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Abstract. We consider a standard model for incompressible two-phase flows in which a localized
force at the interface describes the effect of surface tension. If a level set method is applied then the
approximation of the interface is in general not aligned with the triangulation. This causes severe
difficulties w.r.t. the discretization and often results in large spurious velocities. In this paper we
reconsider a (modified) extended finite element method (XFEM), which in previous papers has been
investigated for relatively simple two-phase flow model problems, and apply it to a physically realistic
levitated droplet problem. The results show that due to the extension of the standard FE space one
obtains much better results in particular for large interface tension coefficients. Furthermore, a
certain cut-off technique results in better efficiency without sacrificing accuracy.
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1. Introduction. We consider a standard model for incompressible two-phase
flows in which a localized force at the interface describes the effect of surface tension.
If a level set method is applied then the interface, which is implicitly given by the
zero level of the level set function, is in general not aligned with the triangulation
that is used in the discretization of the flow problem. This non-alignment causes
severe difficulties w.r.t. the discretization of the localized surface tension force and
the discretization of the flow variables. In cases with large surface tension forces the
pressure has a large jump across the interface. In standard polynomial finite element
spaces the functions may be discontinuous across element sides or faces, but they
are continuous inside the elements. Due to the non-alignment the interface intersects
many elements and thus such finite element functions are not appropriate for the
approximation of the pressure, which is discontinuous across the interface. In many
simulations these effects cause large oscillations of the velocity close to the interface,
so-called spurious velocities.

Extended finite element spaces (XFEM) as presented in [12, 2] allow a much
better (even optimal) approximation of the discontinuous pressure. In the previous
paper [8] we analyzed this XFEM approach for model problems, like for example a
quiescent droplet with surface tension (u = 0 and a piecewise constant pressure). It
was shown both by theoretical analysis and numerical experiments that with an XFEM
discretization the size of spurious velocities can be reduced substantially. In another
paper [17] we derived approximation error bounds for this method and introduced
a variant in which discontinuous basis functions that were originally added in the
extended finite element space are left out if they have a “very small” support. This cut-
off technique leads to a modified XFE space with the same (optimal) approximation
quality as the original XFE space but results in linear systems that are easier to solve.

In the present paper we reconsider this (modified) XFEM approach and apply it
to a physically realistic levitated droplet problem. We do not know of any other liter-
ature in which this type of finite element discretization (with optimal approximation
error properties) is combined with a level set interface capturing technique and applied
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in a three-dimensional simulation of a physically realistic two-phase flow problem. The
results presented in the paper lead to the following two main conclusions. Firstly, the
extension of the standard linear finite element space for the pressure discretization
leads to a significant improvement. This improvement increases for larger interface
tension coefficients. For example, for a toluol-water system we obtain satisfactory
results using the XFE pressure discretization, whereas for the standard linear finite
element pressure space on the same triangulation the simulation does not yield phys-
ically realistic results. Secondly, the use of a cut-off technique in the XFE space, i.e.,
neglecting additional basis functions with “very small” support (as explained below),
significantly improves the converge rates of the iterative solvers used. This cut-off
technique is such that the good (even optimal) discretization quality is maintained.
Thus, we can compute accurate discrete solutions with (much) less computational
costs.

2. Problem formulation. Let Ω ⊂ R3 be a domain containing two different
immiscible incompressible phases. The time dependent subdomains containing the
two phases are denoted by Ω1(t) and Ω2(t) with Ω̄ = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅.
We assume that Ω1 and Ω2 are connected and ∂Ω1 ∩ ∂Ω = ∅ (i. e., Ω1 is completely
contained in Ω). The interface is denoted by Γ(t) = Ω̄1(t)∩Ω̄2(t). The standard model
for describing incompressible two-phase flows consists of the Navier-Stokes equations
in the subdomains with the coupling condition

[σn]Γ = τKn

at the interface, i. e., the surface tension balances the jump of the normal stress on
the interface. We use the notation [v]Γ for the jump of v across Γ, n = nΓ is the unit
normal at the interface Γ (pointing from Ω1 into Ω2), K the curvature of Γ and σ the
stress tensor defined by

σ = −pI + µD(u), D(u) = ∇u + (∇u)T ,

with p = p(x, t) the pressure, u = u(x, t) the velocity and µ the viscosity. We assume
continuity of u across the interface. Combined with the conservation laws for mass and
momentum we obtain the following standard model, cf. for example [15, 16, 22, 21],ρiut − div(µiD(u)) + ρi(u · ∇)u +∇p = ρig in Ωi × [0, T ]

div u = 0 in Ωi × [0, T ]
for i = 1, 2,

(2.1)
[σn]Γ = τKn, [u]Γ = 0. (2.2)

The constants µi, ρi denote viscosity and density in the subdomain Ωi, i = 1, 2, and
g is an external volume force (gravity). To make this problem well-posed we need
suitable boundary conditions for u and an initial condition u(x, 0).

The location of the interface Γ(t) is in general unknown and is coupled to the
local flow field which transports the interface. Various approaches are used for ap-
proximating the interface. Most of these can be classified as either front-tracking or
front-capturing techniques. In this paper we use a level set method [4, 14, 20] for
capturing the interface.

The two Navier-Stokes equations in Ωi, i = 1, 2, in (2.1) together with the inter-
facial condition (2.2) can be reformulated in one Navier-Stokes equation on the whole
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domain Ω with an additional force term localized at the interface, the so called con-
tinuum surface force (CSF) model [3, 4]. Combination of the CSF approach with the
level set method leads to the following model for the two-phase problem in Ω× [0, T ]:

ρ(ϕ)
(∂u
∂t

+ (u · ∇)u
)

= −∇p+ ρ(ϕ)g + div(µ(ϕ)D(u)) + τKδΓnΓ

div u = 0 (2.3)
ϕt + u · ∇ϕ = 0.

This model has to be interpreted in a suitable weak sense. Appropriate initial and
boundary conditions have to be added to make it well-posed. This model is used for
the levitated droplet problem in section 5.

3. An extended FE method for pressure discretization. In this section
we briefly recall the extended FE (XFE) space discussed in [8] and a modified space
presented in [17]. The latter space is used for the discretization of the pressure variable
in our two-phase levitated droplet problem in section 5.

Let Th be a triangulation of the domain Ω consisting of tetrahedra and let

Qh = {q ∈ C(Ω) | q|T ∈ P1 for all T ∈ Th}

be the standard finite element space of continuous piecewise linear functions. We
define the index set J = {1, . . . , n}, where n = dimQh is the number of degrees of
freedom. Let B := {qj}nj=1 be the nodal basis of Qh, i. e. qj(xi) = δi,j for i, j ∈ J
where xi ∈ R3 denotes the spatial coordinate of the i-th degree of freedom.

The idea of the XFEM method is to enrich the original finite element space Qh
by additional basis functions qXj for j ∈ J ′ where J ′ ⊂ J is a given index set. An
additional basis function qXj is constructed by multiplying the original nodal basis
function qj by a so called enrichment function Φj :

qXj (x) := qj(x) Φj(x). (3.1)

This enrichment yields the extended finite element space

QXh := span
(
{qj}j∈J ∪ {qXj }j∈J ′

)
.

This idea was introduced in [12] and further developed in [2] for different kinds of
discontinuities (kinks, jumps), which may also intersect or branch. The choice of the
enrichment function depends on the type of discontinuity. For representing jumps the
Heaviside function is proposed to construct appropriate enrichment functions. Basis
functions with kinks can be obtained by using the distance function as enrichment
function.

In our case the finite element space Qh is enriched by discontinuous basis functions
qXj for j ∈ J ′ = JΓ := {j ∈ J |meas2(Γ ∩ supp qj) > 0}, as discontinuities in the
pressure only occur at the interface. Let d : Ω→ R be the signed distance function (or
an approximation to it) with d negative in Ω1 and positive in Ω2. In our applications
the discretization of the level set function φ is used for d. Then by means of the
Heaviside function H we define

HΓ(x) := H(d(x)) =

{
0 x ∈ Ω1 ∪ Γ,
1 x ∈ Ω2.
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Fig. 3.1. Extended finite element basis functions qi, qΓi (dashed) and qj , qΓj (solid) for 1D case.

As we are interested in functions with a jump across the interface we define the
enrichment function

ΦHj (x) := HΓ(x)−HΓ(xj) (3.2)

and a corresponding function qXj := qj ·ΦHj , j ∈ J ′. The second term in the definition
of ΦHj is constant and may be omitted (as it does not introduce new functions in the
function space), but ensures the nice property qXj (xi) = 0, i.e. qXj vanishes in all
degrees of freedom. As a consequence, we have

supp qXj ⊂
(

supp qj ∩
∪
T∈T Γ

h

T
)
, (3.3)

where T Γ
h = {T ∈ Th |meas2(T ∩ Γ) > 0}. Thus qXj ≡ 0 in all T with T /∈ T Γ

h .
In the following we will use the notation qΓj := qj ΦHj and

QΓ
h := span({qj | j ∈ J } ∪ {qΓj | j ∈ JΓ})

to emphasize that the extended finite element space QΓ
h depends on the location of the

interface Γ. In particular the dimension of QΓ
h may change if the interface is moved.

The shape of the extended basis functions for the 1D case is sketched in figure 3.1.
Note that QΓ

h can also be characterized by the following property: q ∈ QΓ
h if and

only if there exist functions q1, q2 ∈ Qh such that q|Ωi = qi|Ωi , i = 1, 2.
In [17] we derived optimal approximation error bounds, both in the L2- and H1-

norm, for this XFE space. For example, for p ∈ L2(Ω) with p|Ωi ∈ H1(Ωi), i = 1, 2,
we have

inf
qh∈QΓ

h

∥qh − p∥L2 ≤ ch∥p∥1,Ω1∪Ω2 . (3.4)

In [17] we introduced a modified XFE space as follows. We fix a positive constant ĉ
and define Jγ ⊂ JΓ to be the index set such that j ∈ Jγ iff

∥qΓj ∥L2(T ) ≥ ĉh
2 1

2
T for a T ⊂ supp(qj). (3.5)

We define the modified XFE space Qγh ⊂ QΓ
h by

Qγh := span({qj | j ∈ J } ∪ {qΓj | j ∈ Jγ}). (3.6)
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Note that in this space discontinuous basis functions qΓj ∈ QΓ
h with “very small sup-

port” (as quantified in (3.5)) are deleted. The criterion (3.5) is such that for a fixed
ĉ > 0 the optimal approximation result in (3.4) still holds with the space QΓ

h replaced
by the smaller space Qγh, cf. [17]. Furthermore, note that for ĉ = 0 we have Qγh = QΓ

h

and for ĉ→∞ the space Qγh equals the standard space of continuous piecewise linears,
i.e., Qγh = Qh. In our experiments we use ĉ = O(1). An important advantage of the
smaller space Qγh compared to QΓ

h is that the linear systems induced by Qγh turn out
to be easier to solve, cf. section 5.

Remark 1. An interesting (open) problem is the LBB stability of the Vh-QΓ
h

finite element pair (Vh: continuous piecewise quadratics). Numerical experiments
given in [17] indicate that the LBB constant

Ch,LBB = inf
ph∈QΓ

h

sup
v∈Vh

(div vh, ph)L2

∥∇vh∥L2∥ph∥L2
,

is (much) smaller for the standard XFE space QΓ
h as for the modified (smaller) space

Qγh with ĉ = O(1). This implies better stability properties for the space Qγh than for
the original XFE space QΓ

h. A theoretical analysis of this stability issue is still lacking.

Let M be the mass matrix in the space QΓ
h w.r.t. {qj | j ∈ J } ∪ {qΓj | j ∈ JΓ} and

D = diag(M). In [17] it is proved that the spectral condition number of D−1M is
uniformly bounded with respect to both h and the supports of the basis functions qΓj .
This immediately implies a similar result for Qγh.

4. Computational scheme. The main topic of this paper is the use of the
modified XFE space Qγh for the discretization of the discontinuous pressure variable in
two-phase incompressible flow problems. In this section we outline other components
of our solver.

Spatial discretization. The spatial discretization is based on a hierarchy of tetra-
hedral grids. These grids are constructed in such a way that they are consistent (no
hanging nodes) and that the hierarchy of triangulations is stable, [7]. An important
property is that local refinement and coarsening are easy to realize. The finite ele-
ment pair Vh−Qγh, with Vh the space of continuous piecewise quadratics, is used for
velocity and pressure discretization. For discretization of the level set equation we use
piecewise quadratic finite elements combined with the following streamline-diffusion
stabilization. Let Vh be the space of continuous piecewise quadratics and ϕ0,h ∈ Vh
an approximation of the initial condition ϕ0 = ϕ(0). The spatial semi-discretization
reads: Determine ϕh(t) ∈ Vh, t ∈ [0, T ], with ϕh(0) = ϕ0,h and such that∑

T∈Th

(∂ϕh
∂t

+ uh · ∇ϕh, vh + δTu · ∇vh)L2(T ) = 0 for all vh ∈ Vh. (4.1)

The vector field uh ∈ Vh is the finite element approximation of velocity. The value of
the stabilization parameter δT is based on the ansatz δT = chT ∥uh∥−1

L∞(T ) (cf. [18])
and the constant c is chosen such that (for a class of model test problems) one has a
good compromise between stability and consistency.
Laplace-Beltrami discretization of fΓ. In the weak form the localized surface tension
force in (2.3) takes the form

fΓ(v) = τ
∫

Γ
KnΓ · v ds, v ∈ (H1(Ω))3. (4.2)
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An accurate discretization of this force functional is crucial for the quality of the
solver. We use a technique based on a Laplace-Beltrami representation of the cur-
vature K. Here we outline the main idea, further details can be found in [9]. For
the discretization of the functional in (4.2) we make an approximate reconstruction
of the implicitly given zero level of the discrete level set function ϕh. The latter is
a piecewise quadratic function on Th. We introduce one further regular refinement
of Th, resulting in T ′h. Let I(ϕh) be the continuous piecewise linear function on T ′h
which interpolates ϕh at all vertices of all tetrahedra in T ′h. The approximation of the
interface Γ is defined by

Γh := {x ∈ Ω | I(ϕh)(x) = 0 } (4.3)

and consists of piecewise planar segments, which are either triangles or quadrilaterals.
In [13] (Remark 7) it is shown that under reasonable assumptions one has dist(Γ,Γh) ≤
ch2.

Let ∇Γ (∇Γh) be the tangential gradient along Γ (Γh) and ∆Γ := ∇Γ · ∇Γ the
Laplace-Beltrami operator. From differential geometry we have∫

Γ
KnΓ · v ds = −

∫
Γ
(∆Γ idΓ) · v ds =

∫
Γ
∇Γ idΓ ·∇Γv ds, (4.4)

with idΓ the identity Γ → R3, i.e., the coordinate vector on Γ. The scalar product
on the right-hand side denotes the row-wise scalar product followed by summation as
made precise in (4.5) below. Define

ñh(x) := ∇ϕh(x)
∥∇ϕh(x)∥

, P̃h(x) := I− ñh(x)ñh(x)T , x ∈ Γh, x not on an edge.

Based on the result in (4.4) the discrete surface tension functional is given by

f̃Γh(vh) = τ
3∑
i=1

∫
Γh

P̃h(x)ei · ∇Γh(vh)i ds, vh ∈ Vh, (4.5)

with ei the i-th basis vector in R3 and (vh)i the i-th component of vh. The imple-
mentation of this functional requires (numerical) integration of smooth functions over
the planar segments (triangles or quadrilaterals) of Γh. Note that in this approach
there is no numerical regularization (or smoothing) parameter and thus it can be
classified as a “sharp interface” technique. An error analysis for this surface tension
discretization method is given in [9].

Time discretization. For the time discretization we apply an implicit one-step
scheme to the coupled system (2.3). We use a simple θ-scheme (θ = 1: implicit Euler;
θ = 1

2 : Crank-Nicolson). Per time step an iterative fixed point strategy decouples
the discrete system for the level set unknowns from the discrete Navier-Stokes flow
problem.

Reparametrization. For numerical and algorithmic purposes it is advantageous to
keep the level set function close to a signed distance function during the time evolution.
To realize this a reparametrization technique is needed. We apply a variant of the fast
marching method [11, 20]. We outline the main ideas of the method we use. Let ϕh
be a piecewise quadratic finite element function on Th that has to be reparametrized.
The function I(ϕh) is piecewise linear on T ′h and Γh is the zero level of this function,
cf. (4.3). As input for the FMM we need T ′h, the zero level set Γh and sign

(
I(ϕh(v))

)
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for all vertices v in T ′h. We can apply a FMM ([11, 20]) to the linear function I(ϕh),
which results in a reparametrization that is piecewise linear on Th′ . The values at the
vertices in T ′h of this function uniquely define a piecewise quadratic function on Th,
which is is defined to be the reparametrization of ϕh.

Iterative solvers. In each time step a discrete Navier-Stokes problem and a discrete
level set equation must be solved. For the latter we use the GMRES method with a
Gauss-Seidel preconditioner. The discrete Navier-Stokes equation are linearized using
a relaxed defect correction algorithm given in [23]. This linearization results in Oseen
problems of the form (

A BT
B 0

)(
v
q

)
=
(

r1
r2

)
.

For the iterative solution of these Oseen equations we apply the preconditioned gen-
eralized conjugate residual method (GCR), cf. [19]. This Krylov subspace method
allows the use of a variable preconditioner. We use a block-preconditioner of the form

P =
(

QA 0
B QS

)
where QA is a preconditioner of the A-block and QS a preconditioner for the Schur
complement S := BA−1BT . For QA we use one standard multigrid V -cycle iter-
ation for the discrete diffusion-convection-reaction equations in the A-block. For
QS we use a scaled version of the BFBT -preconditioner, which we now explain. In
[6, 5] for discrete problems resulting from Hood-Taylor finite element discretization of
Navier-Stokes equations the following so-called BFBT -preconditioner is introduced
and analyzed:

Q−1
S = (BM−1

V BT )−1BM−1
V AM−1

V BT (BM−1
V BT )−1,

where MV is the diagonal of the mass matrix in the velocity finite element space.
In the application of this preconditioner two systems with the Poisson type matrix
BM−1

V BT have to be solved (approximately). In our applications, instead of the
standard Hood-Taylor pair we use the pair Vh − Qγh, i.e. we use the XFEM space
for pressure discretization. It turns out that, due to basis functions with very small
support, the conditioning of the matrix BM−1

V BT is often extremely bad. This,
however, can be repaired by using a simple rescaling as follows. The matrix Q−1

S can
also be represented as

Q−1
S = M−1/2

Q (B̃B̃T )−1B̃ÃB̃T (B̃B̃T )−1M−1/2
Q

with MQ the diagonal of the pressure- mass-matrix, B̃ := M−1/2
Q BM−1/2

V and Ã :=
M−1/2
V AM−1/2

V . The scaling (and thus the conditioning) of B̃B̃T is much better than
that of BM−1

V BT and the performance of the preconditioner in this form is good.

5. Numerical results. In this section we present results of numerical experi-
ments with the methods described above applied to a realistic two-phase flow problem
modeled by (2.3). We consider a butanol-water and a toluol-water levitated droplet
system. The geometry of the measuring cell in which the droplet is levitated in a
downward going water flow is illustrated in Fig. 5.1. Its dimensions and the initial
triangulation are shown in the figures 5.2 and 5.3, respectively. The z-axis is the
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Fig. 5.1. Measuring cell with levitated toluol droplet in downward flowing water

5.5 mm 7.2 mm

8 mm 21.5 mm
50 mm

Fig. 5.2. Dimensions of the measuring cell

Fig. 5.3. Measuring cell with initial triangulation

butanol-water
µ[Pa · s] ρ[kg/m3]

Ω1 3.28e-3 845
Ω2 1.39e-3 987

toluol-water
µ[Pa · s] ρ[kg/m3]

Ω1 5.96e-4 867
Ω2 1.03e-3 999

butanol toluol
τ 1.63e-3 8.15e-3 32.6e-3

Table 5.1
Material properties
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Fig. 5.4. tetrahedra, which are cut by the y = 0-plane, τ = 32.6e-3 N/m; blue: droplet

symmetry axis, the {z = 0}-plane is located 25 mm from either end. In Figure 5.4
a cross-section of a triangulation in the {y = 0}-plane is shown. We use adaptive
refinement near the interface.

The material properties are given in Table 5.1. The viscosity and density values
in the left table correspond to a butanol (in Ω1)-water (in Ω2) system under standard
conditions. On the right, the properties of the toluol-water system are shown. The
smallest surface tension coefficient in the lower table is for the butanol-water system.
The largest surface tension coefficient in that table corresponds to a toluol-water sys-
tem. Larger surface tension coefficients induce larger localized surface tension forces
which are harder to treat numerically. For all three values of the surface tension
coefficient we keep the same viscosity and density values as given in the left table of
Table 5.1. This in order to limit the number of different parameter values. In numer-
ical experiments we observed that the variation of density and viscosity between the
butanol-water and toluol-water system has only negligible effect on the performance
of the numerical methods used.

The initial and boundary conditions are as follows. On the water inflow boundary
(i.e. on the top) a quadratic velocity-profile with maximal velocity -40e-3 m/s is
prescribed. For τ = 1.63e-3 N/m we use -35 mm/s. Otherwise, the droplet drifts
out of the cell. At the water outflow boundary (z = -25 mm) the natural boundary-
condition µD(u)n − pn = 0 is applied. On the remaining part of the boundary
no-slip conditions for velocity are prescribed. In all experiments the initial velocity
field u(x, 0) is a priori computed by solving a stationary Navier-Stokes problem with
a fixed spherical droplet of radius 1 mm located at z = -6.2 mm. For τ = 1.63e-3 N/m
the droplet is located at z = -10 mm. The initial triangulation, cf. Fig. 5.3, contains
4635 tetrahedra. In the proximity of the interface local refinement is applied to obtain
a local meshsize hΓ = 0.148 mm. The triangulation is changed and adapted to the
moving interface every ten timesteps. In our solver we set parameters as follows.
In the implicit Euler time discretization we use in each time step a weak coupling
such that we only have to solve the discrete Navier-Stokes equations and the level set
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Computed droplets Vh-Qh Computed droplets Vh-Qγh
Fig. 5.5. From top to bottom: interfacial tension τ = 1.63e-3N/m, 8.15e-3N/m, 32.6e-3N/m

equation once per time step. The preconditioned GMRES iteration for the discrete
level set equation is stopped if the relative error of the preconditioned residual is
less than 1e-10. The relaxed defect correction method applied for linearization of the
Navier-Stokes equations is stopped, if the Euclidean norm of the defect is reduced by
a factor of 1e5. For the preconditioned GCR method for solving the Oseen equations
we use a stopping criterion of 0.1 relative to the Euclidean norm of the defect in the
Navier-Stokes solver.
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-0.0072

-0.007

-0.0068
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Vh-Qh
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Fig. 5.6. vertical position [mm] of droplet-barycenter over time [s] for τ = 1.63e-3 N/m

Using these initializations and parameter choices we computed the dynamics of
three levitated droplet systems with material properties given in Table 5.1. We used
both the standard linear finite element space Qh and the modified XFE space Qγh. In
the latter we used the value ĉ = 0.1, cf. (3.5). In all experiments we use piecewise
quadratic finite elements for discretization of the level set function and the approxi-
mate interface is represented by piecewise planar segments (triangles or quadrilaterals)
as defined in (4.3).

Results are shown in Fig. 5.5. We comment on some features of the computed
solutions. For τ = 1.63e-3N/m we obtain a droplet in equilibrium position with both
finite-element types as depicted in the top row of figure 5.5. The surface of the droplet
is visibly smoother for the Vh-Qγh pair. Figure 5.6 shows the vertical position of the
barycenter of the droplet plotted over time. After similar behavior in the first 0.1 s the
droplets evolve differently. The Qh-droplet stabilizes at a vertical position of -7.5 mm,
whereas the Qγh-droplet ascends and stabilizes around -6.35 mm. Currently, there are
no experimental data to verify which position is closer to reality.

For the two higher interfacial tensions we obtain equilibrium positions only with
the Vh − Qγh pair. These are shown in the right column in figure 5.5. Note the
smooth appearance of the droplet surface and the symmetry of the velocity field
around the droplet. The Vh-Qh droplets develop spikes and are transported out of
the measuring cells due to (very) large spurious velocities. For τ = 32.6e-3 N/m the
flow field is severely disturbed. Typical numerical solutions are shown in the left
column in Figure 5.5.

For the case τ = 8.15e-3 N/m the velocity field inside the droplet is shown in
Fig. 5.7.

Stable equilibria are observed in experiments with the toluol-water system, e. g.
[1, 10], where deuterated water was used. The Vh-Qγh simulations match the exper-
imental results (much) better than the Vh-Qh simulations. On the left of Fig. 5.8
the velocity-distribution in the {y = 0}-plane of a levitated toluol-droplet is shown
as measured by a fast NMR-technique, cf. [1]. The inflow velocity is 94 mm/s. On
the right, the simulation of this droplet using the Vh-Qγh-pair is shown. The inflow
velocity is 88 mm/s. The droplet are ellipsoidal. In the {y = 0}-plane we determined
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Fig. 5.7. velocity field, y = 0-plane, τ = 8.15e-3 N/m; left: Vh-Qh, right: Vh-Qγ
h

Fig. 5.8. velocity field, y = 0-plane, toluol-droplet in water left: NMR-image, right: Vh-Qγ
h

-
simulation

the lengths, denoted by a and b, of the principal axes and computed the eccentricity
measure ϵ =

√
1− (b/a)2. The values are ϵ = 0.424 in the NMR-image and ϵ = 0.412

in the simulation. The position of the droplet in the measuring-cell is not known for
the NMR-experiment and therefore we can not compare the locations of the stationary
droplets. Note the presence of a so-called stagnant cap with very low velocities at the
bottom of the NMR-image. This is caused by surface-active agents (surfactants) in
the experimental setup. Surfactants lower the interfacial tension value. To account for
the significant effect of this phenomenon a variable surface tension coefficient τ is used
in the model (2.3). An appropriate model for this variable surface tension coefficient
is not known and therefore it is chosen in simple ad-hoc manner: The stagnant cap
covers the lower 10 percent of the droplet’s height and the value of the surface tension
coefficient is decreased by 5 percent in this area. The numerical simulation of the
model yields the result shown on right in Fig. 5.8. Note the good agreement between
measurement and simulation both in the values for the eccentricity measure ϵ and in
the flow field pattern. The results are obtained using the modified XFE space Qγh.
We were not able to produce reasonable results (on a grid with the same resolution)
when the standard linear finite element space Qh is used for pressure discretization.
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pressure-FE τ NS linearization Precond. GCR
1.63e-3 3.7 16.3

Qh 8.15e-3 4.2 20.6
32.6e-3 6.9 52.4
1.63e-3 3.0 12.0

Qγh 8.15e-3 3.6 21.6
32.6e-3 4.1 33.2

Table 5.2
average iterations per time step (over 10 time steps at the end of the computation)

ĉ NS linearization Precond. GCR
1e-0 4.2 44.1
1e-1 4.3 45.7
1e-2 4.2 45.2
1e-3 5.5 106.0
1e-4 6.5 169.9

Table 5.3
toluol/water: average iterations per time step (over 10 time steps at the beginning of the

computation)

The slight asymmetry of the velocity field in Fig. 5.8 is due to an indiscernible motion
of the droplet to the left.

We now address the effect of the different discretization methods on the behaviour
of the iterative solvers. In table 5.2 the iteration numbers of the relaxed defect
correction linearization method for the Navier-Stokes equations (NS linearization)
and of the preconditioned GCR method used for the Oseen equations are listed. For
all interfacial tensions the iteration numbers of the linearization method are smaller for
XFE than for the standard finite elements. The iteration numbers of the Oseen-solver
are smaller for XFE elements with the exception of the middle interfacial tension,
where they are of comparable size. We conclude, that the iterative solvers are robust
with regard to the type of finite elements used for the pressure and that the better
discretization method leads to lower iteration counts of the iterative solvers. For both
finite-element types there is a dependence on the interfacial tension: Larger values of
τ make the problem more difficult for the iterative solvers.

To demonstrate the effect of the cut-off parameter ĉ from (3.5), we compare the
iteration numbers of the relaxed defect correction linearization method and of the
preconditioned GCR method for different values of ĉ for the toluol-water system in
Table 5.3. For ĉ = O(1) the iteration numbers remain constant. For ĉ below 1e-2
the iteration numbers increase rapidly. The quality of the discrete solution, however,
remains about the same for ĉ ∈ [0, 0.1]. If ĉ ≫ 1 then the Vh-Qγh pair reduces
to the standard P2-P1 Hood-Taylor pair and the performance of linearization and
preconditioned GCR is very similar to that for the case of a one-phase flow Navier-
Stokes problem discretized with the latter pair. For ĉ ≫ 1, however, the quality of
the discretization is (very) poor.

Grid refinement. We repeat the first set of experiments with the most demand-
ing interfacial tension value τ =32.6N/m on a locally refined mesh. The new local
meshsize is h̃Γ = hΓ/2 =0.074mm, the new time step is ∆̃t = ∆t/2 =1e-4s. In Fig.
5.9, we compare the new results (bottom row) with the old results (top row). In
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Computed droplets Vh-Qh Computed droplets Vh-Qγh
Fig. 5.9. Numerical solution: hΓ = 0.148mm, ∆t = 2e-4s (top row), hΓ = 0.074mm, ∆t =

1e-4s (bottom row)

the simulation with the Vh-Qh pair on the finer mesh, the droplet does not become
stationary (bottom left). As on the coarse mesh (top left), the droplet surface devel-
ops spikes and the flow field is severely disturbed. The Vh-Qγh droplet on the finer
mesh (bottom right) shows a smooth surface and a smooth flow field. Contrary to the
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situation on the coarser mesh (top right) the droplet performs an oscillating motion
perpendicular to the symmetry axis of the measuring cell. The amplitude is 0.1mm,
which is five per cent of the droplet diameter. This oscillation induces small oscilla-
tions of the droplet barycenter in the z-direction. A possible explanation comes from
the mesh refinement heuristic, which refines only locally at the interface. The coarse
approximation of the measuring-cell boundary destroys the symmetry property of the
measuring cell. This disturbs the flow field and the droplet behavior. The coarse
mesh simulation cannot resolve this effect.

We finally consider how the mesh refinement affects the iterative solvers. In
Table 5.4 we report the rows for τ =32.6N/m from Table 5.2, recomputed on the finer
mesh. As on the coarse mesh, the iteration numbers of the relaxed defect correction
linearization method for the Navier-Stokes equations are smaller with XFE than with
standard finite elements. The iteration number of the Oseen solver is also smaller
with XFE.

These results on the locally refined mesh confirm the main conclusions drawn in
the other experiments.

pressure-FE τ NS linearization Precond. GCR
Qh 32.6e-3 5.6 31.4
Qγh 32.6e-3 3.3 23.5

Table 5.4
average iterations per time step (over 10 time steps at the end of the computation) fine mesh

Conclusions. Based on these experiments for a physically realistic two-phase
levitated droplet problem we draw the following two main conclusions. Firstly, the
extension of the standard linear finite element space for the pressure discretization
leads to a significant improvement. This improvement increases for larger interface
tension coefficients. For example, for a toluol-water system we obtain satisfactory
results using the XFE pressure discretization, whereas for the standard linear finite
element pressure space on the same triangulation the simulation does not yield phys-
ically realistic results. Secondly, the use of a cut-off technique in the XFE space, i.e.,
neglecting additional basis functions with “very small” support (as explained above),
significantly improves the converge rates of the iterative solvers used. This cut-off
technique is such that the good (even optimal) discretization quality is maintained.
Thus we can compute accurate discrete solutions with much lower computational
costs.
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