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Summary. We present a finite element discretization method for a mass transport problem with a solution
that is discontinuous across an interface. The grids are regular and unfitted. The method is based on a
combination of Nitsche’s method and an XFEM approach.

1 INTRODUCTION

Let Ω ⊂ Rd, d = 2, 3, be a convex polygonal domain that contains two different immiscible incom-
pressible phasesΩ1 andΩ2. We assume that the interfaceΓ = Γ(t) = Ω̄1 ∩ Ω̄2 is sufficiently smooth.
We consider a model which describes the transport of a dissolved species in a divergence-free velocity
field w, i.e. div w = 0, as follows:

∂u

∂t
+ w · ∇u− div(α∇u) = f in Ωi, i = 1, 2, t ∈ [0, T ], (1)

[α∇u · n]Γ = 0, [βu]Γ = 0, (2)

wheren is the unit normal atΓ pointing fromΩ1 into Ω2. For a sufficiently smooth functionv, [v]
denotes the jump ofv acrossΓ. The first interface condition in (2) results from the conservation of mass
principle while the second one is the so-calledHenry condition.1 The diffusion coefficientα and the
Henry coefficientβ are positive and piecewise constant in the two subdomains, so the solutionu is in
generaldiscontinuous across the interface. For the special caseβ1 = β2 and with a triangulation which
is fittedto the interface, standard finite element spaces have (close to) optimal approximation properties.2

Here we allowβ1 6= β2 and use triangulations that areunfitted (as in level set of VOF approaches), i.e.
the interface crosses the elements. We will use a variant of Nitsche’s method combined with a special
finite element method for the spatial discretization of this problem. From this semi-discrete problem a
full discretization is obtained by using a standardθ-scheme for time discretization. We use the same
Nitsche method as presented and analyzed for astationarydiffusion problem by Hansbo.3 We apply
this method to thenonstationaryproblem described above, with discontinuous solution, and furthermore
allow a convection term in (1).
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2 Weak formulation

In this section we give a weak formulation. For simplicity we only consider homogeneous Dirich-
let boundary conditions. Due to the fact that the underlying two-phase fluid dynamics concerns two
incompressible immiscible phases it is reasonable to make the following assumption about the veloc-
ity field w: div w = 0 in Ωi, i = 1, 2, w · n = 0 at Γ, and‖w‖L∞(Ω) ≤ c < ∞. We define
H1

0 (Ω1 ∪ Ω2) := { v ∈ L2(Ω)| vi ∈ H1(Ωi), i = 1, 2, v|∂Ω = 0 }, wherevi := v|Ωi
, and

H := L2(Ω), V := { v ∈ H1
0 (Ω1 ∪ Ω2)| [βv]Γ = 0 },

(u, v)0 : =
∫

Ω
βuv dx, u, v ∈ H,

(u, v)1,Ω1∪Ω2 := (u, v)1,Ω1 + (u, v)1,Ω2 =
2∑

j=1

( ∂u

∂xj
,

∂v

∂xj

)
0
, u, v ∈ V.

We now introduce the bilinear form

a(u, v) := (αu, v)1,Ω1∪Ω2 + (w · ∇u, v)0, u, v ∈ V.

We have4 well-posedness of a weak formulation for the case with a stationary interface:

Lemma 1 Assume thatΓ does not depend ont. Takef ∈ H, u0 ∈ Vreg := { v ∈ V | vi ∈ H2(Ωi), i =
1, 2 }. There exists a uniqueu ∈ C([0, T ];Vreg) such thatu(0) = u0 and

(
∂u

∂t
, v)0 + a(u, v) = (f, v)0 for all v ∈ V. (3)

The distributional time derivative satisfies∂u
∂t ∈ L2(0, T ; V ) ∩ C([0, T ];H).

3 XFEM space and Nitsche’s method

Let {Th}h>0 be a family of shape regular triangulations ofΩ. A triangulationTh consists of triangles
T , with hT := diam(T ) andh := max{hT | T ∈ Th}. Let Ti := T ∩ Ωi be the part ofT in Ωi. We
now introduce the finite element space

V Γ
h := { v ∈ H1

0 (Ω1 ∪ Ω2)| v|Ti
is linear for all T ∈ Th, i = 1, 2 }. (4)

Note thatV Γ
h ⊂ H1

0 (Ω1 ∪ Ω2), but V Γ
h 6⊂ V , since the Henry interface condition[βvh] = 0 does not

necessarily hold forvh ∈ V Γ
h . We define(κi)|T = |Ti|

|T | for all T ∈ Th, i = 1, 2, and the weighted

average{v} := κ1(v1)|Γ + κ2(v2)|Γ. Let (f, g)Γ :=
∫
Γ fg ds be theL2(Γ) scalar product. We introduce

the bilinear form

ah(u, v) := (αu, v)1,Ω1∪Ω2 + (w · ∇u, v)0 − ([βu], {α∇v · n})Γ
− ({α∇u · n}, [βv])Γ + λh−1([βu], [βv])Γ,

(5)

with a positive parameterλ. The following consistency result holds4 : Let u = u(t) ∈ Vreg be the
solution defined in lemma 1. Thenu(t) satisfies

(
∂u

∂t
, vh)0 + ah(u, vh) = (f, vh) for al vh ∈ V Γ

h , t ∈ [0, T ]. (6)

For the spatial discretization error we have the following result4 .
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Theorem 1 Assume thatΓ does not depend ont. Letu = u(t) ∈ Vreg be the solution defined in lemma 1
anduh = uh(t) ∈ V Γ

h the solution of(6) with uh(0) = û0. The following holds, withRh the elliptic
projection onV Γ

h ,

‖uh(t)− u(t)‖0 ≤ ‖û0 −Rhu0‖0 + c h2
{‖u0‖2,Ω1∪Ω2 +

∫ t

0

∥∥∥∥
∂u

∂t

∥∥∥∥
2,Ω1∪Ω2

dτ
}
, 0 ≤ t ≤ T.

From this result we conclude that for the semi-discretization of our transport problem we have an optimal
error bound for the spatial discretization.

4 Numerical experiments

4.1 Experiment with a stationary interface

We consider the problem (1)-(2) in the domainΩ = (0, 1)3, which contains two subdomainsΩ1 :=
{(x, y, z) ∈ Ω : z < 0.341} andΩ2 := Ω \ Ω1, with the coefficientsα = (α1, α2) := (1, 2), β =
(β1, β2) := (2, 1) and a velocity fieldw := (y(1− z), x, 0)T . The exact solution is chosen as

u(x, y, z, t) :=

{
exp(−t) cos(πx) cos(2πy)az(z + b) in Ω1,

exp(−t) cos(πx) cos(2πy)z(z − 1) in Ω2,
(7)

where the constantsa andb are determined from the interface condtions (2). For the spatial discretization,
we create a uniform grid with mesh sizeh = 1

N (N = 8, 16, 32) then refine the elements near the
interface two times further. The semi-discretizationuh(t) is approximated byu∗h(t) using the implicit
Euler time-stepping scheme with a (sufficiently small) time step size∆t = 10−4. In Table 1, the errors
‖u∗h(T ) − u(T )‖L2 for T = 0.15 are displayed, which are consistent with the theoretical boundO(h2)
given in theorem 1. For astationaryelliptic problem the bound3 ‖[βuh]‖L2(Γ) ≤ ch1 1

2 ‖u‖2,Ω1∪Ω2 holds.
For thetime dependentcase we were not able to derive a theoretical bound for this error quantity. The
errors‖[βu∗h]‖L2(Γ) are given in Table 2, which seems to behave likeO(h). The numerical solution for
N = 16 at T = 0.15 in the planex = 0.25 is shown in Figure 1. To investigate the time discretization

N ‖u∗h(T )− u(T )‖L2 factor order
8 0.00738506 - -
16 0.00202308 3.65 1.87
32 0.0005228 3.87 1.95

Table 1: Planar interface: Spatial discretization er-
ror in L2-norm and convergence order atT = 0.15

N ‖[βu∗h(T )]‖L2(Γ) factor order
8 1.565e− 4 - -
16 7.975e− 05 1.96 0.972
32 3.900e− 05 2.05 1.03

Table 2: Planar interface:L2-norm of the jump
[βu∗h(T )]Γ and convergence order atT = 0.15

error, we use a fixed mesh withN = 16 and compute a reference solutionu∗h(t) with ∆t = 10−4 in the
time interval[0, 0.2]. The Euler discretization with time step∆t = T

n results in approximationsun
h(T ) of

u∗h(T ). For the casesn = 5, 10, 20 the temporal errors in theL2-norm are given in Table 3. We observe
the expected first order of convergence in∆t.

4.2 Experiment with a nonstationary interface

We consider the problem (1)-(2) in the unit cubeΩ and withΩ1(0) a sphere of radiusR = 0.2
centered at the barycenter ofΩ. This sphere is moved in with constant velocityw = (0, 1, 0)T , i.e.,
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n ‖un
h − u∗h(0.2)‖L2 factor order

5 1.254e− 05 - -
10 6.092e− 06 2.06 1.04
20 3.011e− 06 2.02 1.02

Table 3: Planar interface: Time discretization error
in L2 norm and convergence order atT = 0.2

N ‖u∗h(T )− u(T )‖L2 factor order
16 0.00490676 - -
32 0.00121142 4.05 2.018
64 0.000310616 3.9 1.963

Table 4: Moving interface: Spatial discretization er-
ror in L2-norm and convergence order atT = 0.1

Ω1(t) = Ω1(0) + tw. Let d(x, t) be the distance from the pointx ∈ Ω to the center ofΩ1(t). We take
the piecewise quadratic solution

u(x, t) :=

{
α2

(
d(x, t)2 −R2

)
+ 0.1 · β2 in Ω1,

α1

(
d(x, t)2 −R2

)
+ 0.1 · β1 in Ω2,

(8)

with coefficients(α1, α2) := (1, 5), (β1, β2) := (2, 1). As the XFEM space now is time dependent, we
discretize the problem first in time using the implicit Euler method with the time step size∆t = 10−4.
The resulting convection-diffusion-reaction problem is discretized with the Nitsche method. We use a
uniform grid with the mesh sizeh = 1

N , whereN = 16, 32, 64. The errors‖u∗h(T ) − u(T )‖L2 for
T = 0.1 are displayed in Table 4 with the expected convergence order2.

Figure 1: Planar interface: Numerical solution at
T = 0.15 in the planex = 0.25.

Figure 2: Moving interface: Numerical solution at
T = 0.1 in the planex = 0.5.
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