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We treat multigrid methods for the efficient iterative solution of discretized elliptic boundary
value problems. Two model problems are the Poisson equationand the Stokes problem. For
the discretization we use standard finite element spaces. After discretization one obtains a large
sparse linear system of equations. We explain multigrid methods for the solution of these linear
systems. The basic concepts underlying multigrid solvers are discussed. Results of numerical
experiments are presented which demonstrate the efficiencyof these method. Theoretical con-
vergence analyses are given that prove the typical grid independent convergence of multigrid
methods.

1 Introduction

In these lecture notes we treat multigrid methods (MGM) for solving discrete elliptic
boundary value problems. We assume that the reader is familiar with discretization meth-
ods for such partial differential equations. In our presentation we apply on finite element
discretizations. We consider the following two model problems. Firstly, the Poisson equa-
tion

−∆u = f in Ω ⊂ R
d,

u = 0 on ∂Ω,
(1)

with f a (sufficiently smooth) source term andd = 2 or3. The unknown is a scalar function
u (for example, a temperature distribution) onΩ. We assume that the domainΩ is open,
bounded and connected. The second problem consists of the Stokes equations

−∆u + ∇p = f in Ω ⊂ R
d,

div u = 0 in Ω,

u = 0 on ∂Ω.

(2)

The unknowns are the velocity vector functionu = (u1, . . . , ud) and the scalar pressure
functionp. To make this problem well-posed one needs an additional condition onp, for
example,

∫

Ω
p dx = 0. Both problems belong to the class ofelliptic boundary value prob-

lems. Discretization of such partial differential equations using a finite difference, finite
volume or finite element technique results in alarge sparse linear system of equations.
In the past three decades the development ofefficient iterative solversfor such systems of
equations has been an important research topic in numericalanalysis and computational en-
gineering. Nowadays it is recognized that multigrid iterative solvers are highly efficient for
this type of problems and often have “optimal” complexity. There is an extensive literature
on this subject. For a thorough treatment of multigrid methods we refer to the monograph
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of Hackbusch1. For an introduction to multigrid methods requiring less knowledge of
mathematics, we refer to Wesseling2, Briggs3, Trottenberg et al.4. A theoretical analysis of
multigrid methods is presented in Bramble5. In these lecture notes we restrict ourselves to
an introduction to the multigrid concept. We discuss several multigrid methods, heuristic
concepts and theoretical analyses concerning convergenceproperties.

In the field of iterative solvers for discretized partial differential equations one can
distinguish several classes of methods, namelybasic iterative methods(eg., Jacobi, Gauss-
Seidel),Krylov subspace methods(eg., CG, GMRES, BiCGSTAB) andmultigrid solvers.
For solving a linear systemAx = b which results from the discretization of an elliptic
boundary value problem the first two classes need as input (only) the matrixA and the
righthand sideb. The fact that these data correspond to a certain underlyingcontinuous
boundary value problem isnotused in the iterative method. However, the relation between
the data (A andb) and the underlying problem can be useful for the development of a fast
iterative solver. Due to the fact thatA results from a discretization procedure we know,
for example, that there are other matrices which, in a certain natural sense, are similar to
the matrixA. These matrices result from the discretization of the underlying continuous
boundary value problem on other grids than the grid corresponding to the given discrete
problemAx = b. The use of discretizations of the given continuous problem on sev-
eral grids with different mesh sizes plays an important rolein the multigrid concept. Due
to the fact that in multigrid methods discrete problems on different grids are needed, the
implementation of multigrid methods is in general (much) more involved than the imple-
mentation of, for example, Krylov subspace methods. We alsonote that for multigrid
methods it is relatively hard to develop “black box” solverswhich are applicable to a wide
class of problems. In recent years so-calledalgebraic multigrid methodshave become
quite popular. In these methods one tries to reduce the amount of geometric information
(eg., different grids) that is needed in the solver, thus making the multigrid method more
algebraic. We will not discuss such algebraic MGM in these lecture notes.

We briefly outline the contents. In section 2 we explain the main ideas of the MGM us-
ing a simple one dimensional problem. In section 3 we introduce multigrid methods for
discretizations ofscalar elliptic boundary value problems like the Poisson equation(1).
In section 4 we present results of a numerical experiment with a standard multigrid solver
applied to a discrete Poisson equation in 3D. In section 5 we introduce the main ideas for
a multigrid method applied to a (generalized) Stokes problem. In section 6 we present
results of a numerical experiments with a Stokes equation. In the final part of these notes,
the sections 7 and 8, we present convergence analyses of these multigrid methods for the
two classes of elliptic boundary value problems.

2 Multigrid for a one-dimensional model problem

In this section we consider a simple model situation to show the basic principle behind the
multigrid approach. We consider the two-point boundary value model problem

{

−u′′(x) = f(x), x ∈ Ω := (0, 1).
u(0) = u(1) = 0 .

(3)

We will use a finite element method for the discretization of this problem. This, however, is
not essential: other discretization methods (finite differences, finite volumes) result in dis-
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crete problems that are very similar. The corresponding multigrid methods have properties
very similar to those in the case of a finite element discretization.

For the finite element discretization one needs a variational formulation of the boundary
value problem in a suitable function space. We do not treat this issue here, but refer to the
literature for information on this subject, eg. Hackbusch6, Großmann7. For the two-point
boundary value problem given above the appropriate function space is the Sobolov space
H1

0 (Ω) := { v ∈ L2(Ω) | v′ ∈ L2(Ω), v(0) = v(1) = 0 }, wherev′ denotes aweak
derivative ofv. The variational formulation of the problem (3) is: findu ∈ H1

0 (Ω) such
that

∫ 1

0

u′v′ dx =

∫ 1

0

fv dx for all v ∈ H1
0 (Ω).

For the discretization we introduce a sequence of nested uniform grids. Forℓ = 0, 1, 2, . . . ,
we define

hℓ = 2−ℓ−1 (“mesh size”), (4)

nℓ = h−1
ℓ − 1 (“number of interior grid points”), (5)

ξℓ,i = ihℓ , i = 0, 1, ..., nℓ + 1 (“grid points”) , (6)

Ωint
ℓ = {ξℓ,i | 1 ≤ i ≤ nℓ} (“interior grid”) , (7)

Thℓ
= ∪{ [ξℓ,i, ξℓ,i+1] | 0 ≤ i ≤ nℓ } (“triangulation”) . (8)

The space oflinear finite elementscorresponding to the triangulationThℓ
is given by

Vℓ := { v ∈ C(Ω) | v|[ξℓ,i,ξℓ,i+1] ∈ P1 , i = 0, . . . , nℓ, v(0) = v(1) = 0 }.
The standard nodal basis in this space is denoted by(φi)1≤i≤nℓ

. These functions satisfy
φi(ξℓ,i) = 1, φi(ξℓ,j) = 0 for all j 6= i. This basis induces an isomorphism

Pℓ : R
nℓ → Vℓ , Pℓx =

nℓ
∑

i=1

xiφi. (9)

The Galerkin discretization in the spaceVℓ is as follows: determineuℓ ∈ Vℓ such that
∫ 1

0

u′
ℓv

′
ℓ dx =

∫ 1

0

fvℓ dx for all vℓ ∈ Vℓ.

Using the representationuℓ =
∑nℓ

j=1 xjφj this yields a linear system

Aℓxℓ = bℓ , (Aℓ)ij =

∫ 1

0

φ′
iφ

′
j dx, (bℓ)i =

∫ 1

0

fφi dx. (10)

The solution of this discrete problem is denoted byx∗
ℓ . The solution of the Galerkin dis-

cretization in the function spaceVℓ is given byuℓ = Pℓx
∗
ℓ . A simple computation shows

that

Aℓ = h−1
ℓ tridiag(−1, 2,−1) ∈ R

nℓ×nℓ .

Note that, apart from a scaling factor, the same matrix results from a standard discretization
with finite differences of the problem (3).
Clearly, in practice one should not solve the problem in (10)using an iterative method (a
Cholesky factorizationA = LLT is stable and efficient). However, we do apply a basic
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iterative method here, to illustrate a certain “smoothing”property which plays an important
role in multigrid methods. We consider the damped Jacobi method

xk+1
ℓ = xk

ℓ − 1

2
ωhℓ(Aℓx

k
ℓ − bℓ) with ω ∈ (0, 1] . (11)

The iteration matrix of this method, which describes the error propagationek+1
ℓ = Cℓe

k
ℓ ,

ek
ℓ := x∗

ℓ − xk
ℓ , is given by

Cℓ = Cℓ(ω) = I− 1

2
ωhℓAℓ .

In this simple model problem an orthogonal eigenvector basis ofAℓ, and thus ofCℓ, too,
is known. This basis is closely related to the “Fourier modes”:

wν(x) = sin(νπx), x ∈ [0, 1], ν = 1, 2, ... .

Note thatwν satisfies the boundary conditions in (3) and that−(wν)′′(x) = (νπ)2wν(x)
holds, and thuswν is an eigenfunction of the problem in (3). We introduce vectors zν

ℓ ∈
R

nℓ , 1 ≤ ν ≤ nℓ, which correspond to the Fourier modeswν restricted to the interior grid
Ωint

ℓ :

zν
ℓ :=

(

wν(ξℓ,1), w
ν(ξℓ,2), ..., w

ν (ξℓ,nℓ
)
)T

.

These vectors form an orthogonal basis ofR
nℓ . Forℓ = 2 we give an illustration in Fig. 1.
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Figure 1. Two discrete Fourier modes.

To a vectorzν
ℓ there corresponds a frequencyν. Forν < 1

2nℓ the vectorzν
ℓ , or the corre-

sponding finite element functionPℓz
ν
ℓ , is called a “low frequency mode”, and forν ≥ 1

2nℓ

this vector [finite element function] is called a “high frequency mode”. The vectorszν
ℓ are

eigenvectors of the matrixAℓ:

Aℓz
ν
ℓ =

4

hℓ

sin2(ν
π

2
hℓ)z

ν
ℓ ,
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and thus we have

Cℓz
ν
ℓ = (1 − 2ω sin2(ν

π

2
hℓ))z

ν
ℓ . (12)

From this we obtain

‖Cℓ‖2 = max1≤ν≤nℓ
|1 − 2ω sin2(ν π

2 hℓ)|

= 1 − 2ω sin2(π
2 hℓ) = 1 − 1

2ωπ2h2
ℓ + O(h4

ℓ) .
(13)

From this we see that the damped Jacobi method is convergent (‖Cℓ‖2 < 1), but that the
rate of convergence will be very low forhℓ small.

Note that the eigenvalues and the eigenvectors ofCℓ are functions ofνhℓ ∈ [0, 1]:

λℓ,ν := 1 − 2ω sin2(ν
π

2
hℓ) =: gω(νhℓ) , with (14a)

gω(y) = 1 − 2ω sin2(
π

2
y), y ∈ [0, 1]. (14b)

Hence, the size of the eigenvaluesλℓ,ν can directly be obtained from the graph of the
functiongω. In Fig. 2 we show the graph of the functiongω for a few values ofω.

-1

1

ω = 1
3

ω = 1
2

ω = 2
3

ω = 1

Figure 2. Graph ofgω.

From the graphs in this figure we conclude that for a suitable choice of ω we have
|gω(y)| ≪ 1 if y ∈ [ 12 , 1]. We chooseω = 2

3 (then |gω(1
2 )| = |gω(1)| holds). Then

we have|g 2
3
(y)| ≤ 1

3 for y ∈ [ 12 , 1]. Using this and the result in (14a) we obtain

|λℓ,ν | ≤
1

3
for ν ≥ 1

2
nℓ .

Hence:

the high frequency modes are strongly damped by the iteration matrixCℓ.
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From Fig. 2 it is also clear that the low rate of convergence ofthe damped Jacobi
method is caused by the low frequency modes(νhℓ ≪ 1).

Summarizing, we draw the conclusion that in this example thedamped Jacobi method
will “smooth” the error. This elementary observation is of great importance for the
two-grid method introduced below. In the setting of multigrid methods the damped Jacobi
method is called a “smoother”. The smoothing property of damped Jacobi is illustrated in
Fig. 3. It is important to note that the discussion above concerning smoothing is related to

0 1

Graph of a starting error.

0 1

Graph of the error after one damped Jacobi
iteration (ω = 2

3 ).

Figure 3. Smoothing property of damped Jacobi.

the iteration matrixCℓ, which means that theerror will be made smoother by the damped
Jacobi method, but not (necessarily) the new iterandxk+1.

In multigrid methods we have to transform information from one grid to another.
For that purpose we introduce so-calledprolongationsandrestrictions. In a setting with
nested finite element spaces these operators can be defined ina very natural way. Due to
the nestedness the identity operator

Iℓ : Vℓ−1,→ Vℓ, Iℓv = v,

is well-defined. This identity operator represents linear interpolation as is illustrated for
ℓ = 2 in Fig. 4. The matrix representation of this interpolation operator is given by

pℓ : R
nℓ−1 → R

nℓ , pℓ := P−1
ℓ Pℓ−1. (15)

A simple computation yields

pℓ =































1
2 ∅
1
1
2

1
2
1
1
2

. . .
1
2
1

∅ 1
2































nℓ×nℓ−1

. (16)
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Figure 4. Canonical prolongation.

We can also restrict a given grid functionvℓ onΩint
ℓ to a grid function onΩint

ℓ−1. An obvious
approach is to use a restrictionr based on simple injection:

(rinjvℓ)(ξ) = vℓ(ξ) if ξ ∈ Ωint
ℓ−1 .

When used in a multigrid method then often this restriction based on injection is not sat-
isfactory (cf. Hackbusch1, section 3.5). A better method is obtained if a natural Galerkin
property is satisfied. It can easily be verified (cf. also lemma 3.2) that withAℓ, Aℓ−1 and
pℓ as defined in (10), (15) we have

rℓAℓpℓ = Aℓ−1 iff rℓ = pT
ℓ . (17)

Thus the natural Galerkin conditionrℓAℓpℓ = Aℓ−1 implies the choice

rℓ = pT
ℓ (18)

for the restriction operator.

The two-grid method is based on the idea that a smooth error, which resultsfrom
the application of one or a few damped Jacobi iterations, canbe approximated fairly well
on acoarsergrid. We now introduce this two-grid method.

ConsiderAℓx
∗
ℓ = bℓ and letxℓ be the result of one or a few damped Jacobi iterations

applied to a given starting vectorx0
ℓ . For the erroreℓ := x∗

ℓ − xℓ we have

Aℓeℓ = bℓ − Aℓxℓ =: dℓ ( “residual” or “defect”). (19)

Based on the assumption thateℓ is smooth it seems reasonable to make the approximation
eℓ ≈ pℓẽℓ−1 with an appropriate vector (grid function)ẽℓ−1 ∈ R

nℓ−1 . To determine the
vectorẽℓ−1 we use the equation (19) and the Galerkin property (17). Thisresults in the
equation

Aℓ−1ẽℓ−1 = rℓdℓ

for the vector̃eℓ−1. Note thatx∗ = xℓ + eℓ ≈ xℓ + pℓẽℓ−1. Thus for the new iterand
we takexℓ := xℓ + pℓẽℓ−1. In a more compact formulation this two-grid method is as
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follows:






















































procedure TGMℓ(xℓ,bℓ)
if ℓ = 0 then x0 := A−1

0 b0 else
begin

xℓ := Jν
ℓ (xℓ,bℓ) (∗ ν smoothing it., e.g. damped Jacobi∗)

dℓ−1 := rℓ(bℓ − Aℓxℓ) (∗ restriction of defect∗)
ẽℓ−1 := A−1

ℓ−1dℓ−1 (∗ solve coarse grid problem∗)
xℓ := xℓ + pℓẽℓ−1 (∗ add correction∗)
TGMℓ := xℓ

end;

(20)

Often, after the coarse grid correctionxℓ := xℓ + pℓẽℓ−1, one or a few smoothing
iterations are applied. Smoothing before/after the coarsegrid correction is called
pre/post-smoothing. Besides the smoothing property a second property which is of great
importance for a multigrid method is the following:

The coarse grid systemAℓ−1ẽℓ−1 = dℓ−1 is of the same form as the systemAℓxℓ = bℓ.

Thus for solving the problemAℓ−1ẽℓ−1 = dℓ−1 approximatelywe can apply the two-grid
algorithm in (20) recursively. This results in the following multigrid methodfor solving
Aℓx

∗
ℓ = bℓ:































































procedure MGMℓ(xℓ,bℓ)
if ℓ = 0 then x0 := A−1

0 b0 else
begin

xℓ := Jν1

ℓ (xℓ,bℓ) (∗ presmoothing∗)
dℓ−1 := rℓ(bℓ − Aℓxℓ)

e0
ℓ−1 := 0; for i = 1 to τ do ei

ℓ−1 := MGMℓ−1(e
i−1
ℓ−1,dℓ−1);

xℓ := xℓ + pℓe
τ
ℓ−1

xℓ := Jν2

ℓ (xℓ,bℓ) (∗ postsmoothing∗)
MGMℓ := xℓ

end;

(21)

If one wants to solve the system on a given finest grid, say withlevel numberℓ, i.e.Aℓx
∗
ℓ

=

bℓ, then we apply some iterations ofMGMℓ(xℓ,bℓ).
Based on efficiency considerations (cf. section 3) we usually takeτ = 1 (“V -cycle”)

or τ = 2 (“W -cycle”) in the recursive call in (21). For the caseℓ = 3 the structure of one
multigrid iteration withτ ∈ {1, 2} is illustrated in Fig. 5.

3 Multigrid for scalar elliptic problems

In this section we introduce multigrid methods which can be used for solving discretized
scalar elliptic boundary value problems. A model example from this problem class is the
Poisson equation in (1). Opposite to the CG method, the applicability of multigrid methods
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Figure 5. Structure of one multigrid iteration

is not restricted to symmetric problems. Multigrid methodscan also be used for solving
problems which are nonsymmetric (i.e., convection terms are present in the equation). If
the problem is convection-dominated (the corresponding stiffness matrix then is strongly
nonsymmetic) one usually has to modify the standard multigrid approach in the sense that
special smoothers and/or special prolongations and restrictions should be used. We do not
discuss this issue here.

We will introduce the two-grid and multigrid method by generalizing the approach of
section 2 to the higher (i.e., two and three) dimensional case. We consider a scalar elliptic
boundary value problems of the form

−∇ · (a∇u) + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω.

This problem is considered in a domainΩ ⊂ R
d, d = 2 or 3. We assume that the functions

a, c and the vector functionb are sufficiently smooth onΩ and

a(x) ≥ a0 > 0, c(x) − 1

2
div b(x) ≥ 0 for all x ∈ Ω̄. (22)

These assumptions guarantee that the problem is elliptic and well-posed. In view of
the finite element discretization we introduce the variational formulation of this prob-
lem. For this we need the Sobolov spaceH1

0 (Ω) := { v ∈ L2(Ω) | ∂v
∂xi

∈ L2(Ω), i =

1, . . . , d, v|∂Ω = 0 }. The partial derivative∂v
∂xi

has to be interpreted in a suitable weak
sense. The variational formulation is as follows:

{

find u ∈ H1
0 (Ω) such that

k(u, v) = f(v) for all v ∈ H1
0 (Ω),

(23)

with a bilinear form and righthand side

k(u, v) =

∫

Ω

a∇uT∇v + b · ∇uv + cuv dx. , f(v) =

∫

Ω

fv dx.

If (22) holds then this bilinear form iscontinuous and ellipticon H1
0 (Ω), i.e. there exist

constantsγ > 0 andc such that

k(u, u) ≥ γ|u|21, k(u, v) ≤ c|u|1|v|1 for all u, v ∈ H1
0 (Ω).

9



Here we use|u|1 :=
( ∫

Ω
∇uT∇u dx

)
1
2 , which is a norm onH1

0 (Ω). For the discretization
of this problem we use simplicial finite elements. Let{Th} be a regular family of trian-
gulations ofΩ consisting ofd-simplices andVh a corresponding finite element space. For
simplicity we only considerlinear finite elements:

Vh = { v ∈ C(Ω) | v|T ∈ P1 for all T ∈ Th }.
The presentation and implementation of the multigrid method is greatly simplified if we
assume a given sequence ofnestedfinite element spaces.
Assumption 3.1 In the remainder we always assume that we have a sequenceVℓ, ℓ =
0, 1, . . ., of simplicial finite element spaces which are nested:

Vℓ ⊂ Vℓ+1 for all ℓ. (24)

We note that this assumption is not necessary for a succesfulapplication of multigrid meth-
ods. For a treatment of multigrid methods in case of non-nestedness we refer to Trottenberg
et al.4. The construction of a hierarchy of triangulations such that the corresponding finite
element spaces are nested is discussed in Bey8.

In Vℓ we use the standard nodal basis(φi)1≤i≤nℓ
. This basis induces an isomorphism

Pℓ : R
nℓ → Vℓ , Pℓx =

nℓ
∑

i=1

xiφi.

The Galerkin discretization: Finduℓ ∈ Vℓ such that

k(uℓ, vℓ) = f(vℓ) for all vℓ ∈ Vℓ (25)

can be represented as a linear system

Aℓxℓ = bℓ , with (Aℓ)ij = k(φj , φi), (bℓ)i = f(φi), 1 ≤ i, j ≤ nℓ. (26)

The solutionx∗
ℓ of this linear system yields the Galerkin finite element solutionuℓ = Pℓx

∗
ℓ .

Along the same lines as in the one-dimensional case we introduce a multigrid method for
solving this system of equations on an arbitrary levelℓ ≥ 0.
For thesmootherwe use a basic iterative method such as, for example, aRichardson
method

xk+1 = xk − ωℓ(Aℓx
k − b),

adamped Jacobi method

xk+1 = xk − ωD−1
ℓ (Aℓx

k − b), (27)

or aGauss-Seidel method

xk+1 = xk − (Dℓ − Lℓ)
−1(Aℓx

k − b), (28)

whereDℓ −Lℓ is the lower triangular part of the matrixAℓ. For such a method we use the
general notation

xk+1 = Sℓ(x
k,bℓ) = xk − M−1

ℓ (Aℓx
k − b) , k = 0, 1, . . .

The corresponding iteration matrix is denoted by

Sℓ = I− M−1
ℓ Aℓ.
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For theprolongationwe use the matrix representation of the identityIℓ : Vℓ−1 → Vℓ, i.e.,

pℓ := P−1
ℓ Pℓ−1. (29)

The choice of the restriction is based on the following elementary lemma:
Lemma 3.2 LetAℓ, ℓ ≥ 0, be the stiffness matrix defined in(26)andpℓ as in(29). Then
for rℓ : R

nℓ → R
nℓ−1 we have:

rℓAℓpℓ = Aℓ−1 if and only if rℓ = pT
ℓ .

Proof: For the stiffness matrix matrix the identity

〈Aℓx,y〉 = k(Pℓx, Pℓy) for all x,y ∈ R
nℓ

holds. From this we get

rℓAℓpℓ = Aℓ−1

⇔ 〈Aℓpℓx, rT
ℓ y〉 = 〈Aℓ−1x,y〉 for all x,y ∈ R

nℓ−1

⇔ k(Pℓ−1x, Pℓr
T
ℓ y) = k(Pℓ−1x, Pℓ−1y) for all x,y ∈ R

nℓ−1 .

Using the ellipticity ofk(·, ·) it now follows that

rℓAℓpℓ = Aℓ−1

⇔ Pℓr
T
ℓ y = Pℓ−1y for all y ∈ R

nℓ−1

⇔ rT
ℓ y = P−1

ℓ Pℓ−1y = pℓy for all y ∈ R
nℓ−1

⇔ rT
ℓ = pℓ.

Thus the claim is proved.

This motivates that for therestrictionwe take:

rℓ := pT
ℓ . (30)

Using these components we can define a multigrid method with exactly the same structure
as in (21):

procedure MGMℓ(xℓ,bℓ)
if ℓ = 0 then x0 := A−1

0 b0 else
begin

xℓ := Sν1

ℓ (xℓ,bℓ) (∗ presmoothing∗)
dℓ−1 := rℓ(bℓ − Aℓxℓ)

e0
ℓ−1 := 0; for i = 1 to τ do ei

ℓ−1 := MGMℓ−1(e
i−1
ℓ−1,dℓ−1);

xℓ := xℓ + pℓe
τ
ℓ−1

xℓ := Sν2

ℓ (xℓ,bℓ) (∗ postsmoothing∗)
MGMℓ := xℓ

end;

(31)

We briefly comment on some important issues related to this multigrid method.
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Smoothers
For many problems basic iterative methods provide good smoothers. In particular the
Gauss-Seidel method is often a very effective smoother. Other smoothers used in practice
are the damped Jacobi method and the ILU method.

Prolongation and restriction
If instead of a discretization with nested finite element spaces one uses a finite difference or
a finite volume method then one can not use the approach in (29)to define a prolongation.
However, for these cases other canonical constructions forthe prolongation operator exist.
We refer to Hackbusch1, Trottenberg et al.4 or Wesseling2 for a treatment of this topic.
A general technique for the construction of a prolongation operator in case of nonnested
finite element spaces is given in Braess9.

Arithmetic costs per iteration
We discuss the arithmetic costs of oneMGMℓ iteration as defined in (31). For this we
introduce a unit of arithmetic work on levelℓ:

WUℓ := # flops needed forAℓxℓ − bℓ computation. (32)

We assume:

WUℓ−1 . g WUℓ with g < 1 independent ofℓ. (33)

Note that ifTℓ is constructed through a uniform global grid refinement ofTℓ−1 (for n = 2:
subdivision of each triangleT ∈ Tℓ−1 into four smaller triangles by connecting the mid-
points of the edges) then (33) holds withg = (1

2 )d. Furthermore we make the follow-
ing assumptions concerning the arithmetic costs of each of the substeps in the procedure
MGMℓ:

xℓ := Sℓ(xℓ,bℓ) : costs . WUℓ

dℓ−1 := rℓ(bℓ − Aℓxℓ)
}

total costs. 2 WUℓ
xℓ := xℓ + pℓe

τ
ℓ−1

For the amount of work in one multigrid V-cycle (τ = 1) on levelℓ, which is denoted by
V MGℓ, we get usingν := ν1 + ν2:

V MGℓ . νWU ℓ + 2WU ℓ + V MGℓ−1 = (ν + 2)WU ℓ + V MGℓ−1

. (ν + 2)
(

WU ℓ + WU ℓ−1 + . . . + WU1

)

+ V MG0

. (ν + 2)
(

1 + g + . . . + gℓ−1
)

WUℓ + V MG0

.
ν + 2

1 − g
WU ℓ.

(34)

In the last inequality we assumed that the costs for computingx0 = A−1
0 b0 (i.e.,V MG0)

are negligible compared toWU ℓ. The result in (34) shows that the arithmetic costs for one
V-cycle are proportional (ifℓ → ∞) to the costs of a residual computation. For example,
for g = 1

8 (uniform refinement in 3D) the arithmetic costs of a V-cycle with ν1 = ν2 = 1
on levelℓ are comparable to4 1

2 times the costs of a residual computation on levelℓ.

12



For the W-cycle (τ = 2) the arithmetic costs on levelℓ are denoted byWMGℓ. We have:

WMGℓ . νWU ℓ + 2WUℓ + 2WMGℓ−1 = (ν + 2)WUℓ + 2WMGℓ−1

. (ν + 2)
(

WUℓ + 2WUℓ−1 + 22WU ℓ−2 + . . . + 2ℓ−1WU1

)

+ WMG0

. (ν + 2)
(

1 + 2g + (2g)2 + . . . + (2g)ℓ−1
)

WU ℓ + WMG0.

From this we see that to obtain a bound proportional toWU ℓ we have to assume

g <
1

2
.

Under this assumption we get for the W-cycle

WMGℓ .
ν + 2

1 − 2g
WUℓ

(again we neglectedWMG0). Similar bounds can be obtained forτ ≥ 3, providedτg < 1
holds.

3.1 Nested Iteration

We consider a sequence of discretizations of a given boundary value problem, as for ex-
ample in (26):

Aℓxℓ = bℓ, ℓ = 0, 1, 2, . . . .

We assume that for a certainℓ = ℓ we want to compute the solutionx∗
ℓ

of the problem
Aℓxℓ = bℓ using an iterative method (not necessarily a multigrid method). In the nested
iteration method we use the systems on coarse grids to obtainagood starting vectorx0

ℓ
for

this iterative method with relatively low computational costs. The nested iteration method
for the computation of this starting vectorx0

ℓ
is as follows







































































































compute the solutionx∗
0 of A0x0 = b0

x0
1 := p̃1x

∗
0 (prolongation ofx∗

0)

xk
1 := result ofk iterations of an iterative method

applied toA1x1 = b1 with starting vectorx0
1

x0
2 := p̃2x

k
1 ( prolongation ofxk

1)

xk
2 := result ofk iterations of an iterative method

applied toA2x2 = b2 with starting vectorx0
2

...
etc.
...
x0

ℓ
:= p̃ℓx

k

ℓ−1
.

(35)

In this nested iteration method we use a prolongationp̃ℓ : R
nℓ−1 → R

nℓ . The nested
iteration principle is based on the idea thatp̃ℓx

∗
ℓ−1 is expected to be a reasonable approxi-

mation ofx∗
ℓ , becauseAℓ−1x

∗
ℓ−1 = bℓ−1 andAℓx

∗
ℓ = bℓ are discretizations of the same
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Figure 6. Multigrid and nested iteration.

continuous problem. With respect to the computational costs of this approach we note the
following (cf. Hackbusch1, section 5.3). For the nested iteration to be a feasible approach,
the number of iterations applied on the coarse grids (i.e.k in (35)) should not be ”too large”
and the number of grid points in the union of all coarse grids (i.e. level0, 1, 2, ..., ℓ − 1)
should be at most of the same order of magnitude as the number of grid points in the level
ℓ grid. Often, if one uses a multigrid solver these two conditions are satisfied. Usually in
multigrid we use coarse grids such that the number of grid points decreases in a geometric
fashion, and fork in (35) we can often takek = 1 or k = 2 due to the fact that on the
coarse grids we use the multigrid method, which has a high rate of convergence.

If one uses the algorithmMGMℓ from (31) as the solver on levelℓ then the imple-
mentation of the nested iteration method can be realized with only little additional effort
because the coarse grid data structure and coarse grid operators (e.g.Aℓ, ℓ < ℓ) needed
in the nested iteration method are already available.

If in the nested iteration method we use a multigrid iterative solver on all levels we
obtain the following algorithmic structure:































x∗
0 := A−1

0 b0; xk
0 := x∗

0

for ℓ = 1 to ℓ do
begin

x0
ℓ := p̃ℓx

k
ℓ−1

for i = 1 to k do xi
ℓ := MGMℓ(x

i−1
ℓ ,bℓ)

end;

(36)

For the caseℓ = 3 andk = 1 this method is illustrated in Fig. 6.
Remark 3.3 The prolongatioñpℓ used in the nested iteration may be the same as the pro-
longationpℓ used in the multigrid method. However, from the point of viewof efficiency
it is sometimes better to use in the nested iteration a prolongationp̃ℓ that has a higher order
of accuracy than the prolongation used in the multigrid method. �
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4 Numerical experiment: Multigrid applied to a Poisson equation

In this section we present results of a standard multigrid solver applied to the model prob-
lem of the Poisson equation:

−∆u = f in Ω := (0, 1)3,

u = 0 on ∂Ω.

We takef(x1, x2, x3) = x2
1 +ex2x1 +x2

3x2. For the discretization we start with a uniform
subdivision ofΩ into cubes with edges of lengthh0 := 1

4 . Each cube is subdivided into
six tetrahedra. This yields the starting triangulationT0 of Ω. The triangulationT1 with
mesh sizeh1 = 1

8 is constructed by regular subdivision of each tetrahedron in T0 into
8 child tetrahedra. This uniform refinement strategy is repeated, resulting in a family of
triangulations(Tℓ)ℓ≥0 with corresponding mesh sizehℓ = 2−ℓ−2. For discretization of this
problem we use the space of linear finite elements on these triangulations. The resulting
linear system is denoted byAℓxℓ = bℓ. We consider the problem of solving this linear
system on a fixed finest levelℓ = ℓ̄. Below we consider̄ℓ = 1, . . . , 5. For ℓ̄ = 5 the
triangulation contains 14.380.416 tetrahedra and in the linear system we have 2.048.383
unknowns.

We briefly discuss the components used in the multigrid method for solving this linear
system. For the prolongation and restriction we use the canonical ones as in (29), (30).
For the smoother we use two different methods, namely a damped Jacobi method and
a symmetric Gauss-Seidel method (SGS). The damped Jacobi method is as in (27) with
ω := 0.7. The symmetric Gauss-Seidel method consists of two substeps. In the first step
we use a Gauss-Seidel iteration as in (28). In the second stepwe apply this method with
a reversed ordering of the equations and the unknowns. The arithmetic costs per iteration
for such a symmetric Gauss-Seidel smoother are roughly twice as high as for a damped
Jacobi method. In the experiment we use the same number of pre- and post-smoothing
iterations, i.e.ν1 = ν2. The total number of smoothing iterations per multigrid iteration
is ν := ν1 + ν2. We use a multigrid V-cycle. i.e.,τ = 1 in the recursive call in (31).
The coarsest grid used in the multigrid method isT0, i.e. with a mesh sizeh0 = 1

4 . In
all experiments we use a starting vectorx0 := 0. The rate of convergence is measured by
looking at relative residuals:

rk :=
‖Aℓ̄x

k − bℓ̄‖2

‖bℓ̄‖2
.

In Fig. 7 (left) we show results for SGS withν = 4. For ℓ̄ = 1, . . . , 5 we plotted the
relative residualsrk for k = 1, . . . , 8. In Fig. 7 (right) we show results for the SGS method
with varying number of smoothing iterations, namelyν = 2, 4, 6. For ℓ̄ = 1, . . . , 5 we
give the average residual reduction per iterationr := (r8)

1
8 .

These results show the very fast and essentially level independent rate of convergence
of this multigrid method. For a larger number of smoothing iterations the convergence is
faster. On the other hand, also the costs per iteration then increase, cf. (34) (withg = 1

8 ).
Usually, in practice the number of smoothings per iterationis not taken very large. Typical
values areν = 2 or ν = 4. In the Fig. 8 we show similar results but now for the damped
Jacobi smoother (damping withω = 0.7) instead of the SGS method.
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For the method with damped Jacobi smoothing we also clearly observe an essentially
level independent rate of convergence. Furthermore there is an increase in the rate of
convergence when the numberν of smoothing step gets larger. Comparing the results of
the multigrid method with Jacobi smoothing to those with SGSsmoothing we see that the
latter method has a significantly faster convergence. Note,however, that the arithmetic
costs per iteration for the latter method are higher (the ratio lies between 1.5 and 2).

5 Multigrid methods for generalized Stokes equations

Let Ω ⊂ R
d, d = 2 or 3 be a bounded connected domain. We consider the following

generalized Stokes problem: Given~f , find a velocity~u and a pressurep such that

ξ~u − ν∆~u + ∇p = ~f in Ω,

∇ · ~u = 0 in Ω,

~u = 0 on ∂Ω.

(37)
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The parametersν > 0 (viscosity) andξ ≥ 0 are given. Often the latter is proportional to the
inverse of the time step in an implicit time integration method applied to a nonstationary
Stokes problem. Note that this general setting includes theclassical (stationary) Stokes
problem (ξ = 0). The weak formulation of (37) is as follows: Given~f ∈ L2(Ω)d, we seek
~u ∈ H1

0 (Ω)d andp ∈ L2
0(Ω) := { q ∈ L2(Ω) |

∫

Ω q dx = 0 } such that

ξ(~u,~v) + ν(∇~u,∇~v) − (div ~v, p) = (~f,~v) for all ~v ∈ H1
0 (Ω)d,

(div ~u, q) = 0 for all q ∈ L2
0(Ω).

(38)

Here(·, ·) denotes theL2 scalar product.
For discretization of (38) we use a standard finite element approach. Based on a regular

family of nestedtetrahedral gridsTℓ = Thℓ
with T0 ⊂ T1 ⊂ . . . we use a sequence of

nested finite element spaces

(Vℓ−1, Qℓ−1) ⊂ (Vℓ, Qℓ), ℓ = 1, 2, . . . .

The pair of spaces(Vℓ, Qℓ), ℓ ≥ 0, is assumed to be stable. Byhℓ we denote the mesh
size parameter corresponding toTℓ. In our numerical experiments we use the Hood-Taylor
P2 − P1 pair:

Vℓ = V d
ℓ , Vℓ := { v ∈ C(Ω) | v|T ∈ P2 for all T ∈ Tℓ },

Qℓ = { v ∈ C(Ω) | v|T ∈ P1 for all T ∈ Tℓ }.
(39)

The discrete problem is given by the Galerkin discretization of (38) with the pair(Vℓ, Qℓ).
We are interested in the solution of this discrete problem ona given finest discretization
level ℓ = ℓ̄. The resulting discrete problem can be represented using the standard nodal
bases in these finite element spaces. The representation of the discrete problem on levelℓ
in these bases results in alinear saddle point problemof the form

Aℓxℓ = bℓ with Aℓ =

(

Aℓ BT
ℓ

Bℓ 0

)

, xℓ =

(

uℓ

pℓ

)

. (40)

The dimensions of the spacesVℓ andQℓ are denoted bynℓ andmℓ, respectively. The
matrix Aℓ ∈ R

nℓ×nℓ is the discrete representation of the differential operator ξI − ν∆
and is symmetric positive definite. Note thatAℓ depends on the parametersξ andν. The
matrixAℓ depends on these parameters, too, and issymmetric and strongly indefinite.

We describe a multigrid method that can be used for the iterative solution of the system
(40). This method has the same algorithmic structure as in (31). We need intergrid transfer
operators (prolongation and restriction) and a smoother. These components are described
below.

Intergrid transfer operators.For the prolongation and restriction of vectors (or correspond-
ing finite element functions) between different level we usethe canonical operators. The
prolongation between levelℓ − 1 andℓ is given by

Pℓ =

(

PV 0
0 PQ

)

, (41)

where the matricesPV : R
nℓ−1 → R

nℓ andPQ : R
mℓ−1 → R

mℓ are matrix represen-
tations of the embeddingsVℓ−1 ⊂ Vℓ (quadratic interpolation forP2) andQℓ−1 ⊂ Qℓ
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(linear interpolation forP1), respectively. For the restriction operatorRℓ between the lev-
elsℓ andℓ − 1 we take the adjoint ofPℓ (w.r.t. a scaled Euclidean scalar product). Then
the Galerkin propertyAℓ−1 = RℓAℓPℓ holds.

Braess-Sarazin smoother. This smoother is introduced in Braess10. With Dℓ = diag(Aℓ)
and a givenα > 0 the smoothing iteration has the form

(

uk+1
ℓ

pk+1
ℓ

)

=

(

uk
ℓ

pk
ℓ

)

−
(

αDℓ BT
ℓ

Bℓ 0

)−1{(
Aℓ BT

ℓ

Bℓ 0

)(

uk
ℓ

pk
ℓ

)

−
(

fℓ
0

)}

. (42)

Each iteration (42) requires the solution of the auxiliary problem
(

αDℓ BT
ℓ

Bℓ 0

)(

ûℓ

p̂ℓ

)

=

(

rk
ℓ

Bℓu
k
ℓ

)

(43)

with rk
ℓ = Aℓu

k
ℓ + BT

ℓ pk
ℓ − fℓ. From (43) one obtains

Bℓûℓ = Bℓu
k
ℓ ,

and hence,

Bℓu
k+1
ℓ = Bℓ(u

k
ℓ − ûℓ) = 0 for all j ≥ 0. (44)

Therefore, the Braess-Sarazin method can be considered as asmoother on the subspace of
vectors that satisfy the constraint equationBℓuℓ = 0.

The problem (43) can be reduced to a problem for the auxiliarypressure unknown̂pℓ:

Zℓp̂ℓ = BℓD
−1
ℓ rk

ℓ − αBℓu
k
ℓ , (45)

whereZℓ = BℓD
−1
ℓ BT

ℓ .
Remark 5.1 The matrixZℓ is similar to a discrete Laplace operator on the pressure space.
In practice the system (45) is solved approximately using anefficient iterative solver, cf.
Braess10, Zulehner11. �

Oncep̂ℓ is known (approximately), an approximation forûℓ can easily be determined from
αDℓûℓ = rk

ℓ − BT
ℓ p̂ℓ.

Vanka smoother. The Vanka-type smoothers, originally proposed by Vanka12 for finite
difference schemes, are block Gauß-Seidel type of methods.If one uses such a method in
a finite element setting then a block of unknowns consists of all degrees of freedom that
correspond with one element. Numerical tests given in John13 show that the use of this
element-wise Vanka smoother can be problematic for continuous pressure approximations.
In John13 the pressure-oriented Vanka smoother for continuous pressure approximations
has been suggested as a good alternative. In this method a local problem corresponds to
the block of unknowns consisting of one pressure unknown andall velocity degrees of
freedom that are connected with this pressure unknown. We only consider this type of
Vanka smoother. We first give a more precise description of this method.

We take a fixed levelℓ in the discretization hierarchy. To simplify the presentation we

drop the level indexℓ from the notation, i.e. we write, for example,

(

u

p

)

∈ R
n+m instead

of

(

uℓ

pℓ

)

∈ R
nℓ+mℓ . Let r(j)

P : R
m → R be the pressure projection (injection)

r
(j)
P p = pj , j = 1, . . . , m.
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For eachj (1 ≤ j ≤ m) let the set of velocity indices that are “connected” toj be given by

Vj = {1 ≤ i ≤ n | (r(j)
P B)i 6= 0}.

Definedj := |Vj | and writeVj = {i1 < i2 < . . . < idj
}. A corresponding velocity

projection operatorr(j)
V : R

n → R
dj is given by

r
(j)
V u = (ui1 , ui2 , . . . , uidj

)T .

The combined pressure and velocity projection is given by

r(j) =

(

r
(j)
V 0

0 r
(j)
P

)

∈ R
(dj+1)×(n+m).

Furthermore, definep(j) =
(

r(j)
)T

. Using these operators we can formulate a standard
multiplicative Schwarz method. Define

A(j) := r(j)Ap(j) =:

(

A(j) B(j)T

B(j) 0

)

∈ R
(dj+1)×(dj+1).

Note thatB(j) is a row vector of lengthdj . In addition, we define

D(j) =

(

diag(A(j)) B(j)T

B(j) 0

)

=







. . . 0
...

0
. . .

...
. . .. . . 0






∈ R

(dj+1)×(dj+1).

The full Vanka smoother is a multiplicative Schwarz method (or blockGauss-Seidel
method) with iteration matrix

Sfull =

m
∏

j=1

(

I − p(j)(A(j))−1r(j)A
)

. (46)

ThediagonalVanka smoother is similar, but withD(j) instead ofA(j):

Sdiag =

m
∏

j=1

(

I − p(j)(D(j))−1r(j)A
)

. (47)

Thus, a smoothing step with a Vanka-type smoother consists of a loop over all pressure
degrees of freedom (j = 1, . . . , m), where for eachj a linear system of equations with
the matrixA(j) (or D(j)) has to be solved. The degrees of freedom are updated in a
Gauss-Seidel manner. These two methods are well-defined if all matricesA(j) andD(j)

are nonsingular.
The linear systems with the diagonal Vanka smoother can be solved very efficiently

using the special structure of the matrixD(j) whereas for the systems with the full Vanka
smoother a direct solver for the systems with the matricesA(j) is required. The computa-
tional costs for solving a local (i.e. for each block) linearsystem of equations is∼ dj for
the diagonal Vanka smoother and∼ d3

j for the full Vanka smoother. Typical values fordj

are given in Table 2.

Using the prolongation, restriction and smoothers as explained above a multigrid algorithm
for solving the discretized Stokes problem (40) is defined asin (31).
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h0 = 2−1 h1 = 2−2 h2 = 2−3 h3 = 2−4 h4 = 2−5

nℓ 81 1029 10125 89373 750141
mℓ 27 125 729 4913 35937

Table 1. Dimensions:nℓ = number of velocity unknowns,mℓ = number of pressure unknowns.

6 Numerical experiment: Multigrid applied to a generalized Stokes
equation

We consider the generalized Stokes equation as in (37) on theunit cubeΩ = (0, 1)3. The
right-hand side~f is taken such that the continuous solution is

~u(x, y, z) =
1

3





sin(πx) sin(πy) sin(πz)
− cos(πx) cos(πy) sin(πz)
2 · cos(πx) sin(πy) cos(πz)



 ,

p(x, y, z) = cos(πx) sin(πy) sin(πz) + C

with a constantC such that
∫

Ω p dx = 0. For the discretization we start with a uniform
tetrahedral grid withh0 = 1

2 and we apply regular refinements to this starting discretiza-
tion. For the finite element discretization we use the Hood-TaylorP2-P1 pair, cf. (39). In
Table 1 the dimension of the system to be solved on each level and the corresponding mesh
size are given.

In all tests below the iterations were repeated until the condition

‖r(k)‖
‖r(0)‖ < 10−10,

with r(k) = b−Ax(k), was satisfied.
We first consider an experiment to show that for this problem class the multigrid

method withfull Vanka smoother is very time consuming. In Table 2 we show the maximal
and mean values ofdj on the levelℓ. These numbers indicate the dimensions of the local
systems that have to be solved in the Vanka smoother.

h0 = 2−1 h1 = 2−2 h2 = 2−3 h3 = 2−4 h4 = 2−5

mean(dj)
maxj dj

21.8 / 82 51.7 / 157 88.8 / 157 119.1 / 165 138.1 / 166

Table 2. The maximal and mean values ofdj on different grids.

We use a multigrid W-cycle with 2 pre- and 2 post-smoothing iterations. In Table 3 we
show the computing time (in seconds) and the number of iterations needed both for the full
VankaSfull and the diagonal VankaSdiag smoother.

As can be seen from these results, the rather high dimensionsof the local systems lead
to high computing times for the multigrid method with the full Vanka smoother compared
to the method with the diagonal Vanka smoother. Therefore weprefer the method with
the diagonal Vanka smoother. In numerical experiments we observed that the multigrid
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ξ = 0 Sfull, h3 = 2−4 Sdiag,h3 = 2−4 Sfull, h4 = 2−5 Sdiag,h4 = 2−5

ν = 1 287 (4) 19 (10) 3504 (5) 224 (13)
ν = 10−1 283 (4) 19 (10) 3449 (5) 238 (13)
ν = 10−2 284 (4) 19 (10) 3463 (5) 238 (13)
ν = 10−3 356 (5) 20 (11) 3502 (5) 238 (13)

Table 3. CPU time and number of iterations for multigrid withthe full and the diagonal Vanka smoother.

W-cycle with onlyonepre- and post-smoothing iteration with the diagonal Vanka method
sometimes diverges. Further tests indicate that often for the method with diagonal Vanka
smoothing the choiceν1 = ν2 = 4 is (slightly) better (w.r.t. CPU time) thanν1 = ν2 = 2.

Results for two variants of the multigrid W-cycle method, one with diagonal Vanka
smoothing (V-MGM) and one with Braess-Sarazin smoothing (BS-MGM) are given in the
tables 4 and 5. In the V-MGM we useν1 = ν2 = 4. Based on numerical experiments,
in the method with the Braess-Sarazin smoother we useν1 = ν2 = 2 andα = 1.25.
For other valuesα ∈ [1.1, 1.5] the efficiency is very similar. The linear system in (45)
is solved approximately using a conjugate gradient method with a fixed relative tolerance
εCG = 10−2. To investigate the robustness of these method we give results for several
values ofℓ, ν andξ.

ξ = 0 h3 = 2−4

ν V-MGM BS-MGM
ν = 1 19 (5) 20 (11)
ν = 10−1 19 (5) 20 (11)
ν = 10−3 19 (5) 17 (8)

ξ = 10 h3 = 2−4

ν V-MGM BS-MGM
ν = 1 19 (5) 20 (11)
ν = 10−1 17 (4) 20 (11)
ν = 10−3 15 (3) 21 (7)

ξ = 100 h3 = 2−4

ν V-MGM BS-MGM
ν = 1 17 (4) 20 (11)
ν = 10−1 15 (3) 19 (7)
ν = 10−3 15 (3) 19 (6)

Table 4. CPU time and the number of iterations for BS- and V-MGM methods.

The results show that the rate of convergence is essentiallyindependent of the parameters
ν and ξ, i.e., these methods have a robustness property. Furthermore we observe that
if for fixed ν, ξ we compare the results forℓ = 3 (h3 = 2−4) with those forℓ = 4
(h4 = 2−5) then for the V-MGM there is (almost) no increase in the number of iterations.
This illustrates the mesh independent rate of convergence of the method. For the BS-
MGM there is a (small) growth in the number of iterations. Forboth methods the CPU
time needed per iteration grows with a factor of roughly 10 when going fromℓ = 3 to
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ξ = 0 h4 = 2−5

ν V-MGM BS-MGM
ν = 1 198 (5) 274 (14)
ν = 10−1 199 (5) 276 (14)
ν = 10−3 198 (5) 241 (11)

ξ = 10 h3 = 2−5

ν V-MGM BS-MGM
ν = 1 190 (5) 244 (13)
ν = 10−1 189 (5) 224 (10)
ν = 10−3 145 (3) 238 (7)

ξ = 100 h3 = 2−5

ν V-MGM BS-MGM
ν = 1 190 (5) 241 (13)
ν = 10−1 167 (4) 243 (13)
ν = 10−3 122 (2) 282 (9)

Table 5. CPU time and the number of iterations for BS- and V-MGM methods.

ℓ = 4. The number of unknowns then grows with about a factor 8.3, cf. Table 1. This
indicates that the arithmetic work per iteration is almost linear in the number of unknowns.

7 Convergence analysis for scalar elliptic problems

In this section we present a convergence analysis for the multigrid method introduced in
section 3. Our approach is based on the so-called approximation- and smoothing property,
introduced by Hackbusch1, 14. For a discussion of other analyses we refer to remark 7.23.

7.1 Introduction

One easily verifies that the two-grid method is a linear iterative method. The iteration
matrix of this method withν1 presmoothing andν2 postsmoothing iterations on levelℓ is
given by

CTG,ℓ = CTG,ℓ(ν2, ν1) = Sν2

ℓ (I− pℓA
−1
ℓ−1rℓAℓ)S

ν1

ℓ (48)

with Sℓ = I − M−1
ℓ Aℓ the iteration matrix of the smoother.

Theorem 7.1 The multigrid method(31) is a linear iterative method with iteration matrix
CMG,ℓ given by

CMG,0 = 0 (49a)

CMG,ℓ = Sν2

ℓ

(

I − pℓ(I − Cτ
MG,ℓ−1)A

−1
ℓ−1rℓAℓ

)

Sν1

ℓ (49b)

= CTG,ℓ + Sν2

ℓ pℓC
τ
MG,ℓ−1A

−1
ℓ−1rℓAℓS

ν1

ℓ , ℓ = 1, 2, . . . (49c)
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Proof: The result in (49a) is trivial. The result in (49c) follows from (49b) and the definition
of CTG,ℓ. We now prove the result in (49b) by induction. Forℓ = 1 it follows from (49a)
and (48). Assume that the result is correct forℓ − 1. ThenMGMℓ−1(yℓ−1, zℓ−1) defines
a linear iterative method and for arbitraryyℓ−1, zℓ−1 ∈ R

nℓ−1 we have

MGMℓ−1(yℓ−1, zℓ−1) − A−1
ℓ−1zℓ−1 = CMG,ℓ−1(yℓ−1 − A−1

ℓ−1zℓ−1) (50)

We rewrite the algorithm (31) as follows:

x1 := Sν1

ℓ (xold
ℓ ,bℓ)

x2 := x1 + pℓMGMτ
ℓ−1

(

0, rℓ(bℓ − Aℓx
1)
)

xnew
ℓ := Sν2

ℓ (x2,bℓ).

From this we get

xnew
ℓ − x∗

ℓ = xnew
ℓ − A−1

ℓ bℓ = Sν2

ℓ (x2 − x∗
ℓ )

= Sν2

ℓ

(

x1 − x∗
ℓ + pℓMGMτ

ℓ−1

(

0, rℓ(bℓ − Aℓx
1)
)

.

Now we use the result (50) withyℓ−1 = 0, zℓ−1 := rℓ(bℓ − Aℓx
1). This yields

xnew
ℓ − x∗

ℓ = Sν2

ℓ

(

x1 − x∗
ℓ + pℓ(A

−1
ℓ−1zℓ−1 − Cτ

MG,ℓ−1A
−1
ℓ−1zℓ−1

)

= Sν2

ℓ

(

I− pℓ(I − Cτ
MG,ℓ−1)A

−1
ℓ−1rℓAℓ

)

(x1 − x∗
ℓ )

= Sν2

ℓ

(

I− pℓ(I − Cτ
MG,ℓ−1)A

−1
ℓ−1rℓAℓ

)

Sν1

ℓ (xold − x∗
ℓ ).

This completes the proof.

The convergence analysis will be based on the following splitting of the two-grid
iteration matrix, withν2 = 0, i.e. no postsmoothing:

‖CTG,ℓ(0, ν1)‖2 = ‖(I− pℓA
−1
ℓ−1rℓAℓ)S

ν1

ℓ ‖2

≤ ‖A−1
ℓ − pℓA

−1
ℓ−1rℓ‖2 ‖AℓS

ν1

ℓ ‖2

(51)

In section 7.2 we will prove a bound of the form‖A−1
ℓ −pℓA

−1
ℓ−1rℓ‖2 ≤ CA‖Aℓ‖−1

2 . This
result is called theapproximation property. In section 7.3 we derive a suitable bound for the
term‖AℓS

ν1

ℓ ‖2. This is the so-calledsmoothing property. In section 7.4 we combine these
bounds with the results in (51) and in theorem 7.1. This yields bounds for the contraction
number of the two-grid method and of the multigrid W-cycle. For the V-cycle a more subtle
analysis is needed. This is presented in section 7.5. In the convergence analysis we need
the following:
Assumption 7.2 In the sections 7.2–7.5 we assume that the family of triangulations{Thℓ

}
corresponding to the finite element spacesVℓ, ℓ = 0, 1, . . ., is quasi-uniformand that
hℓ−1 ≤ chℓ with a constantc independent ofℓ.

We give some results that will be used in the analysis furtheron. First we recall aninverse
inequalitythat is known from the analysis of finite element methods:

|vℓ|1 ≤ c h−1
ℓ ‖vℓ‖L2 for all vℓ ∈ Vℓ

with a constantc independent ofℓ. For this result to hold we need assumption 7.2.
We now show that, apart from a scaling factor, the isomorphism Pℓ : (Rnℓ , 〈·, ·〉) →
(Vℓ, 〈·, ·〉L2) and its inverse are uniformly (w.r.t.ℓ) bounded:
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Lemma 7.3 There exist constantsc1 > 0 andc2 independent ofℓ such that

c1‖Pℓx‖L2 ≤ h
1
2
d

ℓ ‖x‖2 ≤ c2‖Pℓx‖L2 for all x ∈ R
nℓ . (52)

Proof: The definition ofPℓ yieldsPℓx =
∑nℓ

i=1 xiφi =: vℓ ∈ Vℓ andvℓ(ξi) = xi, where
ξi is the vertex in the triangulation which corresponds to the nodal basis functionφi. Note
that

‖Pℓx‖2
L2 = ‖vℓ‖2

L2 =
∑

T∈Tℓ

‖vℓ‖2
L2(T ).

Sincevℓ is linear on each simplexT in the triangulationTℓ there are constants̃c1 > 0 and
c̃2 independent ofhℓ such that

c̃1‖vℓ‖2
L2(T ) ≤ |T |

∑

ξj∈V (T )

vℓ(ξj)
2 ≤ c̃2‖vℓ‖2

L2(T ),

whereV (T ) denotes the set of vertices of the simplexT . Summation over allT ∈ Tℓ,
usingvℓ(ξj) = xj and|T | ∼ hd

ℓ we obtain

ĉ1‖vℓ‖2
L2 ≤ hd

ℓ

nℓ
∑

i=1

x2
i ≤ ĉ2‖vℓ‖2

L2,

with constantŝc1 > 0 andĉ2 independent ofhℓ and thus we get the result in (52).

The third preliminary result concerns the scaling of the stiffness matrix:
Lemma 7.4 Let Aℓ be the stiffness matrix as in(26). Assume that the bilinear form is
such that the usual conditions(22)are satisfied. Then there exist constantsc1 > 0 andc2

independent ofℓ such that

c1h
d−2
ℓ ≤ ‖Aℓ‖2 ≤ c2h

d−2
ℓ .

Proof: First note that

‖Aℓ‖2 = max
x,y∈R

nℓ

〈Aℓx,y〉
‖x‖2‖y‖2

.

Using the result in lemma 7.3, the continuity of the bilinearform and the inverse inequality
we get

max
x,y∈R

nℓ

〈Aℓx,y〉
‖x‖2‖y‖2

≤ chd
ℓ max

vℓ,wℓ∈Vℓ

k(vℓ, wℓ)

‖vℓ‖L2‖wℓ‖L2

≤ chd
ℓ max

vℓ,wℓ∈Vℓ

|vℓ|1|wℓ|1
‖vℓ‖L2‖wℓ‖L2

≤ c hd−2
ℓ

and thus the upper bound is proved. The lower bound follows from

max
x,y∈R

nℓ

〈Aℓx,y〉
‖x‖2‖y‖2

≥ max
1≤i≤nℓ

〈Aℓei, ei〉 = k(φi, φi) ≥ c|φi|21 ≥ chd−2
ℓ

The last inequality can be shown by using forT ⊂ supp(φi) the affine transformation
from the unit simplex toT .
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7.2 Approximation property

In this section we derive a bound for the first factor in the splitting (51). We start with two
important assumptions that are crucial for the analysis. This first one concernsregularity
of the continuous problem, the second one is adiscretization error bound.
Assumption 7.5 We assume that the continuous problem in(23) is H2-regular, i.e. for
f ∈ L2(Ω) the corresponding solutionu satisfies

‖u‖H2 ≤ c ‖f‖L2,

with a constantc independent off . Furthermore we assume a finite element discretization
error bound for the Galerkin discretization(25):

‖u − uℓ‖L2 ≤ ch2
ℓ‖f‖L2

with c independent off and ofℓ.

We will need thedual problem of (23) which is as follows: determinẽu ∈ H1
0 (Ω)

such thatk(v, ũ) = f(v) for all v ∈ H1
0 (Ω). Note that this dual problem is obtained by

interchanging the arguments in the bilinear formk(·, ·) and that the dual problem equals
the original one if the bilinear form is symmetric (as for example in case of the Poisson
equation).

In the analysis we will use the adjoint operatorP ∗
ℓ : Vℓ → R

nℓ which satisfies
〈Pℓx, vℓ〉L2 = 〈x, P ∗

ℓ vℓ〉 for all x ∈ R
nℓ , vℓ ∈ Vℓ. As a direct consequence of lemma 7.3

we obtain

c1‖P ∗
ℓ vℓ‖2 ≤ h

1
2

d

ℓ ‖vℓ‖L2 ≤ c2‖P ∗
ℓ vℓ‖2 for all vℓ ∈ Vℓ (53)

with constantsc1 > 0 andc2 independent ofℓ. We now formulate a main result for the
convergence analysis of multigrid methods:

Theorem 7.6 (Approximation property.) Consider Aℓ, pℓ, rℓ as defined in(26),
(29),(30). Assume that the variational problem(23) is such that the usual conditions(22)
are satisfied. Moreover, the problem(23)and the corresponding dual problem are assumed
to beH2-regular. Then there exists a constantCA independent ofℓ such that

‖A−1
ℓ − pℓA

−1
ℓ−1rℓ‖2 ≤ CA‖Aℓ‖−1

2 for ℓ = 1, 2, . . . (54)

Proof: Let bℓ ∈ R
nℓ be given. The constants in the proof are independent ofbℓ and ofℓ.

Consider the variational problems:

u ∈ H1
0 (Ω) : k(u, v) = 〈(P ∗

ℓ )−1bℓ, v〉L2 for all v ∈ H1
0 (Ω)

uℓ ∈ Vℓ : k(uℓ, vℓ) = 〈(P ∗
ℓ )−1bℓ, vℓ〉L2 for all vℓ ∈ Vℓ

uℓ−1 ∈ Vℓ−1 : k(uℓ−1, vℓ−1) = 〈(P ∗
ℓ )−1bℓ, vℓ−1〉L2 for all vℓ−1 ∈ Vℓ−1.

Then

A−1
ℓ bℓ = P−1

ℓ uℓ and A−1
ℓ−1rℓbℓ = P−1

ℓ−1uℓ−1

hold. Hence we obtain, using lemma 7.3,

‖(A−1
ℓ − pℓA

−1
ℓ−1rℓ)bℓ‖2 = ‖P−1

ℓ (uℓ − uℓ−1)‖2 ≤ c h
− 1

2
d

ℓ ‖uℓ − uℓ−1‖L2 . (55)
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Now we use the assumptions on the discretization error boundand on theH2-regularity of
the problem. This yields

‖uℓ − uℓ−1‖L2 ≤ ‖uℓ − u‖L2 + ‖uℓ−1 − u‖L2

≤ ch2
ℓ |u|2 + +ch2

ℓ−1|u|2 ≤ ch2
ℓ‖(P ∗

ℓ )−1bℓ‖L2

(56)

We combine (55) with (56) and use (53), and get

‖(A−1
ℓ − pℓA

−1
ℓ−1rℓ)bℓ‖2 ≤ c h2−d

ℓ ‖bℓ‖2

and thus‖A−1
ℓ − pℓA

−1
ℓ−1rℓ‖2 ≤ c h2−d

ℓ . The proof is completed if we use lemma 7.4.

Note that in the proof of the approximation property we use the underlying contin-
uous problem.

7.3 Smoothing property

In this section we derive inequalities of the form

‖AℓS
ν
ℓ ‖2 ≤ g(ν)‖Aℓ‖2

whereg(ν) is a monotonically decreasing function withlimν→∞ g(ν) = 0. In the first
part of this section we derive results for the case thatAℓ is symmetric positive definite. In
the second part we discuss the general case.

Smoothing property for the symmetric positive definite case
We start with an elementary lemma:
Lemma 7.7 LetB ∈ R

m×m be a symmetric positive definite matrix withσ(B) ⊂ (0, 1].
Then we have

‖B(I − B)ν‖2 ≤ 1

2(ν + 1)
for ν = 1, 2, . . .

Proof: Note that

‖B(I− B)ν‖2 = max
x∈(0,1]

x(1 − x)ν =
1

ν + 1

( ν

ν + 1

)ν
.

A simple computation shows thatν →
(

ν
ν+1

)ν
is decreasing on[1,∞).

Below for a few basic iterative methods we derive the smoothing property for the
symmetric case, i.e.,b = 0 in the bilinear formk(·, ·). We first consider the Richardson
method:
Theorem 7.8 Assume that in the bilinear form we haveb = 0 and that the usual condi-
tions(22) are satisfied. LetAℓ be the stiffness matrix in(26). For c0 ∈ (0, 1] we have the
smoothing property

‖Aℓ(I −
c0

ρ(Aℓ)
Aℓ)

ν‖2 ≤ 1

2c0(ν + 1)
‖Aℓ‖2 , ν = 1, 2, . . .

holds.
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Proof: Note thatAℓ is symmetric positive definite. Apply lemma 7.7 withB := ωℓAℓ,
ωℓ := c0 ρ(Aℓ)

−1. This yields

‖Aℓ(I − ωℓAℓ)
ν‖2 ≤ ω−1

ℓ

1

2(ν + 1)
≤ 1

2c0(ν + 1)
ρ(Aℓ) =

1

2c0(ν + 1)
‖Aℓ‖2

and thus the result is proved.

A similar result can be shown for the damped Jacobi method:
Theorem 7.9 Assume that in the bilinear form we haveb = 0 and that the usual condi-
tions(22)are satisfied. LetAℓ be the stiffness matrix in(26)andDℓ := diag(Aℓ). There
exists anω ∈ (0, ρ(D−1

ℓ Aℓ)
−1], independent ofℓ, such that the smoothing property

‖Aℓ(I − ωD−1
ℓ Aℓ)

ν‖2 ≤ 1

2ω(ν + 1)
‖Aℓ‖2 , ν = 1, 2, . . .

holds.
Proof: Define the symmetric positive definite matrix̃B := D

− 1
2

ℓ AℓD
− 1

2

ℓ . Note that

(Dℓ)ii = (Aℓ)ii = k(φi, φi) ≥ c |φi|21 ≥ c hd−2
ℓ , (57)

with c > 0 independent ofℓ andi. Using this in combination with lemma 7.4 we get

‖B̃‖2 ≤ ‖Aℓ‖2

λmin(Dℓ)
≤ c , c independent ofℓ.

Hence forω ∈ (0, 1
c
] ⊂ (0, ρ(D−1

ℓ Aℓ)
−1] we haveσ(ωB̃) ⊂ (0, 1]. Application of

lemma 7.7, withB = ωB̃, yields

‖Aℓ(I − ωD−1
ℓ Aℓ)

ν‖2 ≤ ω−1‖D
1
2

ℓ ‖2‖ωB̃(I − ωB̃)ν‖2‖D
1
2

ℓ ‖2

≤ ‖Dℓ‖2

2ω(ν + 1)
≤ 1

2ω(ν + 1)
‖Aℓ‖2

and thus the result is proved.

Remark 7.10 The value of the parameterω used in theorem 7.9 is such that

ωρ(D−1
ℓ Aℓ) = ωρ(D

− 1
2

ℓ AℓD
− 1

2

ℓ ) ≤ 1 holds. Note that

ρ(D
− 1

2

ℓ AℓD
− 1

2

ℓ ) = max
x∈R

nℓ

〈Aℓx,x〉
〈Dℓx,x〉 ≥ max

1≤i≤nℓ

〈Aℓei, ei〉
〈Dℓeiei〉

= 1

and thus we haveω ≤ 1. This explains why in multigrid methods one usually uses a
dampedJacobi method as a smoother. �

We finally consider the symmetric Gauss-Seidel method. IfAℓ = AT
ℓ this method has an

iteration matrix

Sℓ = I − M−1
ℓ Aℓ, Mℓ = (Dℓ − Lℓ)D

−1
ℓ (Dℓ − LT

ℓ ) , (58)

where we use the decompositionAℓ = Dℓ − Lℓ − LT
ℓ with Dℓ a diagonal matrix andLℓ

a strictly lower triangular matrix.
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Theorem 7.11 Assume that in the bilinear form we haveb = 0 and that the usual con-
ditions (22) are satisfied. LetAℓ be the stiffness matrix in(26) andMℓ as in (58). The
smoothing property

‖Aℓ(I − M−1
ℓ Aℓ)

ν‖2 ≤ c

ν + 1
‖Aℓ‖2 , ν = 1, 2, . . .

holds with a constantc independent ofν andℓ.
Proof: Note thatMℓ = Aℓ + LℓD

−1
ℓ LT

ℓ and thusMℓ is symmetric positive definite.

Define the symmetric positive definite matrixB := M
− 1

2

ℓ AℓM
− 1

2

ℓ . From

0 < max
x∈R

nℓ

〈Bx,x〉
〈x,x〉 = max

x∈R
nℓ

〈Aℓx,x〉
〈Mℓx,x〉 = max

x∈R
nℓ

〈Aℓx,x〉
〈Aℓx,x〉 + 〈D−1

ℓ LT
ℓ x,LT

ℓ x〉 ≤ 1

it follows thatσ(B) ⊂ (0, 1]. Application of lemma 7.7 yields

‖Aℓ(I − M−1
ℓ Aℓ)

ν‖2 ≤ ‖M
1
2

ℓ ‖2
2 ‖B(I − B)ν‖2 ≤ ‖Mℓ‖2

1

2(ν + 1)
.

From (57) we have‖D−1
ℓ ‖2 ≤ c h2−d

ℓ . Using the sparsity ofAℓ we obtain

‖Lℓ‖2‖LT
ℓ ‖2 ≤ ‖Lℓ‖∞‖Lℓ‖1 ≤ c(max

i,j
|(Aℓ)ij |)2 ≤ c‖Aℓ‖2

2.

In combination with lemma 7.4 we then get

‖Mℓ‖2 ≤ ‖D−1
ℓ ‖2‖Lℓ‖2‖LT

ℓ ‖2 ≤ c h2−d
ℓ ‖Aℓ‖2

2 ≤ c‖Aℓ‖2 (59)

and this completes the proof.

For the symmetric positive definite case smoothing properties have also been proved for
other iterative methods. For example, in Wittum15, 16 a smoothing property is proved
for a variant of the ILU method and in Bröker et al.17 it is shown that the SPAI (sparse
approximate inverse) preconditioner satisfies a smoothingproperty.

Smoothing property for the nonsymmetric case
For the analysis of the smoothing property in the general (possibly nonsymmetric) case
we can not use lemma 7.7. Instead the analysis will be based onthe following lemma (cf.
Reusken18, 19):
Lemma 7.12 Let ‖ · ‖ be any induced matrix norm and assume that forB ∈ R

m×m the
inequality‖B‖ ≤ 1 holds. The we have

‖(I − B)(I + B)ν‖ ≤ 2ν+1

√

2

πν
, for ν = 1, 2, . . .

Proof: Note that

(I− B)(I + B)ν = (I − B)

ν
∑

k=0

(

ν
k

)

Bk = I− Bν+1 +

ν
∑

k=1

(

(

ν
k

)

−
(

ν
k − 1

)

)

Bk.

This yields

‖(I − B)(I + B)ν‖ ≤ 2 +

ν
∑

k=1

∣

∣

(

ν
k

)

−
(

ν
k − 1

)

∣

∣.
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Using

(

ν
k

)

≥
(

ν
k − 1

)

⇔ k ≤ 1
2 (ν + 1) and

(

ν
k

)

≥
(

ν
ν − k

)

we get (with[ · ]
the round down operator):

ν
∑

k=1

∣

∣

(

ν
k

)

−
(

ν
k − 1

)

∣

∣

=

[ 1
2
(ν+1)]
∑

1

(

(

ν
k

)

−
(

ν
k − 1

)

)

+
ν
∑

[ 1
2
(ν+1)]+1

(

(

ν
k − 1

)

−
(

ν
k

)

)

=

[ 1
2
ν]

∑

1

(

(

ν
k

)

−
(

ν
k − 1

)

)

+

[ 1
2
ν]
∑

m=1

(

(

ν
m

)

−
(

ν
m − 1

)

)

= 2

[ 1
2
ν]
∑

k=1

(

(

ν
k

)

−
(

ν
k − 1

)

)

= 2
(

(

ν
[12ν]

)

−
(

ν
0

)

)

.

An elementary analysis yields (cf., for example, Reusken19)
(

ν
[ 12ν]

)

≤ 2ν

√

2

πν
for ν ≥ 1.

Thus we have proved the bound.

Corollary 7.13 Let ‖ · ‖ be any induced matrix norm. Assume that for a linear iterative
method with iteration matrixI− M−1

ℓ Aℓ we have

‖I− M−1
ℓ Aℓ‖ ≤ 1 (60)

Then forSℓ := I − 1
2M

−1
ℓ Aℓ the following smoothing property holds:

‖AℓS
ν
ℓ ‖ ≤ 2

√

2

πν
‖Mℓ‖ , ν = 1, 2, . . .

Proof: DefineB = I − M−1
ℓ Aℓ and apply lemma 7.12:

‖AℓS
ν
ℓ ‖ ≤ ‖Mℓ‖

(1

2

)ν‖(I− B)(I + B)ν‖ ≤ 2

√

2

πν
‖Mℓ‖.

Remark 7.14 Note that in the smoother in corollary 7.13 we use damping with a factor12 .
Generalizations of the results in lemma 7.12 and corollary 7.13 are given in Nevanlinna20,
Hackbusch21, Zulehner22. In Nevanlinna20, Zulehner22 it is shown that the damping factor
1
2 can be replaced by an arbitrary damping factorω ∈ (0, 1). Also note that in the smooth-

ing property in corollary 7.13 we have aν-dependence of the formν− 1
2 , whereas in the

symmetric case this is of the formν−1. It Hackbusch21 it is shown that this loss of a factor
ν

1
2 when going to the nonsymmetric case is due to the fact that complex eigenvalues may

occur. �

To verify the condition in (60) we will use the following elementary result:
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Lemma 7.15 If E ∈ R
m×m is such that there exists ac > 0 with

‖Ex‖2
2 ≤ c〈Ex,x〉 for all x ∈ R

m

then we have‖I− ωE‖2 ≤ 1 for all ω ∈ [0, 2
c
].

Proof: Follows from:

‖(I− ωE)x‖2
2 = ‖x‖2

2 − 2ω〈Ex,x〉 + ω2‖Ex‖2
2

≤ ‖x‖2
2 − ω(

2

c
− ω)‖Ex‖2

2

≤ ‖x‖2
2 if ω(

2

c
− ω) ≥ 0.

We now use these results to derive a smoothing property for the Richardson method.
Theorem 7.16 Assume that the bilinear form satisfies the usual conditions(22). LetAℓ

be the stiffness matrix in(26). There exist constantsω > 0 and c independent ofℓ such
that the following smoothing property holds:

‖Aℓ(I − ωh2−d
ℓ Aℓ)

ν‖2 ≤ c√
ν
‖Aℓ‖2 , ν = 1, 2, . . . .

Proof: Using lemma 7.3, the inverse inequality and the ellipticityof the bilinear form we
get, for arbitraryx ∈ R

nℓ :

‖Aℓx‖2 = max
y∈R

nℓ

〈Aℓx,y〉
‖y‖2

≤ c h
1
2
d

ℓ max
vℓ∈Vℓ

k(Pℓx, vℓ)

‖vℓ‖L2

≤ c h
1
2

d

ℓ max
vℓ∈Vℓ

|Pℓx|1|vℓ|1
‖vℓ‖L2

≤ c h
1
2
d−1

ℓ |Pℓx|1

≤ c h
1
2

d−1

ℓ k(Pℓx, Pℓx)
1
2 = c h

1
2

d−1

ℓ 〈Aℓx,x〉 1
2 .

From this and lemma 7.15 it follows that there exists a constant ω > 0 such that

‖I− 2ωh2−d
ℓ Aℓ‖2 ≤ 1 for all ℓ. (61)

Define Mℓ := 1
2ω

hd−2
ℓ I. From lemma 7.4 it follows that there exists a constantcM

independent ofℓ such that‖Mℓ‖2 ≤ cM‖Aℓ‖2. Application of corollary 7.13 proves the
result of the lemma.

We now consider the damped Jacobi method.
Theorem 7.17 Assume that the bilinear form satisfies the usual conditions(22). LetAℓ

be the stiffness matrix in(26) andDℓ = diag(Aℓ). There exist constantsω > 0 and c
independent ofℓ such that the following smoothing property holds:

‖Aℓ(I − ωD−1
ℓ Aℓ)

ν‖2 ≤ c√
ν
‖Aℓ‖2 , ν = 1, 2, . . .

Proof: We use the matrix norm induced by the vector norm‖y‖D := ‖D
1
2

ℓ y‖2 for y ∈
R

nℓ . Note that forB ∈ R
nℓ×nℓ we have‖B‖D = ‖D

1
2

ℓ BD
− 1

2

ℓ ‖2. The inequalities

‖D−1
ℓ ‖2 ≤ c1 h2−d

ℓ , κ(Dℓ) ≤ c2 (62)
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hold with constantsc1, c2 independent ofℓ. Using this in combination with lemma 7.3,
the inverse inequality and the ellipticity of the bilinear form we get, for arbitraryx ∈ R

nℓ :

‖D− 1
2

ℓ AℓD
− 1

2

ℓ x‖2 = max
y∈R

nℓ

〈AℓD
− 1

2

ℓ x,D
− 1

2

ℓ y〉
‖y‖2

= max
y∈R

nℓ

k(PℓD
− 1

2

ℓ x, PℓD
− 1

2

ℓ y)

‖y‖2

≤ c h−1
ℓ max

y∈R
nℓ

|PℓD
− 1

2

ℓ x|1‖PℓD
− 1

2

ℓ y‖L2

‖y‖2

≤ c h
1
2
d−1

ℓ |PℓD
− 1

2

ℓ x|1‖D− 1
2

ℓ ‖2 ≤ c |PℓD
− 1

2

ℓ x|1
≤ c k(PℓD

− 1
2

ℓ x, PℓD
− 1

2

ℓ x)
1
2 = c 〈D− 1

2

ℓ AℓD
− 1

2

ℓ x,x〉 1
2 .

From this and lemma 7.15 it follows that there exists a constant ω > 0 such that

‖I− 2ωD−1
ℓ Aℓ‖D = ‖I− 2ωD

− 1
2

ℓ AℓD
− 1

2

ℓ ‖2 ≤ 1 for all ℓ.

DefineMℓ := 1
2ω

Dℓ. Application of corollary 7.13 with‖ · ‖ = ‖ · ‖D in combination
with (62) yields

‖Aℓ(I − ωhℓD
−1
ℓ Aℓ)

ν‖2 ≤ κ(D
1
2

ℓ ) ‖Aℓ(I −
1

2
M−1

ℓ Aℓ)
ν‖D

≤ c√
ν
‖Mℓ‖D =

c

2ω
√

ν
‖Dℓ‖2 ≤ c√

ν
‖Aℓ‖2

and thus the result is proved.

7.4 Multigrid contraction number

In this section we prove a bound for the contraction number inthe Euclidean norm of the
multigrid algorithm (31) withτ ≥ 2. We follow the analysis introduced by Hackbusch1, 14.
Apart from the approximation and smoothing property that have been proved in the sec-
tions 7.2 and 7.3 we also need the following stability bound for the iteration matrix of the
smoother:

∃ CS : ‖Sν
ℓ ‖2 ≤ CS for all ℓ andν. (63)

Lemma 7.18 Consider the Richardson method as in theorem 7.8 or theorem 7.16. In both
cases(63)holds withCS = 1.
Proof: In the symmetric case (theorem 7.8) we have

‖Sℓ‖2 = ‖I− c0

ρ(Aℓ)
Aℓ‖2 = max

λ∈σ(Aℓ)

∣

∣1 − c0
λ

ρ(Aℓ)

∣

∣ ≤ 1.

For the general case (theorem 7.16) we have, using (61):

‖Sℓ‖2 = ‖I− ωh2−d
ℓ Aℓ‖2 = ‖1

2
I +

1

2
(I − 2ωh2−d

ℓ Aℓ)‖2

≤ 1

2
+

1

2
‖I− 2ωh2−d

ℓ Aℓ‖2 ≤ 1.
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Lemma 7.19 Consider the damped Jacobi method as in theorem 7.9 or theorem 7.17. In
both cases(63)holds.
Proof: Both in the symmetric and nonsymmetric case we have

‖Sℓ‖D = ‖D
1
2

ℓ (I − ωD−1
ℓ Aℓ)D

− 1
2

ℓ ‖2 ≤ 1

and thus

‖Sν
ℓ ‖2 ≤ ‖D− 1

2

ℓ (D
1
2

ℓ SℓD
− 1

2

ℓ )νD
1
2

ℓ ‖2 ≤ κ(D
1
2

ℓ ) ‖Sℓ‖ν
D ≤ κ(D

1
2

ℓ )

Now note thatDℓ is uniformly (w.r.t.ℓ) well-conditioned.

Using lemma 7.3 it follows that forpℓ = P−1
ℓ Pℓ−1 we have

Cp,1‖x‖2 ≤ ‖pℓx‖2 ≤ Cp,2‖x‖2 for all x ∈ R
nℓ−1 . (64)

with constantsCp,1 > 0 andCp,2 independent ofℓ.
We now formulate a main convergence result for the multigridmethod.

Theorem 7.20 Consider the multigrid method with iteration matrix given in (49)and
parameter valuesν2 = 0, ν1 = ν > 0, τ ≥ 2. Assume that there are constantsCA,
CS and a monotonically decreasing functiong(ν) with g(ν) → 0 for ν → ∞ such
that for all ℓ:

‖A−1
ℓ − pℓA

−1
ℓ−1rℓ‖2 ≤ CA‖Aℓ‖−1

2 (65a)

‖AℓS
ν
ℓ ‖2 ≤ g(ν) ‖Aℓ‖2 , ν ≥ 1 (65b)

‖Sν
ℓ ‖2 ≤ CS , ν ≥ 1. (65c)

For anyξ∗ ∈ (0, 1) there exists aν∗ such that for allν ≥ ν∗

‖CMG,ℓ‖2 ≤ ξ∗ , ℓ = 0, 1, . . .

holds.

Proof: For the two-grid iteration matrix we have

‖CTG,ℓ‖2 ≤ ‖A−1
ℓ − pℓA

−1
ℓ−1rℓ‖2‖AℓS

ν
ℓ ‖2 ≤ CAg(ν).

Defineξℓ = ‖CMG.ℓ‖2. From (49) we obtainξ0 = 0 and forℓ ≥ 1:

ξℓ ≤ CAg(ν) + ‖pℓ‖2ξ
τ
ℓ−1‖A−1

ℓ−1rℓAℓS
ν
ℓ ‖2

≤ CAg(ν) + Cp,2C
−1
p,1ξτ

ℓ−1‖pℓA
−1
ℓ−1rℓAℓS

ν
ℓ ‖2

≤ CAg(ν) + Cp,2C
−1
p,1ξτ

ℓ−1

(

‖(I − pℓA
−1
ℓ−1rℓAℓ)S

ν
ℓ ‖2 + ‖Sν

ℓ ‖2

)

≤ CAg(ν) + Cp,2C
−1
p,1ξτ

ℓ−1

(

CAg(ν) + CS

)

≤ CAg(ν) + C∗ξτ
ℓ−1

with C∗ := Cp,2C
−1
p,1(CAg(1) + CS). Elementary analysis shows that forτ ≥ 2 and any

ξ∗ ∈ (0, 1) the sequencex0 = 0, xi = CAg(ν) + C∗xτ
i−1, i ≥ 1, is bounded byξ∗ for

g(ν) sufficiently small.

Remark 7.21 ConsiderAℓ, pℓ, rℓ as defined in (26), (29),(30). Assume that the vari-
ational problem (23) is such that the usual conditions (22) are satisfied. Moreover, the
problem (23) and the corresponding dual problem are assumedto beH2-regular. In the
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multigrid method we use the Richardson or the damped Jacobi method described in sec-
tion 7.3. Then the assumptions(65) are fulfilled and thus forν2 = 0 and ν1 sufficiently
large the multigrid W-cylce has a contractrion number smaller than one indpendent ofℓ.
�

Remark 7.22 Let CMG,ℓ(ν2, ν1) be the iteration matrix of the multigrid method withν1

pre- andν2 postsmoothing iterations. Withν := ν1 + ν2 we have

ρ
(

CMG,ℓ(ν2, ν1)
)

= ρ
(

CMG,ℓ(0, ν)
)

≤ ‖CMG,ℓ(0, ν)‖2

Using theorem 7.20 we thus get, forτ ≥ 2, a bound for thespectral radiusof the iteration
matrixCMG,ℓ(ν2, ν1). �

Remark 7.23 The multigrid convergence analysis presented above assumes sufficient
regularity (namelyH2-regularity) of the elliptic boundary value problem. Therehave been
developed convergence analyses in which this regularity assumption is avoided and anh-
independent convergence rate of multigrid is proved. Theseanalyses are based on so-called
subspace decomposition techniques. Two review papers on multigrid convergence proofs
are Yserentant23 and Xu24. �

7.5 Convergence analysis for symmetric positive definite problems

In this section we analyze the convergence of the multigrid method for the symmetric
positive definite case, i.e., the stiffness matrixAℓ is assumed to be symmetric positive
definite. This property allows a refined analysis which proves that the contraction number
of the multigrid method withτ ≥ 1 (the V-cycle is included !) andν1 = ν2 ≥ 1 pre-
and postsmoothing iterations is bounded by a constant smaller than one independent ofℓ.
The basic idea of this analysis is due to Braess25 and is further simplified by Hackbusch1, 14.

Throughout this section we make the following
Assumption 7.24 In the bilinear formk(·, ·) in (23) we haveb = 0 and the conditions
(22)are satisfied.
Due to this the stiffness matrixAℓ is symmetric positive definite and we can define the
energy scalar product and corresponding norm:

〈x,y〉A := 〈Aℓx,y〉 , ‖x‖A := 〈x,x〉
1
2

A x,y ∈ R
nℓ .

We only consider smoothers with an iteration matrixSℓ = I − M−1
ℓ Aℓ in which Mℓ is

symmetric positive definite. Important examples are the smoothers analyzed in section 7.3:

Richardson method: Mℓ = c−1
0 ρ(Aℓ)I , c0 ∈ (0, 1] (66a)

Damped Jacobi: Mℓ = ω−1Dℓ, ω as in thm. 7.9 (66b)

Symm. Gauss-Seidel: Mℓ = (Dℓ − Lℓ)D
−1
ℓ (Dℓ − LT

ℓ ). (66c)

For symmetric matricesB,C ∈ R
m×m we use the notationB ≤ C iff 〈Bx,x〉 ≤ 〈Cx,x〉

for all x ∈ R
m.

Lemma 7.25 For Mℓ as in(66) the following properties hold:

Aℓ ≤ Mℓ for all ℓ (67a)

∃CM : ‖Mℓ‖2 ≤ CM‖Aℓ‖2 for all ℓ. (67b)
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Proof: For the Richardson method the result is trivial. For the damped Jacobi method

we have ω ∈ (0, ρ(D−1
ℓ Aℓ)

−1] and thusωρ(D
− 1

2

ℓ AℓD
− 1

2

ℓ ) ≤ 1. This yields
Aℓ ≤ ω−1Dℓ = Mℓ. The result in (67b) follows from‖Dℓ‖2 ≤ ‖Aℓ‖2. For the
symmetric Gauss-Seidel method the results (67a) follows from Mℓ = Aℓ + LℓD

−1
ℓ LT

ℓ

and the result in (67b) is proved in (59).

We introduce the followingmodified approximation property:

∃ C̃A : ‖M
1
2

ℓ

(

A−1
ℓ − pℓA

−1
ℓ−1rℓ

)

M
1
2

ℓ ‖2 ≤ C̃A for ℓ = 1, 2, . . . (68)

We note that the standard approximation property (54) implies the result (68) if we consider
the smoothers in (66):
Lemma 7.26 ConsiderMℓ as in (66) and assume that the approximation property(54)
holds. Then(68)holds withC̃A = CMCA.
Proof: Trivial.
One easily verifies that for the smoothers in (66) the modifiedapproximation property
(68) implies the standard approximation property (54) ifκ(Mℓ) is uniformly (w.r.t. ℓ)
bounded. The latter property holds for the Richardson and the damped Jacobi method.

We will analyze the convergence of the two-grid and multigrid method using the
energy scalar product. For matricesB, C ∈ R

nℓ×nℓ that are symmetric w.r.t.〈·, ·〉A
we use the notationB ≤A C iff 〈Bx,x〉A ≤ 〈Cx,x〉A for all x ∈ R

nℓ . Note that
B ∈ R

nℓ×nℓ is symmetric w.r.t. 〈·, ·〉A iff (AℓB)T = AℓB holds. We also note the
following elementary property for symmetric matricesB, C ∈ R

nℓ×nℓ :

B ≤ C ⇔ BAℓ ≤A CAℓ. (69)

We now turn to the two-grid method. For the coarse grid correction we introduce the
notationQℓ := I− pℓA

−1
ℓ−1rℓAℓ. For symmetry reasons we only considerν1 = ν2 = 1

2ν
with ν > 0 even. The iteration matrix of the two-grid method is given by

CTG,ℓ = CTG,ℓ(ν) = S
1
2
ν

ℓ QℓS
1
2
ν

ℓ .

Due the symmetric positive definite setting we have the following fundamental property:
Theorem 7.27 The matrixQℓ is an orthogonal projection w.r.t.〈·, ·〉A.
Proof: Follows from

Q2
ℓ = Qℓ and (AℓQℓ)

T = AℓQℓ.

As an direct consequence we have

0 ≤A Qℓ ≤A I. (70)

The next lemma gives another characterization of the modified approximation property:
Lemma 7.28 The property(68) is equivalent to

0 ≤A Qℓ ≤A C̃AM−1
ℓ Aℓ for ℓ = 1, 2, . . . (71)
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Proof: Using (69) we get

‖M
1
2

ℓ

(

A−1
ℓ − pℓA

−1
ℓ−1rℓ

)

M
1
2

ℓ ‖2 ≤ C̃A for all ℓ

⇔ − C̃AI ≤ M
1
2

ℓ

(

A−1
ℓ − pℓA

−1
ℓ−1rℓ

)

M
1
2

ℓ ≤ C̃AI for all ℓ

⇔ − C̃AM−1
ℓ ≤ A−1

ℓ − pℓA
−1
ℓ−1rℓ ≤ C̃AM−1

ℓ for all ℓ

⇔ − C̃AM−1
ℓ Aℓ ≤A Qℓ ≤A C̃AM−1

ℓ Aℓ for all ℓ.

In combination with (70) this proves the result.

We now present a convergence result for the two-grid method:

Theorem 7.29 Assume that(67a)and(68)hold. Then we have

‖CTG,ℓ(ν)‖A ≤ max
y∈[0,1]

y(1 − C̃−1
A y)ν

=







(1 − C̃−1
A )ν if ν ≤ C̃A − 1

C̃A

ν+1

(

ν
ν+1

)ν
if ν ≥ C̃A − 1.

(72)

Proof: DefineXℓ := M−1
ℓ Aℓ. This matrix is symmetric w.r.t. the energy scalar product

and from (67a) it follows that

0 ≤A Xℓ ≤A I (73)

holds. From lemma 7.28 we obtain0 ≤A Qℓ ≤A C̃AXℓ. Note that due to this, (73) and
the fact thatQℓ is an A-orthogonal projection which is not identically zerowe get

C̃A ≥ 1. (74)

Using (70) we get

0 ≤A Qℓ ≤A αC̃AXℓ + (1 − α)I for all α ∈ [0, 1]. (75)

Hence, usingSℓ = I− Xℓ we have

0 ≤A CTG,ℓ(ν) ≤A (I − Xℓ)
1
2
ν
(

αC̃AXℓ + (1 − α)I
)

(I − Xℓ)
1
2
ν

for all α ∈ [0, 1] , and thus

‖CTG,ℓ(ν)‖A ≤ min
α∈[0,1]

max
x∈[0,1]

(

αC̃Ax + (1 − α)
)

(1 − x)ν .

A minimax result (cf. Sion26) implies that in the previous expression the min and max
operations can be interchanged. A simple computation yields

max
x∈[0,1]

min
α∈[0,1]

(

αC̃Ax + (1 − α)
)

(1 − x)ν

= max
{

max
x∈[0,C̃

−1

A ]
C̃Ax(1 − x)ν , max

x∈[C̃−1

A ,1]
(1 − x)ν

}

= max
x∈[0,C̃

−1

A ]
C̃Ax(1 − x)ν = max

y∈[0,1]
y(1 − C̃−1

A y)ν .
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This proves the inequality in (72). An elementary computation shows that the equality in
(72) holds.

We now show that the approach used in the convergence analysis of the two-grid
method in theorem 7.29 can also be used for the multigrid method.
We start with an elementary result concerning a fixed point iteration that will be used in
theorem 7.31.
Lemma 7.30 For given constantsc > 1, ν ≥ 1 defineg : [0, 1) → R by

g(ξ) =







(1 − 1
c
)ν if 0 ≤ ξ < 1 − ν

c−1

c
ν+1

(

ν
ν+1

)ν
(1 − ξ)

(

1 + 1
c

ξ
1−ξ

)ν+1
if 1 − ν

c−1 ≤ ξ < 1.
(76)

For τ ∈ N, τ ≥ 1, define the sequenceξτ,0 = 0, ξτ,i+1 = g(ξτ
τ,i) for i ≥ 1. The

following holds:

∗ ξ → g(ξ) is continuous and increasing on[0, 1).

∗ For c = C̃A, g(0) coincides with the upper bound in(72).

∗ g(ξ) = ξ iff ξ =
c

c + ν
.

∗ The sequence(ξτ,i)i≥0 is monotonically increasing, andξ∗τ := lim
i→∞

ξτ,i < 1.

∗
(

(ξ∗τ )τ , ξ∗τ
)

is the first intersection point of the graphs ofg(ξ) andξ
1
τ .

∗ c

c + ν
= ξ∗1 ≥ ξ∗2 ≥ . . . ≥ ξ∗∞ = g(0).

Proof: Elementary calculus.

As an illustration for two pairs(c, ν) we show the graph of the functiong in Fig. 9.
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Figure 9. Functiong(ξ) for ν = 2, c = 4 (left) andν = 4, c = 4 (right).
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Theorem 7.31 We takeν1 = ν2 = ν and consider the multigrid algorithm with iteration
matrix CMG,ℓ = CMG,ℓ(ν, τ) as in (49). Assume that(67a)and(68) hold. For c = C̃A,
ν ≥ 2 andτ as in(49) let ξ∗τ ≤ c

c+ν
be the fixed point defined in lemma 7.30. Then

‖CMG,ℓ‖A ≤ ξ∗τ

holds.

Proof: From (49) we have

CMG,ℓ = S
1
2
ν

ℓ

(

I − pℓ(I − Cτ
MG,ℓ−1)A

−1
ℓ−1rℓAℓ

)

S
1
2
ν

ℓ

= S
1
2
ν

ℓ (Qℓ + Rℓ)S
1
2

ν

ℓ , Rℓ := pℓC
τ
MG,ℓ−1A

−1
ℓ−1rℓAℓ.

The matricesSℓ and Qℓ are symmetric w.r.t.〈·, ·〉A. If CMG,ℓ−1 is symmetric w.r.t.
〈·, ·〉Aℓ−1

then from

(AℓRℓ)
T =

[

(AℓpℓA
−1
ℓ−1)(Aℓ−1C

τ
MG,ℓ−1)(A

−1
ℓ−1rℓAℓ)

]T
= AℓRℓ

it follows thatRℓ is symmetric w.r.t.〈·, ·〉A, too. By induction we conclude that for allℓ
the matricesRℓ andCMG,ℓ are symmetric w.r.t.〈·, ·〉A. Note that

0 ≤A Cτ
MG,ℓ−1 ⇔ 0 ≤ Cτ

MG,ℓ−1A
−1
ℓ−1 ⇔ 0 ≤ pℓC

τ
MG,ℓ−1A

−1
ℓ−1rℓ ⇔ 0 ≤A Rℓ

holds. Thus, by induction and using0 ≤A Qℓ we get

0 ≤A Qℓ + Rℓ , 0 ≤A CMG,ℓ for all ℓ. (77)

For ℓ ≥ 0 defineξℓ := ‖CMG,ℓ‖A. Hence,0 ≤A CMG,ℓ ≤A ξℓI holds. For arbitrary
x ∈ R

nℓ we have

〈Rℓx,x〉A = 〈Cτ
MG,ℓ−1A

−1
ℓ−1rℓAℓx,A−1

ℓ−1rℓAℓx〉Aℓ−1

≤ ξτ
ℓ−1〈A−1

ℓ−1rℓAℓx,A−1
ℓ−1rℓAℓx〉Aℓ−1

= ξτ
ℓ−1〈x, (I − Qℓ)x〉A

and thus

Rℓ ≤A ξτ
ℓ−1(I − Qℓ) (78)

holds. DefineXℓ := M−1
ℓ Aℓ. Using (75), (77) and (78) we get

0 ≤A Qℓ + Rℓ ≤A (1 − ξτ
ℓ−1)Qℓ + ξτ

ℓ−1I

≤A (1 − ξτ
ℓ−1)

(

αC̃AXℓ + (1 − α)I
)

+ ξτ
ℓ−1I for all α ∈ [0, 1].

Hence, for allα ∈ [0, 1] we have

0 ≤A CMG,ℓ ≤A (I − Xℓ)
1
2

ν
[

(1 − ξτ
ℓ−1)

(

αC̃AXℓ + (1 − α)I
)

+ ξτ
ℓ−1I

]

(I − Xℓ)
1
2
ν .

This yields

ξℓ ≤ min
α∈[0,1]

max
x∈[0,1]

[

(1 − ξτ
ℓ−1)

(

αC̃Ax + 1 − α
)

+ ξτ
ℓ−1

]

(1 − x)ν .

As in the proof of theorem 7.29 we can interchange the min and max operations in the
previous expression. A simple computation shows that forξ ∈ [0, 1] we have

max
x∈[0,1]

min
α∈[0,1]

[

(1 − ξ)
(

αC̃Ax + 1 − α
)

+ ξ
]

(1 − x)ν

= max
{

max
x∈[0,C̃

−1

A ]

(

(1 − ξ)C̃Ax + ξ
)

(1 − x)ν , max
x∈[C̃−1

A ,1]
(1 − x)ν

}

= g(ξ)
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whereg(ξ) is the function defined in lemma 7.30 withc = C̃A. Thusξℓ satisfiesξ0 = 0
andξℓ ≤ g(ξτ

ℓ−1) for ℓ ≥ 1. Application of the results in lemma 7.30 completes the proof.

The boundξ∗τ for the multigrid contraction number in theorem 7.31 decreases if τ
increases. Moreover, forτ → ∞ the bound converges to the bound for the two-grid
contraction number in theorem 7.29.
Corollary 7.32 ConsiderAℓ, pℓ, rℓ as defined in(26), (29),(30). Assume that the vari-
ational problem(23) is such thatb = 0 and that the usual conditions(22) are satisfied.
Moreover, the problem is assumed to beH2-regular. In the multigrid method we use one
of the smoothers(66). Then the assumptions(67a) and (68) are satisfied and thus for
ν1 = ν2 ≥ 1 the multigrid V-cycle has a contraction number (w.r.t.‖ · ‖A) smaller than
one independent ofℓ. �

8 Convergence analysis for Stokes problems

The multigrid method for the Stokes problem can be analyzed along the same lines as
in section 7.4, i.e., based on a smoothing and approximationproperty. For the Stokes
problem an analysis which proves convergence of the V-cycleis not known. In other
words, results as presented for scalar elliptic problems insection 7.5 are not known for the
Stokes equation.

We briefly outline the convergence results available for multigrid applied to the Stokes
problem. For a detailed treatment we refer to the literature, for example to Verfürth27,
Larin28, Zulehner11. As in section 7 we assume that the family of triangulations{Thℓ

} is
quasi-uniform and thathℓ−1/hℓ is uniformly bounded w.r.t.ℓ. We assumeH2-regularity
of the Stokes problem, i.e., for the solution(~u, p) of (38) we have

‖~u‖H2 + ‖p‖H1 ≤ c‖~f‖L2

with a constantc independent of~f ∈ L2(Ω)d. The finite element spacesVℓ, Qℓ should
have the approximation property

inf
~v∈Vℓ

‖~u − ~v‖H1 + inf
q∈Qℓ

‖p − q‖L2 ≤ c hℓ

(

‖~u‖H2 + ‖p‖H1),

for all ~u ∈ (H2(Ω) ∩ H1
0 (Ω))d, p ∈ H1(Ω) ∩ L2

0(Ω). This holds, for example, for the
Hood-Taylor pair of finite element spaces. LetAℓ be the Stokes stiffness matrix as in (40)
andSℓ the iteration matrix of the smoother. The prolongationPℓ is as in (41). For the
restrictionRℓ we take the adjoint of the prolongation. The iteration matrix of the two-grid
method withν = ν1 pre-smoothing andν2 = 0 post-smoothing iterations is given by

Mℓ = (I − PℓA−1
ℓ−1RℓAℓ)Sν

ℓ .

For the analysis we have to introduce a suitable scaled Euclidean norm defined by
∥

∥

∥

∥

(

uℓ

pℓ

)∥

∥

∥

∥

2

h

:= ‖uℓ‖2 + h2
ℓ‖pℓ‖2 =

∥

∥

∥

∥

Λℓ

(

uℓ

pℓ

)∥

∥

∥

∥

2

with Λℓ :=

(

Inℓ
0

0 hℓImℓ

)

. (79)

Furthermore we introduce the scaled matrices

Ãℓ := Λ−1
ℓ AℓΛ

−1
ℓ =

(

Aℓ h−1
ℓ BT

ℓ

h−1
ℓ Bℓ 0

)

, S̃ℓ := ΛℓSℓΛ
−1
ℓ .
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Using these definitions we obtain

‖Mℓ‖h = ‖Λℓ(A−1
ℓ − PℓA−1

ℓ−1Rℓ)ΛℓΛ
−1
ℓ AℓSν

ℓ Λ−1
ℓ ‖

≤ ‖Λℓ(A−1
ℓ − PℓA−1

ℓ−1Rℓ)Λℓ‖ ‖ÃℓS̃ν
ℓ ‖.

In Larin28 theapproximation property

‖Λℓ(A−1
ℓ − PℓA−1

ℓ−1Rℓ)Λℓ‖ ≤ ch2
ℓ (80)

is proved. In that paper it is also shown (using an analysis along the same lines as in sec-
tion 7.3) that for the Braess-Sarazin method in which the system in (45) is solved exactly,
we have a smoothing property

‖ÃℓS̃ν
ℓ ‖ ≤ ch−2

ℓ

e(ν − 2) + 1
for ν ≥ 2. (81)

In Zulehner11 a smoothing property for the Braess-Sarazin method with aninexact(but
sufficiently accurate) inner solve for the system (45) is proved:

‖ÃℓS̃ν
ℓ ‖ ≤ ch−2

ℓ

ν − 1
for ν ≥ 2. (82)

Combining the approximation property in (80) with the smoothing property (81) or (82)
we obtain a bound for the contraction number of the two-grid iteration matrix:

‖Mℓ‖h ≤ cA

ν − 1
for ν ≥ 2

with a constantcA independent ofℓ andν. Thus we have a two-grid convergence with a
rate independent ofℓ if the number of smoothing iterationsν is sufficiently high. Using
an analysis as in section 7.4 one can derive a convergence result for the multigrid W-cycle
method.

A smoothing property of the form (81), (82) for the Vanka smoother isnot known in
the literature. A theoretical analysis which proves convergence of the multigrid method
with a Vanka smoother for the Stokes equations is not available.
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