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a b s t r a c t

In the present paper freely sedimenting n-butanol droplets in water are simulated by means of

computational fluid dynamics. The finite-element and the extended finite-element methods were

implemented and evaluated. The level-set function is used for capturing the interface movement. The

three-dimensional nonstationary simulations included the stages of droplet acceleration, deformation,

and stability in terms of shape and velocity. The influence of the grid resolution, the computational

domain walls, and the droplet initial velocity was investigated and quantified. The droplet diameters

that were studied spanned the region of spherical, deformed, and oscillating droplets. The simulation

results were compared to experiments and empirical models in terms of droplet shape, oscillation

behavior and terminal velocity, showing good agreement. The extended finite-element method was

found to provide simulation results in better accordance to the experiments and empirical models than

the conventional finite-element method.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The development of a predictive model for liquid–liquid
extraction columns demands detailed study of single droplets.
The most important parameters that need to be investigated are
the mass transfer properties between the two phases and the
droplet sedimentation velocity (Henschke and Pfennig, 1999). The
results of such studies are used for the development of
engineering models that describe the whole extraction process
where millions of droplets are involved (Henschke, 2003; Kalem
and Pfennig, 2007). In order to make the scale-up possible, robust
and accurate models are required. Also, considerable experimen-
tal effort is needed for the accurate measuring of these data.

Early models for calculating the terminal velocity of droplets
moving freely in a liquid continuum assume that the droplet
retains a rigid spherical shape. Attempts to take the droplet shape
and interfacial mobility into account have produced various semi-
empirical formulas and algebraic correlations (Clift et al., 1978;
Levich, 1962; Rose and Kintner, 1966). While very small droplets
can be realistically modelled as hard spheres, bigger droplets
exhibit an internal circulation and, therefore, a mobile interface
has to be taken into account. As the terminal velocity increases

with droplet size, a critical diameter is reached where the drop
gets deformed and flattened and this leads to a higher hydro-
dynamic resistance. Beyond that diameter, the sedimentation
velocity of even bigger oscillating droplets starts to decrease (Hu
and Kintner, 1955). In addition, the interfacial tension influences
the droplet shape (Feigl et al., 2007) and it is thus important to
take the dynamic phenomenon of interfacial movement into
account if an accurate model for the simulation of droplet
sedimentation is to be developed. E.g., Waheed et al. (2004)
conducted two-dimensional axis-symmetrical finite element
simulations of a droplet in an uniform counter-current. The
droplet was of constant spherical shape and the interface was
considered ideally mobile. The sedimentation velocity results for
oscillating droplets exhibited inadequate agreement with the
experimental data for large droplets, indicating that a predictive
method for the sedimentation of single droplets must take a freely
deformable interface into account in order to be realistic.

The literature covering the simulation and modelling of
bubbles and droplets moving in a liquid medium is vast and a
comprehensive review is not the purpose of this article. Results
from the literature that are relevant for the topic addressed in this
paper are briefly discussed below.

In general, free interfacial movement can be simulated by
either ‘‘tracking’’ or ‘‘capturing’’ the interface. In the front-
tracking methods, the interface is explicitly represented by
additional computational elements that follow its movement.
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This is avoided in the front capturing methods where the position
of the interface is represented implicitly using some indicator
function. Noteworthy alternative approaches for interface treat-
ment are the ‘‘phase field’’ or ‘‘diffuse interface’’ method and the
lattice-Boltzmann technique.

Li and Mao (2001) and Li et al. (2003) as well as Mao et al.
(2001) investigated the effect of surfactants on droplets and
bubbles based on the front-tracking method introduced originally
by Ryskin and Leal (1983). Petera and Weatherley (2001) used a
front-tracking method for the two-dimensional axis-symmetrical
system of a falling droplet. Their results for the sedimentation
velocities are in good agreement with the experiments, but only a
small range of dra oplet diameters was investigated in which the
droplets are not expected to exhibit strong interfacial movement
(Mack, 2001). The ‘‘moving grid’’ front-tracking technique was
used by Quan and Schmidt (2006) for the simulation of a liquid
droplet in a gaseous current. An implementation of the ‘‘marker
point’’ front-tracking method (Cristini et al., 1998, 2001) was
compared to experimental results for droplet breakup by Patel
et al. (2003).

The two most popular front-capturing methods used are the
‘‘level-set’’ technique and the ‘‘volume of fluid’’ (VOF) method.
The VOF method, first presented by Hirt and Nichols (1981), was
used by Koebe (2004) to study the behavior of sedimenting
bubbles showing promising results. Renardy et al. (2001)
implemented the VOF method to simulate droplet deformation
and breakup. Gueyffier et al. (1999) compared results obtained
with the VOF method to experimental data and algebraic
correlations for sedimenting bubbles and droplets showing good
agreement.

The level-set function, proposed by Osher and Sethian (1988),
was implemented by Sussman et al. (1994) for two-dimensional
droplet simulations with a finite interface thickness. Although
they report good numerical convergence properties and realistic
results for both small droplets with high interfacial tension and
big droplets with low interfacial tension, they do not compare
their results to experimental data. The level-set function has also
been used by Deshpande and Zimmerman (2006) for two-
dimensional simulations of mass transfer between sedimenting
droplets and continuous phase for low Reynolds numbers
(Reo3). Yang and Mao (2005) and consequently Wang et al.
(2008) simulated the mass transfer between droplet and con-
tinuous phase in two dimensions using the level-set method. The
simulation results show good agreement with the experiments,
but were limited to droplets with diameter smaller than 2 mm.
Pillapakkam and Singh (2001) also performed simulations with
the level-set technique for droplets subjected to shear flows and
sedimenting bubbles.

A hybrid between the front-capturing and the front-tracking
methods is proposed by Tryggvason et al. (2001) and implemen-
ted by Muradoglu and Tryggvason (2008) for rising bubbles. The
results were compared to experimental data showing good
agreement for both pure and surfactant-contaminated systems.
In order to combine the advantages and eliminate the weaknesses
of the VOF and the level-set methods, it is possible to couple them
as shown by Yang et al. (2006) and Sussman et al. (2007). In the
latter article there is also a comparison of the simulation results
with experimental data for rising bubbles exhibiting good
accuracy.

Amongst the experimental approaches to the problem,
Wegener et al. (2007a) measured the velocity of buoyancy-driven
toluene droplets rising in an aqueous continuum as a function of
time. The corresponding numerical investigations (Wegener et al.,
2007b), however, assume a spherical droplet of constant shape
and were constrained to a single droplet diameter. Dehkordi et al.
(2007) studied the sedimentation of n-butanol droplets under

mass transfer conditions with and without surfactants. Alves et al.
(2005) applied the stagnant-cap model on experimentally
obtained terminal velocity values of air bubbles rising in water
in order to take the effect of bubble contamination on rise velocity
and mass transfer into account. Large droplets that are important
in engineering applications were studied experimentally by
various authors (Hendrix et al., 1967; Mekasut et al., 1979;
Steiner et al., 1990). Based on the experimental results these
papers also treat modelling issues. Early experimental investiga-
tions concerning the shape of rising droplets and a qualitative
comparison to numerical calculations was performed by Koh and
Leal (1990) as well as by Noh et al. (1993).

Although some of the aforementioned works do include
qualitative or even quantitative comparisons of the simulations
to experimental data, these are rather limited (e.g., only two-
dimensional simulations; only small droplets). To our knowledge
there is no study in the literature where the sedimentation
velocity of a real liquid–liquid extraction system is accurately
simulated with a freely movable interface for a wide spectrum of
droplet diameters that also covers the oscillating region. Further-
more, a systematic comparison to experimental results is
necessary in order to establish the numerical technique as
trustworthy for engineering applications. The focus of this study
is to fill this gap, thus establishing a solid simulation tool in which
models that describe other single-droplet phenomena, like mass
transfer and surfactant influence, can be safely implemented.

2. Experimental investigations

For the sedimentation velocity measurements a standard
sedimentation apparatus is used (Henschke, 2003; Gross-Hardt
et al., 2002). A drawing of the sedimentation apparatus can be
seen in Fig. 1. The droplets are generated through a nozzle
submerged in a cylindrical cell that contains the continuous
phase. The droplet generation was controlled by a Hamilton
‘‘Microlab M’’ syringe dosimetry pump. The droplet size was
determined by the liquid volume discharged by the pump that
was set as a free variable. Thus, from the known droplet volume
the diameter of the respective sphere was calculated, that is used
in this work to express droplet size. For each drop volume the
nozzle was chosen from a set of nozzles with different inner

Fig. 1. Drawing of experimental setup.
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diameters such that clean detachment of the drop from the tip of
the nozzle was achieved.

The cell is 40 mm in diameter and 500 mm in height and has a
marked measuring region 100 mm in length. Upon generation, the
droplet is given about 12 cm acceleration distance in order to
reach its terminal velocity and its position is monitored using a
camera recording 30 frames per second. The amount of frames
recorded from the time the droplet enters the measuring region to
the time of exit, delivers the droplet travel time for the given
distance. From these data the terminal rise velocity of the droplet
is calculated (Paesch, 1998). For every droplet diameter two series
of measurements were performed. In each of the two series, 20
droplets were generated separated by 3 s time-intervals. The
average amount of frames of all droplets is used to calculate the
sedimentation velocity for that diameter. In a batch of 20 droplets,
the maximum deviation of a single measurement from the
average was found to be no greater than 3 frames, i.e. 0.1 s,
whereas the maximum deviation between two measurements
was no greater than 4 frames. The averages of the two series were
also in good agreement, presenting a deviation of maximum 1
frame.

The measuring cell and the nozzle were cleaned using
chromosulfuric acid, and then washed with bidistilled water
and acetone. The dosimetry syringe, as well as the PTFE tubings
that were used, were cleaned with acetone and then dried. An
additional washing step was performed using the same organic
solvent that was also used in the dispersed phase.

In this paper, the solvent extraction standard-test system of n-
butanol droplets sedimenting in water is considered (Misek et al.,
1985). The physicochemical data of the mutually saturated
continuous and dispersed phase are given in Table 1. The water
used was deionized and bidistilled. The n-butanol was of
analytical grade provided by Merck Germany. The temperature
of the measurements was 29370:5 K. The droplet diameters
range in the experiments from 1.56 to 3.48 mm. The
measurement error of the droplet terminal velocity increases as
the sedimentation speed rises. The relative errors in this work
vary from 1.5% for the slowest droplet to 2.1% for the fastest one.
The experimental error in determining the droplet diameter
decreases as the droplet volume increases. The droplet diameter
error in this work varies from 70:1 mm for the smallest droplet
to 70:05 mm for the biggest one.

3. Evaluation with semi-empirical models

For the validation of the experimental as well as the simulation
results two empirical criteria are used, as well as one semi-
empirical model. The purpose of these comparisons is to evaluate
the agreement of the measured and the calculated data to the
existing models and experimental observations. The two empiri-
cal criteria provide qualitative information as to the droplet shape
and mobility. The semi-empirical model describes the droplet
sedimentation velocity as a function of material data alone, thus
providing a quantitative measure of the simulation result validity.

The first criterion was presented by Clift et al. (1978) and
consists of a diagram correlating the shape of droplets rising or
falling freely in infinite media to the Reynolds (Re), Eötvös (Eo),
and Morton (Mo) numbers:

Re¼
vseddrc

mc

ð1Þ

Eo¼
d2gDr
s ð2Þ

Mo¼
m4

c gDr
r2

cs3
ð3Þ

Dr¼ jrc�rdj ð4Þ

where d is the droplet diameter, vsed is the droplet sedimentation
velocity, r is the density, m is the dynamic viscosity, s is the
interfacial tension, g is the gravitational acceleration and the
subscripts c and d indicate the continuous and the dispersed
phase, respectively. The Reynolds and Eötvös numbers are used to
correlate the droplet shape with droplet characteristics like
sedimentation velocity and diameter. The Morton number is
independent of these droplet characteristics, and is therefore
constant for the given binary material system. In this work the
Morton number equals Mo¼ 1:22� 10�6, and according to Clift
et al. (1978), droplets with Reo25, Eoo0:8 and thus dr1:0 mm,
are expected to be spherical, whereas droplets beyond these
limits are expected to be ellipsoidal. The diagram of Clift et al.
(1978) is considered a standard reference for predicting the shape
of fluid particles, and has been found to agree well with CFD
simulations also by other authors (Smolianski, 2005).

The second criterion is described by Mack (2001) and is used to
categorize the droplets according to their diameter in rigid,
circulating, or oscillating droplets. The categorization is per-
formed according to the following relations:

circulating droplets :
1:83

Mo0:275
rArr

391

Mo0:275
ð5Þ

oscillating droplets :
391

Mo0:275
rArr

1:31� 104

Mo0:275
ð6Þ

Ar¼
d3grcDr

m2
c

ð7Þ

Ar is the Archimedes number, which in the experiments in this
paper ranges from 2690 to 29 864. From these equations, the
droplet state can be predicted depending on the droplet diameter.
For the system used in this work it is found that droplets with
0.48 mm rdr2:85 mm according to this criterion should have
an internal circulation. Smaller droplets are rigid and spherical,
whereas bigger droplets exhibit an oscillating behavior.

Henschke (2003) derived a set of model equations for scale-up
calculations of extraction columns that allows the droplet
sedimentation velocity to be described as a function of droplet
diameter that is continuous over the whole diameter range. The
model is based on the physicochemical properties of the system
and contains three adjustable parameters that can be fitted to
experimental data.

In the derivation of this model, existing equations, like those
found e.g. in Brauer (1973) and Modigell (1981), were compared
to experimental data and improved with the help of two-
dimensional CFD simulations (Haas et al., 1972; Henschke et al.,
2000; Waheed, 2001). The new correlated equations were valid
for spherical droplets with either a rigid or an ideally mobile
interface. The sedimentation velocity of indented and oscillating
droplets was calculated according to Clift et al. (1978) and Maneri
(1995), respectively. Additional equations and parameters were

Table 1
Physicochemical data of the mutually saturated phases of n-butanol and water.

Property Phase

Aqueous Organic

Density ðkg=m3Þ 986.51 845.44

Viscosity m ð10-3 Pa sÞ 1.39 3.28

Interfacial tension s (mN/m) 1.63

E. Bertakis et al. / Chemical Engineering Science 65 (2010) 2037–2051 2039
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used to describe the transitions between the regions of rigid,
circulating, indented, and oscillating droplets, as well as to
combine all the equations in a continuous function.

The Reynolds number of spherical droplets with a rigid
interface that do not exhibit an internal circulation is calculated
by the following equations (Henschke et al., 2000):

Rerigid ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ar

3CD;rigid

s
ð8Þ

CD;rigid ¼
432

Ar
þ

20

Ar1=3
þ0:51

Ar1=3

Ar1=3
þ140

ð9Þ

where CD;rigid is the drag coefficient of the droplet. The Reynolds
number of spherical droplets with an ideally mobile interface, and
therefore an ideal internal circulation, is calculated from the
following equation:

Recirc ¼
Ar

12ð0:065Arþ1Þ1=6
ð10Þ

For taking into account the extent of interfacial mobility, and thus
the transition from rigid to ideally circulating spherical droplets,
the Hadamard–Rybczynski factor KHR (Levich, 1962) was cor-
rected using the following equation:

fcirc ¼ 1�
1

1þðd=p1Þ
10

ð11Þ

that includes parameter p1 of the model to represent this
transition. The corrected Hadamard–Rybczynski factor KHR

0 is
calculated as

KHR
0 ¼

3ðmcþmd=fcircÞ

2mcþ3md=fcirc
ð12Þ

The Reynolds number of spherical droplets in between the two
boundary states of rigid and ideally circulating interface is given
by

Reshpere ¼ ð1�fcirc
0 ÞRerigidþ fcirc

0 Recirc ð13Þ

fcirc
0 ¼ 2ðKHR

0 �1Þ ð14Þ

Thus, the terminal velocity of spherical droplets, that is corrected
according to their interfacial mobility, is given by

vsphere ¼
mcResphere

drc

ð15Þ

The velocity of deformed droplets is calculated by the empirical
equation

vdef ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
dgDr
2rc

s
ð16Þ

Likewise, for oscillating droplets, the equation used is

vos ¼

ffiffiffiffiffiffiffiffiffiffiffi
2p2s
drc

s
ð17Þ

where parameter p2 of the model is used to determine the
velocity of droplets in that region. At this point, it is interesting to
note that the velocity of deformed droplets increases with
increasing droplet diameter, while the velocity of oscillating
droplets decreases with increasing droplet diameter. The transi-
tion from oscillating to deformed droplets is expressed through
the combination of the two respective velocities:

vdef ;os ¼ ðv
a
def þvaosÞ

1=a
ð18Þ

where a¼ 8 was chosen empirically in previous work (Henschke,
2003). Finally, the sedimentation velocity of the droplet is
calculated by combining the velocities of spherical, deformed,

and oscillating droplets in the equation:

vsed ¼
vdef ;osvsphere

ðvp3

def ;osþvp3

sphereÞ
1=p3

ð19Þ

that includes parameter p3 of the model that represents the
transition from the viscous force dominated region to the surface
force dominated region with increasing droplet diameter.

As an alternative to fitting the first parameter to experimental
data, it can be set to a value tending either to zero or to infinity.
The curves that are obtained for these two boundary values
represent the behavior of droplets with either an ideally mobile or
a rigid interface, respectively. For a system free of surface-active
impurities, that can have a significant effect on interface mobility
and droplet shape, the CFD-implementation of a free surface
model like the level-set function, should provide results that come
close to the model curve representing the ideally mobile droplet
interface.

In Fig. 2 the model fit to the experimental data is shown
together with the model lines representing the ideally mobile and
the rigid droplet interface. The fitted values of the parameters
were p1 ¼ 1:63 mm, p2 ¼ 3:76, and p3 ¼ 2:98, and, as can be seen in
Fig. 2, the model presents a good fit to the experimental data.
Model parameter p1 influences the initial slope of the curve for
small diameters, representing the change from rigid to circulating
droplets. The shape of the sedimentation curve peak is influenced
by parameter p3 that represents the change from circulating to
oscillating droplets. The vertical position of the plateau after the
peak is influenced by parameter p2. Vertical lines indicate the
different regions of rigid droplets, circulating droplets and
oscillating droplets according to relations (5) and (6). The
vertical line separating the regions of circulating and oscillating
droplets almost coincides with the peak of the model curve that is
fitted to the experimental data. This fact indicates the agreement
between the experiments and the empirical criterion presented
above (Mack, 2001) as to where the hydrodynamic resistance due
to droplet deformation becomes more significant than the
buoyancy force, thus leading to a decay of sedimentation
velocity with increasing droplet size. The experimental results
are included in the data summary given in Table 2.

4. Numerical simulation

For the numerical simulation of the sedimenting droplet the
custom-made three-dimensional finite element package DROPS
(Gross et al., 2002, 2006) is used. The code is written in Cþþ and
is also used in other applications such as heat transfer and flow
problems in falling films (Gross et al., 2005). In Sections 4.1 and
4.2 some of the numerical methods and modules implemented in
DROPS are briefly discussed. For a more detailed description see
Gross et al. (2006) and the DROPS internet homepage (Reusken
et al., 2009). As the simulation of three-dimensional two-phase
flow problems has a very high numerical complexity, most parts
of the code have been parallelized. A few parallelization issues are
addressed in Section 4.4.

4.1. Model for two-phase flows

For the modelling of a two-phase droplet problem the two
phases O1 (droplet) and O2 (continuous phase) are assumed to
behave like incompressible immiscible Newtonian fluids. Con-
servation of mass and momentum yields the incompressible
Navier–Stokes equations in each phase with a free boundary
condition at the interface G¼GðtÞ ¼ @O1, where the standard
assumption is made, that surface tension balances the jump of the
normal stress on the interface and the normal and tangential

E. Bertakis et al. / Chemical Engineering Science 65 (2010) 2037–20512040
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velocities are continuous at the interface, i.e.,

½r � n�G ¼ skn; ½u�G ¼ 0

Here n¼ nG is the unit normal at the interface (pointing from O1

in O2), s the surface tension coefficient, k the curvature of G and r
the stress tensor, i.e.,

r¼�pIþmDðuÞ; DðuÞ ¼ruþðruÞT

with p¼ pðx; tÞ the pressure, u¼ uðx; tÞ the velocity vector and m
the dynamic viscosity.

This model for a two-phase incompressible flow problem is
often used in the literature. The effect of the surface tension can
be expressed in terms of a localized force at the interface, cf. the
so-called ‘‘continuum surface force’’ (CSF) model (Brackbill et al.,
1992; Chang et al., 1996). This localized force is given by

fG ¼ skdGnG

Here dG is a Dirac d- function with support on G. This localization
approach can be combined with the level-set method for
capturing the unknown interface. Here the main idea is outlined,
for a detailed treatment see Chang et al. (1996). The level-set
function, denoted by f¼fðx; tÞ, is a scalar function with fðx; tÞo0
for xAO1ðtÞ, fðx; tÞ40 for xAO2ðtÞ and fðx; tÞ ¼ 0 for xAGðtÞ.
Hence, the interface is implicitly given by the zero-level of the
level-set function. For the advection of the interface the linear

hyperbolic level-set equation ftþu � rf¼ 0 for tZ0 and xAO is
introduced. The jumps in the coefficients r and m can be described
using the level-set function in combination with the discontin-
uous Heaviside function H

rðfÞ :¼ r1þðr2�r1ÞHðfÞ

mðfÞ :¼ m1þðm2�m1ÞHðfÞ ð20Þ

where HðfÞ ¼ 0 for fo0 and HðfÞ ¼ 1 for f40. Combination of
the CSF approach with the level-set method leads to the following
model for the two-phase problem in O� ½0; T�:

rðfÞ @u

@t
þðu � rÞu

� �
¼�rpþrðfÞgþdivðmðfÞDðuÞÞþskdGnG

ð21Þ

div u¼ 0 ð22Þ

ftþu � rf¼ 0 ð23Þ

together with suitable initial and boundary conditions for u and
f. This is the continuous problem that is used to model the two-
phase problem. It is also used in, for example, Chang et al. (1996),
Pillapakkam and Singh (2001), Sussman et al. (1999) and
Tornberg and Engquist (2000).

Relying only on the advection equation (23) for the evolution
of the level set function is not enough, since it would degenerate
over time. This affects the treatment of the discontinuities and the
refinement of the interfacial region. To avoid this undesirable
behavior a reparametrization scheme for the level-set function
was implemented such that f remains close to a signed distance
function. Moreover, this reparametrization is used to smooth the
level-set function close to the interface and thus stabilize its
evolution. A common problem with the level-set function is that
mass conservation is not inherently included in the formulation.
In general the volume of the droplet will shrink with time. This
numerical loss of volume, however, reduces if a finer grid is used.
An interface shift is applied to compensate for the volume loss
(Gross et al., 2006). An alternative approach for obtaining better
mass conservation, based on a suitable source term in the
transport equation for f, is given in Zimmerman (2006).

Fig. 2. Experimental data and sedimentation curves of the Henschke (2003) model.

Table 2
Sedimentation velocities and dimensionless numbers for all studied n-butanol

droplets in continuous water phase.

d (mm) vsed (mm/s) Re Eo Ar

1.0 (*) 27.6 19.6 0.85 709

1.5 (*) 44 46.9 1.91 2392

1.56 45 49.9 2.07 2690

1.79 52 66.2 2.72 4064

2.0 (*) 57 81.0 3.40 5669

2.12 59 88.9 3.82 6752

2.26 61 98.0 4.34 8180

2.48 63 111.0 5.22 10 808

3.0 (*) 60 127.9 7.64 19 132

3.06 62 134.8 7.95 20 303

3.48 58 143.5 10.3 29 864

4.0 (*) 55 156.4 13.6 45 351

The asterisk (*) is used to denote the simulated data.

E. Bertakis et al. / Chemical Engineering Science 65 (2010) 2037–2051 2041
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4.2. Discretization

The spatial discretization is based on a multilevel hierarchy of
tetrahedral grids. The initial tetrahedral triangulation of the
computational domain O used in the simulations is shown in
Fig. 3, where the initial droplet position can also be seen. An
adaptive refinement algorithm (Gross and Reusken, 2005) has
been implemented which allows for a high grid resolution close to
the interface where most of the interesting phenomena occur. As
time evolves the grid is updated by refinement and coarsening to
adapt it to the new position of the drop, cf. Fig. 4.

At the initialization of the simulation, the droplet is centrally
placed slightly above the bottom of an orthogonal computational
domain. The domain dimensions were set depending on the
droplet diameter so that the walls are at a relatively safe distance
from the droplet interface (see Section 5.1.5 for a discussion on
the issue). A no-slip boundary condition is applied on the domain
wall. Depending on the droplet diameter, the domain height is
chosen such that during the simulation the droplet moves
approximately through half the domain height. Due to this, the
effect of the upper domain wall can be neglected. The mesh size
close to the droplet interface is gradually decreased. The mesh
size in the vicinity of the interface is directly related to the

number of (local) refinement levels. In a refinement step a marked
tetrahedron is divided into eight new elements. In a subsequent
grid closure step ‘‘hanging nodes’’ are eliminated. The refinement
algorithm is such that the hierarchy of tetrahedral triangulations
is stable, i.e., strongly deteriorated tetrahedra with very small
angles do not occur. The range around the droplet interface where
the local refinement is applied is set using a simulation
parameter. In our applications this parameter has a value of
approximately the droplet radius. In the discussion below the
grid resolution is characterized by the mesh size of the
elements close to the droplet interface. The number of
refinement levels has a considerable impact on the simulation’s
duration. Using an AMD Athlon 64 X2 4200þCPU with 3 GB of
memory, the time needed to perform the simulations presented in
this work ranged from 2 days for simulations with relatively
coarse grids and small domains, to 5 days for simulations with
fine grids and large domains. During the simulation, the droplet
speed was monitored, and the simulation was run until the
droplet reached a state where either the rise velocity was
constant, or it constantly oscillated around a stable value (as
presented in Section 5).

For discretization of the flow variables and of the level-set
function a finite-element approach is used (Gross et al., 2002). For
the spatial discretization of the velocity u and pressure p the LBB-
stable Hood–Taylor P2�P1 finite-element pair is used. The level-
set function f is discretized by continuous piecewise quadratic
finite elements. The finite-element method for the level-set
advection equation (23) is stabilized by a standard streamline
diffusion technique (Roos et al., 1996).

For the finite element discretization of the Navier–Stokes
equations, integrals over tetrahedra T have to be evaluated,
having discontinuous integrands (due to r;m) if T is cut by G. Note
that in such a case we do not apply any smoothing (e.g., by
replacing H in Eq. (20) by a smoothed Heaviside function He), but
integrate over the parts Oi \ T; i¼ 1;2, where the integrands are
continuous and thus standard quadrature rules can be applied.
Thus our approach is a ‘‘sharp interface method’’. For this one
needs an approximation Gh of the zero level of the level set
function f. This approximation is constructed by replacing the
piecewise quadratic finite element approximation fh of f by a
piecewise linear function ~fh on a refined mesh (fh and ~fh have
the same values at all vertices of the refined mesh). The piecewise
planar zero level of ~fh, which can easily be determined, yields the
approximate interface Gh.

For the numerical treatment of the surface force term fG a
modified Laplace–Beltrami technique is applied to avoid an
explicit computation of the curvature which would involve the
approximate evaluation of second order derivatives. As the force
is only localized at the interface G, its weak formulation is
evaluated as a surface integral on Gh. More details concerning the
interface approximation and discretization of the surface-force
term can be found in Gross and Reusken (2007b).

Fig. 3. Computational domain and initial grid for a droplet with diameter of

1.0 mm.

Fig. 4. Evolution of the grid with droplet movement.
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For the numerical time integration the fractional step y-
scheme (Bristeau et al., 1987) is applied. This method has second
order accuracy and is strongly A-stable. In each time step a quasi-
stationary coupled system of Navier–Stokes and level-set equa-
tions has to be solved. This coupling and the nonlinearity of the
Navier–Stokes problem are treated by an outer Picard iteration.
The remaining linear Oseen problems are solved by a precondi-
tioned Krylov subspace solver (GCR) or an inexact Uzawa
iteration. For the preconditioning of the diffusive part of the
operator Krylov subspace methods or multigrid solvers are used.
The level-set equation is solved by a preconditioned GMRES
solver.

4.3. The XFEM space

In actual engineering applications of liquid–liquid droplet
dispersions, often the surface tension is a driving force for the
flow problem. In such cases there is a relatively high pressure
jump across the interface.

The interface, which is implicitly given by the zero level of the
level-set function, is in general not aligned with the triangulation
that is used in the discretization of the flow problem. This non-
alignment causes severe difficulties with respect to the discreti-
zation of the localized surface-tension force and the discretization
of the pressure variable, which is discontinuous across the
interface. In standard finite-element spaces the functions used
for discretization are either continuous or discontinuous across
element borders, but in general (due to non-alignment) contin-

uous across the interface, and thus not very suitable for the
approximation of the discontinuous pressure. In many simula-
tions these effects cause strong unphysical oscillations of the
velocity vector at the interface, the so-called ‘‘spurious velocities’’.
These spurious velocities can be avoided to a large extent if in
addition to the modified Laplace–Beltrami discretization that is
used for the surface tension force, an ‘‘extended finite-element’’
(XFEM) space is implemented for the discretization of the
pressure.

For the construction of the XFEM space we first consider the
standard finite element space Qh of piecewise linear functions and
q1; . . . ; qnAQh its nodal basis functions with n :¼ dim Qh. Let
IG � f1; . . . ;ng be the set of indices associated to the tetrahedra
intersected by G. For each of these indices iAIG, an additional
basis function qGi is introduced which is discontinuous at the
interface:

qGi ðxÞ :¼ qiðxÞ � ðHGðxÞ�HGðxiÞÞ; xAO

with HGðxÞ ¼ 0 for xAO1 and HGðxÞ ¼ 1 for xAO2. Then the
pressure XFEM space QG

h is defined by the span of
fqig

n
i ¼ 1 [ fq

G
i giAIG . Hence, the XFEM space consists of all functions

which are piecewise linear on each of the subdomains O1;O2,
respectively, but may have a jump across the interface. This
favorable property can be seen in Fig. 5, where the
approximations of the pressure jump of a static droplet due to

surface tension is shown for the standard FEM space Qh and the
XFEM space QG

h . The XFEM approach was originally introduced
and applied to fracture mechanics in Moës et al. (1999), a related
work is Hansbo and Hansbo (2004). For more details regarding the
pressure XFEM space for two-phase flow problems see Gross and
Reusken (2007a) and Reusken (2008).

In this paper, two versions of the DROPS CFD-package are
considered: one based on the standard finite-element space
(P2�P1) and one using the new XFEM approach for the pressure
variable.

4.4. Parallelization

To achieve a higher accuracy with a DROPS simulation, the
computational grid can be locally refined in the domain of
interest, i.e. close to the interface. Still for three-dimensional
simulations with a high grid resolution the storage requirements
and computation time may easily exceed the capacity of a serial
processor. For being able to handle such big computational
problems in an acceptable time, the computations must be done
on a high performance computer. A shared memory paralleliza-
tion with OpenMP has been implemented, see Terboven et al.
(2005) for results. Another strategy is to use multiple processes,
where ‘‘process’’ means a computing unit with its own memory
(called ‘‘distributed memory’’). A distributed-memory paralleliza-
tion of DROPS is under development using MPI (Walker and
Dongarra, 1996) to handle the communication and synchroniza-
tion of processes. This parallelization applies the following
domain decomposition approach. Applying a suitable load
balancing strategy, the tetrahedra of the finest level of the grid
hierarchy are distributed among the processors resulting also in a
distribution of the velocity, pressure and level-set unknowns.
After grid refinement/coarsening a load redistribution is per-
formed. The standard finite-element (P2�P1) discretization of the
Navier–Stokes equations and of the level-set equation have an
inherent data locality property and thus are relatively easy to
parallelize. For solving the discrete systems, parallel precondi-
tioned Krylov subspace methods are implemented. The parallel
iterative methods use techniques for reducing the number of
synchronization points in each iteration. Unfortunately, a parallel
implementation of the XFEM-discretization is not available, yet.
Compared to the standard finite-element method this method is
more difficult to parallelize since the extended finite-element
space changes depending on the dynamics of the interface. Since
this XFEM method turns out to be very important for accurate
numerical simulations (as is shown in Section 5) the numerical
simulations were performed on a serial computer.

5. Numerical experiments for code validation

In this section the influence of the simulation parameters like
mesh size and computational domain size are discussed. The

Fig. 5. Finite element approximation of pressure jump: left ph AQh (standard FEM), right ph AQG
h (XFEM).
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findings are used in order to discriminate amongst the calcula-
tions those that provide the most valid results. The results of
these simulations are then evaluated according to the three
criteria discussed in Section 3. The simulation results are realized
as the calculated droplet position for every simulation time step,
from which the corresponding droplet velocities can be calculated
by numerical differentiation. If these velocities are plotted versus
time, a velocity plateau is eventually reached that indicates the
steady-state sedimentation velocity (vsed) for the given configura-
tion.

The droplet diameters considered in this work range from 1 to
4 mm. The Re, Eo and Ar numbers for all the droplets studied, both
experimentally and numerically, can be seen in Table 2. In Fig. 6
the shapes of droplets with different diameters are displayed as a
function of time. The results are in qualitative agreement with the
empirical correlations discussed in Section 3. The smallest droplet
with d¼ 1 mm exhibits a constant spherical shape, whereas
slightly bigger droplets of d¼ 1:5 and 2:0 mm obtain an
ellipsoidal form. Larger droplets of d¼ 3 and 4 mm at their
steady state are flat and oblate, while they undergo significant
changes in shape before they reach their stable form. The droplet
with a diameter of d¼ 4 mm strongly oscillates at the beginning
of the simulation before the steady state is reached. In the case of
d¼ 3 mm the respective oscillation was not as strong as for
d¼ 4 mm, but in Fig. 6 it can be seen that the d¼ 3 mm
droplet also obtains a non-ellipsoidal shape for a short time
period. This is in accordance to the second validity criterion that is
discussed in Section 3, where it is stated that droplets with
dr1:0 mm are expected to be spherical and droplets with
d42:85 mm are expected to oscillate. When the droplet has
reached its terminal velocity, oscillations were not directly visible,
but examination of the velocity data as shown in Sections 5.1.4
and 5.1.5 shows that velocity oscillations exist, but have a very
short time period.

5.1. Simulation parameters

The simulation parameters that have an important impact on
the obtained results are the mesh size, the step size of the time
discretization, the initial conditions of the simulation system and
the distance between the wall of the computational domain and

the droplet interface. A comparison of the DROPS version with
standard finite-elements and the DROPS-XFEM version is also
presented in this section. The results are compared to the model
of Henschke (2003) that was presented in Section 3, and
specifically to the sedimentation curve of droplets with an ideally
mobile interface. The numerical values of that curve for droplet
diameters of d¼ 1:0, 2:0, 3:0, and 4:0 mm are vsed ¼ 0:029, 0:058,
0:061, and 0:058 m=s, respectively. In Figs. 10–13 that follow,
these values are being indicated by solid horizontal lines. Thus,
the convergence of the simulation results to the corresponding
model values for varying simulation parameters can be checked.

5.1.1. Time step

The timestep is a parameter that can have a considerable
impact, not only on the generated results and algorithm stability,
but also on the simulation duration. In this work two different
timesteps are tested, one is 10�4 s, and the other 5:0� 10�4 s. In
Fig. 7 (left) the results obtained with the two time steps are
shown, where it is seen that both velocity plots are slightly
scattered. This scatter is an effect of the numerical differentiation
of the droplet position data. Moreover, periodic scatter of high
frequency is introduced by the reparametrization of the level-set
function. To eliminate the scattering, and to thus increase the
accuracy of the calculated droplet terminal velocity, a central
moving average smoothing scheme was applied to all subsequent
data. The averaging period was equal to the level-set
reparametrization period, i.e. 10 time steps. Thus, the averaging
scheme acts as a low-pass filter that eliminates the numerical
high-frequency scatter in favor of the physical low-frequency
effects. The results are shown in Fig. 7 (right), where it can be seen
that the curve with the smaller timestep lies above the curve with
the larger timestep, but the difference is not significant. The
average deviation along the whole curve was found to be 1.9%,
while the average deviation at the velocity plateau was 1.5%.
Therefore, it is concluded that the obtained results can be
considered equivalent for terminal velocity calculations. Thus,
the larger step size is used in the following simulations.

5.1.2. Initial velocity

Concerning the droplet velocity at the beginning of the
simulation, two possibilities have been tested. In one case the

Fig. 6. Comparison of droplet deformation at different time stages for various droplet diameters. All simulations were performed with vinit ¼ 0.
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droplet initial velocity is set to zero, and therefore the droplet
accelerates to its terminal state. In the second case the droplet is
given an initial velocity that is equal to the one predicted from the
Stokes’ law for the given system and droplet diameter. In this case
the droplet is decelerated to its terminal velocity. In Fig. 8 the
dependency of the simulation results on the initial velocity of a
droplet with a d¼ 2:0 mm diameter are shown. On the left are the
results of the plain DROPS version, and on the right are the results
of the DROPS-XFEM version. Both droplet velocity curves in each
diagram converge to the same terminal sedimentation velocity at
the same point in time, independent of the initial conditions.
Therefore, the initial droplet velocity has no influence on the
obtained final result.

Note that the droplet terminal velocity obtained by the DROPS-
XFEM version is slightly higher than the velocity obtained by the
plain DROPS version. The deviation of the droplet terminal
velocity between the two diagrams of Fig. 8 was found to be
6.8%. This fact is further investigated in Section 5.1.3, where also a
finer grid is used to ascertain that this result is grid-independent.

For large droplets (dZ3 mm) a large initial velocity resulted in
droplet breakup, and therefore the droplet sedimentation velocity
could not be determined. The pattern of droplet breakup in the
simulations resembles those described by Wang and Wang (2007)
for large fluid particles where the droplet obtains a bell-like form.

In Fig. 9 the simulated droplet breakup stages can be seen. The
breakup initializes from the top of the droplet, thus resulting in a
torus-like formation, and eventually the droplet breaks up
forming two daughter droplets. At this point it is important to
note that the volume conservation method mentioned in Section
4.1 for the level-set function conserves only the total volume of
the dispersed phase. After droplet breakup volume must be
preserved for each of the two droplets. This, however, is not
guaranteed with the volume conservation method currently
available in DROPS. Therefore, the results presented here are of
quantitative value only until 0:1 s.

5.1.3. Comparison of finite-element methods

Considering the differences between the DROPS versions
discussed in Section 5.1.2, it makes sense to take a closer look
at the droplet sedimentation velocities obtained using the two
finite-element methods for the pressure discretization. In Fig. 10
results obtained for droplets with diameters d¼ 1:0 and 2:0 mm
using the two versions are displayed, whereas all other simulation
settings like time step, initial velocity and mesh size, were
identical. In these plots it is noted that the XFEM technique results
in sedimentation velocities that are systematically higher than
those calculated by the plain DROPS version. By comparison to the

Fig. 7. Comparison of different time step sizes using XFEM-DROPS for d¼ 2:0 mm, h¼ 3:13� 10-4 m, h=d¼ 0:157, x0 ¼ 9:0 mm, vsed ¼ 0:054 m=s. Left: raw velocity data.

Right: smoothed velocity data.

Fig. 8. Comparison of different initial conditions for d¼ 2:0 mm, h¼ 3:13� 10-4 m, h=d¼ 0:157, x0 ¼ 9:0 mm. Left: plain DROPS version, vsed ¼ 0:053 m=s. Right: DROPS-

XFEM version, vsed ¼ 0:057 m=s.
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corresponding values from the Henschke (2003) model
(horizontal lines in Fig. 10) it can be concluded that the results
obtained by XFEM are more accurate.

5.1.4. Grid resolution

In Fig. 11 the influence of the mesh size is presented for the
DROPS version with standard finite-elements for two droplets of
d¼ 3:0 and 4:0 mm. Since the grid is configured so that the
smallest mesh size is in the vicinity of the fluid interface,
simulating a bigger droplet in diameter means that more of the
smallest tetrahedra are necessary than in the case of a smaller
droplet using the same grid configuration. For the relatively big
droplets of Fig. 11 this means that the parallel DROPS version is
needed in order to avoid very long calculation times. In this work,

the mesh size at the droplet interface is used to represent the
resolution of the grid and is denoted by h. Additionally, the
dimensionless mesh size, defined by the fraction h=d, is used to
indicate the grid resolution in relation to the droplet diameter. In
Fig. 11 it can be seen that a finer grid results to a higher terminal
droplet velocity, that is closer to the horizontal line indicating the
corresponding value of the Henschke (2003) model.

In Fig. 12 the grid influence is tested for the XFEM version. In
contrast to Fig. 11 it is noticed that the influence of the grid
resolution is negligible between the cases studied, since a finer
grid does not lead to an increase of the droplet terminal velocity.
A small difference is noted only for d¼ 3:0 mm where the
terminal velocity is uninfluenced, but the two curves have a
slightly different shape. Concerning the agreement of the
simulations with the corresponding model we notice that the

Fig. 9. Breakup stages of a droplet simulated with the plain DROPS version for d¼ 3:0 mm, h¼ 3:13� 10-4 m, h=d¼ 0:104, vinit ¼ 0:247 m=s, Re� 500 as seen from below

when rising. The velocity is mapped on a color scale from white (for low velocities) to black (for higher velocities).

Fig. 10. Comparison between the plain DROPS version and the DROPS-XFEM version. Left: d¼ 1:0 mm, h¼ 1:25� 10-4 m, h=d¼ 0:125, x0 ¼ 3:5 mm, vsed ¼ 0:027 m=s. Right:

d¼ 2:0 mm, h¼ 1:56� 10-4 m, h=d¼ 0:078, x0 ¼ 4:0 mm, vsed ¼ 0:056 m=s.

Fig. 11. Comparison of different mesh sizes for DROPS with standard FE. Left: d¼ 3:0 mm, x0 ¼ 3:5 mm, vsed ¼ 0:056 m=s. Right: d¼ 4:0 mm, x0 ¼ 5:0 mm, vsed ¼ 0:052 m=s.
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simulations in Fig. 12 are closer to the model than the simulations
in Fig. 11. This difference is not only due to the different finite-
element methods but also to the size of the computational
domain. This factor will be examined in Section 5.1.5.

5.1.5. Wall effect

Clearly, walls can have a considerable influence on the droplet
sedimentation velocity (Henschke et al., 2000; Zimmerman,
2004). In this work the horizontal distance of the droplet interface
to the computational domain wall at the beginning of the
simulation was varied. This distance is denoted by x0.

In Fig. 13 (left) a droplet with d¼ 3:0 mm is simulated using
different computational domain sizes, namely, x0 ¼ 3:5, 8:5, and
13:5 mm. For x0 ¼ 3:5 mm both the XFEM-DROPS and the plain
DROPS versions were tested. In agreement to the discussion in
Section 5.1.3, the terminal velocity calculated by the XFEM
method is higher than the one calculated by the plain method.
If the droplet distance to the computational domain wall
increases to x0 ¼ 8:5 mm, the sedimentation velocity stabilizes
to an even higher value than for x0 ¼ 3:5 mm. A further increase of
the computational domain size to x0 ¼ 13:5 mm does not affect
the droplet velocity, thus suggesting that a safe distance of the
phase interface to the wall was achieved at x0 ¼ 8:5 mm.

The same test was performed for a droplet diameter of
d¼ 4:0 mm, and the obtained results can be seen in Fig. 13 (right).
The computational domain sizes were x0 ¼ 5:0, 13:0, and 28:0 mm.
From Fig. 13 (right) it is seen that x0 ¼ 5:0 mm is too small, since a
rise to x0 ¼ 13:0 mm leads to a rise of the droplet terminal
velocity. As in Fig. 13 (left) for d¼ 3:0 mm, there is also expected
to be a slight influence of the choice of the finite-element method,
but the wall effect is dominating in this case. A further rise to
x0 ¼ 28:5 mm had no effect on the droplet terminal velocity or the
shape of the droplet velocity curve, and therefore it is concluded
that the wall-effect has been eliminated for x0 ¼ 13:0 mm.

Independent of the geometry configuration, a strong fluctua-
tion occurs at the beginning of the simulation for d¼ 4:0 mm.
After this initial fluctuation, the droplet reaches its terminal state.
This fluctuation can also be seen in Fig. 6 where the shape of the
droplet is captured at 0.2 s. Because of this fluctuation, the droplet
velocity for d¼ 4:0 mm reaches a maximum, whereas for
d¼ 3:0 mm the velocity rise is monotonic before the velocity
plateau. In both cases in Fig. 13 velocity oscillations are noticed
around a constant velocity value, although for d¼ 3:0 mm these
oscillations are very weak. In such cases, this constant mean
velocity is used as the droplet sedimentation velocity. As
described in Section 2, such oscillations are not taken into
account in the experiment, since the sedimentation velocity is
measured as an average over a distance of 100 mm.

Fig. 12. Comparison of different mesh sizes for the XFEM-DROPS method. Left: d¼ 2:0 mm, x0 ¼ 9:0 mm, vsed ¼ 0:057 m=s. Right: d¼ 3:0 mm, x0 ¼ 8:5 mm, vsed ¼ 0:060 m=s.

Fig. 13. Comparison of different geometry settings for h¼ 3:13� 10-4 m. Left: d¼ 3:0 mm, h=d¼ 0:104, vsed ¼ 0:060 m=s. Right: d¼ 4:0 mm, h=d¼ 0:078, vsed ¼ 0:055 m=s.
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For both d¼ 3:0 and 4:0 mm the computational domain size
had an influence not only on the droplet terminal velocity, but
also on the shape of the velocity curves of Fig. 13. More
specifically, the velocity oscillations are more evident in the case
of the wider computational domain. This is because the no-slip
condition is applied on the computational domain boundaries, the
interface is allowed to move more freely when the distance
between the interface and the wall increases. Thus, the sedimen-
tation velocity rises and the velocity oscillations get stronger. The
observed oscillations for both d¼ 3:0 and 4:0 mm are in
accordance with the predicted diameter ranges given in Section
3 for the current system, which predict that droplets larger than
2.85 mm in diameter should oscillate.

Finally, a droplet with d¼ 2:0 mm was simulated with XFEM-
DROPS and two different computational domain sizes with
x0 ¼ 4:0 and 9:0 mm. The influence of the computational domain
wall on the droplet sedimentation velocity in this case was only
1.4%, thus setting the respective value to vsed ¼ 0:057 m=s.

To these observations, it should be added that droplet
deformation may have an impact on the extent of the wall’s
influence on the sedimentation velocity. If the droplet deforms to
an oblate shape, as in the simulations of the present work, the
interface will move closer to the wall, thus limiting its velocity.
Considering a d=x0 ratio instead of just x0 may not necessarily
resolve the issue for all liquid–liquid systems, since droplet
deformation is dependent on the material properties. In the
present work, d=x0 ¼ 0:35 and 0:31 were sufficient for eliminating
any wall-effects for d¼ 3:0 and 4:0 mm, respectively. However, it
was found that the d=x0 ¼ 0:35 was marginally too high for
d¼ 4:0 mm. Therefore, the recommended d=x0 value for the
simulations discussed in this work lies between:
0:31rd=x0o0:35.

6. Evaluation of results

Smolianski et al. (2008) performed two-dimensional finite-
element simulations of freely rising fluid particles using the level-
set method and calculated the particle rise velocity as a function
of time. Although fluid particles of ellipsoidal, skirted, and
indented shape were also simulated, oscillations like the ones of
Fig. 13, were not observed. Velocity oscillations of large fluid
particles may have been suppressed by the data smoothing
scheme used by Smolianski et al. (2008).

Wegener et al. (2007a) performed experiments on toluene
droplets rising in water and measured their velocity as a function
of time. In their work, a behavior comparable to the one presented
here is shown. For relatively small droplets, the velocity rises with
time until a plateau is reached where it remains constant. The
duration of this smooth acceleration stage depended slightly upon
the diameter of the droplet studied, but was in general not greater
than 0.5 s. This observation agrees with the results of the present
work if Figs. 7, 8, 10 and 12 (left) are examined, where the
acceleration stage of small droplets also appears to be equally
short. For bigger droplets a strong peak in the droplet velocity is
noted right after the acceleration region that is very similar to the
peak found in the simulations of the droplet with d¼ 4:0 mm.
Furthermore, after this first fluctuation, smaller oscillations
around the droplet terminal velocity were also observed in the
experiments of Wegener et al. (2007a), similar to the ones shown
in Figs. 11 and 13.

Both Wegener et al. (2007a) and Gueyffier et al. (1999) as well
as other authors like Petera and Weatherley (2001) and Wang
et al. (2008) report acceleration stages that are in general no
longer than 1 s in duration. These findings are also confirmed in
this work.

The results presented so far provide insight as to which factors
can influence the simulation results and to what extent.
Parameters such as time step, initial droplet velocity, computa-
tional domain size and grid resolution have been tested. As a
result these parameters can be safely set such that good accuracy
in describing a sedimenting single droplet in an infinite medium
is achieved while minimizing the computational effort.

In particular it is shown that for the discretization of the
discontinuous pressure the extended finite element method is
much better suited than the standard linear (P1) finite-element
method. In the cases of the droplets with d¼ 1:0 and 2:0 mm the
finest grids that were used had a smallest mesh size of h¼ 1:25�
10�4 and 1:56� 10�4 m (h=d¼ 0:125 and 0:078), respectively. The
finest grid used for the droplets with d¼ 3:0 and 4:0 mm had a
smallest mesh size of h¼ 3:13� 10�4 m (h=d¼ 0:104 and 0:078).
The distance to the wall was set according to the discussion in
Section 5.1.5. The size of the timestep that was used was equal to
5:0� 10�4 s, as discussed in Section 5.1.1. The final results of
simulations performed with the above specifications are pre-
sented in Fig. 14 together with the line of Fig. 2 for representing
the droplets with an ideally mobile interface.

In Fig. 14 the model curve of Section 3 for an ideally mobile
interface is compared to the DROPS-XFEM results. Since in the
simulations no interfacial stagnation is considered, the simulation
results are compared to the model curve that also makes the same
assumption, i.e. that the interface is ideally mobile. In the figure, it
can be seen that the results of the simulations are in good
quantitative agreement with the model curve. The experiments,
and consequently the fitted model, suggest a rise of the terminal
velocity with increasing droplet diameter that subsequently
reaches a maximum and then decays. These three curve
characteristics as well as their corresponding locations on the
diagram are all well-predicted by the simulations.

The model curve is extended only up to the maximum droplet
diameter that has been investigated in the experiments
(d¼ 3:48 mm). Extrapolating the model curve beyond that point
would not necessarily depict the experimental data trend, since
only two experimental points are in the oscillating droplet region.
The experimental data in this region influence the fitting of the
model parameter p2, that determines the vertical position of the
plateau of the sedimentation curve for oscillating droplets. After
considering these facts, it can be stated that the result of the
DROPS-XFEM simulation for d¼ 4:0 mm fits nicely to the experi-
mental data in the oscillating region, and is in agreement with
their trend. The simulation results are included in the data
summary given in Table 2.

7. Conclusions and future work

In this paper simulations of single n-butanol droplets rising in
water were presented. The simulation techniques implemented in
this work were validated with the help of experimental results
and empirical models in terms of both numerical and physical
aspects.

The finite-element and the extended finite-element techniques
were tested in the solver and the level-set method was
implemented for capturing the ideally movable interface. The
continuum surface-force model was used to take surface-tension
effects into account. The instationary simulations were performed
with a fixed three-dimensional coordinate system and a hierarchy
of tetrahedral grids, locally refined close to the interface. The grid
is dynamically adjusted in the course of the simulation to follow
the movement of the interface.

The droplet diameters that were studied spanned the regions
of spherical, deformed, and oscillating droplets, thus testing the
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numerical techniques under very different conditions that are
technically relevant to the liquid–liquid extraction systems. The
simulations included the stages of drop acceleration, deformation,
and stability in terms of shape and velocity. Droplet breakup of
large droplets was also simulated. The results show that these
techniques provide a solid computational basis that delivers
results in agreement with existing semi-empirical models and
experimental data. Simulation parameters like mesh size, time-
step, computational domain size, and droplet initial velocity have
been tested in order to produce more realistic results. The
extended finite-element method was found to be superior to the
standard finite-element method, thus making it the preferred
technique for the simulation of droplets in technical liquid–liquid
systems.

It is concluded that the DROPS simulation tool is reliable for
simulating the behavior of buoyancy-driven droplets. The results
provide the motivation to extend the capabilities of the solver to
take into account mass transfer of a third component through the
interface, as well as inhomogeneities of the surface tension,
typically induced by surfactant impurities in the system.

Notation

Ar Archimedes number
CD drag coefficient
d droplet diameter
Eo Eötvös number
f correction term for Hadamard–Rybczynski factor

f 0 rigid to circulating droplet transition factor

fG surface force

g gravitational acceleration
h smallest mesh element size
H Heaviside function
I identity matrix
IG indices of tetrahedra intersected by the interface
KHR Hadamard–Rybczynski factor
KHR
0 corrected Hadamard–Rybczynski factor

Mo Morton number
n unit normal at the interface
p pressure
qi nodal basis functions

qGi additional basis functions of XFEM space

Qh standard finite element space

QG
h

extended finite element space

Re Reynolds number
t time
u velocity vector
vinit droplet velocity at initial simulation time step
vsed droplet sedimentation velocity
x space

Greek letters

G interfacial surface

dG Dirac d- function with support on G
k curvature of interfacial surface
m dynamic viscosity

x0 horizontal distance of droplet interface to
computational domain wall at the simulation
beginning

r density

Dr absolute density difference between continuous and
dispersed phase

r stress tensor
s interfacial tension

f level-set function

O1 droplet domain
O2 continuous phase domain

Subscripts

c property of continuous phase
circ property of droplet with internal circulation
d property of dispersed phase
def property of deformed droplet
os property of oscillating droplet
rigid property of droplet with no internal circulation
sphere property of spherical droplet
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kugelförmiger Partikeln. Chemie Ingenieur Technik 45 (18), 1099–1103.

Bristeau, M.O., Glowinski, R., Periaux, J., 1987. Numerical methods for the Navier–
Stokes equations applications to the simulation of compressible and
incompressible viscous flows. Computer Physics Reports 6, 73–187.

Chang, Y.C., Hou, T.Y., Merriman, B., Osher, S., 1996. A level set formulation of
Eulerian interface capturing methods for incompressible fluid flows. Journal of
Computational Physics 124, 449–464.

Clift, R., Grace, J.R., Weber, M.E., 1978. Bubbles, Drops, and Particles. Academic
Press, London.

Cristini, V., Blawzdziewicz, J., Lowenberg, M., 1998. Drop breakup in three-
dimensional viscous flows. Physics of Fluids 10 (8), 1781–1783 (letter).

Cristini, V., Blawzdziewicz, J., Lowenberg, M., 2001. An adaptive mesh algorithm
for evolving surfaces: simulations of drop breakup and coalescence. Journal of
Computational Physics 168, 445–463.

Dehkordi, A.M., Ghasemian, S., Bastani, D., Ahmadpour, N., 2007. Model for excess
mass-transfer resistance of contaminated liquid–liquid systems. Industrial and
Engineering Chemistry Research 46, 1563–1571.

Deshpande, K.B., Zimmerman, W.B., 2006. Simulations of mass transfer limited
reaction in a moving droplet to study transport limited characteristics.
Chemical Engineering Science 61, 6424–6441.

Feigl, K., Megias-Alguacil, D., Fischer, P., Windhab, E.J., 2007. Simulation and
experiments of droplet deformation and orientation in simple shear flow with
surfactants. Chemical Engineering Science 62, 3242–3258.

Gross, S., Peters, J., Reichelt, V., Reusken, A., 2002. The DROPS package for
numerical simulations of incompressible flows using parallel adaptive multi-
grid techniques. Preprint 227, RWTH Aachen.

Gross, S., Reichelt, V., Reusken, A., 2006. A finite element based level set method for
two-phase incompressible flows. Computing and Visualization in Science 9 (4),
239–257.

Gross, S., Reusken, A., 2005. Parallel multilevel tetrahedral grid refinement. SIAM
Journal on Scientific Computing 26 (4), 1261–1288.

Gross, S., Reusken, A., 2007a. An extended pressure finite element space for two-
phase incompressible flows with surface tension. Journal of Computational
Physics 224, 40–58.

Gross, S., Reusken, A., 2007b. Finite element discretization error analysis of a
surface tension force in two-phase incompressible flows. SIAM Journal on
Numerical Analysis 45 (4), 1679–1700.

Gross, S., Soemers, M., Mhamdi, A., Al-Sibai, F., Reusken, A., Marquardt, W., Renz,
U., 2005. Identification of boundary heat fluxes in a falling film experiment
using high resolution temperature measurements. International Journal of
Heat and Mass Transfer 48, 5549–5562.

Gross-Hardt, E., Henschke, M., Klinger, S., Pfennig, A., 2002. Design of pulsed
extraction columns based on lab-scale experiments with a small number of
drops. In: Sole, K.C., Cole, P.M., Preston, J.S., Robinson, D.J. (Eds.), International
Solvent Extraction Conference (ISEC). South African Institute of Mining and
Metallurgy, Johannesburg, pp. 1358–1363.

Gueyffier, D., Li, J., Nadim, A., Scerdovelli, R., Zaleski, S., 1999. Volume-of-fluid
interface tracking with smoothed surface stress methods for three-dimen-
sional flows. Journal of Computational Physics 152, 426–456.

Haas, U., Schmidt-Traub, H., Brauer, H., 1972. Umströmung kugelförmiger Blasen
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Wegener, M., Grünig, J., Stüber, J., Paschedag, A.R., Kraume, M., 2007a. Transient
rise velocity and mass transfer of a single drop with interfacial instabilities
—experimental investigations. Chemical Engineering Science 62, 2967–2978.

Wegener, M., Paschedag, A.R., Kraume, M., 2007b. Experimentelle Untersuchungen
sowie 2D- und 3D-Simulationen zum Stofftransport an Einzeltropfen mit
Marangoni-Konvektion. Chemie Ingenieur Technik 79, 73–81.

Yang, C., Mao, Z.-S., 2005. Numerical simulation of interphase mass transfer with
the level set approach. Chemical Engineering Science 60, 2643–2660.

Yang, X., James, A.J., Lowengrub, J., Zheng, X., Cristini, V., 2006. An adaptive coupled
level-set/volume-of-fluid interface capturing method for unstructured trian-
gular grids. Journal of Computational Physics 217, 364–394.

Zimmerman, W.B., 2004. On the resistance of a spherical particle settling in a tube
of viscous fluid. International Journal of Engineering Science 42, 1753–1778.

Zimmerman, W.B.J., 2006. Multiphysics modelling with finite element methods.
In: Series on Stability, Vibration and Control of Systems (A), vol. 18. World
Scientific, London (Modeling of multi-phase flow using the level set method,
pp. 277–299, Chapter 8).

E. Bertakis et al. / Chemical Engineering Science 65 (2010) 2037–2051 2051


