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We treat multigrid methods for the efficient iterative s@untof discretized elliptic boundary

value problems. Two model problems are the Poisson equatidrthe Stokes problem. For
the discretization we use standard finite element spacést discretization one obtains a large
sparse linear system of equations. We explain multigricho for the solution of these linear
systems. The basic concepts underlying multigrid solverdescussed. Results of numerical
experiments are presented which demonstrate the efficigfittyese method. Theoretical con-
vergence analyses are given that prove the typical gridpegent convergence of multigrid
methods.

1 Introduction

In these lecture notes we treat multigrid methods (MGM) folving discrete elliptic
boundary value problems. We assume that the reader is &umwilih discretization meth-
ods for such partial differential equations. In our preagah we apply on finite element
discretizations. We consider the following two model pesbé. Firstly, the Poisson equa-
tion

~Au=f in QCRY

1
u=0 on 909, @

with f a (sufficiently smooth) source term atié= 2 or 3. The unknown is a scalar function
u (for example, a temperature distribution) 8n We assume that the domdihis open,
bounded and connected. The second problem consists ofdkes3tquations

—Au+Vp=f in QcR?

divu=0 in Q, (2)
u=0 on 99.
The unknowns are the velocity vector functian= (uq, ..., u4) and the scalar pressure

functionp. To make this problem well-posed one needs an additionaliton onp, for
example, [, pdz = 0. Both problems belong to the classafiptic boundary value prob-
lems Discretization of such partial differential equationsngsa finite difference, finite
volume or finite element technique results itagge sparse linear system of equations
In the past three decades the developmegffifient iterative solverfor such systems of
equations has been an important research topic in numariedisis and computational en-
gineering. Nowadays it is recognized that multigrid iterasolvers are highly efficient for
this type of problems and often have “optimal” complexith€eTe is an extensive literature
on this subject. For a thorough treatment of multigrid mdthee refer to the monograph



of Hackbusch. For an introduction to multigrid methods requiring lesowtedge of
mathematics, we refer to Wessefngriggs’, Trottenberg et . A theoretical analysis of
multigrid methods is presented in Bramblén these lecture notes we restrict ourselves to
an introduction to the multigrid concept. We discuss sdvardtigrid methods, heuristic
concepts and theoretical analyses concerning convergeoperties.

In the field of iterative solvers for discretized partialfdiential equations one can
distinguish several classes of methods, narhakic iterative method®g., Jacobi, Gauss-
Seidel),Krylov subspace methodsg., CG, GMRES, BiCGSTAB) anahultigrid solvers
For solving a linear systemx = b which results from the discretization of an elliptic
boundary value problem the first two classes need as inplit)(dre matrix A and the
righthand sidéb. The fact that these data correspond to a certain underbgnginuous
boundary value problem itused in the iterative method. However, the relation between
the data A andb) and the underlying problem can be useful for the developiwiesn fast
iterative solver. Due to the fact that results from a discretization procedure we know,
for example, that there are other matrices which, in a gertatural sense, are similar to
the matrixA. These matrices result from the discretization of the ulgter continuous
boundary value problem on other grids than the grid cormnedimg to the given discrete
problemAx = b. The use of discretizations of the given continuous problarnsev-
eral grids with different mesh sizes plays an important ioléhe multigrid conceptDue
to the fact that in multigrid methods discrete problems dfedént grids are needed, the
implementation of multigrid methods is in general (much)enimvolved than the imple-
mentation of, for example, Krylov subspace methods. We atste that for multigrid
methods it is relatively hard to develop “black box” solvessich are applicable to a wide
class of problems. In recent years so-calidgebraic multigrid methodbave become
quite popular. In these methods one tries to reduce the anebgeometric information
(eg., different grids) that is needed in the solver, thusingihe multigrid method more
algebraic. We will not discuss such algebraic MGM in thestule notes.

We briefly outline the contents. In section 2 we explain thénnideas of the MGM us-
ing a simple one dimensional problem. In section 3 we intoedeultigrid methods for
discretizations okcalar elliptic boundary value problems like the Poisson equafibn
In section 4 we present results of a numerical experimet svgtandard multigrid solver
applied to a discrete Poisson equation in 3D. In section 5nveduce the main ideas for
a multigrid method applied to a (generalized) Stokes prablén section 6 we present
results of a numerical experiments with a Stokes equatiothd final part of these notes,
the sections 7 and 8, we present convergence analyses efrthatgrid methods for the
two classes of elliptic boundary value problems.

2 Multigrid for a one-dimensional model problem

In this section we consider a simple model situation to shi@\basic principle behind the
multigrid approach. We consider the two-point boundarygahodel problem

—u’(z) = f(x), x e Q:=(0,1).
{u(O) —u(1)=0. ®)

We will use a finite element method for the discretizatiorhig problem. This, however, is
notessential: other discretization methods (finite diffeemdinite volumes) result in dis-



crete problems that are very similar. The correspondingigrid methods have properties
very similar to those in the case of a finite element discaéitn.

For the finite element discretization one needs a varialtfonaulation of the boundary
value problem in a suitable function space. We do not trégidslue here, but refer to the
literature for information on this subject, eg. Hackbfs@BroRmanh For the two-point
boundary value problem given above the appropriate fundmace is the Sobolov space
HY(Q) = {v e L?3(Q) | v/ € L*(Q), v(0) = v(1) = 0}, wherev’ denotes aveak
derivative ofv. The variational formulation of the problem (3) is: finde H} () such
that

1 1
/ u'v' dx = / fvdr forall v e Hy(Q).
0 0

For the discretization we introduce a sequence of nestédramgrids. Fo = 0,1, 2, ...,
we define

he=2"%"1  (“mesh size"), (4)
ng = h;l -1 (“number of interior grid points”) (5)
&i=1ihe, i=0,1,..,n,+1 (“grid points”), (6)
QP = {&i | 1< < ny} (“interior grid”) , (7)
Thy = U{ (&0, &ri41] |0 < i <mng} (“triangulation”). (8)

The space ofinear finite elementsorresponding to the triangulatidf, is given by
w ZZ{UEC(Q) |’U|[ ] c P , ’L':O,...,n[, U(O) :U(l) :O}

The standard nodal basis in this space is denote@by <;<»,. These functions satisfy
¢i(&ei) = 1, ¢i(&,;) = 0 forall j # 4. This basis induces an isomorphism

Ee,i580,i+1

e
P :R™ =V, Px=)Y zi; (9)
=1
The Galerkin discretization in the spakgis as follows: determine, € V; such that

1 1
/ upvy dx :/ fuedx forall v, € V.
0 0

Using the representatian = Z?il x;j¢; this yields a linear system

1 1
Apxg=by, (Ar)i :/o @i dx,  (be)i = /0 foidz. (10)

The solution of this discrete problem is denoted«djy The solution of the Galerkin dis-
cretization in the function spadg is given byu, = F,xj. A simple computation shows
that

Ay = h;ltr1d1ag(—17 2, _]_) e RMexne

Note that, apart from a scaling factor, the same matrix tefulm a standard discretization
with finite differences of the problem (3).

Clearly, in practice one should not solve the problem in {(i€hg an iterative method (a
Cholesky factorizatiol = LL” is stable and efficient). However, we do apply a basic



iterative method here, to illustrate a certain “smoothipgiperty which plays an important
role in multigrid methods. We consider the damped Jacobiatkt

1
xhtt = xf — §wh4(A4x§ —by) with we(0,1]. (11)

The iteration matrix of this method, which describes the|e|n|ropagatioraa§Jrl = Cge’;,

el :=x} —x¥, is given by

1
Cz = Cz(w) =1I- §wthg .
In this simple model problem an orthogonal eigenvectordaiA ,, and thus ofCy, too,
is known. This basis is closely related to the “Fourier médes
w”(x) =sin(vrz), z€[0,1], v=12,...

Note thatw" satisfies the boundary conditions in (3) and th&tw”)” (z) = (v7)?w" (x)
holds, and thus” is an eigenfunction of the problem in (3). We introduce ves#ty <
R™ 1 < v < ny, which correspond to the Fourier mode’ restricted to the interior grid
Qint;

2y = (0 (€01 w” (€r2), ooy’ (Eum,))

These vectors form an orthogonal basi®Réf. For/ = 2 we give an illustration in Fig. 1.

Figure 1. Two discrete Fourier modes.

To a vectorz) there corresponds a frequeneyForv < %nz the vectorz}, or the corre-
sponding finite element functiaR,z}, is called a fow frequency modeand forv > %nz
this vector [finite element function] is called high frequency modeThe vectorsz; are
eigenvectors of the matrif:

4
Ayzy = h—[ sinQ(Vghg)z}f,



and thus we have
Cozj = (1 —2w SinQ(l/ghg))ZZ . (12)

From this we obtain

ICe|l2 = maxi<y<p, |1 —2w SinQ(V%hg)
(13)
=1—2wsin®(Zhe) = 1 — swn?h? + O(h}) .

From this we see that the damped Jacobi method is converf@pt{ < 1), but that the
rate of convergence will be very low fér, small.
Note that the eigenvalues and the eigenvectofSodre functions obh, € [0, 1]:

Aoy i =1—-2w sinQ(Vghg) =: gu(vhe) , with (14a)
.o,
gu(y) = 1= 2wsin*(5y),  ye[0.1] (14b)

Hence, the size of the eigenvalugs, can directly be obtained from the graph of the
functiong,,. In Fig. 2 we show the graph of the functigy for a few values ofu.

1
1
w=3
_1
w=3
_2
w=3
-1 w=1

Figure 2. Graph of.,.

From the graphs in this figure we conclude that for a suitableice of w we have
l9.(y)| < 1if y € [5,1]. We chooses = 2 (then|g,(3)| = |gu(1)| holds). Then
we have|g%(y)| < % fory € [1,1]. Using this and the result in (14a) we obtain

for v >

|)\z’l,| < Ny .

1
-3

| =

Hence:

the high frequency modes are strongly damped by the iteratiatrix C,.




From Fig. 2 it is also clear that the low rate of convergencehaf damped Jacobi
method is caused by the low frequency mo@igs, < 1).

Summarizing, we draw the conclusion that in this exampleddmaped Jacobi method
will “smooth” the error. This elementary observation is akgt importance for the
two-grid method introduced below. In the setting of muldignethods the damped Jacobi
method is called a “smoother”. The smoothing property of padhJacobi is illustrated in
Fig. 3. It is important to note that the discussion above eomiag smoothing is related to

n
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Graph of the error after one damped Jacobi
Graph of a starting error. iteration (v = %).

Figure 3. Smoothing property of damped Jacobi.

the iteration matrixC,, which means that therror will be made smoother by the damped
Jacobi method, but not (necessarily) the new iterelfdf .

In multigrid methods we have to transform information fromeogrid to another.
For that purpose we introduce so-callelongationsandrestrictions In a setting with

nested finite element spaces these operators can be defiaegiy natural way. Due to
the nestedness the identity operator

IZ :‘/E—1;_>W7 IZU:Ua

is well-defined. This identity operator represents linederipolation as is illustrated for
£ = 2in Fig. 4. The matrix representation of this interpolatigrecator is given by

pr:R™1 S R™  py=P; P . (15)
A simple computation yields
1 0
1
11
2 2
1
1
pr = 2 (16)
1
2
1
[0 3

S ngXng_1



I

Figure 4. Canonical prolongation.

We can also restrict a given grid functionon Qi to a grid function of2i"*, . An obvious
approach is to use a restrictiorbased on simple injection:

(rinjve) (€) = ve(§) if €€ .

When used in a multigrid method then often this restrictiasdal on injection is not sat-
isfactory (cf. Hackbusch section 3.5). A better method is obtained if a natural Ger
property is satisfied. It can easily be verified (cf. also lear812) that withA,, A,_; and
p¢ as defined in (10), (15) we have

re A=A,y iff ro=p;. (17)
Thus the natural Galerkin conditianA ,p, = A,_; implies the choice
r,=p; (18)
for the restriction operator.
The two-grid method is based on the idea that a smooth error, which rebuolts
the application of one or a few damped Jacobi iterations beaapproximated fairly well
on acoarsergrid. We now introduce this two-grid method.

ConsiderA,x; = b, and letx, be the result of one or a few damped Jacobi iterations
applied to a given starting vectaf. For the erroe, := x; — X, we have

Aver =by — AX, =:d, (“residual” or “defect). (29)

Based on the assumption thatis smooth it seems reasonable to make the approximation
ey ~ pr€y—1 With an appropriate vector (grid functiog)_, € R™-1. To determine the
vectoré,_; we use the equation (19) and the Galerkin property (17). fidgslts in the
equation

Ay =r,dy

for the vectoré,_;. Note thatx* = X, + e, ~ X; + py€,_1. Thus for the new iterand
we takex, := X, + p¢€s_1. In a more compact formulation this two-grid method is as



follows:

procedure TGMy(x¢, by)
if £ =0 then x:= Ay 'by else

begin
x¢ = JJ (x¢,bg) (* v smoothing it., e.g. damped Jacedi
ds—1 :=ry(by — Ayxy) (x restriction of defeck) (20)

&y_1:= A;_lldg,l (x solve coarse grid probler)
Xp =Xy + pe€r—1 (x add correction)

TGM@ =Xy
end;
Often, after the coarse grid correction := x; + p¢€¢—1, one or a few smoothing

iterations are applied. Smoothing before/after the coanseé correction is called
pre/post-smoothing. Besides the smoothing property ansepooperty which is of great
importance for a multigrid method is the following:

The coarse grid systeth, &, 1 = d,_1 is of the same form as the systémx, = by,.

Thus for solving the problem ,_,e,_; = d,—; approximatelywe can apply the two-grid
algorithm in (20) recursively. This results in the followimultigrid methodfor solving
AgXZ = by:

procedure MGM,(x¢, by)

if /=0 then xq:= Aalbo else

begin
x¢ = J;/ (x¢,bg)  (x presmoothing)
de—1:=r¢(by — Ayxy)
€l :=0; fori=1tordo e} ;:= MGMg,l(ejgzll, de1);
X¢ := X¢ + pe€j_,
x¢ := J?(x¢,bg) (x postsmoothing)
1\4GM@ =Xy

end;

(21)

If one wants to solve the system on a given finest grid, sayleitl numbet, i.e. Azxg =
by, then we apply some iterations BFGM;(xz, by).

Based on efficiency considerations (cf. section 3) we ugtaker = 1 (“V-cycle”)
orT = 2 (“W-cycle”) in the recursive call in (21). For the case- 3 the structure of one
multigrid iteration withr € {1, 2} is illustrated in Fig. 5.

3 Multigrid for scalar elliptic problems

In this section we introduce multigrid methods which can bedifor solving discretized
scalar elliptic boundary value problems. A model exampbenfthis problem class is the
Poisson equation in (1). Opposite to the CG method, the egdgility of multigrid methods
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Figure 5. Structure of one multigrid iteration

is not restricted to symmetric problems. Multigrid metheds also be used for solving
problems which are nonsymmetric (i.e., convection ternaspaesent in the equation). If
the problem is convection-dominated (the correspondiiffpsss matrix then is strongly
nonsymmetic) one usually has to modify the standard midtepproach in the sense that
special smoothers and/or special prolongations ande¢tstrs should be used. We do not
discuss this issue here.

We will introduce the two-grid and multigrid method by gealéging the approach of
section 2 to the higher (i.e., two and three) dimensiona Cé¢e consider a scalar elliptic
boundary value problems of the form

—V-(aVu)+b-Vu+ cu=f in Q,
u=0 on oQ.

This problem is considered in a dom&inc R?, d = 2 or 3. We assume that the functions
a, c and the vector functiob are sufficiently smooth of2 and

1 _
a(x) > a9 >0, c(x)— §div b(z) >0 forall z € Q. (22)

These assumptions guarantee that the problem is ellipticvaeil-posed. In view of
the finite element discretization we introduce the varraloformulation of this prob-
lem. For this we need the Sobolov spag(Q2) := {v € L*(Q) | £~ € L*(Q), i =
1,...,d, vjpa = 0}. The partial derivative(%’i has to be interpreted in a suitable weak
sense. The variational formulation is as follows:

{ find « € HY(Q) such that

k(u,v) = f(v) forall ve H(Q), (23)

with a bilinear form and righthand side
k(u,v) = / aVulVo + b-Vuv + cuwvdzr., f(v) = / fodx.
Q Q

If (22) holds then this bilinear form isontinuous and elliption H}(Q), i.e. there exist
constantsy > 0 andc such that

k(u,u) 2 yful?,  k(u,v) < clulifvl forall u,v e Hy ().



Here we usgu|; := ( [, Vu' Vudz) % whichis a norm orf (2). For the discretization
of this problem we use simplicial finite elements. K&} be a regular family of trian-
gulations of(2 consisting ofd-simplices and/;, a corresponding finite element space. For
simplicity we only considelinear finite elements:

Vi={ve Q) |vypeP foral T €7T,}.

The presentation and implementation of the multigrid meétisogreatly simplified if we
assume a given sequencenaltedinite element spaces.

Assumption 3.1 In the remainder we always assume that we have a sequénce=
0,1,..., of simplicial finite element spaces which are nested:

Vi C Viyr forall ¢. (24)

We note that this assumption is not necessary for a sucaggblitation of multigrid meth-
ods. For a treatment of multigrid methods in case of noneasss we refer to Trottenberg
et al?. The construction of a hierarchy of triangulations such tha corresponding finite
element spaces are nested is discussed ifi.Bey

In V; we use the standard nodal ba§is)1<;<x,. This basis induces an isomorphism

P R™ =V, PZXZZ%‘@.
=1
The Galerkin discretization: Find, € V, such that
k(uz,w) = f(vg) forall v, €V, (25)
can be represented as a linear system
Ayxg =Dy, with (Ag)i; = (o), 0i), (be)i = f(ds), 1< 1,5 <ny. (26)

The solutionk; of this linear system yields the Galerkin finite element Sohu, = Px;.
Along the same lines as in the one-dimensional case we inted multigrid method for
solving this system of equations on an arbitrary lével 0.

For thesmootherwe use a basic iterative method such as, for exampRichardson
method

xF = xF — oy (AxE — D),
adamped Jacobi method
xFt = x" —wD; T (AxF —b), (27)
or aGauss-Seidel method
xM =xF — (Dy — Ly) "} (Ax" — b), (28)

whereD, — L, is the lower triangular part of the matrix,. For such a method we use the
general notation

M = Sy (x¥ b)) =xF —M; ' (Ax* —b), k=0,1,...
The corresponding iteration matrix is denoted by
Se=I-M,'A,.

10



For theprolongationwe use the matrix representation of the identity V,_; — V,, i.e.,
Pe¢ = P[lpg_l. (29)

The choice of the restriction is based on the following eletagy lemma:
Lemma 3.2 LetAy, ¢ > 0, be the stiffness matrix defined(@6) andp, as in(29). Then
forr, : R™ — R™¢-1 we have:

reApe = A, ifandonlyif r, =p?.
Proof: For the stiffness matrix matrix the identity
(Aex,y) = k(Pix, Pyy) forall x,y € R™
holds. From this we get
reApe= Ay
& (Apex,riy) = (Ayx,y) forall x,y € R™!
& k(Proix, Prly) = k(Pr_1x, Pi_yy) forall x,y € R™-.
Using the ellipticity ofk(-, -) it now follows that
reAepe = Ay
& Prly=P,_,y foral ycR™ !
& rly= P[ng,ly =pey forall y e R
& r] =py.

Thus the claim is proved. [ ]

This motivates that for theestrictionwe take:
Iy = pg. (30)

Using these components we can define a multigrid method wiéhtky the same structure
asin (21):

procedure MGM(x¢, by)

if /=0 then xq:= Aglbo else

begin
x¢ =8/ (x¢,b¢) (* presmoothing:)
de_1 :=re(by — Ayxy)
e) :=0; fori=1tordo ej@_l = MGMg_l(ezjll, do—1);
X¢ 1= X¢ + pre)_,
x¢ :=S,%(x¢,by) (* postsmoothing)
MGI\/I[ =Xy

end;

(31)

We briefly comment on some important issues related to thiignd method.

11



Smoothers

For many problems basic iterative methods provide good #meo®. In particular the
Gauss-Seidel method is often a very effective smoothereiGtimoothers used in practice
are the damped Jacobi method and the ILU method.

Prolongation and restriction

If instead of a discretization with nested finite elementgsane uses a finite difference or
a finite volume method then one can not use the approach ind2@fine a prolongation.
However, for these cases other canonical constructiorthégorolongation operator exist.
We refer to Hackbusch Trottenberg et al. or Wesseling for a treatment of this topic.
A general technique for the construction of a prolongatiparator in case of nonnested
finite element spaces is given in Bragss

Arithmetic costs per iteration
We discuss the arithmetic costs of oREGM, iteration as defined in (31). For this we
introduce a unit of arithmetic work on levél

WU, := # flops needed forA ;x, — b, computation (32)
We assume:
WU;—1 S gWU, with g <1 independent of. (33)

Note that if7, is constructed through a uniform global grid refinemerfof;, (for n = 2:
subdivision of each triangl&' € 7,_; into four smaller triangles by connecting the mid-
points of the edges) then (33) holds with= (1)?. Furthermore we make the follow-
ing assumptions concerning the arithmetic costs of eacheo$tibsteps in the procedure
MGMy:

x¢ = Sp(x¢,by) : costs < WU,
de—1 :=r1i(by — Ayxy)

. } total costs< 2WU,
Xy = X¢ + Pr€y_q

For the amount of work in one multigrid V-cycle (= 1) on level?, which is denoted by
VMG, we getusing := vy + vs!
VMG, SvWU+2WU + VMGy_1 = (v +2)WU  + VMGr—1
SWH+2)(WU+WU—1 4 ...+ WU1) + VMG
SWH+2)(A+g+...+ ¢ HYWU + VMG (34)

v+2
1-g

< WU,.

In the last inequality we assumed that the costs for comguijn= Aglbo (i.e.,VMGy)

are negligible compared iU ,. The result in (34) shows that the arithmetic costs for one
V-cycle are proportional (if — oo) to the costs of a residual computation. For example,
forg = % (uniform refinement in 3D) the arithmetic costs of a V-cyclighw, = 15 = 1

on levell are comparable té1 times the costs of a residual computation on lével

12



For the W-cycle £ = 2) the arithmetic costs on levélare denoted by M G,. We have:
WMG, SvWU+2WU +2WMGy—1 = (v + 2)WU, + 2W MG

SW+2)(WU+2WUpy +22WU o + ...+ 25 'WUL) + WMGy
Sw+2)(1+29+ (29)° + ...+ (29) ) WU, + WMG.

From this we see that to obtain a bound proportion&tt , we have to assume

g< .
2

Under this assumption we get for the W-cycle

v+2

1—2g

(again we neglecteld’ M G). Similar bounds can be obtained for> 3, providedrg < 1

holds.

WMG, <

wU,

3.1 Nested Iteration

We consider a sequence of discretizations of a given boynadme problem, as for ex-
ample in (26):

Angzbg, 820,1,2,....

We assume that for a certain= ¢ we want to compute the solutiad: of the problem
Azx; = by using an iterative method (not necessarily a multigrid mdjhIn the nested
iteration method we use the systems on coarse grids to aoggiod starting vectox% for
this iterative method with relatively low computationakt®. The nested iteration method
for the computation of this starting vectm% is as follows

compute the solutior; of Agxo = by

x{ := p1x{ (prolongation ofx})

x} := result ofk iterations of an iterative method
applied toA;x; = by with starting vecto!
x9 := pox¥ (prolongation ofx})
—_ —_ (35)
x5 := result ofk iterations of an iterative method

applied toA,x, = b, with starting vectox$
etc.

0.~ Jk
XZ = pzxz_l .

In this nested iteration method we use a prolongafipn R™¢-1 — R™. The nested
iteration principle is based on the idea tipak;_, is expected to be a reasonable approxi-
mation ofxj, because\,_x;_; = by—; andA,x; = b, are discretizations of the same

13
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Figure 6. Multigrid and nested iteration.

continuous problem. With respect to the computationalscokthis approach we note the
following (cf. Hackbusch, section 5.3). For the nested iteration to be a feasiblecaupr,
the number of iterations applied on the coarse gridskiie.(35)) should not be "too large”
and the number of grid points in the union of all coarse grigs (evel0,1,2,..../ — 1)
should be at most of the same order of magnitude as the nurhedgoints in the level

¢ grid. Often, if one uses a multigrid solver these two cowdisi are satisfied. Usually in
multigrid we use coarse grids such that the number of gridtpa@ecreases in a geometric
fashion, and folk in (35) we can often také = 1 or £ = 2 due to the fact that on the
coarse grids we use the multigrid method, which has a highatatonvergence.

If one uses the algorithvIGM; from (31) as the solver on levélthen the imple-
mentation of the nested iteration method can be realizeld avity little additional effort
because the coarse grid data structure and coarse gridasef@g.A,, ¢ < /) needed
in the nested iteration method are already available.

If in the nested iteration method we use a multigrid itetsolver on all levels we
obtain the following algorithmic structure:

xi = Ay 'bo; x§ = x;
for £ =1to{do
begin
xY = f)gxiffl ,
for i =1tokdo x,:= MGM,(x,"", by)
end;

(36)

For the casé = 3 andk = 1 this method is illustrated in Fig. 6.

Remark 3.3 The prolongatiop, used in the nested iteration may be the same as the pro-
longationp, used in the multigrid method. However, from the point of viefrefficiency

it is sometimes better to use in the nested iteration a pgaltonp, that has a higher order

of accuracy than the prolongation used in the multigrid roéth O

14



4 Numerical experiment: Multigrid applied to a Poisson equdion

In this section we present results of a standard multigrides@pplied to the model prob-
lem of the Poisson equation:

—Au=f in Q:=(0,1)3,
uw=0 on oN.

We takef (z1, z9, 73) = 22 + %2z +x212. For the discretization we start with a uniform
subdivision of(2 into cubes with edges of length, := i. Each cube is subdivided into
six tetrahedra. This yields the starting triangulatifgnof 2. The triangulatiorZ; with
mesh sizeh; = % is constructed by regular subdivision of each tetrahednofyiinto

8 child tetrahedra. This uniform refinement strategy is a¢pe, resulting in a family of
triangulationg 7;) ,>o With corresponding mesh size = 2=¢~2. For discretization of this
problem we use the space of linear finite elements on thesggtrlations. The resulting
linear system is denoted M,x, = b,. We consider the problem of solving this linear
system on a fixed finest levél= ¢. Below we considef = 1,...,5. For/ = 5 the
triangulation contains 14.380.416 tetrahedra and in theali system we have 2.048.383
unknowns.

We briefly discuss the components used in the multigrid nmefoosolving this linear
system. For the prolongation and restriction we use therdaabones as in (29), (30).
For the smoother we use two different methods, namely a ddrdaeobi method and
a symmetric Gauss-Seidel method (SGS). The damped Jacdhbanis as in (27) with
w := 0.7. The symmetric Gauss-Seidel method consists of two sufstaphe first step
we use a Gauss-Seidel iteration as in (28). In the secondaaegpply this method with
a reversed ordering of the equations and the unknowns. Tihengtic costs per iteration
for such a symmetric Gauss-Seidel smoother are roughlyetagchigh as for a damped
Jacobi method. In the experiment we use the same number -o&pdepost-smoothing
iterations, i.e.r; = v,. The total number of smoothing iterations per multigridatéeon
isv := 11 + va. We use a multigrid V-cycle. i.ez = 1 in the recursive call in (31).
The coarsest grid used in the multigrid methodjs i.e. with a mesh sizé, = i. In
all experiments we use a starting veckdr:= 0. The rate of convergence is measured by
looking at relative residuals:

_ 1Aa" —byll>.
bzl

In Fig. 7 (left) we show results for SGS with = 4. For/ = 1,...,5 we plotted the
relative residuals, for k = 1, ..., 8. In Fig. 7 (right) we show results for the SGS method
with varying number of smoothing iterations, namely= 2,4,6. For/ = 1,...,5 we
give the average residual reduction per iteratioa- (rg)%.

These results show the very fast and essentially level iiggnt rate of convergence
of this multigrid method. For a larger number of smoothirggations the convergence is
faster. On the other hand, also the costs per iteration th@ease, cf. (34) (witly = é).
Usually, in practice the number of smoothings per iteraiamot taken very large. Typical
values arer = 2 orv = 4. In the Fig. 8 we show similar results but now for the damped
Jacobi smoother (damping with = 0.7) instead of the SGS method.

TE -
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Figure 7. Convergence of multigrid V-cycle with SGS smoatheft: r,, fork = 0,...,8andl = 1,...,5.
Right: (7’8)% ford=1,...,5andv = 2,4,6.
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Figure 8. Convergence of multigrid V-cycle with damped Ihsmoother. Left:ry, for k = 0,...,8 and

7=1,...,5 Right: (rs)s for £ = 1,...,5andv = 2, 4,6.

For the method with damped Jacobi smoothing we also cleddgrve an essentially
level independent rate of convergence. Furthermore tlseemiincrease in the rate of
convergence when the numhepf smoothing step gets larger. Comparing the results of
the multigrid method with Jacobi smoothing to those with SE®othing we see that the
latter method has a significantly faster convergence. Nutejever, that the arithmetic
costs per iteration for the latter method are higher (thie fets between 1.5 and 2).

5 Multigrid methods for generalized Stokes equations

LetQ c R? d = 2o0r3bea bounded connected domain. We consider the following
generalized Stokes problem: Givénfind a velocityi and a pressure such that

Ei—vAG+Vp=f inQ,
V-i=0 inQ, (37)
=0 on 9f.
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The parametens > 0 (viscosity) and > 0 are given. Often the latter is proportional to the
inverse of the time step in an implicit time integration metrapplied to a nonstationary
Stokes problem. Note that this general setting includesligsical (stationary) Stokes
problem € = 0). The weak formulation of (37) is as follows: Givene L2(Q)?, we seek
i€ Hy(Q)"andp € LE(Q) :={ ¢ € L*(Q) | [, ¢dz = 0} such that

(@, 7) + v(Vi, Vi) — (divd,p) = (f,7) forallg e HL(Q),

38
(divi,q) =0 forallq € L3(Q). (38)

Here(-, -) denotes thd.? scalar product.

For discretization of (38) we use a standard finite elemeptaarh. Based on a regular
family of nestedtetrahedral grid¥, = 73, with 7o C 7; C ... we use a sequence of
nested finite element spaces

(Vic1,Qu—1) C (Vi,Qe), €=1,2,....

The pair of space€Vy, Q,), £ > 0, is assumed to be stable. By we denote the mesh
size parameter correspondingZip In our numerical experiments we use the Hood-Taylor
P — Py pair:

V=V Vi={veC(Q)|vreP, foral TeT},

Qe ={veC(®)|vreP foral TeT}. (39)

The discrete problem is given by the Galerkin discretizatib(38) with the pai(V, Q).
We are interested in the solution of this discrete problena given finest discretization
level ¢ = /. The resulting discrete problem can be represented usingtéimdard nodal
bases in these finite element spaces. The representatioa discrete problem on levél
in these bases results ifiaear saddle point problerof the form

T
Ax; =b, with A, = (gﬁ Bof > . X = G;j) . (40)

The dimensions of the spac®s and(@, are denoted by, andm,, respectively. The
matrix A, € R™*"¢ js the discrete representation of the differential operafo— vA
and is symmetric positive definite. Note thé&t depends on the parametérandy. The
matrix.4, depends on these parameters, too, asghismetric and strongly indefinite

We describe a multigrid method that can be used for the erablution of the system
(40). This method has the same algorithmic structure aslin {8e need intergrid transfer
operators (prolongation and restriction) and a smoothiees& components are described
below.

Intergrid transfer operatorskor the prolongation and restriction of vectors (or cores
ing finite element functions) between different level we tise canonical operators. The
prolongation between levél— 1 and/ is given by

o (POV ]SQ> (41)

where the matrice®y, : R™-* — R™ andPy : R™-' — R™ are matrix represen-
tations of the embeddingé,_, C V, (quadratic interpolation foP;) andQ,—1 C Q.
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(linear interpolation fofP;), respectively. For the restriction operafey between the lev-
els/ and/ — 1 we take the adjoint oF,; (w.r.t. a scaled Euclidean scalar product). Then
the Galerkin propertyl,_1 = Ry.A, P, holds.

Braess-Sarazin smootheFhis smoother is introduced in Braésswith D, = diag(Ays)
and a giverw > 0 the smoothing iteration has the form

Gi)=GH-Ca ) GG e
p, ! p} B, 0 By 0 p} 0

Each iteration (42) requires the solution of the auxiliarglgem

™ /¢ !
(5 %) () - () @)
with r§ = A,uf + BI pk — f,. From (43) one obtains
Byt = Byu},
and hence,
Beubt! = By(uf —a,) =0 forall j>o. (44)

Therefore, the Braess-Sarazin method can be considereshasaher on the subspace of
vectors that satisfy the constraint equati®ni, = 0.
The problem (43) can be reduced to a problem for the auxipaggsure unknowfy,:

ng)g = BgD[lr’Z — ongulZ, (45)

whereZ, = B,D,; ' BY.

Remark 5.1 The matrixZ, is similar to a discrete Laplace operator on the pressuigespa
In practice the system (45) is solved approximately usingféinient iterative solver, cf.
Braes$’, Zulehnet™. O

Oncepy is known (approximately), an approximation @ can easily be determined from
OéDgflg = I‘IZ — Bgf)p

Vanka smoother The Vanka-type smoothers, originally proposed by Vafkar finite
difference schemes, are block GauR3-Seidel type of methbdse uses such a method in
a finite element setting then a block of unknowns consistdl afegrees of freedom that
correspond with one element. Numerical tests given in Jbsimow that the use of this
element-wise Vanka smoother can be problematic for coatinpressure approximations.
In Johrt® the pressure-oriented Vanka smoother for continuous presgproximations
has been suggested as a good alternative. In this methoalgpladlem corresponds to
the block of unknowns consisting of one pressure unknownaingelocity degrees of
freedom that are connected with this pressure unknown. Weaamsider this type of
Vanka smoother. We first give a more precise descriptionisfrttethod.

We take a fixed level in the discretization hierarchy. To simplify the preseiotatve
u .

€ R**™ instead

b

of (;;Z) € Rretme, et rg) : R™ — R be the pressure projection (injection)
4

drop the level index from the notation, i.e. we write, for examplé

rgﬁ)p:pj, j=1...,m.
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For eachj (1 < j < m) let the set of velocity indices that are “connected? foe given by
Vi={1<i<n| (¥ B)#0}.

Defined; := |V;| and writeV; = {i; < ip < ... < iq;}. A corresponding velocity
projection operatorgﬂ) : R" — R% is given by

(), _ T
v u = (uil,uh,...,uidi) .

The combined pressure and velocity projection is given by

()
RO a7 0 ) e R@+xCrem)
0 rp

Furthermore, defing()) = (r@)T. Using these operators we can formulate a standard
multiplicative Schwarz method. Define

. AT
AD) = 1) gp0) = (AE?; B ) ¢ R@+DX(d5+1)
BY) 0

Note thatB) is a row vector of lengtid;. In addition, we define

. . N\NT . .

DU = (dlag((A)(J)) BY ) = 0.' .O C | e R+ x(d;+1)
BV 0 n

.0

The full Vanka smoother is a multiplicative Schwarz method (or bl@&kuss-Seidel
method) with iteration matrix
Stun = H (I — p(AL)=1r (D 4). (46)

Jj=1

ThediagonalVanka smoother is similar, but witR(/) instead of4):

Sding = H (1 —p(j)(D(j))_lr(j)A). (47)
j=1
Thus, a smoothing step with a Vanka-type smoother consisisl@op over all pressure
degrees of freedomj(= 1,...,m), where for eacly a linear system of equations with
the matrix AY) (or D)) has to be solved. The degrees of freedom are updated in a
Gauss-Seidel manner. These two methods are well-defindichifasrices. AY) and D7)
are nonsingular.

The linear systems with the diagonal Vanka smoother can hedweery efficiently
using the special structure of the matfiX’) whereas for the systems with the full Vanka
smoother a direct solver for the systems with the matri¢€$ is required. The computa-
tional costs for solving a local (i.e. for each block) linsgstem of equations is d; for
the diagonal Vanka smoother andd? for the full Vanka smoother. Typical values féy
are given in Table 2.

Using the prolongation, restriction and smoothers as @xgibabove a multigrid algorithm
for solving the discretized Stokes problem (40) is defineith 31).
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| | hO = 2_1 | h1 = 2_2 | h2 = 2_3 | h3 = 2_4 | h4 = 2_5 |
Ny 81 1029 10125 89373 | 750141
my 27 125 729 4913 35937

Table 1. Dimensionsa, = number of velocity unknownsyn, = number of pressure unknowns.

6 Numerical experiment: Multigrid applied to a generalized Stokes
equation

We consider the generalized Stokes equation as in (37) amiheube = (0,1)3. The
right-hand sidef is taken such that the continuous solution is

sin(mz) sin(7y) sin(mwz)
ti(z,y,z) = = | —cos(mz) cos(my)sin(nz) |,
2 - cos(mx) sin(my) cos(mz)

p(x,y, z) = cos(mz) sin(wy) sin(nz) + C

with a constantC' such thatf, pdz = 0. For the discretization we start with a uniform
tetrahedral grid withhy = % and we apply regular refinements to this starting discretiza
tion. For the finite element discretization we use the Hoagldr P,-P; pair, cf. (39). In
Table 1 the dimension of the system to be solved on each Iaddh& corresponding mesh
size are given.

In all tests below the iterations were repeated until thediamn

=™ 10
@) =
with r*) = b — Ax(*), was satisfied.

We first consider an experiment to show that for this probléasscthe multigrid
method withfull Vanka smoother is very time consuming. In Table 2 we show tiweimal
and mean values af; on the levell. These numbers indicate the dimensions of the local
systems that have to be solved in the Vanka smoother.

| [ho=2""Thi=22]hy=273] hg=2""] hg=27" |
mean@) | 21.8/82| 51.7/157| 88.8/157| 119.1/165| 138.1/166|

max; (i]‘

Table 2. The maximal and mean valuesigfon different grids.

We use a multigrid W-cycle with 2 pre- and 2 post-smoothiegations. In Table 3 we
show the computing time (in seconds) and the number of iteraheeded both for the full
VankadS;,; and the diagonal Vank8gi., smoother.

As can be seen from these results, the rather high dimensidhs local systems lead
to high computing times for the multigrid method with thel finka smoother compared
to the method with the diagonal Vanka smoother. Thereforgreéer the method with
the diagonal Vanka smoother. In numerical experiments veedied that the multigrid
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[£=0 | Stus b3 =277 | Sdiag:h3 =277 | Stu, ha =27° | Sqiagha =275 |

v=1 287 (4) 19 (10) 3504 (5) 224 (13)
v=10""1 283 (4) 19 (10) 3449 (5) 238 (13)
v=10"2 284 (4) 19 (10) 3463 (5) 238 (13)
v =103 356 (5) 20 (11) 3502 (5) 238 (13)

Table 3. CPU time and number of iterations for multigrid whie full and the diagonal Vanka smoother.

W-cycle with onlyonepre- and post-smoothing iteration with the diagonal Vanldhod
sometimes diverges. Further tests indicate that ofterhintethod with diagonal Vanka
smoothing the choice, = 15, = 4 is (slightly) better (w.r.t. CPU time) than = v, = 2.

Results for two variants of the multigrid W-cycle methodgeonith diagonal Vanka
smoothing (V-MGM) and one with Braess-Sarazin smoothing-BGM) are given in the
tables 4 and 5. In the V-MGM we usg = v, = 4. Based on numerical experiments,
in the method with the Braess-Sarazin smoother wewyse- v, = 2 anda = 1.25.
For other valuesy € [1.1,1.5] the efficiency is very similar. The linear system in (45)
is solved approximately using a conjugate gradient methitid avfixed relative tolerance
ecg = 1072. To investigate the robustness of these method we givetseigulseveral
values of¢, v and¢.

£E=0 hs = 2—4

v V-MGM | BS-MGM
v=1 19 (5) 20 (11)
v=10"1| 19(5) 20 (11)
v=10"% 1] 19(5) 17 (8)

£=10 hy =271

v V-MGM | BS-MGM
v=1 19 (5) 20 (11)
v=10"1| 17 (4) 20 (11)
v=10"3%| 15(3) 21 (7)

£ =100 hy =24

v V-MGM | BS-MGM
v=1 17 (4) 20 (11)
v=10"11] 15(3) 19 (7)

v=10"% | 15(3) 19 (6)

Table 4. CPU time and the number of iterations for BS- and VNI@ethods.

The results show that the rate of convergence is essentid@pendent of the parameters
v and¢, i.e., these methods have a robustness property. Furthen observe that
if for fixed v, ¢ we compare the results fdr = 3 (hs = 2~*) with those for/ = 4
(ha = 27°) then for the V-MGM there is (almost) no increase in the nundiéterations.
This illustrates the mesh independent rate of convergehtieeomethod. For the BS-
MGM there is a (small) growth in the number of iterations. Both methods the CPU
time needed per iteration grows with a factor of roughly 1Gwlgoing from¢ = 3 to
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=0 hy = 2-5

V-MGM | BS-MGM
=1 198 (5) | 274 (14)
— 1071 | 199 (5) | 276 (14)
—1073 | 198(5) | 241 (11)
=10 hg = =

NN NS A NN NN NI 70 | AN NI NS NS 2%
|

1 190 (5) | 244 (13)
=10"' | 189(5) | 224(10)
=10"3 | 145(3) | 238 (7)
=100 hg =277

V-MGM | BS-MGM
=1 190 (5) | 241 (13)
=10"' | 167 (4) | 243(13)
=10"3 | 122(2) | 282 (9)

Table 5. CPU time and the number of iterations for BS- and VNIi@ethods.

¢ = 4. The number of unknowns then grows with about a factor 8.3;Table 1. This
indicates that the arithmetic work per iteration is almosér in the number of unknowns.

7 Convergence analysis for scalar elliptic problems

In this section we present a convergence analysis for thégridimethod introduced in
section 3. Our approach is based on the so-called apprarimaind smoothing property,
introduced by Hackbusér* For a discussion of other analyses we refer to remark 7.23.

7.1 Introduction

One easily verifies that the two-grid method is a linear tieeamethod. The iteration
matrix of this method with/; presmoothing and, postsmoothing iterations on levéls
given by

Cre. = Crae(va,v1) = S (1 - peA 1o Ag)ST (48)

withS, =1— MZlAz the iteration matrix of the smoother.
Theorem 7.1 The multigrid metho@31)is a linear iterative method with iteration matrix
Cua,e given by

CMG,O =0 (493)
CM(;/ = Szz (I — pg(I - C?WG’ZA)AZJIUA@)S? (49b)
=Crge+ SzngCRJG’€71A251r4A582fl, {=1,2,... (49c¢)
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Proof: Theresultin (49a) is trivial. The resultin (49c) followsin (49b) and the definition
of Cr¢ .. We now prove the result in (49b) by induction. Fot 1 it follows from (49a)
and (48). Assume that the result is correctfer 1. ThenMGM,_1(y¢—1,2¢—1) defines
a linear iterative method and for arbitrayy_,, z,—1 € R™-* we have

MGM_1(ye—1,2e-1) — Ay Ze-1 = Crrgo—1(ye—1 — A 20-1) (50)
We rewrite the algorithm (31) as follows:
x! = S (x;’ld,bg)
x? .= x!' + pMGM]_, (O, re(by — AgXl))
x;7V = 82 (x%, by).
From this we get
X xp =X = Ay by = SP (¢ - ;)
=S}? (x1 —x; +pMGM;_, (O7 ro(by — AgXl)).
Now we use the result (50) withy_1 = 0, z¢_; := ry(by — A,x!). This yields
xp = x; =S (x! —x} + pe(A ] 201 — Clre o1 A 20-1)
= SZQ (I —pe(I— CJTuG,e—1)Ae_—11r€AZ) (Xl -x7)
=Sy (- pe(I— Clyg 1) A reAL) ST (x4 — x7).
This completes the proof. [ ]

The convergence analysis will be based on the followingttsmi of the two-grid
iteration matrix, withv, = 0, i.e. no postsmoothing:

1Crc.e(0,11)]l2 = (T — peA, 0 Ag)ST |2

—1 —1 ¢t (51)
< HAZ — pZAz71r€”2 HAKSZ ”2

In section 7.2 we will prove a bound of the foffA ;' —p, A, rel|2 < Cal|Ag|l5 . This
result is called thapproximation propertyln section 7.3 we derive a suitable bound for the
term||A,S;"||2. This is the so-calledmoothing propertyin section 7.4 we combine these
bounds with the results in (51) and in theorem 7.1. This giéldunds for the contraction
number of the two-grid method and of the multigrid W-cycler the V-cycle a more subtle
analysis is needed. This is presented in section 7.5. Indheetgence analysis we need

the following:
Assumption 7.2 In the sections 7.2—7.5 we assume that the family of triaatguis{7},, }
corresponding to the finite element spadgs? = 0,1,..., is quasi-uniformand that

he—1 < chy with a constant independent of.

We give some results that will be used in the analysis furtineiFirst we recall aimverse
inequalitythat is known from the analysis of finite element methods:

|Ug|1 < Ch21|"l)gHL2 forall v, €V,

with a constant independent of. For this result to hold we need assumption 7.2.
We now show that, apart from a scaling factor, the isomorphi : (R™¢, (-,-)) —
(Vi, {-,-)12) and its inverse are uniformly (w.r.£) bounded:
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Lemma 7.3 There exist constantg > 0 andcs independent of such that

1
1| Pex|| 2 < h2xl2 < col|Pix|| g2 forall x € R™. (52)

Proof: The definition ofP, yields Pix = Y7, z;¢; =: vy € V; andve(§;) = x;, where
&; is the vertex in the triangulation which corresponds to théat basis functiow,;. Note
that

1Px|72 = llvell 72 = D lvell7zry-
TeT,

Sincew, is linear on each simpleX in the triangulatior?, there are constangs > 0 and
¢2 independent of, such that

EllvelZacry < ITI D" wel&)?® < EllvellZaery,
&eV(T)
whereV(T') denotes the set of vertices of the simplEx Summation over all’ € 7y,
usinguv(¢;) = x; and|T| ~ h¢ we obtain

Ny

efloelle < Y atf < éofluele,
i=1

with constant€; > 0 and¢, independent ok, and thus we get the resultin (52). =

The third preliminary result concerns the scaling of thirstss matrix:

Lemma 7.4 Let A, be the stiffness matrix as {{26). Assume that the bilinear form is
such that the usual conditiorf22) are satisfied. Then there exist constants> 0 andcs
independent of such that

Clh?_Q S ||A[H2 S Cghz_Q.

Proof: First note that
(Aex,y)
xyeR™ [[x[[2]ly]l2

Using the result in lemma 7.3, the continuity of the bilinfsam and the inverse inequality
we get

[Acllo =

(Arx,y) (v, wy)

< ch?
syeane [x[aflylz =

v, weEVy m

< chg' max [Vl we

Jvehlwel o
ve,weEVy vaHLGngLz

and thus the upper bound is proved. The lower bound folloars fr

(Ax,y) 2 d—2
Bl DY Ave;,e;) = k(d;, d;) > cldi|2 > ch
S Tilallyllz = 12, (Aeer 0 = K00 00) 2 cloily = ehi

The last inequality can be shown by using BrC supp(¢;) the affine transformation
from the unit simplex td@". ]
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7.2 Approximation property

In this section we derive a bound for the first factor in thétspg (51). We start with two
important assumptions that are crucial for the analysiss Tifst one concerngegularity

of the continuous problenthe second one isdiscretization error bound

Assumption 7.5 We assume that the continuous problen{d8) is H2-regular, i.e. for

f € L?(Q) the corresponding solution satisfies

[ullzz < el £z,

with a constant independent of . Furthermore we assume a finite element discretization
error bound for the Galerkin discretizatiq25).

lu— w2 < chf| f 2

with ¢ independent of and of?.

We will need thedual problem of (23) which is as follows: determinec HJ(€2)
such thatk(v, @) = f(v) forallv € H}(Q). Note that this dual problem is obtained by
interchanging the arguments in the bilinear fokin, -) and that the dual problem equals
the original one if the bilinear form is symmetric (as for exale in case of the Poisson
equation).

In the analysis we will use the adjoint operaiBf : V; — R™ which satisfies
(Prx,ve) 2 = (x, Pfvg) forall x € R™, v, € V,. As a direct consequence of lemma 7.3
we obtain

L4
c1l|Pfell2 < by ||vel| 2 < cal|[Plugll2 forall v, €V (53)

with constants:; > 0 andcy independent of. We now formulate a main result for the
convergence analysis of multigrid methods:

Theorem 7.6 (Approximation property.) Consider Ay, p¢, r, as defined in(26),
(29),(30). Assume that the variational proble(®3) is such that the usual conditioifg2)

are satisfied. Moreover, the problg@3)and the corresponding dual problem are assurfged
to be H2-regular. Then there exists a constafiii independent of such that

[A; Y — peA; rella < Cal|Agllt for £=1,2,... (54)

Proof: Letb, € R™ be given. The constants in the proof are independebt @nd of¢.
Consider the variational problems:

we Hy(Q): k(u,v) = (P;) 'be,v)2 forall ve Hy(Q)
ug € Voo k(ug,vp) = <(P;)71bg,’l}z>L2 forall v, €V,
w1 € Vo_y o k(ug_1,ve—1) = (P}) *bp,ve_1)r> forall vy_y € Vp_y.
Then

Ae_lbg = Pe_luZ and Ae_jlrgbg = Pzillug_l
hold. Hence we obtain, using lemma 7.3,

_ _ _ —1d
(A" = peAro)bello = | P (e — we—i) |2 < ¢hy 2% flug — we—i|z2. (55)
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Now we use the assumptions on the discretization error bandan thef72-regularity of
the problem. This yields

lwe — we—1llp2 < lJue — ullp2 + [Jue—1 — ul| L2
< chiluly + +chi_|uly < ch||(PF) ™ gl 2

We combine (55) with (56) and use (53), and get

(56)

(A" — peA Y ro)bella < ch2|bylla

and thus|A,; ' — p,A; ' r/ll2 < ch?~? The proof is completed if we use lemma 7.

Note that in the proof of the approximation property we use timderlying contin-
uous problem.

7.3 Smoothing property

In this section we derive inequalities of the form
[AS]l2 < g(v)[|Acll2

whereg(v) is a monotonically decreasing function witim, .., g(v) = 0. In the first
part of this section we derive results for the case thats symmetric positive definite. In
the second part we discuss the general case.

Smoothing property for the symmetric positive definite case

We start with an elementary lemma:

Lemma 7.7 LetB € R™*™ be a symmetric positive definite matrix witkB) c (0, 1].
Then we have

B —B)"[|2 for v=1,2,...

1
< -
~2v+1)
Proof: Note that
1

14 v
B(I-B), = 1—2)” = .
IBA-B)|l: = max o(1-2)" = = (—7)

A simple computation shows that— (VLH)” is decreasing ofl, o). ]
Below for a few basic iterative methods we derive the smagthproperty for the
symmetric case, i.eh = 0 in the bilinear formk(-,-). We first consider the Richardson
method:

Theorem 7.8 Assume that in the bilinear form we halwe= 0 and that the usual condi-
tions(22) are satisfied. LeA, be the stiffness matrix i(26). For ¢y € (0, 1] we have the
smoothing property

Co

||AZ(I - p(Aﬁ)

Ay)| |[Aell2, v=12,...

1
< -
o= 2¢0(v + 1)
holds.
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Proof: Note thatA, is symmetric positive definite. Apply lemma 7.7 wiB := w,Ay,
wy := co p(Ay) L. This yields

1 1 1
01D S 20070 "™ T e 11

and thus the result is proved. [ ]

AL —weA)|l2 <wpt [[Acll2

A similar result can be shown for the damped Jacobi method:

Theorem 7.9 Assume that in the bilinear form we halwe= 0 and that the usual condi-
tions(22) are satisfied. LefA, be the stiffness matrix i(26) andD, := diag(A,). There
exists arw € (0, p(Dg‘lAg)*l], independent of, such that the smoothing property

_ 3 1
[AI—wD; Ay |2 < o A2, v=1,2,...

(v+1)

holds.
~ 1 1
Proof: Define the symmetric positive definite matik:= D, > A,D, *. Note that

(D)ii = (Ae)is = ki, di) 2 ¢|oilf = chi™? (57)
with ¢ > 0 independent of ands:. Using this in combination with lemma 7.4 we get

1A _

B, < 42
|| H2 o )\min(Dﬁ) -

¢ independent of/.

Hence forw € (0,1] c (0,p(D;'A,)~1] we haves(wB) C (0,1]. Application of
lemma 7.7, withB = wB, yields

14T~ wD; " Ag)” 2 < w™HDF||2|wB(I — wB)” ||| D7 |2

D, _ 1
T 2wv+1) T 2w(v+1)

[ Al
and thus the result is proved. ]

Remark 7.10 The value of the parametex used in theorem 7.9 is such that
1 _1
wp(D;'Ay) = wp(D, A,D, %) < 1 holds. Note that

1 _1 (Arx,x) (Age;, e;)
D, 2A,D,?) = - — =
(D, " AD, ) xER™e (Dyx,x) — 1<i<n, (Dye;e;)

and thus we haves < 1. This explains why in multigrid methods one usually uses a
dampedlacobi method as a smoother. O

We finally consider the symmetric Gauss-Seidel method /= A this method has an
iteration matrix

S¢=1-M;'A,, M,;=(D,-L)D; (D,—Lj), (58)

where we use the decompositidn = D, — L, — L;{ with D, a diagonal matrix andl,
a strictly lower triangular matrix.
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Theorem 7.11 Assume that in the bilinear form we halse= 0 and that the usual con-
ditions (22) are satisfied. Le®A, be the stiffness matrix i(26) and M, as in(58). The
smoothing property

— v c
A M, A2 < V—HHAZHQ, v=12...

holds with a constant independent of and/.

Proof: Note thatM, = A, + LnglL}f and thusM, is symmetric positive definite.
_1 _1

Define the symmetric positive definite matis:= M, > A;M, >. From

<BX7 X> o <AZX; X> _ <AgX, X>

OB xRN M) AR (Ao + (D, LIxLTx)
it follows thato(B) C (0, 1]. Application of lemma 7.7 yields
| AT —M; AL ||z < M 3[BT~ B)"[2 < IIMellzﬁ-

From (57) we haviD, ! ||, < ¢ h7~“. Using the sparsity oA, we obtain

ILell21LE ll2 < I Lelloc | Lellr < c(max |(Ae)is 1) < cll Acll3-
In combination with lemma 7.4 we then get

IMell2 < D7 lalLell2 L7 [l < e by~ (| Acll3 < cl| Al (59)

and this completes the proof. [ ]

For the symmetric positive definite case smoothing propgitiave also been proved for
other iterative methods. For example, in Wittth® a smoothing property is proved
for a variant of the ILU method and in Broker et'dl.it is shown that the SPAI (sparse
approximate inverse) preconditioner satisfies a smoofiaogerty.

Smoothing property for the nonsymmetric case

For the analysis of the smoothing property in the generadginly honsymmetric) case
we can not use lemma 7.7. Instead the analysis will be basétedollowing lemma (cf.
Reuskeff 19:

Lemma 7.12 Let|| - || be any induced matrix norm and assume thatBoe R™*™ the
inequality||B|| < 1 holds. The we have

[ 2
[(I-B)I+B)| <2vty/—, forv=1,2,...
vz

Proof: Note that

I-B)(I+B)"=(I-B) s <Z>B’“:I—B”“+§:ﬂ(<2) —(kfl))Bk.

k=0
This yields

||<I—B><I+B>"||<2+k§ijl| (k) —(kil) I
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Using(Z) > (ki1> & k<i(r+1) and <:> > (ﬂk) we get (with| -]

the round down operator):

() - ()

=22 (1) - (D) =2(id) - (0)>

An elementary analysis yields (cf., for example, ReusRen

1V §2"1/i for v > 1.
[51/] %

Thus we have proved the bound. ]

Corollary 7.13 Let|| - || be any induced matrix norm. Assume that for a linear itemtiv
method with iteration matriX — M;lAz we have

IT-M; A, <1 (60)

ThenforS, :=1— %leAg the following smoothing property holds:

2
[ASEI <24/ — M|, v=1,2,...
TV

Proof: DefineB =1 — M;lAg and apply lemma 7.12:

v 1w v 2
1ASEI < IMefl(5) 1= B)(T+B)”|| < 24/ — M.

[ |
Remark 7.14 Note that in the smoother in corollary 7.13 we use damping wiactor. .
Generalizations of the results in lemma 7.12 and corollal® are given in Nevanlin
Hackbusch, Zulehnef?. In Nevanlinn&®, Zulehnef? it is shown that the damping factor
% can be replaced by an arbitrary damping faciat (0, 1). Also note that in the smooth-

ing property in corollary 7.13 we haveradependence of the formz, whereas in the

symmetric case this is of the fornt!. It HackbuscR! it is shown that this loss of a factor

v% when going to the nonsymmetric case is due to the fact thaptaeigenvalues may

occur. O
To verify the condition in (60) we will use the following elemtary result:
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Lemma 7.15 If E € R™*™ s such that there existsa> 0 with
|Ex|3 < c(Ex,x) forall x ¢ R™

then we have|I — wE[|; < 1 forall w € [0, 2].
Proof: Follows from:

(X~ wE)x||3 = |3 — 2w(Ex, x) + w?|Ex]3

2
< 13 = w( = w)l|Ex]3

. 2
<Xl if w(=-w)20.

We now use these results to derive a smoothing property éoRtbhardson method.
Theorem 7.16 Assume that the bilinear form satisfies the usual condit{@@¥ Let A,
be the stiffness matrix i(R6). There exist constants > 0 and ¢ independent of such
that the following smoothing property holds:

2—d v c
1A= whi A2 < Tl Adl, v=1,2,....

Proof: Using lemma 7.3, the inverse inequality and the ellipticityhe bilinear form we
get, for arbitraryx € R"™¢:

Ax]|s = max ) @ o FUEEX, Ve
yER™e ||yH2 v €V ||’U€||L2

|PZX|1|W|1

2 %d71
<ch; <ch; | Prx|1

weVe Jvellze
ld—1 1 ld—1 1
< chj k(Prx, Pix)? =ch}  (Ax,x)2.
From this and lemma 7.15 it follows that there exists a corisig> 0 such that
[T —2wh? A2 <1 forall ¢ (61)

DefineM, = Lh{ L From lemma 7.4 it follows that there exists a constapnt
independent of such that|M,||> < car||As||2. Application of corollary 7.13 proves the
result of the lemma. [ |

We now consider the damped Jacobi method.

Theorem 7.17 Assume that the bilinear form satisfies the usual condit{@@3} Let A,
be the stiffness matrix i(R6) and D, = diag(A,). There exist constants > 0 and ¢
independent of such that the following smoothing property holds:

- v c
|A(I—wD; A2 < WHAZHQ, v=1,2,...

Proof: We use the matrix norm induced by the vector nquD = HD;yHQ fory e
R™¢. Note that foB € R™¢*" we have||B||p = HDZBD 2H2 The inequalities

D 2 < erh; ™, k(D) < e (62)
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hold with constantg;, ¢ independent of. Using this in combination with lemma 7.3,
the inverse inequality and the ellipticity of the bilinearr we get, for arbitrarx € R"™¢:

_1 _1 _1 _1
||D7%A4D7%XH2 = max (AD, "%, D, *y) _ max MPD, °x, PiD, *y)
¢ ¢ yER™ lyll2 yeR™ lyll2
_1 _1
|PD, >x|1||PD, *y| 1>

< chzl maL;L(E
YyER yll2

14-1 _1 1 _1
<ch}  |PD,?*x[1[|D, ?|]2 < ¢|PD, *x|;
1 1 _1 _1
< ck(PD, *x, P,D, *x)? = ¢(D, 2 A;D, *x,x)*.
From this and lemma 7.15 it follows that there exists a cansta> 0 such that
1 _1
|T—2wD, 'Ay|p = |I-2wD, 2A,D, 2|2 <1 forall ¢
DefineM, := 5-D,. Application of corollary 7.13 with| - || = || - || p in combination
with (62) yields
— v 1 1 — v
14T = wheD; " Ag)”[l2 < 5(DF) [| AT = SM; Ar)” o

[Mellp = Dyl <

<= | A
= 2w/ NN

and thus the result is proved. ]

7.4 Multigrid contraction number

In this section we prove a bound for the contraction numbdéhénEuclidean norm of the
multigrid algorithm (31) withr > 2. We follow the analysis introduced by Hackbuséh
Apart from the approximation and smoothing property thatehldeen proved in the sec-
tions 7.2 and 7.3 we also need the following stability bounrdlfie iteration matrix of the
smoother:

3Cs : [|S{lla < Cs forall £ andv. (63)

Lemma 7.18 Consider the Richardson method as in theorem 7.8 or theorg&é T both
caseq63)holds withC's = 1.
Proof: In the symmetric case (theorem 7.8) we have

co
——A = max |1—g¢
Ay Alle = max L= o 25

For the general case (theorem 7.16) we have, using (61):

ISell2 = [T

_ 1 1 _
ISella = T = wh? Al = 5T+ 51— 202140
1

1
<5 I 2wk Ap < 1.
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Lemma 7.19 Consider the damped Jacobi method as in theorem 7.9 or thredrg7. In
both case$63) holds.
Proof: Both in the symmetric and nonsymmetric case we have

1 1
ISellp = [IDZ (T - wD, *A)D, * |2 < 1
and thus
v _1 1 _1 v 1 1 v 1
IS7ll2 < [[D, *(D7SeD, *)"Df |2 < k(D7) [[Selp < (D7)

Now note thatD, is uniformly (w.r.t. ) well-conditioned. [ ]

Using lemma 7.3 it follows that fop, = P[ng_l we have

Cpallxll2 < [[pex[l2 < Cp2|x[2 forall x € R™-*. (64)

with constantg”,, ; > 0 andC), » independent of.
We now formulate a main convergence result for the multigrethod.

Theorem 7.20 Consider the multigrid method with iteration matrix giver(49)and
parameter values, = 0,1 = v > 0, 7 > 2. Assume that there are constantg,
Cs and a monotonically decreasing functigiw) with g(v) — 0 for v — oo such
that for all £:

|AT" = peA rella < CallAl5 (65a)
[AeSTllz < g(v) [[Aell2, v =1 (65b)
IS¢l <Cs, v>1. (65¢)
Forany¢* € (0, 1) there exists &* such that for allv > v*
<&, 1=0,1,...

Cra el

holds.

Proof: For the two-grid iteration matrix we have
ICraell2 < [|A;" — peA, roll2]| ArSY |2 < Cag(v).
Define&; = ||Casc.¢||2- From (49) we obtaig, = 0 and for¢ > 1:
€ < Cag(v) + [IPell2€i-1 | A7 T ALSY |2
< Cag(v) + CpoCpi&i_[IPeA Y reAeS] |2
< Cag(v) + CpaCri&r 1 (1T — peA e AY)SY |2 + |[SY 1)
< Cag(v) + Cp2Cyi&i 1 (Cag(v) + Cs) < Cag(v) + C*&_,

with C* := p720p_i(CAg(1) + Cs). Elementary analysis shows that foe> 2 and any
§* € (0,1) the sequencey = 0, z; = Cag(v) + C*x]_y, i > 1, is bounded by* for

g(v) sufficiently small. [ |
Remark 7.21 ConsiderAy, p¢, r¢ as defined in (26), (29),(30). Assume that the vari-

ational problem (23) is such that the usual conditions (28)satisfied. Moreover, the
problem (23) and the corresponding dual problem are asstoned H2-regular. In the
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multigrid method we use the Richardson or the damped Jacettiod described in sec-
tion 7.3. Then the assumptior{§5) are fulfilled and thus for, = 0 and v, sufficiently
large the multigrid W-cylce has a contractrion number smiathan one indpendent af

([l

Remark 7.22 Let Cys¢ ¢(v2, v1) be the iteration matrix of the multigrid method with
pre- andv, postsmoothing iterations. With:= v, + v, we have

p(Cra,e(v2,11)) = p(Crce(0,v)) < [|Chrrc,e(0,v)]|2

Using theorem 7.20 we thus get, for> 2, a bound for thespectral radiuf the iteration
matrix CJWG,Z(VQ; Vl). O
Remark 7.23 The multigrid convergence analysis presented above assguoféicient
regularity (namelyif 2-regularity) of the elliptic boundary value problem. Thasve been
developed convergence analyses in which this regulari#yraption is avoided and dnt
independent convergence rate of multigrid is proved. Thasdyses are based on so-called
subspace decomposition techniques. Two review papers ttigrituiconvergence proofs
are Yserentadt and X, O

7.5 Convergence analysis for symmetric positive definite pblems

In this section we analyze the convergence of the multigredhmd for the symmetric
positive definite case, i.e., the stiffness matAix is assumed to be symmetric positive
definite. This property allows a refined analysis which peayet the contraction number
of the multigrid method withr > 1 (the V-cycle is included !) and; = v, > 1 pre-
and postsmoothing iterations is bounded by a constantenthlin one independent &f
The basic idea of this analysis is due to Braeasd is further simplified by Hackbustf*.

Throughout this section we make the following

Assumption 7.24 In the bilinear formk(-, -) in (23) we haveb = 0 and the conditions
(22) are satisfied.

Due to this the stiffness matriA, is symmetric positive definite and we can define the
energy scalar product and corresponding norm:

1
(x,y)a = (Ax,y), |[x[a:=(xx)] xyecR"™.

We only consider smoothers with an iteration maB8ix= I — M;lAg in which M, is
symmetric positive definite. Important examples are theathers analyzed in section 7.3:

Richardson method M, = c; 'p(A)I, ¢y € (0,1] (66a)
Damped Jacohi M, = w™'D,, w asinthm.7.9 (66b)
Symm. Gauss-Seidel M, = (D, — L,)D; ' (D, — L{). (66¢)

For symmetric matriceB, C € R™*™ we use the notatioB < Ciff (Bx,x) < (Cx, x)
forall x € R™.
Lemma 7.25 For M, as in(66)the following properties hold:

A, < M, forall/? (67a)
ICum ¢ |[Mell2 < Curl|Agll2 forall £. (67b)
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Proof: For the Richardson method the result is trivial. For the dednpacobi method
_1 _1

we havew € (0,p(D;'A,)"!] and thuswp(D, ?A,/D,?) < 1. This yields

A, < w Dy = My. The result in (67b) follows from|Dy|2 < ||A¢|l2. For the

symmetric Gauss-Seidel method the results (67a) folloam v, = A, + LnglL{

and the result in (67b) is proved in (59). ]

We introduce the followingnodified approximation property
3G IMF(A7 = p AL )M, <Gy for £=1,2,...  (68)

We note that the standard approximation property (54) iesghe result (68) if we consider
the smoothers in (66):

Lemma 7.26 ConsiderM, as in(66) and assume that the approximation propegiy)
holds. Ther(68) holds withC'y = C;C4.

Proof: Trivial. [ ]
One easily verifies that for the smoothers in (66) the modifipdroximation property
(68) implies the standard approximation property (54%({M,) is uniformly (w.r.t. ¢)
bounded. The latter property holds for the Richardson aadl#tmped Jacobi method.

We will analyze the convergence of the two-grid and multigmethod using the
energy scalar product. For matricBs C € R™*"™ that are symmetric W.r.t{-,-) 4
we use the notatioBB <4 C iff (Bx,x)4 < (Cx,x)4 for all x € R™. Note that
B € R™*™ is symmetric w.r.t. (-,-) 4 iff (A,B)T = A,B holds. We also note the
following elementary property for symmetric matridds C € R™¢*"¢:

B<C < BA,<4CA,. (69)

We now turn to the two-grid method. For the coarse grid cdivacwe introduce the
notationQ, :=1 — pgA;flrgAg. For symmetry reasons we only consider= v, = %y
with v > 0 even. The iteration matrix of the two-grid method is given by

1, 1,
Crge = Crau(v) =S; QiS; .

Due the symmetric positive definite setting we have the ¥alhg fundamental property:
Theorem 7.27 The matrixQ; is an orthogonal projection W.r.t-, -) 4.
Proof: Follows from

Q;=Q; and (A,Q/)" =A.Q,.

As an direct consequence we have
0<4Qe<al (70)

The next lemma gives another characterization of the maidifigoroximation property:
Lemma 7.28 The property(68)is equivalent to

0<aQe<aCaM;'A, for £=1,2,... (71)
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Proof: Using (69) we get
IM; (A7 — peA; Y r)M7 2 < Oy forall ¢
& —Cul < M7 (A7 = p/ A7 r)M? < Cal forall ¢
& —OaM; ' <A —pA e < CaM !t forall £
s — CN'AleAg <4 Qr<y OAMZIAZ for all 2.

In combination with (70) this proves the result. [ ]

We now present a convergence result for the two-grid method:

Theorem 7.29 Assume that67a)and(68) hold. Then we have

C < 1— ~—1,\v
[Cra.e(w)]a < max, y(1=Chy)

(1-Cyhy if v<Ca—1 (72)

Proof: DefineX, := M, ' A,. This matrix is symmetric w.r.t. the energy scalar product
and from (67a) it follows that

0<aXp<ylI (73)

holds. From lemma 7.28 we obtain<, Q, <1 C4X,. Note that due to this, (73) and
the fact thalQ, is an A-orthogonal projection which is not identically zeve get

Cy>1. (74)
Using (70) we get
0<4Qe<aaCaX,+(1—a)I forall ac0,1]. (75)
Hence, usin@g, = I — X, we have
0<4Crge(v)<a (- XZ)%V(@OAXZ +(1—a)I)(I- X,)z"
forall a € [0,1], and thus

C < mi Caz+(1— 1—2).
[ Tc,z(V)I\Afaren[}J{lmrg[gﬁ](a ar+(1—a))(1—2)

A minimax result (cf. Sioff) implies that in the previous expression the min and max
operations can be interchanged. A simple computationyield

i Caz+(1—a))(1—2)
Joa win (aCaz+ (1= )1 —2)

= max{ max Caz(l —2z), max (1—z)" }
z€[0,C5 "] ze[C 1)

= max Caz(l—2)" = max y(1—-C v,
z€[0,C5 ] az( ) y€(0,1] y( Ay
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This proves the inequality in (72). An elementary compotashows that the equality in
(72) holds. [ ]

We now show that the approach used in the convergence anhalysihe two-grid
method in theorem 7.29 can also be used for the multigrid atkth

We start with an elementary result concerning a fixed poaratton that will be used in
theorem 7.31.

Lemma 7.30 For given constants > 1, v > 1 defineg : [0,1) — R by

N B R [ L R

Forr € N, 7 > 1, define the sequencé.o = 0, & 41 = g(§7;) for i > 1. The
following holds:

*

& — g(&) is continuous and increasing de, 1).

*

Forc=Cy, ¢(0) coincides with the upper bound {i2).

9(§) =€ iff 6= ——.

The sequencé(; ;);>o is monotonically increasing, ang’ := lim &, ; < 1.
11— 00

*

*

*

((¢5)7,€%) is the first intersection point of the graphsgi) and .

c
= >66>...>8 = .
=262 28 =g0)

*

Proof: Elementary calculus. ]

As an illustration for two pairgc, ) we show the graph of the functiop in Fig. 9.

0 01 0.2 03 0.4 05 06 07 0.8 0 0.1 0.2 03 0.4 05 06 0.7

Figure 9. Functiory(&) for v = 2, ¢ = 4 (left) andv = 4, ¢ = 4 (right).
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Theorem 7.31 We takes; = v» = v and consider the multigrid algorithm with iterati
matrix Carae = Cue,e(v, 7) asin(49). Assume thafe7a)and(68) hold. Forc = Cl,
v >2andr asin(49)let&: < —< be the fixed point defined in lemma 7.30. Then

c+v
A< &l

[Crma.el
holds.

Proof: From (49) we have

1, - _ 1,

Crce=8;"(I-p/(I- CMG,E—l)AZ—lerAZ)SZz
1, 1, T _
= SZQ (Qi + R(’)S; , Ry:= pECMijlAg,lerAZ-
The matricesS, and Q, are symmetric w.r.t.(-,-) 4. If Cage—1 IS Symmetric w.r.t.
(-,")a,_, then from
_ - _ T
(AR = [(AepeAg_ll)(Ae—1CMG,g,l)(Ag_llreAe)] = ARy

it follows thatR, is symmetric w.r.t.(-, -) 4, too. By induction we conclude that for &ll
the matriceR, andC ;¢ ¢ are symmetric w.r.t(-, -) 4. Note that

0<4 Clrgu—1 © 0= ClarAll, & 0<pClyg 1At & 0<a Ry
holds. Thus, by induction and usifg< 4 Q, we get
0<4Qr+Ry, 0<4Cpuyge foralll (77)

For¢ > 0 defineé; := ||Cumaella.- Henced <4 Crae <4 &1 holds. For arbitrary
x € R™ we have

(Ryx,x)a = <CE/1G,471AZ}1I“€A€X’ AZE1I‘€A€X>A@71
<& (A A A e A, = €7 (%, (T— Qo)x)a
and thus
Ry <a§_1(I-Qu) (78)
holds. DefineX, := M, ' A,. Using (75), (77) and (78) we get
0<aQr+Rp<a(1-6_1)Qr+& 41
<a (1= ) (aCaXe+ (1 —a)I) +&_,1 forall ae0,1].
Hence, for alla € [0, 1] we have
0<a Crmae <a (I—X)2"[(1 - € 1)(aCaXe+ (1 — )I) + &I (I - X,)=".
This yields

o i gy [0 -G eCar =) e

As in the proof of theorem 7.29 we can interchange the min aa® operations in the
previous expression. A simple computation shows tha fer[0, 1] we have

mr?[%,}i O[ren[lor}l] [(1=&)(aCaz+1—0a)+£](1—2)

=max{ max ((1-&Caz+&)(1-2)", max (1-2z)"}=g(E
z€[0,C4 "] z€[C;1,1]

37



whereg(¢) is the function defined in lemma 7.30 with= C 4. Thusé, satisfiesty = 0
and¢§, < g(&]_,) for ¢ > 1. Application of the results in lemma 7.30 completes the proo
[ |

The bound¢? for the multigrid contraction number in theorem 7.31 desezaif 7
increases. Moreover, far — oo the bound converges to the bound for the two-grid
contraction number in theorem 7.29.

Corollary 7.32 ConsiderA,, p¢, r, as defined in(26), (29),(30). Assume that the vari-
ational problem(23) is such thatb = 0 and that the usual condition22) are satisfied.
Moreover, the problem is assumed to Hé-regular. In the multigrid method we use one
of the smoother¢66). Then the assumptior(§7a) and (68) are satisfied and thus for
v1 = vy > 1 the multigrid V-cycle has a contraction number (w.flt: || 4) smaller than
one independent ¢t O

8 Convergence analysis for Stokes problems

The multigrid method for the Stokes problem can be analyZedgathe same lines as
in section 7.4, i.e., based on a smoothing and approximatioperty. For the Stokes
problem an analysis which proves convergence of the V-cigcheot known. In other
words, results as presented for scalar elliptic problensgation 7.5 are not known for the
Stokes equation.

We briefly outline the convergence results available fortigrit applied to the Stokes
problem. For a detailed treatment we refer to the literatfoe example to Verfirt#,
Larin?®, Zulehnet!. As in section 7 we assume that the family of triangulati¢@g, } is
quasi-uniform and that,_ /h, is uniformly bounded w.r.tZ. We assume{ 2-regularity
of the Stokes problem, i.e., for the solutiof p) of (38) we have

Il gz + [Pl e < cell fllze
with a constant independent of € L2(92)<. The finite element spacag;, Q, should
have the approximation property

inf [|7 — 7 inf ||p— qll> < che(|
nt (17l + it = glles < che(lle + [l

forall @ € (H2(2) N HL(Q))4, p € HY(Q) N L3(Q). This holds, for example, for the
Hood-Taylor pair of finite element spaces. L&t be the Stokes stiffness matrix as in (40)
andS;, the iteration matrix of the smoother. The prolongati@gnis as in (41). For the
restrictionR, we take the adjoint of the prolongation. The iteration nxatfithe two-grid
method withv = 14, pre-smoothing and, = 0 post-smoothing iterations is given by

My = (I — PgAZlegAg)Sg.
For the analysis we have to introduce a suitable scaled daatinorm defined by

u ? u 2 I 0
4 4 . n

A with Ay := ‘ . 79
’(pz) N ‘*(pz) ¢ (0 thm[) (79)

Furthermore we introduce the scaled matrices

o _a1ga1_ [ A hi'Bf
Ag = AE AZAZ = (hleg 0

= el + B2 pe = \

> . Soi=MSeA
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Using these definitions we obtain
[Melln = [[Ae( A" = PeAZ Re)AeAy " AcSEAT |
< N Ae(AL Y = PrAY Re) A [ AeSE -
In Larin?® the approximation property
1Ae(AT" = PeAY Re)Ay|| < chi (80)

is proved. In that paper it is also shown (using an analysisgathe same lines as in sec-
tion 7.3) that for the Braess-Sarazin method in which théesysn (45) is solved exactly,
we have a smoothing property
. ch;?
V< ——L  f > 2. 81

HAESZH = 6(V—2)+1 orv=> ( )
In Zulehnet! a smoothing property for the Braess-Sarazin method witmexact(but
sufficiently accurate) inner solve for the system (45) isvprb

-2
ch,
v _

I A:SY || < for v > 2. (82)

Combining the approximation property in (80) with the sntoog property (81) or (82)
we obtain a bound for the contraction number of the two-dedhition matrix:

IMelln < 42— for v>2
v—1

with a constant 4 independent of andv. Thus we have a two-grid convergence with a
rate independent of if the number of smoothing iterationsis sufficiently high. Using
an analysis as in section 7.4 one can derive a convergendefogghe multigrid W-cycle
method.

A smoothing property of the form (81), (82) for the Vanka siih@&s isnot known in
the literature. A theoretical analysis which proves cogeace of the multigrid method
with a Vanka smoother for the Stokes equations is not availab
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