature fluctuations in the

different boiling regimes are associated with the dynamics of the two-phase layer above

the heater surface. This has been measured with the same test heater by micro optical

probes at different heights above the heater [35]. These measurements yield information

about vapor-liquid structures and for some extent interface velocities of the two-phase

structure above the surface.

25



Fig. 17. Operating point 1 — optimal estimated boiling heat fluxes above MTC positions 8-11,
14-17, 20-23 and 26-29.

Fig. 18. Operating point 1 — a comparison of our estimated boiling heat fluxes above MTC
positions 20-23 and those obtained in [13].
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Fig. 19. Operating point 2 — optimal estimated boiling heat fluxes above MTC positions 8-11,
14-17, 20-23 and 26-29.

Fig. 20. Operating point 2 — a comparison of our estimated boiling heat fluxes above MTC
positions 20-23 and those obtained in [13].
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Fig. 21. Operating point 3 — optimal estimated boiling heat fluxes above MTC positions 8-11,
14-17, 20-23 and 26-29.

Fig. 22. Operating point 3 — a comparison of our estimated boiling heat fluxes above MTC
positions 20-23 and those obtained in [13].
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5 Conclusions

We have formulated and solved a transient IHCP on an irregular 3D domain in pool boiling

experiments by applying a CG-based optimization method. A simulation case study has

validated the solution approach. The local boiling heat fluxes at three representative

operating points along the boiling curve of test fluid isopropanol have been successfully

estimated. Using the CG-based solution approach, the computational bottleneck of the

Filter-based method [24] for the given IHCPs in the pool boiling experiments has been

overcome. Based on real experiments, the estimation results have been obtained for the

first time in three space dimensions. The solution approach is rather general and can be

used to solve similar 3D IHCPs at reasonable computational cost.

One of our future work will be devoted to the development of an appropriate strategy

which can deal with limited measurements in space. Another possible improvement is to

apply adaptive mesh refinement algorithms to find the optimal discretized model adapted

to the identification task. This can avoid the inaccurate numerical computation with

coarse discretized models and too much computation effort with an unnecessary fine one.

Moreover, the identifiability issues will be addressed especially with respect to the spatial

MTC resolution.

The characteristics of temperature fluctuations in the different boiling regimes are associ-

ated with the dynamics of the two-phase layer above the heater surface. The corresponding

measurements obtained by micro optical probes [35] yield information about vapor-liquid

structures and for some extent interface velocities of the two-phase structure above the

surface. In combination with the associated heat flux distribution and dynamics evaluated

in the present work, a data basis is available for the development of realistic mechanistic

heat transfer models for boiling regimes beyond low heat flux nucleate boiling, where heat

transfer models can be based on the study of single undisturbed bubbles.
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[35] M. Buchholz, H. Auracher, T. Lüttich and W. Marquardt, A Study of Local Heat Transfer
Mechanisms Along the Entire Boiling Curve by means of Microsensors, Int. J. Thermal
Sciences 45 (2006) 269–283.

32


