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Summary. We present a finite element discretization method for a mass transport problem with a solution
that is discontinuous across an interface. The grids are regular and unfitted. The method is based on a
combination of Nitsche’s method and an XFEM approach.

1 INTRODUCTION

LetQ c RY, d = 2,3, be a convex polygonal domain that contains two different immiscible incom-
pressible phase®; and2;. We assume that the interfae= I'(t) = Q; N Q, is sufficiently smooth.
We consider a model which describes the transport of a dissolved species in a divergence-free velocity
field w, i.e. divw = 0, as follows:

@er-w—div(avu):f in Q=12 tel0,T], (1)

ot
[@Vu-n]r =0, [Bu]lpr=0, (2

wheren is the unit normal al” pointing from€; into 5. For a sufficiently smooth function, [v]
denotes the jump af acrosd". The first interface condition in (2) results from the conservation of mass
principle while the second one is the so-callédnry conditiont The diffusion coefficienty and the

Henry coefficients are positive and piecewise constant in the two subdomains, so the salusdn
generaldiscontinuous across the interfadeor the special casg, = (, and with a triangulation which

is fittedto the interface, standard finite element spaces have (close to) optimal approximation préperties.
Here we allows; # (3, and use triangulations that auefitted (as in level set of VOF approaches), i.e.

the interface crosses the elements. We will use a variant of Nitsche’s method combined with a special
finite element method for the spatial discretization of this problem. From this semi-discrete problem a
full discretization is obtained by using a stand@rdcheme for time discretization. We use the same
Nitsche method as presented and analyzed fstationarydiffusion problem by Hansbd. We apply

this method to th@onstationarnproblem described above, with discontinuous solution, and furthermore
allow a convection termin (1).
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2 Weak formulation

In this section we give a weak formulation. For simplicity we only consider homogeneous Dirich-
let boundary conditions. Due to the fact that the underlying two-phase fluid dynamics concerns two
incompressible immiscible phases it is reasonable to make the following assumption about the veloc-
ity field w: divw = 01in Q;, i = 1,2, w-n = 0 atl’, and||w|[;~@) < ¢ < oo. We define
H&(Ql U QQ) = {U € L2(Q)| v; € Hl(Qi), 1=1,2, Vo = 0}, wherev; = V|0, and

H:=1*Q), V:={vec H}(Q UQ)|[Bvr =0},
= d H
(’LL, U)O /Qﬁuv T, u,vE M,

ou Ov
(u7v)1791U92 = (U7U)1,Q1 + (uav)1792 = Z (877 %)0’ uv € V.
J J

7j=1
We now introduce the bilinear form
a(u,v) == (au,v)1,0,u0, + (W-Vu,v)g, u,veV.
We havé well-posedness of a weak formulation for the case with a stationary interface:
Lemma 1 Assume thal' does not depend an Takef € H, ug € Vieg :={v € V]v; € H2(Q;), i=
1,2 }. There exists a unique € C([0, T; Vieg) such that(0) = u and
ou

(E?

The distributional time derivative satisfi%ﬁ € L?(0,7;V)nC([0,T]; H).

v)o + a(u,v) = (f,v)g forall veV. (3)

3 XFEM space and Nitsche’s method

Let {7, }1~0 be a family of shape regular triangulationS(tfA triangulationZ;, consists of triangles
T, with hy := diam(7T') andh := max{ hr | T € 7p,}. LetT; := T' N Q; be the part of" in ;. We
now introduce the finite element space

Vi i={v € Hy(Q UD)|vy, islinearforall T € 7, i = 1,2 }. (4)

Note '[hachF C H}(Q1 U Q), but VhF ¢ V, since the Henry interface conditigfiv;,] = 0 does not

necessarily hold fop, € VhF. We define(x;)r = ‘#" forall T € 7;, i = 1,2, and the weighted

average{v} := k1 (v1)|r + k2(v2)r- Let (f, g)r := [; fg ds be theL?(T") scalar product. We introduce
the bilinear form

ap(u,v) = (au,v)1,0,u0, + (W - Vu,v)o — ([Bu], {aVv - n})r
~ ({aVu - n}, [Bu])r + A ([Bul, [Bo))r,
with a positive parametex. The following consistency result hoftls Let u = u(t) € Viez be the
solution defined in lemma 1. Therit) satisfies

0
(%avh)o +ap(u,v) = (f,vp) foral v, € Vi, t€[0,T). (6)

(5)

For the spatial discretization error we have the following résult

2
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Theorem 1 Assume thal’ does not depend anLetu = u(t) € V;¢, be the solution defined in lemma 1
anduy, = uy(t) € ViI the solution of(6) with u;,(0) = 9. The following holds, withR), the elliptic
projection onV;!,

ou
= d 0<t<T.
ot T 0<ts

t
lun(t) = u(®)llo < |lio — Ruuollo + ¢ h®{|uoll2.0,00, +/
0 2,Q1UQ2

From this result we conclude that for the semi-discretization of our transport problem we have an optimal
error bound for the spatial discretization.

4 Numerical experiments
4.1 Experiment with a stationary interface

We consider the problem (1)-(2) in the domé&in= (0, 1)3, which contains two subdomaiigy :=
{(z,y,2) € Q: 2z < 0.341} andQy := Q \ 4, with the coefficientsy = (a1, a2) := (1,2), 8 =
(B1, B2) :== (2, 1) and a velocity fieldw := (y(1 — z),,0)T. The exact solution is chosen as

exp(—t) cos(mx) cos(2my)az(z +b) in Q,

u(z,y, 2, t) = { (7)

exp(—t) cos(mx) cos(2my)z(z — 1) in o,

where the constantsandb are determined from the interface condtions (2). For the spatial discretization,
we create a uniform grid with mesh size= % (VN = 8,16, 32) then refine the elements near the
interface two times further. The semi-discretizatigy(t) is approximated by:; (¢) using the implicit
Euler time-stepping scheme with a (sufficiently small) time step Aize- 10~%. In Table 1, the errors

|uj (T) — u(T)| 2 for T = 0.15 are displayed, which are consistent with the theoretical badicf)

given in theorem 1. For stationaryelliptic problem the bour?d”[ﬂuh]HLz(F) < chléuung,glum holds.

For thetime dependentase we were not able to derive a theoretical bound for this error quantity. The
errors||[Buj]l| L2y are given in Table 2, which seems to behave kg:). The numerical solution for

N =16 atT = 0.15 in the planer = 0.25 is shown in Figure 1. To investigate the time discretization

N | |lup(T) —u(T)| = | factor | order N | |[Buj, (7))l 2y | factor | order

8 0.00738506 - - 8 1.565e — 4 - -

16 0.00202308 3.65 | 1.87 16 7.975e — 05 1.96 | 0.972

32 0.0005228 3.87 | 1.95 32 3.900e — 05 2.05 | 1.03
Table 1: Planar interface: Spatial discretization er- Table 2: Planar interfaceZ?-norm of the jump
ror in L2-norm and convergence order&at= 0.15 [Bu} (T)]r and convergence order&t= 0.15

error, we use a fixed mesh wifli = 16 and compute a reference solutiof(t) with At = 10~* in the
time interval[0, 0.2]. The Euler discretization with time steft = % results in approximations; () of

u} (T). For the cases = 5,10, 20 the temporal errors in thB?-norm are given in Table 3. We observe
the expected first order of convergenceNn

4.2 Experiment with a nonstationary interface

We consider the problem (1)-(2) in the unit cueand with2;(0) a sphere of radiu® = 0.2
centered at the barycenter @f This sphere is moved in with constant velocity = (0,1,0)7, i.e.,

3



Arnold Reusken and Trung Hieu Nguyen

n | ||lup —uy(0.2)||2 | factor | order N | |lup(T) —u(T)| = | factor | order

5) 1.254e — 05 - - 16 0.00490676 - -

10 6.092e — 06 2.06 | 1.04 32 0.00121142 4.05 | 2.018

20 3.011e — 06 2.02 | 1.02 64 0.000310616 3.9 | 1.963
Table 3: Planar interface: Time discretization error Table 4: Moving interface: Spatial discretization er-
in L2 norm and convergence orderAat= 0.2 ror in L2-norm and convergence order&t= 0.1

Q1(t) = Q1(0) + tw. Letd(z,t) be the distance from the poimte ) to the center of2, (¢). We take
the piecewise quadratic solution
d(z,t)* — R*) +0.1- in Q
e I Bl ®
Oél(d(a?,t) - R )—|—0151 in Qo,

with coefficients(ay, a2) := (1,5), (61, 52) := (2,1). As the XFEM space now is time dependent, we
discretize the problem first in time using the implicit Euler method with the time stepsize 10~

The resulting convection-diffusion-reaction problem is discretized with the Nitsche method. We use a
uniform grid with the mesh sizé = &, whereN = 16,32,64. The errors|u}(T) — u(T)|| 2 for

T = 0.1 are displayed in Table 4 with the expected convergence @rder

Figure 1. Planar interface: Numerical solution at Figure 2: Moving interface: Numerical solution at
T = 0.15 in the planer = 0.25. T = 0.1in the planer = 0.5.
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