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Abstract

We consider a relatively simple model for pool boiling processes. This model involves only
the temperature distribution within the heater and describes the heat exchange with the
boiling fluid via a nonlinear boundary condition imposed on the fluid-heater interface. This
results in a standard heat equation with a nonlinear Neumann boundary condition on part
of the boundary. In this paper we analyse the qualitative structure of steady-state solu-
tions of this heat equation. It turns out that the model allows both multiple homogeneous
and multiple heterogeneous solutions in certain regimes of the parameter space. The latter
solutions originate from bifurcations on a certain branch of homogeneous solutions. We
present a bifurcation analysis that reveals the multiple-solution structure in this mathemat-
ical model. In the numerical analysis a continuation algorithm is combined with the method
of separation-of-variables and a Fourier collocation technique. For both the continuous and
discrete problem a fundamental symmetry property is derived that implies multiplicity of
heterogeneous solutions. Numerical simulations of this model problem predict phenomena
that are consistent with laboratory observations for pool boiling processes.
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1 Introduction

Pool boiling refers to boiling processes that lean on natural convection as a means for heat
transfer between a heater surface and the boiling fluid; it is the key mode of thermal transport
in many practical applications. Local heat transfer phenomena near heating walls in industrial
boiling equipment (e.g. evaporators and kettle reboilers) for instance are essentially pool
boiling processes [1]. Furthermore, pool boiling is emerging as novel cooling technique for
electronics components [2]. Despite its importance, many aspects of (pool) boiling remain
largely unexplored to date, mainly due to the immense complexity of the process emanating
from the intricate interplay between fluid dynamics, heat transfer from the heater to the fluid
and phase transfer. Studies on boiling known in the literature are mainly experimental and
empirical. Numerical studies based on a model of reasonable degree of detail are numerous
but theoretical investigations aiming at a rigorous analysis of such models are scarce. The
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theoretical analysis of a simple boiling model presented in this paper is intended to contribute
to a better qualitative understanding of fundamental phenomena in pool boiling.

In pool boiling there are three fundamental boiling modes, i.e. nucleate, transition and
film boiling, that occur successively with increasing temperature [3]. Nucleate boiling is, as
opposed to film boiling, an efficient and safe mode of heat transfer and is the desired boiling
mode in most practical applications. Nucleate boiling transits into film boiling upon exceeding
the so-called critical heat flux (CHF) through the intermediate state of transition boiling.
This transition results in a dramatic increase in interface temperature due to the substantial
drop in the heat-transfer coefficient when going from nucleate boiling (homogeneous liquid-
like mixture) to film boiling (vapour blanket on the interface). This manifests itself in the
essentially nonlinear relation between the mean heat flux and the mean interface temperature
(the so-called boiling curve [3]). Improving the efficiency of boiling processes involves finding a
good balance between high heat-transfer coefficients (close to CHF) and low risk (safe distance
from CHF). In-depth understanding of transition boiling and its underlying mechanisms is
imperative to achieving such a balance [4].

Transition boiling may in a simplified description be considered as a state of “two-mode
boiling” that consists of coexisting nucleate-boiling and film-boiling regions [5]. A more
intricate and most likely more precise description of the two-phase structure in transition
boiling has been derived in a series of papers by Auracher and co-workers (see [6] for a survey).
Moreover, transition boiling is an inherently unstable state that naturally evolves towards
one of the two stable boiling modes, i.e. nucleate and film boiling, unless actively stabilised
through temperature control [7]. On mesoscopic length and time scales two-mode boiling
states correspond to heterogeneous temperature fields on the interface: “lower” temperatures
correspond to nucleate boiling regions; “higher” temperatures are associated with film boiling
regions.1 Furthermore, the propagation of boundaries between adjacent boiling regions during
evolution of the transition mode towards one of the stable modes is consistent with the
propagation of thermal waves at the fluid-heater interface [9, 10]. This phenomenological
connection between a (mesoscopic) boiling mode and interface temperature admits a heater-
only modelling approach that omits the boiling fluid and describes the (qualitative) behaviour
of the boiling system entirely in terms of the temperature distribution within the heater. The
heat exchange between the heater and the fluid is modelled by a nonlinear heat-flux relation
that is similar to the boiling curve [10]. The simplification from the multi-phase problem
to a heater-only model naturally disqualifies this approach for detailed quantitative studies.
However, the heater-only approach allows the analysis of fundamental (mesoscopic) boiling
phenomena using numerical analysis. Moreover, the present model serves as point of departure
for more sophisticated future models that enable quantitative studies.

The heater-only approach has found widespread application for the analysis of pool boiling
on “thin” heaters such as wires and foils [9, 11–15]. In such configurations the heat-flux
relation results in a nonlinear source term in the heat governing equations that thus these
are very similar to reaction-diffusion systems [10] and generic current-carrying systems [16].
First extensions to finite-thickness heaters, where the heat-flux relation leads to a nonlinear
boundary condition and thus an essentially different model, are presented in [10].

The transition behaviour of the heater-only problem basically involves two issues: (i)
formation and (ii) dynamics of heterogeneous temperature fields [6]. These two issues lead to

1Here mesoscopic means locally averaged in space and time over intervals larger than bubble dimensions
and bubble lifetimes in order to smooth out microscopic short-term fluctuations [8].
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questions concerning existence and stability of steady-state solutions. Analysis of thin heaters
has shown the existence of multiple steady-state solutions for given heating conditions. Each
set of steady-state solutions appears to accommodate at most two stable solutions; other
solutions are unstable [15]. Results obtained for cylindrical heaters with linearised heat-flux
relations are consistent with these results [17]. However, similar studies on thick heaters for
the generic case of nonlinear heat-flux relations and heterogeneous interface temperatures are
restricted to the analysis of [10]. The latter contains a numerical study of the evolution of two-
mode boiling states towards one of the two stable boiling modes (i.e nucleate or film boiling)
on a 2D thick heater. Initial two-mode boiling states (unstable steady states) are represented
by discontinuous – and thus rather artificial – temperature profiles, though. Numerical studies
on realistic heterogeneous steady-state solutions are not known to the authors.

In this paper we present an extensive analysis of the steady-state behaviour of a spatially
two-dimensional (2D) thick heater problem. We use the heat-transfer model proposed in [18],
based upon that introduced by [10], and show that multiple steady-state solutions may occur
in this model for specific conditions. Central topic is the dependence of the multiple solution
structure on the system parameters. To this end a bifurcation analysis is performed on the
model in order to identify solution branches and bifurcations as a function of the system
parameters. This analysis is based on a numerical continuation algorithm combined with the
method of separation-of-variables and a Fourier collocation method.

The paper is organised as follows. Section 2 introduces the model problem. Key proper-
ties of this model are derived in Section 3. Section 4 elaborates on the discretisation method
and the continuation algorithm. Section 5 demonstrates this methodology with a represen-
tative case study. Section 6 presents a generic bifurcation analysis of the model problem.
Conclusions are in Section 7.

2 Problem definition and mathematical model

Our pool boiling investigations are based on the heater-only modelling approach introduced
in Section 1 and following [10]. We consider the two-dimensional rectangular heater D =
[0, L] × [0,H], with boundary Γ = ∂D = ΓH ∪ ΓA ∪ ΓF . The boundary segments are ΓH =
{(x, y) ∈ D | y = 0 } (heat supply), ΓA = {(x, y) ∈ D | x = 0 or x = L } (adiabatic
sidewalls) and ΓF = {(x, y) ∈ D | y = H } (fluid-heater interface). The heat transfer is
described in terms of the superheat T , i.e. the temperature excess beyond the boiling point.
The steady-state temperature distribution T (x) in D is governed by the heat equation

∆T = 0, λ
∂T

∂n
|ΓH

= q̄H , −λ∂T
∂n

|ΓF
= q̄F (TF ), ∂T

∂n
|ΓA

= 0, (1)

where TF denotes the interface temperature on the boundary segment ΓF and n the outward
pointing normal. The constant λ is the thermal conductivity of the heater; q̄H and q̄F

represent the constant heat supply and temperature-dependent heat transfer to the boiling
fluid, respectively.

Closure of the heat-transfer model requires specification of the heat-flux function q̄F (TF ).
Physical considerations suggest local heat-transfer coefficients specific to liquid and vapour
contact for “lower” and “higher” local interface temperatures TF , respectively. This implies
that the function q̄F (TF ) should be qualitatively similar to the global boiling curve. For
simplicity, we identify q̄F (TF ) with the functional form of the global boiling curve (Figure 1a).
This boiling curve consist of three distinct regimes that each correspond to one of the boiling
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modes: nucleate boiling (0 ≤ T ≤ TC); transition boiling (TC < T < TM ); film boiling
(T ≥ TM ). The nucleate and film boiling regions represent local liquid and vapour contacts
respectively; the transition region is modeled by a smooth connection between the different
heat-transfer coefficients of adjacent liquid and vapour contacts. An explicit expression for
q̄F (TF ) is given below.

We formulate the heat-transfer problem (1) in non-dimensional form through rescaling of
the variables: x′ = x/L, T ′ = T/TD, q′H = q̄H/QH and q′F = q̄F /QC . Substitution into the
governing equations and dropping primes yields the non-dimensional model

∆T = 0, Λ
∂T

∂n
|ΓH

= 1, −Λ∂T
∂n

|ΓF
= Π2 qF (TF ), ∂T

∂n
|ΓA

= 0, (2)

on the non-dimensional rectangular heater D = [0, 1] × [0,D], with system parameters

Λ =
λTD

QHL
, D =

H

L
, Π1 =

QC

QM
, Π2 =

QC

QH
, Π3 =

TC

TM
. (3)

Here QH is a fixed typical value for the heat supply; in the current case of a constant heat
supply we use QH = q̄H (i.e. q′H = 1). Note that qF = q̄F /QC is the normalised boiling curve
(i.e. rescaled with QC instead of QH).

The normalised boiling curve can be parameterised by

qF (TF ) = h(TF )TF , h(TF ) := CD {F1 − F2H(CDTF − 1)} , (4)

with h(TF ) the temperature-dependent heat-transfer coefficient and H(ζ) = 1
2

[
tanh

(
2ζ
W

)
+ 1

]

a smoothed version of the Heaviside function. The parameter W sets the width of the tran-
sition region (from H = 0 to H = 1) around ζ = 0 and is specified a-priori. The coefficient
CD rescales the temperature such that the single deflection point of qF (TF ) coincides with

TF = 1. Its value is defined implicitly through 2dH
dT

(CD − 1) + d2H
dT 2 (CD − 1) = 0 and de-

pends only on W . The coefficients F1 and F2 scale qF (TF ) such that the four conditions
q̇F (Tmax) = 0, q̇F (Tmin) = 0, qF (Tmax) = 1 and qF (Tmin) = Π−1

1 are fulfilled, i.e. the
extrema of the normalised boiling curve are consistent with their dimensional counterparts,
where q̇F = dqF /dT . These conditions determine (F1, F2, Tmin, Tmax), with Tmax < 1 (local
maximum) and Tmin > 1 (local minimum) for given W and Π1. Figure 1b shows qF for
W = 1 and Π1 = 4. Note that W indirectly sets Π3; both parameters may therefore be used
interchangeably without loss of generality. The present boiling curve is a generalisation of the
one proposed in [10] in the sense that here the transition width W is an additional system
parameter.

3 Analysis of the steady-state problem

The method of separation-of-variables [19] enables derivation of a (formal) solution of the
Laplace equation and the linear Neumann conditions on ΓH and ΓA in (2). This results in

T (x, y) =
∞∑

n=0

T̃n
cosh(nπy)

cosh(nπD)
cos(nπx) +

D − y

Λ
, (5)

where the coefficients T̃n form the spectrum of the Fourier cosine expansion

TF (x) := T (x,D) =

∞∑

n=0

T̃n cos(nπx) (6)
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a) Global boiling curve. b) Normalised boiling curve qF .

Figure 1: Definition of heat-flux function qF . Panel a gives the global boiling curve. Tem-
peratures TC and TM coincide with the extrema (stars); TD is a typical temperature during
transition boiling. Panel b gives the corresponding normalised boiling curve qF for Π1 = 4 and
W = 1. T = 1 is the non-dimensional counterpart of TD; the extrema (stars) correspond with
qF = 1 and qF = Π−1

1 . The dashed line represents the normalised heat supply q̄H/QC = Π−1
2 .

of the interface temperature. The spectrum T̃n is determined by the nonlinear Neumann
condition on ΓF . Substitution of (5) into this nonlinear condition and using (4) leads to

∞∑

n=0

nπ tanh(nπD)T̃n cos(nπx) + α(TF (x))TF (x) −
1

Λ
= 0 for all x ∈ [0, 1], (7)

where

α(TF ) =
Π2

Λ
h(TF ) =

Π2

Λ

qF (TF )

TF
,

is the scaled heat-transfer coefficient. The nonlinear equation (7) determines the solution(s) of
(2). Thus the 2D problem (2) simplifies to the 1D problem (7) involving only the temperature
profile TF (x) on the boundary ΓF . The series in (6) and (7) are formal expressions; their
convergence is discussed below.

We first consider the special case of spatially homogeneous interface temperatures TF ,
implying TF (x) = T̃0 and T̃n = 0 for n > 0. Then the nonlinear condition (7) simplifies to

qF (T̃0) = Π−1
2 , (8)

and T̃0 coincide(s) with the intersection(s) between the boiling curve (solid line in Figure 1b)
and the normalised heat supply q̄H/QC = Π−1

2 (dashed line in Figure 1b). From Figure 1b it
follows that, depending on the system parameters, we can have one, two or three solutions
for T̃0. Note that in this homogeneous case the heat-transfer coefficient h(TF ) is constant and
thus the Neumann boundary condition on ΓF is linear. The corresponding solution in D is
given by

T (x, y) =
D

Λ

(
1 −

y

D

)
+ T̃0 , (9)

defining a linear profile with constant interface temperature TF (x) = T̃0 given by (8).
We now return to the general case and derive two properties important for the analysis

below. We introduce the Fourier space of convergent Fourier cosine series

Vk := { g : R → R | g(x) =

∞∑

n=0

akn cos(knπx) ∀ x ∈ R }, k = 1, 2, . . . (10)
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Functions from this space are 2
k
-periodic and even (i.e. g(x) = g(−x)) and are uniquely deter-

mined by their values at x ∈ [0, 1
k
]. For the Fourier coefficients akn we have the representation

a0 =

∫ 1

0
g(x) dx, akn = 2

∫ 1

0
g(x) cos(knπx) dx (kn > 0).

Note that V2k ⊂ Vk for all k. The Fourier transform on V1 is denoted by F : V1 → ℓ2:

for g(x) =

∞∑

n=0

an cos(nπx), F(g) := (an)n≥0.

For (bn)n≥0, (cn)n≥0 ∈ ℓ2 we define the product (bn)n≥0 · (cn)n≥0 := (bncn)n≥0, i.e., element-
wise multiplication of the entries in the sequences. Furthermore, we define the sequence

d = (dn)n≥0, dn := nπ tanh(nπD) for all n.

To guarantee that the expressions on the left handside in (7) are well-defined we only consider
functions from the following subset of V1:

S := { g ∈ V1 | d · F(g) ∈ range(F) and (α ◦ g)g ∈ V1 }.

Remark 1 Functions g ∈ V1 that are sufficiently smooth are elements of S. We do not study
this issue here, but only give one simple result related to this. Elementary Fourier analysis
yields that if g ∈ V1 and g ∈ C3(R) then g ∈ S holds.

The operator on the left handside in (7) has the following form

G(TF ) := F−1
(
d · F(TF )

)
+ (α ◦ TF )TF −

1

Λ
, for TF ∈ S. (11)

The definition of S implies G : S → V1. Thus (7) leads to the following problem:

Determine TF ∈ S, such that G(TF ) = 0 . (12)

The operator G, defined on S, is (strongly) nonlinear. The homogeneous solutions given by
(8) satisfy G(T̃0) = 0. We now show that for every k ≥ 1 the range of G|Vk

is contained in Vk.

Theorem 1 The following holds:

G : Vk ∩ S → Vk for all k ≥ 1.

Proof. For k = 1 this is trivial due to the definition of S. Solutions TF ∈ Vk ∩ S can be
represented as TF (x) =

∑∞
n=0 T̃kn cos(knπx), and T̃m = 0 for m mod k 6= 0. We obtain

G(TF )(x) =

∞∑

n=0

dnT̃n cos(nπx) + α(TF (x))TF (x) −
1

Λ

=

∞∑

n=0

dknT̃kn cos(knπx) + α(TF (x))TF (x) −
1

Λ

=: w1(x) + w2(x) −
1

Λ
.
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From TF ∈ S it follows that the series w1(x) =
∑∞

n=0 dknT̃kn cos(knπx) converges and thus
w1 ∈ Vk. From TF ∈ S it also follows that w2 = (α◦TF )TF ∈ V1 and thus w2 has a convergent
cosine Fourier series. Furthermore, because TF is 2

k
-periodic and even it follows that w2 is

2
k
-periodic and even, and thus w2 ∈ Vk. Hence, we have G(TF ) = w1 + w2 −

1
Λ ∈ Vk. 2

In the next theorem we present a symmetry property of heterogeneous solutions.

Theorem 2 Assume that there exists k ≥ 1 and TF ∈ Vk ∩S such that TF ∈/Vℓ for ℓ > k and

TF (x) =

∞∑

n=0

T̃kn cos(knπx) (13)

satisfies G(TF ) = 0. Define

T ∗
F (x) := TF (x +

1

k
) =

∞∑

n=0

T̃ ∗
kn cos(knπx), with T̃ ∗

kn = (−1)nT̃kn. (14)

Then T ∗
F ∈ Vk ∩ S satisfies G(T ∗

F ) = 0, and T ∗
F 6= TF .

Proof. Since TF ∈ Vk ∩S is even and 2
k
-periodic and T ∗

F is a translation of TF by 1
k

it follows
that T ∗

F ∈ Vk ∩ S. Using

TF (x +
1

k
) =

∞∑

n=0

T̃kn cos(knπ(x +
1

k
)) =

∞∑

n=0

(−1)nT̃kn cos(knπx)

we obtain the representation in (14). Note that

TF (x) − T ∗
F (x) =

∞∑

n=0

(1 − (−1)n)T̃kn cos(knπx).

Assume that TF = T ∗
F holds. Then T̃kn = 0 must hold for all odd n, and thus we obtain the

representation TF (x) =
∑∞

n=0 T̃2kn cos(2knπx). This implies TF ∈ V2k, which contradicts the
assumption TF ∈/Vℓ for ℓ > k. Thus T ∗

F 6= TF must hold. For arbitrary x ∈ R we have

G(T ∗
F )(x) = F−1

(
d · F(T ∗

F )
)
(x) + α(T ∗

F (x))T ∗
F (x)

=

∞∑

n=0

dkn(−1)nT̃kn cos(knπx) + α(TF (x +
1

k
))TF (x +

1

k
)

=
∞∑

n=0

dknT̃kn cos(knπ(x +
1

k
)) + α(TF (x +

1

k
))TF (x +

1

k
)

= F−1
(
d · F(TF )

)
(x +

1

k
) + α(TF (x +

1

k
))TF (x +

1

k
)

= G(TF )(x +
1

k
) = 0.

Hence, G(T ∗
F ) = 0 holds. 2

This result shows that heterogeneous solutions in V1 ∩ S, if they exist, always occur as a
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conjugate pair: (13) and (14). (Note that the dual solution T ∗
F is obtained from TF by a

translation with half the period of TF .) This implies a fundamental non-uniqueness in the
steady states under heterogeneous boiling conditions, consistent with laboratory experiments
[6].

In the proof of Theorem 2 we derived the following fundamental property of the operator
G. Let sk : R → R be the linear shift function sk(x) := x + 1

k
. For TF ∈ Vk ∩ S the relation

G(TF ◦ sk) = sk ◦ G(TF ) (15)

holds. Due to this commutator property of the nonlinear operator G and the linear shift
operator sk we obtain the symmetry result in Theorem 2.

Remark 2 The form of the function α(·) is immaterial for the proofs of Theorem 1 and
Theorem 2. Hence these results hold for an arbitrary (smooth) boiling curves qF .

4 Numerical solution method

The steady-state solutions follow from the characteristic equation (7). For homogeneous
solutions the latter simplifies to (8) and can be resolved by a standard root-finding algorithm.
Thus homogeneous solution branches are readily identified. Heterogeneous solutions, on the
other hand, have to be determined via the discretisation and continuation approach elaborated
hereafter. Numerical results obtained with this method will be presented in Sections 5 and 6.

4.1 Discretisation method

Discretisation of (7) is based on a standard Fourier collocation method [20]. We briefly review
a few basic facts from discrete Fourier analysis. Consider for N ∈ N the equidistant mesh
xj = j/N, j ∈ N. The discrete Fourier cosine transform of an even 2-periodic function
u(x) = u(x + 2) is given by

N∑

n=0

ũn cos(nπx), ũn :=
cn

N



u(0) + 2

N−1∑

j=1

u(xj) cos(nπxj) + (−1)nu(1)



 , (16)

with c0 = cN = 1/2 and cn = 1 otherwise. This function satisfies
∑N

n=0 ũn cos(nπxi) = u(xi)
for all 0 ≤ i ≤ N . Hence, the (physical) values u = (u0, . . . , uN )T , with uj := u(xj), relate to
the spectral coefficients ũ = (ũ0, . . . , ũN )T via

u = V ũ, V = (Vij)0≤i,j≤N , Vij := cos(jπxi). (17)

An elementary computation yields

(V D)−1 =
2

N
V D, with D = diag(1/2, 1, . . . , 1, 1/2). (18)

The discretisation of (7) is as follows: determine TF (xj) =
∑N

n=0 T̃n cos(nπxj), 0 ≤ j ≤ N,
such that

N∑

n=0

dnT̃n cos(nπxj) + α(TF (xj))TF (xj) −
1

Λ
= 0 for all 0 ≤ j ≤ N. (19)
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This set of N + 1 (nonlinear) equations for the unknowns T̃n (0 ≤ n ≤ N) or, equivalently,
TF (xj) (0 ≤ j ≤ N), can be represented in a compact matrix-vector formulation. We use

the notation Tj := TF (xj) (j = 0, . . . , N) , t = (T0, . . . , TN )T and t̃ = (T̃0, . . . , T̃N )T . Note
that t consists of the discrete temperature values on the boundary ΓF and t̃ contains the
corresponding Fourier coefficients. We introduce the diagonal matrices

KS = diag(dn)0≤n≤N , M(t) = diag
(
α(Tj)

)
0≤j≤N

,

the vector g = (1/Λ, . . . , 1/Λ)T and the matrix K := V KSV −1. Then the discrete problem
(19) can be formulated as follows: determine t ∈ R

N+1 such that

G(t) :=
(
K + M(t)

)
t − g = 0. (20)

The above defines a nonlinear system in the (physical) unknown t. The equivalent represen-
tation in the (spectral) unknown t̃ is given by

(
KS + MS(t̃)

)
t̃ = V −1g , MS(t̃) := V −1M (V t̃)V . (21)

The nonlinearity of the problems (20) and (21) is contained in the diagonal matrix M (t) and
the full matrix MS(t̃), respectively. The former admits a more efficient numerical treatment
and thus we have used the physical representation (20) in our numerical simulations.

For the discrete nonlinear operator G : R
N+1 → R

N+1 in (20) we will derive properties
similar to those for the continuous operator G in the Theorems 1 and 2. For this we first
introduce some further notation. Let vm be the m-th column of the matrix V in (17). Define

V N
k := span{vkn | 0 ≤ n ≤

N

k
}, k = 1, . . . , N.

This space is the discrete analogon of Vk in (10). Note that V N
k ⊂ V N

1 = R
N+1 for all k. We

now give a discrete analogon of Theorem 1.

Theorem 3 Let 1 ≤ k ≤ N be such that N mod k = 0. The following holds:

G : V N
k → V N

k . (22)

The symmetry property for the continuous problem as formulated in Theorem 2 is inherited
by the discretisation. We formulate a discrete analogon of Theorem 2:

Theorem 4 Let 1 ≤ k ≤ N be such that N mod k = 0 and define m := N
k
. Assume that

there exists t =
∑m

n=0 t̃knvkn ∈ V N
k such that t ∈/V N

ℓ for ℓ > k and G(t) = 0. Define

t∗ =

m∑

n=0

(−1)n t̃knvkn. (23)

Then t∗ ∈ V N
k satisfies G(t∗) = 0, and t∗ 6= t.

Proofs of these two theorems require some technical modifications of the proofs of analogous
results in the continuous case given in Section 3. These proofs are given in the Appendix.
The result in Theorem 4 shows that if a discrete heterogeneous solution t ∈ V N

k exists, then
the “shifted” vector t∗ ∈ V N

k as in (23) also satisfies the discrete equations. The assumption
N mod k = 0 in these theorems is not very restrictive: for a given k we can always use mesh
sizes such that N is an integer multiple of k.

Remark 3 Related to the discrete problem the same comment as in Remark 2 holds. The
results in the Theorems 3 and 4 do not depend on the specific form of the function α(·).
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4.2 Continuation strategy

We solve the discrete nonlinear system (20) with a continuation method. The nonlinearity in
the model stems entirely from the nonlinear boundary condition

qF (TF ) = CD {F1 − F2H(CDTF − 1)}TF ,

with coefficients CD, F1, F2 and Heaviside function H(·) according to Section 2. The model
is linear if qF is a linear function of TF . This motivates our introduction of the non-physical
nonlinearity parameter P below as additional continuation parameter. We define

qF (TF , P ) := CD {F1 − PF2H(CDTF − 1)} TF , for 0 ≤ P ≤ 1. (24)

For P = 0 we have a linear boundary condition; for P = 1 the original nonlinear condition is
recovered. Figure 2 demonstrates the smooth transition of the boiling curve qF (TF , P ) from
the linear state (P = 0) to the final nonlinear state (P = 1) in Figure 1b.

The discrete nonlinear problem (20) with the P -dependent heat-transfer condition (24)
can be represented as

G(t, P ) :=
(
K + MP (t)

)
t − g = 0. (25)

Note that MP (t) depends on P via MP (t) = diag
(
αP (Tj)

)
0≤j≤N

with αP (TF ) = Π2

Λ
qF (TF ,P )

TF

and qF (TF , P ) as in (24). For each P ∈ [0, 1] the set of homogeneous solutions (i.e. t =constant)
of this system can be easily computed. Starting on a branch of homogeneous solutions we
apply a continuation algorithm2 to P → G(t, P ) = 0 and determine bifurcations points on
the homogeneous branches from which branches of heterogeneous solutions originate. These
strategies and the resulting bifurcation diagrams are discussed in the following.

Figure 2: Controlling the degree of nonlinearity of the boiling curve via the nonlinearity
parameter P . Shown is the smooth transition from a linear profile (P = 0) towards the
physical boiling curve (heavy; P = 1) with increasing P (arrow). The stars denote the local
maxima and minima that occur for P beyond some non-zero lower limit.

2Here an in-house algorithm has been used, which is based upon techniques described in [22]. Elaboration
on this continuation algorithm is beyond the present scope.
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5 Numerical experiments: a representative case study

In this section we consider the discrete steady-state problem for a fixed parameter set, namely
for Λ = 0.2, D = 0.2, Π1 = 4, Π2 = 2 and W = 1. The set of steady-state solutions is
determined with the method explained in Section 4. Homogeneous solutions are obtained
by means of a standard Newton-type root-finding algorithm applied to (8); heterogeneous
solutions follow from continuation of the nonlinear system (25) in the nonlinearity parameter
P . Note that for smooth boiling curves (i.e. W > 0) the truncated Fourier expansion on
which our discretization method is based exhibits exponential convergence and thus already
for moderate values of N the discrete problem (20) is a highly-accurate approximation of the
continuous solution. In our experiments we use N = 128.

5.1 Homogeneous solutions

The homogeneous steady-state solutions (9) are uniquely determined by the constant interface
temperature TF as in (8). This interface temperature is given by the (multiple) intersection(s)
of the boiling curve with the normalised heat supply q̄H/QC = Π−1

2 (Figure 1b). For the de-
termination of the physically-meaningful homogeneous solutions it is sufficient to solve (8) for
P = 1. However, to obtain bifurcation points from which branches of heterogeneous solutions
originate we have to determine the homogeneous branches in the entire range 0 ≤ P ≤ 1.
These branches readily follow from solving (8) in this P -range. Two essentially different
situations can be distinguished, as illustrated in Figure 3, namely: (i) one solution T (1)

F for
0 ≤ P < PB (Figure 3a); (ii) three solutions (T (1)

F , T (2)

F , T (3)

F ) for PB < P ≤ 1 (Figure 3c). Both
situations are connected through the degenerate case P = PB , for which the local minimum
of the boiling curve qF (·, PB) touches the normalised heat supply q̄H/QC = Π−1

2 , causing the
second and third solutions to coincide (Figure 3b). Thus the system undergoes a qualitative
change at P = PB through a so-called tangent bifurcation [21].

Π2
−1

Τ F
(1)

q
F

T

Π2
−1

Τ F
(1) Τ F

(2,3)

q
F

T

Π2
−1

Τ F
(1) Τ F

(2) Τ F
(3)

q
F

T

a) 0 ≤ P < PB b) P = PB c) PB < P ≤ 1

Figure 3: Homogeneous solutions to the nonlinear system as a function of the nonlinearity
parameter P . Transition from the single-solution state (panel a) to the triple-solution state
(panel c) occurs through a tangent bifurcation at P = PB (panel b).

The bifurcation diagram (Figure 4a) shows the solutions in terms of the functional TΣ =∑
n T̃n as a function of the nonlinearity parameter P . The heavy curves are the solution

branches corresponding to the homogeneous solutions (9). The lower (nearly-horizontal)
branch coincides with the intersection T (1)

F that exists for all 0 ≤ P ≤ 1; the upper branch,
with a turning point at PB , coincides with the two intersections T (2,3)

F that exist only in the
interval PB ≤ P ≤ 1 (here PB ≈ 0.926). The lower and upper legs of this upper branch,
connected at the turning point, correspond to T (2)

F and T (3)

F , respectively. The solid curves
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are heterogeneous solution branches that originate from pitchfork bifurcations (dots) on the
T (2)

F -branch. An analysis of these bifurcation points is presented in the next section.

5.2 Bifurcation points on branches of homogeneous solutions

Bifurcations can only occur at P -values for which the Jacobian of G with respect to t is
singular [22]. This Jacobian is given by

J =
∂G

∂t
= K + Q(t), Q(t) = diag

(
γ(Tk)

)
0≤k≤N

, γ(T ) :=
Π2q̇F (T )

Λ
. (26)

On a homogeneous branch we have t = TF (1, . . . , 1)T and thus Q(t) = γ(TF )I, with I the
identity matrix and TF the homogeneous interface temperature. Hence we obtain

J = K + γ(TF )I = V KSV −1 + γ(TF )I = V JSV −1, (27)

with JS = diag
(
nπ tanh(nπD) + γ(TF )

)
0≤n≤N

. Thus on the homogeneous branches we have
an explicit eigenvector decomposition of the Jacobian. The eigenvalues λn and corresponding
eigenvectors vn are given by

λn = nπ tanh(nπD) + γ(TF ), vn = (cos(nπx0), . . . , cos(nπxN ))T , 0 ≤ n ≤ N. (28)

The eigenvector vn coincides with the n-th Fourier mode. The Jacobian is singular if one
or more of its eigenvalues λn vanish. Because nπ tanh(nπD) ≥ 0 for all n ≥ 0, this can
only happen if γ(TF ) ≤ 0. Thus a bifurcation on a homogeneous solution branch can only
occur for those TF for which the boiling curve has a negative slope (q̇F ≤ 0). From Figure 3
it follows that only intersection T (2)

F satisfies this criterion, thus explaining why bifurcations
are restricted to the T (2)

F -branch in the bifurcation diagram (Figure 4a). This implies that
bifurcations – and thus multiple (heterogeneous) solutions – can only occur for interface
temperatures in the transition range of the boiling curve.

Figure 4b displays γ (heavy curve) as a function of P on the T (2)

F -branch together with
F (n) = −nπ tanh(nπD) (dashed lines) for various n. The intersections γ = F (n) correspond
to λn = 0. These eigenvalues are simple and the corresponding eigenspace is one-dimensional.
From basic results in analysis (e.g., Thm. 28.3 in [23]) it follows that at these P -values the
system indeed undergoes a bifurcation. These four P -values correspond to the positions of
the bifurcations (filled circles) on the T (2)

F -branch (Figure 4a). From Figure 4b. we see that
for the case considered in this section the system has λn = 0 only for n = 0, 1, 2, 3. The
bifurcations on the T (2)

F -branch in Figure 4a correspond from left to right to the cases n = 0,
n = 1, n = 2 and n = 3. This ordering results from the monotonic dependence of γ on P .
It also follows that in the range P ∈ [0, 1] bifurcation points on the homogeneous T (2)

F -branch
with constant temperatures TF,P occur for those wave numbers n = 0, 1, 2, . . . that satisfy the
inequality nπ tanh(nπD) + γ(TF,1) ≤ 0.

5.3 Heterogeneous solutions

The eigenvectors vn belonging to eigenvalues λn correspond following (28) with individual
Fourier modes. This implies that for n ≥ 1 a heterogeneous discrete solution of the form

TF (xj) = T (2)

F + ǫ cos(nπxj), 0 ≤ j ≤ N, ǫ ↓ 0, (29)

12
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Figure 4: Bifurcations corresponding with the nonlinearity parameter P . Bifurcation diagram
for P at Λ = 0.2, D = 0.2, Π1 = 4, Π2 = 2 and W = 1 (panel a). Heavy curves correspond
to homogeneous solutions; solid curves correspond to heterogeneous solutions. Filled circles
represent bifurcations. Mechanism underlying bifurcations (panel b): intersections of γ along
the homogeneous T (2)

F -branch (heavy) with F (n) (dashed).

emerges from the bifurcation point corresponding to λn (Thm. 28.3 in [23]). The symmetry
property derived in Section 4.1 implies pairs of heterogeneous solutions

TF as in (29), T ∗
F (x) = TF (x +

1

n
). (30)

(Where T ∗
F is a discrete solution in the sense as explained in Theorem 4). The first bifurcation

(n = 0; turning point on the T (2)

F -branch) corresponds with a superimposed zero-th Fourier-
mode v0, hence the solution that emerges from this bifurcation point is homogeneous. Thus
the first bifurcation point (n = 0) is of tangent type (shown schematically in Figure 3b)
resulting in two homogeneous solutions. The bifurcations for n > 0 involve non-coinciding
superimposed modes that, due to symmetry properties (Theorems 2 and 4), form conjugate
pairs of heterogeneous solutions; hence for n > 0 we have pitchfork bifurcations.

The bifurcation diagram (Figure 4a) shows the solution branches as a function of the
parameter P . Figure 5a gives the evolution of the heterogeneous solutions near the first
pitchfork bifurcation (n = 1; P = 0.9297) for several P -values slightly larger than P = 0.9297.

The final (i.e. physically-meaningful) heterogeneous states at P = 1 are shown in Figure 5b.
At this pitchfork bifurcation the heterogeneous solutions originate from the first non-constant
Fourier mode (i.e. n = 1 in (30)), which can be clearly seen in Figure 5a. Figure 5b shows
that the form of this first Fourier mode is roughly maintained throughout the evolution from
the pitchfork bifurcation to the final state at P = 1. For the second (n = 2) and third
(n = 3) bifurcations similar behaviour occurs. The heterogeneous solutions emerge from the
respective bifurcations at P = 0.9495 and P = 0.9824 in a manner akin to that shown in
Figure 5a. The final states (P = 1) are given in Figures 5c and 5d. The final states at
P = 1 are the physically-meaningful heterogeneous steady-state solutions at the heater-fluid
interface ΓF . These solutions are denoted mode-n solutions (with n ∈ {1, 2, 3}). Figure 6
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c) Final state second bifurcation (P = 0.9495). d) Final state third bifurcation (P = 0.0.9824).

Figure 5: Origin of heterogeneous solutions. Panel a demonstrates the emergence from the
first pitchfork bifurcation at P = 0.9297 (heavy line: bifurcating homogeneous solution; solid
and dashed curves: pair of heterogeneous solutions); panel b gives the corresponding final
state (P = 1). Panels b and c give the final states (P = 1) for second (P = 0.9495) and third
(P = 0.0.9824) pitchfork bifurcations, respectively. The final states are solutions of (20).

shows the temperature distributions in the heater corresponding to these mode-n solutions,
revealing that the heterogeneous features occur mainly in lateral (i.e. x-wise) direction.

An important feature is the following. The mode-n (n ∈ {1, 2, 3}) solution TF emerges from
a perturbation vn ∈ Vn. In a neighbourhood of the bifurcation point we have a heterogeneous
solution TF ∈ Vn and thus, due to Theorem 4, also a dual solution T ∗

F with the symmetry
property T ∗

F (x) = TF (x + 1
n
). It turns out that during the continuation from the bifurcation

point P = Pbifur to the final value P = 1 the heterogeneous solution TF remains in Vn and
thus the symmetry property T ∗

F (x) = TF (x + 1
n
) holds for the whole range P ∈ [Pbifur, 1].

Remark 4 An explanation for this “conservation of symmetry” property (for P ∈ [Pbifur, 1])
is the following. From Theorem 3 and Remark 3 it follows that the operator G(t, P ) has the
property G(·, P ) : V N

k → V N
k for all P ∈ [0, 1] and all k ≥ 1 such that N mod k = 0. Note

that a homogeneous solution lies in V N
k for all k. Let P = Pn be such that λn = 0 (n ≥ 1)

holds, i.e. Pn corresponds to a mode-n bifurcation point. We take N such that N mod n = 0
is satisfied. In a neighbourhood of Pn we can consider

G(·, P ) : V N
n → V N

n . (31)

Starting from the bifurcation point we then have for increasing P a heterogeneous solution,

starting from T
(2)
F + ǫvn ∈ V N

n (with ǫ = P − Pn), which due to (31) remains in V N
n , until a

new singularity is encountered. Thus during the continuation the solution TF = TF,P remains
in V N

n and has a dual solution with the symmetry property T ∗
F (x) = TF (x+ 1

n
) (Theorem 4).
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a) Mode-1 solution. b) Mode-2 solution. c) Mode-3 solution.

Figure 6: Temperature distributions T (x, y) for the mode-n solutions. Heat supply and heat
extraction is through the lines y = 0 and y = 0.2, respectively.

First results of a stability analysis show that all heterogeneous solutions as well as the
homogeneous solution T (2)

F are unstable in time. Only the homogeneous solutions in the
nucleate (T (1)

F ) and film (T (3)

F ) boiling regimes are stable. Slightly-perturbed heterogeneous
mode-n solutions converge to one of the two homogeneous solutions T (1)

F or T (3)

F . The time
scale for which the mode-n heterogeneity remains clearly visible in the unsteady solution is
significant for small n and decreases rapidly for larger n.

6 Numerical experiments: variation of system parameters

The steady-state pool boiling model is determined by the system parameters (Λ,D,Π1,Π2,W ),
cf. Section 2. These parameters control the following physical phenomena: (i) fluid-heater
interaction via the boiling curve (Π1 and W ); (ii) properties of the heater (Λ and D); (iii)
heating conditions (Π2). Changes in the steady-state behaviour due to variation of these
parameters is investigated below. We first perform a bifurcation analysis for the system
parameters similar to that for the continuation parameter P (Section 6.1). Then we study
the physical changes in steady-state solutions with changing parameter values (Section 6.2).
The bifurcation analysis is carried out with the continuation procedure proposed in Section 4,
using the steady-state solutions determined in Section 5 as initial conditions.

6.1 Bifurcation analysis for the system parameters

Effect of changes in the boiling curve: variation of W and Π1

For an arbitrary transition width W homogeneous steady-state solutions TF are given as
solution of qF (TF ) = Π−1

2 . From the shape of the boiling curve qF it is clear that variation of
W does not result in qualitative changes in the set of homogeneous solutions. We illustrate
this in Figure 7a for the boiling curves with W = 1 (heavy), W = 0.1, W = 0.5 (solid)
and corresponding homogeneous solutions T (1,2)

F (dots) for Π2 = 2. (Note that the third
intersection T (3)

F is not shown.) Heterogeneous mode-n solutions originate from bifurcations
on the T (2)

F -branch occurring when F (n) = γ(T (2)

F ) holds (Section 5.2). Figure 7b shows F (n)
and γ(T (2)

F ) for 0.5 ≤ W ≤ 1 and n ≥ 1. The boiling curve becomes steeper for smaller
W -values, resulting in decreasing γ-values. This causes the number of intersections (and thus
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bifurcations) to increase monotonically with decreasing W . Narrowing the transition region
thus progressively augments the number of mode-n solutions and increases the wave-number
range 1 ≤ n ≤ nmax for which heterogeneous solutions exist. For W = 1 three intersections
occur and thus we have nmax = 3; for W = 0.5 and W = 0.1 the wave-number ranges increase
to nmax = 5 and nmax = 21, respectively.
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a) qF (TF ) for W ∈ {0, 0.5, 0.1}. b) Intersections F (n) ∩ γ(TF ).

Figure 7: Effect of changing transition width W . Panel a illustrates the qualitative invariance
of the solutions of qF (T ) = Π−1

2 (dots) w.r.t. variation in W . The heavy curve is the boiling
curve for the case W = 1. The other curves are for W = 0.5 and W = 0.1. Panel b shows
F (n) for n > 0 (parallel planes) and γ (surface) as a function of P and W . The number of
intersections F (n) ∩ γ (implying mode-n solutions) grows with decreasing W .

Figure 8a shows the bifurcation diagram for parameter P in case of W = 0.5. (Compare with
the case W = 1 in Figure 4a.) Figure 8b shows the T (2)

F -branches and corresponding pitchfork
bifurcation points (dots) for the transition widths W = (0.1, 0.2, 0.5, 1).
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Figure 8: Set of mode-n solutions for decreasing transition width W . Panel a shows the
bifurcation diagram for W = 0.5. Panel b shows the T (2)

F -branches and corresponding pitchfork
bifurcations (dots) for the indicated transition widths W .

16



The heat-flux ratio Π1 influences the boiling curve in a manner comparable to the continuation
parameter P and changes thus have similar effects. This is demonstrated in Figure 9a for the
case of a physical boiling curve (P = 1) with transition width W = 1. Homogeneous solutions
correspond to intersections qF (TF ) = Π−1

2 , which occur according to the scenario sketched for
increasing P in Figure 3. Increasing Π1 lowers the local minimum and consequently causes
a transition from one (Π1 < Π2) to three (Π1 > Π2) solutions via the tangent bifurcation
at Π1 = Π2. On the T (2)

F -branch a pitchfork bifurcation occurs if F (n) = γ(T (2)

F ) holds. In
Figure 9b the graphs of F (n) and γ(T (2)

F ) as a function of Π1 and W are given. Note the
similarity between Figure 9b and Figure 7b. It follows that γ(T (2)

F ) decreases monotonically
with increasing Π1. Hence, the number of intersections F (n) = γ(T (2)

F ) (and thus of mode-n
solutions) increases with increasing Π1. The bifurcation diagram for Π1 is qualitatively similar
to that for P (Figure 4a). Furthermore, increasing Π1 has a effect similar to decreasing the
transition width W : The wave-number range in which bifurcations exist is enlarged.

The above reveals that variations of W and Π1 (in realistic ranges) do not lead to qualitative
changes in the behaviour of the system. Therefore it is no severe restriction to consider only
one fixed boiling curve. In the remainder we use as default the boiling-curve parameters
Π1 = 4 and W = 1 and investigate the role of the heating conditions (Π2) and heater
properties (Λ and D) on the behaviour of the pool boiling model.
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a) Boiling curve for several Π1 values. b) Intersections F (n) ∩ γ(TF ).

Figure 9: Effect of changing heat ratio Π1 on the steady-state behaviour. Panel a shows the
boiling curve as a function of Π1 (cf. Figure 2). The heavy curve is the boiling curve for
W = 1. Panel b shows F (n) for n > 0 (parallel planes) and γ as a function of W and Π1.
The number of intersections F (n) ∩ γ (implying mode-n solutions) grows with increasing Π1.

Effect of changes in the heating conditions: variation of Π2

The heating conditions (Π2) determine the regions of existence of multiple solutions and
thus the global boiling mode. Multiple (heterogeneous) solutions are restricted to the regime
1 ≤ Π2 ≤ Π1. Outside the range 1 ≤ Π2 ≤ Π1 only one homogeneous solution – and
consequently only one homogeneous boiling state – exists, namely T (1)

F (nucleate boiling) for
Π2 > Π1 and T (3)

F (film boiling) for 0 ≤ Π2 < 1. The link between multiplicity of steady-
state solutions and heating conditions is consistent with laboratory experiments [6] and is a
fundamental property of pool boiling systems.

Figure 10a shows a typical bifurcation diagram for Π2 with heater properties Λ = 0.2 and
D = 0.2. The homogeneous branches are combined into the heavy curve and connected via
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the turning points at Π2 = 1 and Π2 = Π1(= 4). These turning points bound the parameter
range 1 ≤ Π2 ≤ Π1 and are the tangent bifurcations that lead to multiple homogeneous
solutions. The lower and upper sections of the combined homogeneous branch coincide with
the T (1)

F -and T (3)

F -branches, respectively. The centre section corresponds to the T (2)

F -branch.
The heterogeneous branches of corresponding to the mode-n solutions (solid) originate pair-
wise from this branch and form closed concentric loops, with n increasing from n = 1 in
inward direction (here n = 1, 2, 3). The dashed line indicates the case study of Section 5.

Bifurcations on the homogeneous T (2)

F -branch coincide with λn = 0, with λn as in (28), i.e.
for TF = TF (Π2) such that g(Π2) := Π2 q̇F (TF (Π2)) = −Λnπ tanh(nπD) holds. Parameters
Λ and D are fixed: Λ = D = 0.2. Hence, a bifurcation occurs if Π2 ∈ [0, 4] and n ≥ 1 are such
that g(Π2) = −Λnπ tanh(nπD). From the profile of g (not shown) it follows that solutions
of the latter equation occur as pairs ΠL

2 (n), ΠR
2 (n) with 1 < ΠL

2 (n) < ΠR
2 (n) < 4. Thus

mode-n bifurcation points occur in pairs, which leads to the closed heterogeneous branches
in Figure 10a. Furthermore, the function n → ΠL

2 (n) (n → ΠR
2 (n)) is strictly increasing

(decreasing). This explains the specific ordering of the heterogeneous branches.
The bifurcation diagram (Figure 10a) provides information on the qualitative steady-state

behaviour of the pool boiling system as a function of the heating conditions. Regimes Π2 > Π1

(nucleate boiling) and 0 ≤ Π2 < 1 (film boiling) allow only one single solution branch. In
the range 1 ≤ Π2 ≤ Π1 (transition boiling) multiple solution branches occur. Multiplicity
phenomena increase (more mode-n solutions) when Π2 moves the borders of the interval
[1,Π1] towards its centre. The multiple solution branches allow different steady states that
the pool boiling system may have during transition from nucleate to film boiling (and vice
versa) with changing heat supply.

Effect of changes in the heater properties: variation of Λ and D

We take a fixed value Π2 = 2 and vary Λ and D. First we consider the effects of changing
the non-dimensional thermal conductivity Λ, with D = 0.2 fixed. The resulting bifurcation
diagram is shown in Figure 10b. The heavy lines are the homogeneous branches (which do
not depend on Λ); the solid curves are the heterogeneous branches originating from the T (2)

F -
branch. The dashed line refers to the case study of Section 5. The wave number n of the
mode-n solutions corresponding to the heterogeneous branches increases from n = 1 (right-
most heterogeneous branch) monotonically with decreasing Λ. This ordering can be explained

as follows. A bifurcation point on the T (2)

F -branch occurs if the equality Λ = − Π2q̇F (TF )
nπ tanh(nπD)

holds, with TF such that qF (TF ) = Π−1
2 and q̇F (TF ) ≤ 0. This homogeneous solution TF does

not depend on Λ. Therefore, since D is also constant, for every n ≥ 1 there is a unique solution
Λ(n) to this equality. Furthermore, the function n → Λ(n) decreases strict monotonically.

We now consider the effect of changes in the aspect ratio D, with a fixed Λ = 0.2. The
corresponding bifurcation diagram is shown in Figure 10c. Heavy and solid lines again indicate
homogeneous and heterogeneous branches; the dashed line refers to the case study of Section 5.
This diagram resembles that for Λ in Figure 10b in that homogeneous branches do not depends
on D and heterogeneous branches correspond from right to left with mode-n solutions with
increasing wave number n. However, bifurcation points occur only for wave numbers n ≥ 4.
For given Λ and Π2 the solutions corresponding to the wave numbers 1 ≤ n ≤ 3 exist for
any D > 0 and thus do not undergo bifurcations in this parameter range. This can be
explained by similar arguments as used above for Λ. At a bifurcation point on the T (2)

F -

branch the equality tanh(nπD) = −Π2q̇F (TF )
nπΛ is fulfilled, with TF such that qF (TF ) = Π−1

2
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and q̇F (TF ) ≤ 0. This homogeneous solution TF does not depend on D. For n too small

(1 ≤ n ≤ 3) we have −Π2q̇F (TF )
nπΛ ≥ 1 and thus the equality does not have a solution. For

n sufficiently large (n ≥ 4) we have 0 < −Π2q̇F (TF )
nπΛ < 1 and thus the equality has a unique

solution D(n). One easily verifies that n → D(n) is strictly decreasing. For Λ sufficiently

large we have 0 < −Π2q̇F (TF )
nπΛ < 1 for all n ≥ 1 and then we have mode-n bifurcation points

on the homogeneous T (2)

F -branch for all n ≥ 1.
The above reveals that both with decreasing Λ and D the number of bifurcation points

occurring increases. Since each new bifurcation implies a new pair of mode-n solutions, this
implies that decreasing thermal conductivity (Λ) and/or relative heater thickness (D) in-
duces more multiplicity and heterogeneity phenomena in our pool boiling model. Conversely,
increasing thermal conductivity and/or relative heater thickness enhances homogeneity.

This effect of heater thickness is known from laboratory experiments [24]. However, an
essential difference between the effects of variation in Λ and in D is that increasing thermal
conductivity at some point always causes vanishing of heterogeneous solutions, whereas for
specific ranges of Λ (and Π2) heterogeneous solutions are always present, irrespective of heater
thickness. The bifurcation diagram in Figure 10c indicates that in this particular range of Λ
and Π2 bifurcations occur only for mode-n solutions with n ≥ 4; solutions for n = (1, 2, 3)
exist for any aspect ratio D here.

6.2 Physical changes in steady-state solutions

Mode-n bifurcations occur in Λ- and D-directions if for a certain wave number n the eigenvalue
λn of the Jacobian equals zero. Moving away from the bifurcation, by decreasing the system
parameter, amplifies the heterogeneous features of the corresponding mode-n solutions in a
similar way as demonstrated in Figure 5 for the continuation parameter P .

Figure 11a shows the change of the interface temperature TF (x) of the mode-1 solution
with decreasing thermal conductivity Λ (solid curves) from its nearly homogeneous state at
the bifurcation (heavy line; Λ = 1.20) to its state just above the lower bound Λ = 0 (heavy
curve; Λ = 0.05). The plot reveals a progressive steepening of the profile with decreasing Λ
to such an extent that it suggests a discontinuous profile for Λ ↓ 0. This steepening results
from the higher temperature gradients caused by the higher resistance to heat conduction
due to lower thermal conductivity. For vanishing heat conduction this implies locally-infinite
temperature gradients and consequently discontinuous profiles.

Figure 11b shows the change of TF (x) of the mode-4 solution (the lowest mode-n solution
that originates from a bifurcation here) with decreasing aspect ratio D. The plot reveals
that decreasing the relative heater thickness amplifies, similar to decreasing the thermal
conductivity, the heterogeneous features of the mode-n. The progression suggests that, in
contrast to the behaviour found for Λ, the solution now tends to a smooth profile for vanishing
aspect ratio D. The heavy curve in Figure 11b corresponds to D = 0.01 and is believed to be
a good approximation for the profile associated with the ‘thin’ heater (D = 0).

In Π2-direction, mode-n bifurcations occur pair-wise and thus result in essentially non-
monotonic dependence of the solution on changing heating conditions (not shown). Here
the homogeneous solution corresponding with Π2 = ΠL

2 (left bifurcation point) develops
heterogeneous features that are amplified with increasing Π2 in a way akin to that shown in
Figure 11, up to some value Π2 = Π2rev. The latter marks the point at which the process
reverses and the heterogeneous features progressively diminish with further increasing Π2 until
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a) Bifurcation diagram for Π2.

b) Bifurcation diagram for Λ.

c) Bifurcation diagram for D.

Figure 10: Bifurcation diagrams for system parameters Π2 (Λ = 0.2,D = 0.2), Λ (Π2 = 2,D =
0.2) and D (Λ = 0.2, Π2 = 2). The intersections of the solution branches with the vertical
dashed lines in the bifurcation diagrams for Λ and Π2 coincide with the solutions at P = 1 in
Figure 4a.
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the homogeneous solution corresponding with Π2 = ΠR
2 (right bifurcation point) is reached.

a) Mode-1 solution for Λ b) Mode-4 solution for D

Figure 11: Changes in interface profile of indicated mode-n solutions as a function of Λ
(panel a) and D (panel b). The heavy horizontal lines are the profiles at the bifurcation; the
heavy curves are the profiles farthest away from the bifurcation. The solid curves are the
intermediate states. The arrows indicate progression with decreasing parameter Λ or D.

7 Conclusions

In this paper we consider a two-dimensional heat equation with a nonlinear Neumann bound-
ary condition on part of the boundary as a simple model for 2D pool boiling processes. The
nonlinear Neumann boundary condition models the heat flux from the heater to the fluid
by means of a nonlinear local heat-flux temperature relation that is similar to the boiling
curve. A key issue is the existence of multiple steady-state solutions with heterogeneous
interface temperature. The seperation of variables technique leads to a reduction of the two-
dimensional problem to a one-dimensional problem for the temperature at the heater-to-fluid
interface, cf. (7). The latter problem is discretised using a collocation method. Both the
continuous and discrete problem (at the interface) have a symmetry property (Theorems 2
and 4) that immediately implies multiplicity of heterogeneous solutions. These originate from
bifurcations on a branch of homogeneous solutions. The existence of symmetries (Theorem 2)
and the conservation of symmetries (Theorem 1) are two fundamental properties of the model.
The multiple solution structure and its dependence on certain system parameters is studied
through a bifurcation analysis applied to the discretised problem.

We outline the main conclusions from the analysis.
Multiple (heterogeneous) steady-state solutions exist. Multiplicity and heterogeneity are

restricted to the transition-boiling regime; the nucleate-boiling and film-boiling regimes admit
but one unique solution exists, which is always homogeneous. Heterogeneous solutions repre-
sent temperature distributions that correspond to nucleate and film boiling regions and thus
are essentially two-mode boiling states. Heating conditions are modelled as a constant heat
flux on the boundary opposite to the heater-fluid interface. Heat supply between critical heat
flux (CHF) and Leidenfrost heat flux (LHF; local minimum on boiling curve) implies three
homogeneous solutions, each in one of the three boiling regimes. Heat supply outside this
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range results in only homogeneous solution, corresponding to either nucleate or film boiling.
Heterogeneous solutions originate pairwise from pitchfork bifurcation points on the branch of
homogeneous solutions in the transition regime of the boiling curve and can occur only under
specific heating conditions. The actual steady-state solution attained at such pitchfork bifur-
cations is inherently unpredictable. Relevant system parameters are boiling curve coefficients
(transition width W ; CHF-LHF ratio Π1) and heater properties (aspect ratio D; thermal
conductivity Λ). Decreasing (one of) W,D and Λ and/or increasing Π1 enlarges the set of
heterogeneous solutions, suggesting this induces stronger multiplicity and heterogeneity of
solutions of the pool boiling problem. However, variation of these parameters does not cause
fundamental changes in the steady-state behaviour of the system. Multiplicity and hetero-
geneity only show a quantitative dependence on these parameters. The essential condition
is 1 ≤ Π2 ≤ Π1. If this condition is satisfied, there exists a homogeneous solution in the
transition range of the boiling curve, leading to bifurcating pairs of heterogeneous solutions.

Important phenomena resulting from numerical simulations of our model are consistent
with properties known from laboratory experiments. This suggests that the model provides
an (at least qualitatively) adequate description of pool boiling.

Both the present model and the numerical techniques used can be extended relatively
straightforward to 3D pool boiling systems. This is a topic of current research [25]. Fur-
thermore, results of a stability analysis of the steady-state solutions will be presented in a
forthcoming paper. Preliminary results of this analysis reveal that steady-state solutions are
always unstable, except for the two homogeneous solutions corresponding to the nucleate and
film boiling regimes. Miscellaneous issues to be considered in future work may include the
effect of different heating methods [26] and stabilisation via active control [7].
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A Proofs of Theorems 3 and 4

We need the following lemma:

Lemma 1 Let 1 ≤ k ≤ N be such that N mod k = 0. For t ∈ V N
k we then have M(t)t ∈ V N

k .

Proof. Define m := N
k

. For a vector z ∈ R
N+1 we use the notation z = (z0, z1, . . . , zN )T .

For t ∈ V N
k we have t =

∑m
n=0 αnvkn and thus ti =

∑m
n=0 αn cos(knπxi) for 0 ≤ i ≤ N . From

this it follows that

tm+i = tm−i (0 ≤ i ≤ m), ti+2m = ti (0 ≤ i ≤ N − 2m).

The vector r := M(t)t has entries ri = α(ti)ti and thus we have

rm+i = rm−i (0 ≤ i ≤ m), ri+2m = ri (0 ≤ i ≤ N − 2m). (32)

The vector (rj)0≤j≤m has a discrete Fourier transform, cf. (16), rj =
∑m

ℓ=0 r̃ℓ cos(ℓπx̂j) =∑m
ℓ=0 r̃ℓ cos(kℓπxj), with 0 ≤ j ≤ m and x̂j := j

m
. Due to (32) and cos(kℓπxm+j) =

cos(kℓπxm−j) (0 ≤ j ≤ m), cos(kℓπxj+2m) = cos(kℓπxj) (0 ≤ j ≤ N − 2m) we obtain
rj =

∑m
ℓ=0 r̃ℓ cos(kℓπxj) for all 0 ≤ j ≤ N . Hence, r =

∑m
ℓ=0 r̃ℓvkℓ, i.e., r ∈ V N

k holds. 2

Proof of Theorem 3. The operator G : V N
1 → V N

1 is defined by G(t) = Kt + M (t)t − g.
For t ∈ V N

k we have M(t)t ∈ V N
k due to Lemma 1. Note that g ∈ V N

k for all k and N .
We now consider the term Kt = V KSV −1t with KS = diag(dn)0≤n≤N . For t ∈ V N

k , with
m := N

k
, we have t =

∑m
n=0 αknvkn. Thus

V KSV −1t =

m∑

n=0

dknαknvkn

holds. This yields Kt ∈ V N
k and completes the proof. 2

Proof of Theorem 4. Assume that t = t∗. Then
∑m

n=0(1 − (−1)n)t̃knvkn = 0 and thus

t̃kn = 0 for all odd n. This yields t =
∑[ 1

2
m]

n=0 t̃2knv2kn, i.e., t ∈ V N
2k , which contradicts the

assumption t ∈/V N
ℓ for ℓ > k. Thus t 6= t∗. From

tj =

m∑

n=0

t̃kn cos(knπxj), t∗j =

m∑

n=0

t̃kn cos(knπ(xj +
1

k
)) =

m∑

n=0

t̃kn cos(knπxj+m), (33)

for 0 ≤ j ≤ N , it follows that

t∗j = tj+m for 0 ≤ j ≤ N − m, t∗j = t2N−m−j for N − m ≤ j ≤ N. (34)

From

G(t)j =

m∑

n=0

dknt̃kn cos(knπxj) + α(tj)tj −
1

Λ

G(t∗)j =

m∑

n=0

dknt̃kn cos(knπxj+m) + α(t∗j )t
∗
j −

1

Λ
,

for 0 ≤ j ≤ N , and (34) it follows that

G(t∗)j = G(t)j+m for 0 ≤ j ≤ N−m, G(t∗)j = G(t)2N−m−j for N−m ≤ j ≤ N. (35)

Since G(t)j = 0 for all 0 ≤ j ≤ N we obtain G(t∗) = 0. 2
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