A FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS ON
SURFACES

MAXIM A. OLSHANSKII*, ARNOLD REUSKEN' | AND JORG GRANDE'

Abstract. In this paper a new finite element approach for the discretization of elliptic partial
differential equations on surfaces is treated. The main idea is to use finite element spaces that are
induced by triangulations of an “outer” domain to discretize the partial differential equation on the
surface. The method is particularly suitable for problems in which there is a coupling with a flow
problem in an outer domain that contains the surface. We give an analysis that shows that the
method has optimal order of convergence both in the H! and in the L?-norm. Results of numerical
experiments are included that confirm this optimality.
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1. Introduction. Moving hypersurfaces and interfaces appear in many physical
processes, for example in multiphase flows and flows with free surfaces. Certain math-
ematical models involve elliptic partial differential equations posed on such surfaces.
This happens, for example, in multiphase fluids if one takes so-called surface active
agents (surfactants) into account. These surfactants induce tangential surface tension
forces and thus cause Marangoni phenomena [9, 10]. Numerical simulations play an
important role for a better understanding and prediction of processes involving this
or other surface phenomena. In mathematical models surface equations are often cou-
pled with other equations that are formulated in a (fixed) domain which contains the
surface. In such a setting a common approach is to use a splitting scheme that allows
to solve at each time step a sequence of simpler (decoupled) equations. Doing so one
has to solve numerically at each time step an elliptic type of equation on a surface.
The surface may vary from one time step to another and usually only some discrete
approximation of the surface is available. A well-known finite element method for
solving elliptic equations on surfaces, initiated by the paper [5], consists of approxi-
mating the surface by a piecewise polygonal surface and using a finite element space
on a triangulation of this discrete surface, cf. [3, 9]. If the surface is changing in time,
then this approach leads to time-dependent triangulations and time-dependent finite
element spaces. Implementing this requires substantial data handling and program-
ming effort. Another approach has recently been introduced in [2]. The method in
that paper applies to cases in which the surface is given implicitly by some level set
function and the key idea is to solve the partial differential equation on a narrow band
around the surface. Unfitted finite element spaces on this narrow band are used for
discretization.

In this paper we introduce a new technique for the numerical solution of an
elliptic equation posed on a hypersurface. The main idea is to use time-independent
finite element spaces that are induced by triangulations of an “outer” domain to
discretize the partial differential equation on the surface. Our method is particularly
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suitable for problems in which the surface is given implicitly by a level set or VOF
function and in which there is a coupling with a flow problem in a fixed outer domain.
If in such problems one uses finite element techniques for the discetization of the
flow equations in the outer domain, this setting immediately results in an easy to
implement discretization method for the surface equation. The new approach does not
require additional surface elements. If the surface varies in time, one has to recompute
the surface stiffness matrix using the same data structures each time. Moreover,
quadrature routines that are needed for these computations are often available already,
since they are needed in other surface related calculations, for example surface tension
forces. Opposite to the method in [2] we do not use an extension of the surface partial
differential equation but instead use a restriction of the outer finite element spaces.

We prove that the method has optimal order of convergence in H' and L? norms.
The analysis requires shape regularity of the outer triangulation, but does not require
any type of shape regularity for discrete surface elements. The number of unknowns
in the resulting algebraic systems is almost the same as in the approach based on
the surface finite element spaces. All these properties make the new method very
attractive both from the theoretical and the practical (implementation) point of view.

Although our primal objective is to solve efficiently equations on moving and
implicitly defined surfaces, the method is also well suited for problems with steady
and/or explicitly given surfaces.

The remainder of the paper is organized as follows. In section 2 we present
the finite element method for the model example of the Laplace-Beltrami equation.
Section 3 contains the main theoretical results of the paper concerning the approxi-
mation properties of the finite element spaces and discretization error bounds for the
new method. Finally, in section 4 results of numerical experiments are given, which
support the theoretical analysis of the paper.

2. Laplace-Beltrami equation and finite element discretization. In ap-
plications, the finite element method that is presented in this section is particularly
suited for discretization of elliptic equations on a moving manifold T' = I'(¢). In this
paper, however, we restrict ourselves to the case of a fixed sufficiently smooth mani-
fold T (= I'(t,,)) without boundary. As a model problem for an elliptic equation we
consider the pure diffusion (i.e., Laplace-Beltrami) equation.

We assume that €2 is an open subset in R? and I a connected C? compact hyper-
surface contained in €. For a sufficiently smooth function g : 2 — R the tangential
derivative (along I') is defined by

Vrg =Vg— Vg -nrnr. (2.1)

By Ar we denote the Laplace-Beltrami operator on I'.  We consider the Laplace-
Beltrami problem in weak form: For given f € L*(I') with [, fds = 0, determine
u € H' (') with [,uds = 0 such that

/Vruvpv ds = / fvds for all v e H'(T). (2.2)
r r

The solution v is unique and satisfies v € H*(I') with |Ju| g2(ry < ¢f|f||r2(r) and a
constant ¢ independent of f, cf. [5].

For the discretization of this problem one needs an approximation I'y, of T'. We
assume that this approximate manifold is constructed as follows. Let {7}, }n>0 be a
family of tetrahedral triangulations of a fired domain 1 C R3 that contains I'. These
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triangulations are assumed to be regular, consistent and stable [1]. Take 7, € {7x}r>0
and denote the set of tetrahedra that form 7;, by {S}. We assume that T'j, is a C%!
surface without a boundary and I', can be partitioned in planar segments, triangles
or quadrilaterals, consistent with the outer triangulation 7;,. This can be formally
defined as follows. For any tetrahedron St € 7, such that measy (ST NT') > 0 define
T = SpNT';,. We assume that each T is planar, i.e., either a triangle or a quadrilateral.
Thus I', can be decomposed as

Fh = UTG]‘-hTa (23)

where Fy, is the set of all triangles or quadrilaterals T" such that T'= Sy NI’ for some
tetrahedron St € 7;,. Note that if T' coincides with a face of an element in 7;, than
the corresponding St is not unique. In this case, we chose one arbitrary but fixed
tetrahedron St which has T as a face.

REMARK 1. We briefly explain an approach for the construction of an approxima-
tion Iy, of T that is used in our applications in two-phase flow problems, cf. [6, 8, 7].
The interface I' is represented as the zero level of a (unknown) level set function
¢. The level set equation for ¢ is discretized with continuous piecewise quadratic
finite elements on the tetrahedral triangulation 7;,. The use of piecewise quadratics
(instead of piecewise linears) allows an accurate discretization of the surface tension
force (which depends on the curvature of I'). The (given) piecewise quadratic finite
element approximation of ¢ on 7}, is denoted by ¢;. We now introduce one further
regular refinement of 73, resulting in 7,/ = 7, n. Let I (¢n) be the continuous piecewise
linear function on 7, which interpolates ¢, at all vertices of all tetrahedra in 7;. The
approximation of the interface I' is defined by

Thi={xeQ| I(¢n)(x) =0} (2.4)

and consists of piecewise planar segments. The mesh size parameter h is the maximal
diameter of these segments. This maximal diameter is approximately the maximal
diameter of the tetrahedra in 7, that contain the discrete interface, i.e., h = hr is
approximately the maximal diameter of the tetrahedra in 7, that are close to the
interface. In Figure 2.1 we illustrate this construction for the two-dimensional case.

Fic. 2.1. Construction of approzimate interface for 2D case.

Each of the planar segments of I';, is either a triangle or a quadrilateral. This
construction of I'y, satisfies the assumptions made above. It can be shown that under
reasonable assumption, as explained in remark 7 below, the approximation I';, is
“close to” T' in the following sense (cf. (3.14), (3.15)) : dist(I's,T') < coh?, and
ess SUPyer, [n(x) —np,(x)|| < éoh, where n is the extension of nr in a neighborhood
of I and ny, a unit normal on I'y. In Fig. 2.2 we show a part of I'j, that is constructed
as explained above for a two-phase flow application with a rising droplet.
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F1a. 2.2. Ezample of a part of I'y, in a two-phase flow application.

The main new idea of this paper is that for discretization of the problem (2.2) we use
a finite element space induced by the continuous linear finite elements on 7p. This is
done as follows. We define a subdomain that contains I'y:

wp = UreF, ST. (2.5)
We introduce the finite element space
Vi :i={op € Clwy) | V|sy € Py forall T € Fp}. (2.6)

where P; is the space of polynomials of degree one. The space V}, induces the following
space on I'p:

VhF = {yp € Hl(Fh) [T on € Vit Y, =vpr, }- (2.7)

This space is used for a Galerkin discretization of (2.2): determine uj, € V}I' with
th updsy, = 0 such that

/ Ve,unVe,dndsy = [ futnds,  forall ¢y € VY, (2.8)
Ty Ty

with f, an extension of f such that th frdsp = 0, cf. section 3.3. Due the Lax-
Milgram lemma this problem has a unique solution u;. In section 3 we present a
discretization error analysis of this method that shows that under reasonable as-
sumptions we have optimal error bounds. In section 4 we show results of numerical
experiments that confirm the theoretical analysis. As far as we know this method for
discretization of a partial differential equation on a surface is new. In the remarks
below we give some comments related to this approach.

REMARK 2. The family {7;}n>0 is shape-regular but the family {Fp}nso in
general is not shape-reqular. In our numerical experiments, cf. section 4, F}, contains
a significant number of strongly deteriorated triangles that have very small angles.
Moreover, neighboring triangles can have very different areas, cf. Fig. 4.1. As we will
prove in section 3, optimal discretization bounds hold if {7} }1,~¢ is shape-regular; for
{Fn}n>0 shape-regularity is not required.
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REMARK 3. Let (& )1<i<m be the collection of all vertices of all tetrahedra in
wp, and ¢; the nodal linear finite element basis function corresponding to §;. Then
VhF is spanned by the functions ¢;|r,, 1 < ¢ < m. These functions, however, are
not necessarily independent. In computations we use this generating system ¢;|r,,,
1 <@ < m, for solving the discrete problem (2.8). Properties that are of interest for
the numerical solution of the resulting linear system, such as conditioning of the mass
and stiffness matrix are analyzed in the forthcoming paper [11].

REMARK 4. In the implementation of this method one has to compute integrals
of the form

/VFh¢jVFh¢idS, /thﬁids for T € Fy,.
T T

The domain T is either a triangle or a quadrilateral. The first integral can be computed
exactly. For the second one standard quadrature rules can be applied.

REMARK 5. Each quadrilateral in Fj, can be subdivided into two triangles. Let
Fi, be the induced set consisting of only triangles and such that Ure s, T = T'a. Define

WL = {n € OTy) | Yn|lr € P, forall T € Fy}. (2.9)

The space W,f is the space of continuous functions that are piecewise linear on the
triangles of I'j,. Clearly VhF C W,l; holds. There are, however, situations in which
VI £ WE. A 2D illustration of this is given in Fig. 2.3.
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Fic. 2.3. Ezample

In this example wp, consists of 10 triangles (shaded). The nodal basis functions
correponding to these basis functions are denoted by {¢;}1<i<10. The line segments
of the interface I'j, (denoted by - - ) intersect midpoints of edges of the triangles. The
space W,l; consists of piecewise linears on I'j, and is spanned by the 1D nodal basis
functions at the intersection points labeled by boldface 1,...,10. Clearly dim(W})
10. In this example we have dim(V}l') = 9. For the piecewise linear function v =
Zgl a;¢; with a; = =1 fori=1,2,3 and o; = 1 for i = 4,...,10 we have v, = 0.

The example in remark 5 shows that the finite element space V}I' can be smaller
then W, and therefore approximation properties of V;I' do not follow directly from
those of W,I; . Moreover, the triangulations {.7:';1};00 of I'y, are not shape regular, cf.
remark 2 and Fig. 4.1. Thus it is not clear how (optimal) approximation error bounds
for the standard linear finite element space W\ in (2.9) can be derived.
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3. Discretization error analysis. In this section we derive discretization error
bounds, both in the H'- and the L2-norm on I';,. We first collect some preliminaries in
section 3.1, then derive approximation error bounds in section 3.2 and finally present
discretization error bounds in section 3.3.

3.1. Preliminaries. We will need a Poincare type inequality that is given in
the following lemma.

LemMMA 3.1. Consider a bounded domain Q C R™ and a subdomain S C §2.
Assume that € is such that the Neumann-Poincare inequality is valid:

||f||L2(Q) < Cp va||L2(Q) forall f € Hl(Q) with / fdx=0. (3.1)
Q

Then for any f € HY(Q) the following estimate holds:

Q
10 < 151 (2 qs) + 3CHIV ) (32)

Proof. The proof uses a technique developed by Sobolev ([13], Ch.I) for building
equivalent norms on Wé (©) (Sobolev spaces). We consider the simple case with ¢ = 2,
[ =1,ie HYQ). Introduce the projectors Iy, : H'(Q) - R, k=1,2:

I, f = |Q|*1/Qfdx, o f = ISll/Sde-

Since [[(I — 1) fll72q) = If72(q) — [ f]?, the Neumann-Poincare inequality
(3.1) can be rewritten in the equivalent form:

£ 220 < QUL + CRIV T2y for all f € H'(Q). (3.3)

For any f € H'(Q) with II; f = 0 the Cauchy and Neumann-Poincare inequality

implies
/ fdx
S

<ISITE N2 ) < Col SIT2 IV f 20

Mo f| =S|~ <ISI2 [ fllz2cs)

(3.4)

Define M := Cp|S|~2. Note that for f € H'(Q) we have II; (I —IT;)f = 0 and thus
from (3.4) we obtain:

|(He — 1) f| = [Ha(I — L) f| < M|[V(I = II) f 120) = M|V fl|22()-
Hence, for any f € H'(Q) we have

L f? + M|V 20 < 2[Maf|? + 2| — TL) f* + M2V f[|72q)
<2 f|? + 3M2||V f1|72(0-
6
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Estimates (3.3) and (3.5) imply:
11320y < max{I2], CEM 2} (T2 + M2V f|3 2y )
=19/ (IM P + M2V S22 )
<191 (212 + 3M2|V f|32(0y )
< 191 (218171 Wags) + 3M2 IV IEa(e))
= (21117 (204 32(s) +3CHIVF Iy )
which proves the inequality in (3.2). O

REMARK 6. In the analysis below we shall apply lemma 3.1 for the case of convez
domain Q. For convex domains the following upper bound is well-known [12] for the
Poincare constant:
diam(2)

-

Cp

IN

(3.6)

We define a neighborhood of T':
U={xecR3|dist(x,T) < c},

with ¢ sufficiently small and assume that I', C U. Let d : U — R be the signed
distance function, |d(z)| := dist(x,T') for all x € U. Thus T is the zero level set of d.
We assume d < 0 on the interior of I' and d > 0 on the exterior. Note that np = Vd
on I'. We define n(x) := Vd(x) for all x € U. Thus n =nr on I' and ||n(x)| =1 for
all x € U. Here and in the remainder || - | denotes the Euclidean norm. The Hessian
of d is denoted by H:

H(x) = D%d(x) € R**® forall x € U. (3.7)

The eigenvalues of H(x) are denoted by x1(x), k2(x) and 0. For x € T the eigenvalues
ki(x), i = 1,2, are the principal curvatures.
We will need the orthogonal projection

P(x) =TI -n(x)n(x)? for x€U.

Note that the tangential derivative can be written as Vrg(x) = PVg(x) forx € I'. We
introduce a locally orthogonal coordinate system by using the projection p: U — I':

p(x) =x —d(x)n(x) for all x € U.

We assume that the decomposition x = p(x) + d(x)n(x) is unique for all x € U. Note
that

n(x) =n(p(x)) forall xeU.
We use an extension operator defined as follows. For a function v on I we define

v8(x) :=v(x —d(x)n(x)) = v(p(x)) forall x €U,
7



i.e., v is extended along normals on I". We define a discrete analogon of the orthogonal
projection P:

P (x) :=I —np,(x)n,(x)7 for x € I',, x not on an edge.

Here ny,(x) denotes the (outward pointing) normal at x € ', (x not on an edge). The
tangential derivative along I', can be written as Vr, g(x) = P, (x)Vg(x) for x € T'),
(not on an edge).

In the analysis we use techniques from [3, 5]. For example, the formula

Vul(x) = (I - d(x)H(x))Vru(p(x)) a.e. on U (3.8)
(cf. section 2.3 in [3]), which implies,
Vr,v¢(x) = Pp(x) (I — d(x)H(x)) Vro(p(x)) ae. on I'j. (3.9)
Furthermore, for u sufficiently smooth and |u| = 2, the inequality

|D*uf(x)| < e D IDfulp(x))] + [[Vru@X))[) ae on U (3.10)
[pl=2

holds, cf. lemma 3 in [5]. We define an h-neighborhood of T':
U, ={x e R®| dist(x,I") < c1h}
and assume that h is sufficiently small, such that wy C Uy C U and

-1
5c1h < (f?f:l?,)é |KillLeo(ry) - (3.11)

From (2.5) in [3] we have the following formula for the principal curvatures x;:

Ki(P(x))

Ki(x) = , forxeU. 3.12
) = T d0mi (b 0) (#12)
Hence, from (3.11) and (3.12) it follows that
1
ldl| o (v,) max Iwill o=y < 7 (3.13)
holds. In the remainder we assume that
ess SUpyer, |d(x)| < coh?, (3.14)
ess sup.cer, (%) — 0, ()] < Zoh, (3.15)

holds.

REMARK 7. Related to these assumptions we note the following. Consider an
approach as outlined in remark 1 in which the approximation I'y, of I is constructed
using a level set method and a piecewise quadratic finite approximation ¢y, of the level
set function ¢. We assume that the level set function ¢ equals the signed distance
function d, i.e., ¢ = d and that for the finite element approximation an error bound

H(bh - ¢||LOO(UJh) + h”¢h - ¢||H1’°°(wh) < ChgikH(b”H?'*k"’O(wh)v k=0,1,2, (316)
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holds (which is reasonable for the case of piecewise quadratics and if ¢ is sufficiently
smooth). Let I be the nodal interpolation operator on the vertices of the triangulation
wp. Using standard properties of this operator and the error bound in (3.16) one
obtains

1on — bl @) < N1 (dn — Oz (wn) + 111 — Ol Lo (wn)
< lén = Gllzoo wn) + k(S]] 112 ()
< ch?||l 2o ()
and thus for x € I'j, we have |d(x)| = |I(¢n)(x) —p(x)| < ch?, hence (3.14) is satisfied.
We also have
11on — @l 1o (wn) < I (dn — )| 12 ) + 1D — Dl 100 ()
<cllon = @l a0 (wn) + Chll@l 200 () < Chll @] 2000 () -

Using this and ||V@| = 1 we then have ||VI(¢p)(x)|| = 1 + O(h) for x € T',. For
x € T', (not on an edge) we obtain

o) = = | ey ZZ - Vo)
= ‘m 1 - IV I(6) 00l + [VI(¢n)(x) = Vo(x)| < ch,

and thus (3.15) is satisfied (for h sufficiently small).

LEMMA 3.2. There are constants ¢ > 0 and co independent of h such that for
all w € H?(T') the following inequalities hold:

erllull L2,y < Vhlull ey < eallulllzw,), (3.17)
Va2, < VRIVrul 2y < el Vul| 2w, (3.18)
1D u || 2wy < exVhlullmzy,  |ul = 2. (3.19)

Proof. Note that u € H?(T) is continuous and thus u¢ is well-defined. Define
p(x) = (1 —d(x)r1(x)) (1 — d(x)k2(x)), x € Up.
From (2.20), (2.23) in [3] we have
u(x)dx = drds(p(x)), x €U,

where dx is the measure in Uy, ds the surface measure on I' and r the local coordinate
at x € T in the direction n(p(x)) = n(x). Using (3.13) we get

9 25
T <ulx) < T for all x € Uy, (3.20)

Using the local coordinate representation x = (p(x), ), for x € U, we have

/Uh ) ax = [ }; [ 6.1 dstp0)ar
-/ / I” ds(p(x)) = 2erhllulfe)



Combining this with (3.20) yields the result in (3.17).
JFrom (3.8) we have that u® € H*(Uy). Note that

Clh

tAJkaHM@NX/lmziaﬂ@HkDWW@@m ds(p(x)) dr.

Using this in combination with [|d(x)H(x)|| < 1 for all x € Uj, (cf. (3.13)) and the
bounds in (3.20) we obtain the result in (3.18). Finally, using similar arguments and
the bound in (3.10) one can derive the bound in (3.19). O

3.2. Approximation error bounds. Let I, : C(wy) — V3 be the nodal in-
terpolation operator. We use the approximation property of the linear finite element
space Vj,: For v € H?(wp,)

[0 = Inol gty < CRPF |0l g2(0), k= 0,1. (3.21)

A consequence of this approximation result is given in the following lemma.
LEMMA 3.3. Foru € H*(T) and k = 0,1 we have

[u€ — Intu®|| gt gy < C hE 75|l g2 - (3.22)

Proof. From (3.21) and (3.18) we obtain
= Tt gty < C B2l 2y < OB [0 ra(any < C A3 [l ey,

which proves the result. O

The following two lemmas play a crucial role in the analysis. In both lemmas we
use a “pull back” strategy based on lemma 3.1. For this we introduce a special local
coordinate system as follows. For a subdomain w C R™ let p(w) be the diameter of
the largest ball that is contained in w. Take an arbitrary planar segment T of T'y,
i.e., T € Fp. Let St € 7; be the tetrahedron such that I', NSt = T'. There exists a
planar extension 7 of T such that T° C U, T° is convex, p(St) C p(T°) and

diam(T°) =~ p(T°) =~ h, (3.23)

cf. remark 8. This extension T is used to define a coordinate system in the neigh-
borhood Np := {x € U | p(x) € p(T°) }. Note that Sy C Nr. Every x € Nr has a
unique decomposition of the form

x =s+d(x)n(x), with seT¢ d(x):==+|s—x|. (3.24)

On which side of the plane T the point x lies determines the sign of d(x). Note
that d is a signed distance, along the normal n(x), to the planar segment 7¢. The
representation in this coordinate system is denoted by ®, i.e., ®(x) = (s(x),d(x)).
This coordinate system is illustrated, for the 2D case, in Fig. 3.1.

For x € T we thus have ®(x) = (s(x),0). Due to the shape-regularity of 7, there
exists, in the ®-coordinate system, a cylinder B that has the following properties:

Br =T¢ x [do,d1] C S, Tf CT¢ |T¢|~h? di—do=~h. (3.25)

This coordinate system and the cylinder By C St are used in the analysis below.
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Fic. 3.1. 2D Illustration of coordinate system

REMARK 8. The following shows that an extension T°¢ of T with the proper-
ties described above exists. Take a fixed xg € T. Let Wt be the tangent plane at
p(x0). The normal vector of Wr is n(xg). There is a subdomain wr of this plane
such that p(wr) = p(St). Due to shape regularity of 7, this subdomain is such that
diam(wr) ~ p(wr) ~ h holds. Let wy, be a planar subdomain that is parallel to wr,
contains x¢ and such that p(wr) = p(wx,). Using assumption (3.14) it follows that
diam(wy, ) =~ p(wx,) =~ h holds. The point xq belongs to the planar subdomains wx,
and T, which have normals n(xo) and ny(x¢), respectively. Due to assumption (3.15)
the angle between these normals is bounded by ch and thus there exists a planar
extension T of T such that 7¢ C U and p(T°¢) = p(wy,), now we set T¢ to be a
minimal convex envelope for T¢. This T has the property (3.23).

LEMMA 3.4. Let vy, be a linear function on Ny and u € H*(T'). There ezists a
constant ¢ independent of v, u and T such that the following inequality holds:

HVFh (ue — Uh)HLZ(TE) S Ch75 ||V(ue - vh)HLZ(ST) + hHuHHz(p(Te)). (326)

Here Vr, denotes the projection of the gradient on T°.
Proof. Using lemma 3.1, (3.6) and (3.10) we obtain

IV, (= o)l 22 ey < ellVrn (W = vn) 2o (o) + ch? I VE, w1 T2 1)

<[V, (v - Uh)||2L2(T;) + ch?|Jull 32 (prey) - (3.27)

We consider the first term in (3.27). We write Vv, =: cr and use the notation
x = (s(x),d(x)) =: (s,y) in the ®-coordinate system. From (3.8) we have

Vru(p(x)) = Vu(s,y) + d(x)H(x) Vru(p(x)).
11



Using this and (3.9) we obtain
[V, (u® — Uh)||2L2(T§) = [|Vr,u® - PhCT||2L2(T;)
<2|Pp(Vru)op — Pth”QL?(Tf) + 2[|PrdH(Vru) o P||2L2(T;)

<cl[(Vru)op — CT||2L2(T;) + ch®||ullF o5y

—c [ 1 ru(p(s,0)) ~ er|*ds-+ ol ulFs s,

Ty

dy
<t [ [ IVru(p(s,0) = erl dsdy + bl s,
0 b

dy
<o [ [ Il — erlasdy + el
0

< ch V(W = on)lZ2(py) + ch®llullip ps)
< MV (@ = )1 F25p) + PPl F prsi)-
Combination of this result with the one in (3.27) completes the proof. O
LEMMA 3.5. There are constants c; independent of h such that for all u € H*(T)
and all vy, € V}, the following inequality holds:

Hue—vh||L2(ph) < Clh75Huef’t)h||L2(wh)+02h5||’U,e7’Uh||H1(Wh)+Cgh2||’u,||H2(F). (328)

Proof. We consider an arbitrary element T° € I'y,. Let T be its extension as
defined above. Take v, € Vj. The extension of v, to a linear function on T°¢ is
denoted by v, too. Using lemma 3.1 and (3.6) we get:

[u® = vnllZ2iry < Ilu® = onllZe(pe) = / (u(s,0) — vp(s,0))* ds
< c/ (u®(s,0) — vx(s,0))*ds (3.29)
b

+ch{/ V5, (u(s,0) — vn(s, 0))]] ds.
TE

We consider the first term on the right handside of (3.29). For a linear function
g and 0 < & < & we have g(§;)? < 51950 6(11 g(t)?dt for i = 0,1 and g(0) =

(50)51 50— (51)51‘5%50. Hence, |g(0)] < 5122;0 max;—o,1 |g(d;)| and thus
5 \?2 1 o
2 <oq(—L / )2 dt .
907 < 24(525) 5 | 9 (3.30)

holds. Without loss of generality we can assume that dp,dy from (3.25) satisfy 0 <
dy < di. Furthermore, we have d1 S <c for ¢+ = 1,2, with ¢ independent of h. Using
this and the result in (3 30) applied to the linear functlon y — ¢+ vp(s,y) we obtain

/( @M%@m)®<m//?/ﬁ ¢(s,0) — vn(s, y))2 dyds

B . 3.31
— o / / 7vh(s7y))2dydszch 1Hu 7vh||%2(BT) ( )
¢ Jdo

<ch™ 1||u *Uh”L?(ST)'
12



For the second term on right handside of (3.29) we can apply lemma 3.4 and thus we
get

[u = vnl| T2y < ch™Hu® = vl 7a(sy + RV (W —on)l[F2(sy) + Ch4||u||?ar2(p(Te))-
Summation over all triangles in Fj, gives (3.28). O

LEMMA 3.6. There are constants cy,co independent of h such that for all u €
H2(T') and all v, € V}, the following inequality holds:

1l .
[’ = vnllm ) < cah”2[[u® = onll a1 w,) + c2bllull 2 ). (3.32)

Proof. Take u € H?(T') and v, € Vj,. By definition of the H'-norm on I';, we get
fu® — Uh||§11(rh) = [lu® — UhH%Z(rh) + [V, (u® = Uh)||%2(rh)-
For the first term on the right handside we can apply lemma 3.5 and use
1 1 1
h™2 Hue — vhHLZ(wh) + coh? Hue — UhHHl(wh) <ch 2 ||ue — Uh”Hl(wh)'
We now consider the second term

IVr, (Ue - Uh) ||%2(rh) = Z IV, (Ue - Uh)H%Z(T)'
TeF,

Take a T' € Fj, and extend vy, linearly outside T'. This extension is denoted by vy,
too. Using lemma 3.4 we get

Ve, (u = on) 1720y < 1V, (u® = o) [ F2 ey

< ch V(@ = vn)ll72(sp) + P2 NullFzpere)-
Summation over T' € Fy, yields
IV, (u = vn)|Z2r,) < ch™Hu® = vl ,) + ch®lull e

and thus the proof is completed. O
As a direct consequence of the previous two lemmas we obtain the following main

theorem.
THEOREM 3.7. For each u € H*(T) the following holds

inf = vnllza,) < llu® = nuSe, [z2m,) < C h?||ull g2 1y, (3.33)
Vh h

inf u® = vnllarr,) < Nl = nw) e, lm e, < Chllullpzr, (3.34)
Vh h

with a constant C independent of u and h.
Proof. Combine the results in the lemmas 3.5 and 3.6 with the result in lemma 3.3.
d
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3.3. Finite element error bounds. . In this section we prove optimal dis-
cretization error bounds both in the H(T';) and the L?(I'y,) norm. The arguments
are very close to those in [5]. A difference is that in [5] the convergence results are
derived in the H'(T") and the L?(T") norms by lifting the discrete solutions from T'j,
on I', whereas we consider the error between the finite element solution uy € VhF and
the extension u® of the continuous solution to the discrete interface. This difference
is of minor importance since error bounds in H!(I',) imply similar bounds in H*(T'),
cf. remark 9.

In the analysis we need a few results from [3]. For x € T, define Py(x) = I —
n,(x)n(x)7 /(ny(x)Tn(x)). In (2.19) in [3] the following representation of the surface
gradient of u € H'(T') in terms of Vr, u® is given:

Vru(p(x)) = (I — d(X)H(X))_lf)h(X)VFhUe(X) a.e. on I'. (3.35)
For x € T'}, define
() = (1 = A1 (%) (1 — A (x))n(x) " nn ().
The integral transformation formula
un(x)dsy(x) = ds(p(x)), x €Ty, (3.36)

holds, where dsj, (x) and ds(p(x)) are the surface measures on I', and T', respectively
(cf. (2.20) in [3]). From

In(x) — na(x)|I* = 2(1 - n(x)"nx(x)),
assumption (3.15) and |d(x)| < ch?, |k;(x)| < ¢ we obtain
ess Supyer, [1 — un(x)| < ch?, (3.37)

with a constant ¢ independent of h.

THEOREM 3.8. Let u € H?(I') be the solution of (2.2) and up, € V;\' the solution
of (2.8) with fn, = f¢ — ¢y, where ¢y is such that th fnds = 0. The following
discretization error bound holds

IV, (u® = un)l L2,y < el fllz2 (3.38)

with a constant ¢ independent of f and h.

Proof. Using (3.37) we obtain |1 — Mhl(x)| < ch? on T',. Define

Note that f, = f¢ — ¢y and due to [, fds = 0 we get

1
sl =1 [ seasl =] [ 5= 1)ds| < ¥l
'y r HMn
Furthermore,

e 1
05l L2(r,) < ess sup 11— GO e ey + Tal2les] < eh®[[ fllrzwy.  (3:39)
xely

14



Using relation (3.35) and (3.36) we obtain

/ VruVrovds = ALVr, u¢Vr,v¢ds,  for all v e HY(T), (3.40)
r T

with Ap(x) = pn(x)Pp(x)(I — d(x)H(x)) 2Py (x). Any ¢, € H'(I',) can be lifted
on I by defining ¥}, (p(x)) := 15 (x). Then ¢}, € H*(T') holds. From the definition of
the discrete solution uy, in (2.8) we get, for arbitrary ), € V,I:

/ Vr,unVr, ¥n ds, = frnndsy, = /(f — cp)pn(x) " ey, ds
Ty r

'y

=/Ffw2ds+/Fh 5 dsy,

= / VFUVF’L/JZ ds + dftbp dsp,
N

In

= AthhueVFh’l/)hdSth/ 5f1/1hdsh.
Ty Tn

Using this we obtain, for arbitrary 1, € V),

th (ue — uh)th’L/Jh dSh = / (I — Ah)thuethwh dSh — (wah dSh

I8 T'n T'n

= / Ph(IfAh)VFhueVph’l/)h dSh — / 5f1/)h dSh.
T'n

T'n
(3.41)
Therefore we get
Ve, (€ = un) |22,y = g Vr, (u® = up)Vr, (u€ = ¢n) dsp
h
+ / Pyl — AV, u Ve, (i —w) dsn (3.42)
Tn
*/ 65 (Yn — up) dsp.
Ty
From Hlah — Ay < ch? ae. on T, and P,P), =P, we obtain, for z € I'y,
IPa(2)(X = An(2))]| = [Pr(@)(Pr(z) — An(@))] < ch®. (3.43)
Furthermore, using (3.9) we get
Ve, ullLz(r,) < ess sup [[Pp(z)(I — dH(2))[[[[Vrul L2
v€l, (3.44)
< el fllz2r)-
Introduce the notation Ej, := ||V, (u® — up)|[z2(r,). Note that by taking vy =

(Inu®)r, and using the approximation result (3.34) we have

Ve, (un — ¥Yn)ll L2,y < En + IV, (u® = ¥n)llL2r,) < En + chl fllz2r)-
15



For the third term on the right handside in (3.42) we have the bound

| g 6 (Yn —un) dsn| < (|6l L2@y)l¥n — unllLzr,,)
h

< eh?(| flley ([9n — ulll L2,y + 11w = unllLo(r,))
< cB®|| fllpzy (eh®|| fll L2y + [u® = unllrzy,))-

Note that

lu® = unllraqe,) < lufllza@n) + lunllcz,) < e(llullzey + IVe,unllzaw,))

< c(IVrull2y + IVraunllzr,)) < ellfllzz-
Combination of these results leads to
Ej < Enchl|fllL2r) + ch?| fll 2wy (Bn + chl| fll 2y + 11f 1l 2r))

1
< §Ei + cP?| flIZ 2y
This yields the bound in (3.38). O

REMARK 9. We indicate how the error bound (3.38) in H'(T'),) yields a similar
bound in H!(T'). For this we need the extension of functions defined on I'j, along the
normals n on I': for v € C(T'},) we define, for x € T'p,,

" (x + an(x)) :=v(x) forall a € R with x+an(x) € U.
The following holds (cf. [3], Lemma 3.3 in [8]):
HVFUe’h||L2(F) < CHVFhUHLz(Fh) for all v e Hl(Fh) n C(Fh)

Using this for the error v = u® —uy, and noting that (u¢)®" = v on I' the bound (3.38)
yields

e,h
Ve (u = up ") 2y < bl fllzzr),

i.e., an optimal error bound in H(T).

We now apply a duality argument to obtain an L?(T'j,)-error bound.

THEOREM 3.9. Let u and up be as in theorem 3.8. The following error bound
holds

lu® = unllza,) < eh? [ fllza) (3.45)

with a constant ¢ independent of f and h.
Proof. Denote ey, := (u®—up,)|r, and let 62 be the lift of e, on I and ¢, := fr eﬁl ds.
Consider the problem: Find w € H'(I') with [,wds = 0 such that

~—

/ VrwVrvdo = /(e% —¢e)vds for all v e HI(F). (3.46

r r

The solution w satisfies w € H(T') and [Jw| g2(ry < cll€}, | L2(ry/r with [}, || L2y /r ==

Heﬁl — ce||L2(p). Furthermore, [|Vr,w®||z2r,) < C||€§1HL2(1")/R and ||we||L2(ph) <
16



cllwllrzry < c|Vrwllrzry < cllehllzzayr. Due to (3.46) and (3.41) we have, for
any ¢y, € ViI,

HSZHQL%F)/R = /FVF’LUVF(eéI - Ce) ds = /FVF’U)VFGZ ds = . AhVFhthFhwe dSh
h
= Vr, enVr, (w® —p)ds, + / Py(Ap —I)Vr, en Ve, w®dsy
Ty Ty
+ / Ph(I — Ah)VrhueVrhwh ds, — (Sf’L/Jh dsy,.
Ty Tn
Introduce Ej, := He§1||L2(p)/R. Thanks to the approximation property (3.34) one can

choose vy, such that ||V, (w® — ¥p)|r2r,) < chllw| g2y < chEy. Using Cauchy-
Schwarz and triangle inequalities and the bounds in (3.39), (3.43) we get
By < |[Vryenllzaw,)chBn + ch®|[Vr,enl o) Ve, 0l 2,
+ch?[[Vr, w2y (IVe,wfll L2,y + chEr) + ch? || 2y (1wl 22, + chEr)
S Ch2||f||L2(F)Eh + Ch2||f||L2(p) (Eh + ChEh).

Hence, By < ch?||f| 12(r) holds. We have

e = | [u—uias| =] [uis] =] [ G~ Vi dsa] < s
T T Tn
and thus

lenllz2r,y < elliy > enllizcr,) = cllehllzzwy < e(Bn + leel) < ch?||fll 2y,
which completes the proof. O

4. Numerical experiments. In this section we present results of numerical
experiments. As a first test problem we consider the Laplace-Beltrami equation on
the unit sphere:

—Aru=f onlT,

with T' = {x € R? | [|x|l2 = 1} and Q = (-2, 2)3.
The source term f is taken such that the solution is given by
__a 2 3 _
u(x) = I (Bzizs —a3), x=(w1,22,73) €,
with a = 12. Using the representation of w in spherical coordinates one can verify
that v is an eigenfunction of —Ar:

u(r, ¢,0) = asin(3¢)sin® 0, —Aru = 12u =: f(r, ¢,0). (4.1)

The right handside f satisfies the compatibility condition fr fds = 0, likewise does
u. Note that u and f are constant along normals at T'.

A family {7;};>0 of tetrahedral triangulations of €2 is constructed as follows. We
triangulate 2 by starting with a uniform subdivision into 48 tetrahedra with mesh size
ho = v/3. Then we apply an adaptive red-green refinement-algorithm (implemented

17



in the software package DROPS [4]) in which in each refinement step the tetrahedra
that contain I' are refined such that on level [ = 1,2, ... we have

hr <3270 forallT €T, with TNT # 0.

The family {7;};>0 is consistent and shape-regular. The interface I' is the zero-level
of p(x) := ||x||> — 1. Let ¢, := I(p) where I is the standard nodal interpolation
operator on 7;. The discrete interface is given by I', := {x € Q| I(¢n)(x) = 0},
cf. (2.4). Let {¢;}1<i<m be the nodal basis functions corresponding to the vertices
of the tetrahedra in wy, as explained in remark 2. The entries th Vr, ¢i - Vr, ¢;dsy,
of the stiffness matrix are computed within machine accuracy. For the right handside
of the Galerkin discretization (2.8) we need an extension f5 of f. In order to be
consistent with the theoretical analysis we take the constant extension of f along the
normals at T, i.e. we take fr(r,¢,0) = f(1,9,0) + cn, with f(r,¢,0) as in (4.1) and
cp, such that th frndsp = 0. For the computation of the integrals fT frnon dsp we
use a quadrature-rule that is exact up to order five. The computed solution uy is
normalized such that th up, dsy, = 0.

The discrete problem is solved using a standard CG method with symmetric
Gauss-Seidel preconditioner to a relative tolerance of 10~5. The number of iterations
needed on level [ =1,2,...,7,is 14, 25, 50, 101, 209, 417, 837, respectively.

The discretization errors in the L?(I';)-norm are given in table 4.1. The extension u®
of w is given by u®(r, ¢,0) := u(1, ¢,0), cf. (4.1).

level [ | |lu®—wun|lr2r,) | factor
1 0.4418 -
2 0.1149 3.85
3 0.02965 3.88
4 0.007298 4.06
5 0.001865 3.91
6 0.0004629 4.03
7 0.0001158 4.00

TABLE 4.1
Discretization errors and error reduction.

These results clearly show the h? behaviour as predicted by our theoretical anal-
ysis. To illustrate the fact that in this approach the triangulation of the approximate
manifold I';, is strongly shape-irregular we show a part of this triangulation in Fig-
ure 4.1. The discrete solution is visualized in Fig. 4.2.

To demonstrate the flexibility of the method with respect to the form of I" we repeat
the previous experiment but now with a torus instead of the unit sphere. I' C 2 =
(=2,23 withT' = {x € Q| r? =23 + (V22 + 22 — R)?}. We take R =1 and r = 0.6.
In the coordinate system (p, ¢, 6) with

cos ¢ cos ¢ cos 0
x=R|sing | +p | sin¢pcosb
0 sin ¢

the p-direction is normal to I, g—’; 1 T for x € I'. Thus the following solution v and
18



FiG. 4.2. Level lines of the discrete solution uy,

corresponding right-hand side f are constant in normal direction:

u(x) = sin(3¢) cos(36 + @),

f(x) = r72(9sin(3¢) cos(36 + ¢))
— (R + 7 cos(f)~2(—10sin(3¢) cos(36 + ¢) — 6 cos(3¢) sin(360 + ¢))
— (r(R +rcos(#))~*(3sin(0) sin(3¢) sin(36 + ¢))

(4.2)

Both u and f satisfy the zero mean compatibility condition.

level [ | |lu®—wun|lL2r,) | factor
1 1.699 -
2 0.5292 3.21
3 0.1402 3.77
4 0.03632 3.86
5 0.009317 3.90
6 0.002298 4.05
7 0.0005711 4.02

TABLE 4.2
Torus: Discretization errors and error reduction.

The discretization errors in the L?(T';,)-norm are given in table 4.2. The extension u®
of u is given by u®(p, ¢, 0) := u(r, ¢,0), cf. (4.2). Again we observe the h? behaviour
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Fic. 4.3. Torus: Level lines of the discrete solution up,

as predicted by the theoretical analysis. The discrete solution is visualized in Fig. 4.3.
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