NITSCHE-XFEM FOR A TRANSPORT PROBLEM IN TWO-PHASE INCOMPRESSIBLE FLOWS

ARNOLD REUSKEN* AND TRUNG HIEU NGUYEN*

*Institut für Geometrie und Praktische Mathematik
at RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany.
e-mail: reusken@igpm.rwth-aachen.de, hieu@igpm.rwth-aachen.de.
web page: http://www.igpm.rwth-aachen.de

Key words: Nitsche’s method, Extended Finite Elements, two-phase flow problems

Summary. We present a finite element discretization method for a mass transport problem with a solution that is discontinuous across an interface. The grids are regular and unfitted. The method is based on a combination of Nitsche’s method and an XFEM approach.

1 INTRODUCTION

Let Ω ⊂ Rd, d = 2, 3, be a convex polygonal domain that contains two different immiscible incompressible phases Ω1 and Ω2. We assume that the interface Γ = Γ(t) = Ω1 ∩ Ω2 is sufficiently smooth. We consider a model which describes the transport of a dissolved species in a divergence-free velocity field w, i.e. div w = 0, as follows:

\[
\frac{\partial u}{\partial t} + w \cdot \nabla u - \text{div}(\alpha \nabla u) = f \quad \text{in} \quad \Omega_i, \quad i = 1, 2, \quad t \in [0, T],
\]

\[
[\alpha \nabla u \cdot n]_\Gamma = 0, \quad [\beta u]_\Gamma = 0,
\]

where n is the unit normal at Γ pointing from Ω1 into Ω2. For a sufficiently smooth function v, [v] denotes the jump of v across Γ. The first interface condition in (2) results from the conservation of mass principle while the second one is the so-called Henry condition. The diffusion coefficient α and the Henry coefficient β are positive and piecewise constant in the two subdomains, so the solution u is in general discontinuous across the interface. For the special case β1 = β2 and with a triangulation which is fitted to the interface, standard finite element spaces have (close to) optimal approximation properties. Here we allow β1 ≠ β2 and use triangulations that are unfitted (as in level set of VOF approaches), i.e. the interface crosses the elements. We will use a variant of Nitsche’s method combined with a special finite element method for the spatial discretization of this problem. From this semi-discrete problem a full discretization is obtained by using a standard θ-scheme for time discretization. We use the same Nitsche method as presented and analyzed for a stationary diffusion problem by Hansbo. We apply this method to the nonstationary problem described above, with discontinuous solution, and furthermore allow a convection term in (1).
2 Weak formulation

In this section we give a weak formulation. For simplicity we only consider homogeneous Dirichlet boundary conditions. Due to the fact that the underlying two-phase fluid dynamics concerns two incompressible immiscible phases it is reasonable to make the following assumption about the velocity field \(w \): \(\text{div } w = 0 \) in \(\Omega_i \), \(i = 1, 2 \), \(w \cdot n = 0 \) at \(\Gamma \), and \(\| w \|_{L^\infty(\Omega)} \leq c < \infty \). We define
\[H^1_0(\Omega_1 \cup \Omega_2) := \{ v \in L^2(\Omega) | v_i \in H^1(\Omega_i), \ i = 1, 2, \ v_i|_{\partial \Omega} = 0 \}, \]
where \(v_i := v|_{\Omega_i} \), and
\[H := L^2(\Omega), \quad V := \{ v \in H^1_0(\Omega_1 \cup \Omega_2) | [\beta v]_\Gamma = 0 \}, \]
\[(u, v)_0 := \int_\Omega \beta uv \, dx, \quad u, v \in H, \]
\[(u, v)_{1,\Omega_1 \cup \Omega_2} := (u, v)_{1,\Omega_1} + (u, v)_{1,\Omega_2} = \sum_{j=1}^2 \left(\frac{\partial u}{\partial x_j}, \frac{\partial v}{\partial x_j} \right)_0, \quad u, v \in V. \]

We now introduce the bilinear form
\[a(u, v) := (\alpha u, v)_{1,\Omega_1 \cup \Omega_2} + (w \cdot \nabla u, v)_0, \quad u, v \in V. \]
We have\(^4\) well-posedness of a weak formulation for the case with a stationary interface:

Lemma 1 Assume that \(\Gamma \) does not depend on \(t \). Take \(f \in H \), \(u_0 \in V_{\text{reg}} := \{ v \in V | v_i \in H^2(\Omega_i), \ i = 1, 2 \} \). There exists a unique \(u \in C([0, T]; V_{\text{reg}}) \) such that \(u(0) = u_0 \) and
\[\left(\frac{\partial u}{\partial t}, v \right)_0 + a(u, v) = (f, v)_0 \quad \text{for all } v \in V. \]

(3)
The distributional time derivative satisfies \(\frac{\partial u}{\partial t} \in L^2(0, T; V) \cap C([0, T]; H) \).

3 XFEM space and Nitsche’s method

Let \(\{ T_h \}_{h>0} \) be a family of shape regular triangulations of \(\Omega \). A triangulation \(T_h \) consists of triangles \(T \), with \(h_T := \text{diam}(T) \) and \(h := \max \{ h_T | T \in T_h \} \). Let \(T_i := T \cap \Omega_i \) be the part of \(T \) in \(\Omega_i \). We now introduce the finite element space
\[V^\Gamma_h := \{ v \in H^1_0(\Omega_1 \cup \Omega_2) | v|_{T_i} \text{ is linear for all } T \in T_h, \ i = 1, 2 \}. \]

(4)

Note that \(V^\Gamma_h \subset H^1_0(\Omega_1 \cup \Omega_2) \), but \(V^\Gamma_h \not\subset V \), since the Henry interface condition \([\beta v_h] = 0 \) does not necessarily hold for \(v_h \in V^\Gamma_h \). We define \((\kappa_i)|_T = \frac{|T_i|}{|T|} \) for all \(T \in T_h, \ i = 1, 2 \), and the weighted average \(\{ v \} := \kappa_1(v_1)|_T + \kappa_2(v_2)|_T \). Let \((f, g)_\Gamma := \int_\Gamma fg \, ds \) be the \(L^2(\Gamma) \) scalar product. We introduce the bilinear form
\[a_h(u, v) := (\alpha u, v)_{1,\Omega_1 \cup \Omega_2} + (w \cdot \nabla u, v)_0 - ([\beta u], \{ \alpha \nabla v \cdot n \})_\Gamma \\
- ([\alpha \nabla u \cdot n], [\beta v])_\Gamma + \lambda h^{-1}([\beta u], [\beta v])_\Gamma, \]

(5)

with a positive parameter \(\lambda \). The following consistency result holds\(^4\) : Let \(u = u(t) \in V_{\text{reg}} \) be the solution defined in lemma 1. Then \(u(t) \) satisfies
\[\left(\frac{\partial u}{\partial t}, v_h \right)_0 + a_h(u, v_h) = (f, v_h) \quad \text{for all } v_h \in V^\Gamma_h, \ t \in [0, T]. \]

(6)

For the spatial discretization error we have the following result\(^4\).
Theorem 1 Assume that \(\Gamma \) does not depend on \(t \). Let \(u = u(t) \in V_{reg} \) be the solution defined in lemma 1 and \(u_h = u_h(t) \in V_h^T \) the solution of (6) with \(u_h(0) = \hat{u}_0 \). The following holds, with \(R_h \) the elliptic projection on \(V_h^T \).

\[
\|u_h(t) - u(t)\|_0 \leq \|\hat{u}_0 - R_h u_0\|_0 + c h^2 \left\{ \|u_0\|_{2,\Omega_{1}\cup\Omega_{2}} + \int_0^t \left\| \frac{\partial u}{\partial t} \right\|_{2,\Omega_{1}\cup\Omega_{2}} \, dt \right\}, \quad 0 \leq t \leq T.
\]

From this result we conclude that for the semi-discretization of our transport problem we have an optimal error bound for the spatial discretization.

4 Numerical experiments

4.1 Experiment with a stationary interface

We consider the problem (1)-(2) in the domain \(\Omega = (0, 1)^3 \), which contains two subdomains \(\Omega_1 := \{(x, y, z) \in \Omega : z < 0.341\} \) and \(\Omega_2 := \Omega \setminus \Omega_1 \), with the coefficients \(\alpha = (\alpha_1, \alpha_2) := (1, 2) \), \(\beta = (\beta_1, \beta_2) := (2, 1) \) and a velocity field \(w := (y(1 - z), x, 0)^T \). The exact solution is chosen as

\[
u(x, y, z, t) := \begin{cases}
\exp(-t) \cos(\pi x) \cos(2\pi y)az + b & \text{in } \Omega_1, \\
\exp(-t) \cos(\pi x) \cos(2\pi y)z(z - 1) & \text{in } \Omega_2,
\end{cases}
\]

where the constants \(a \) and \(b \) are determined from the interface conditions (2). For the spatial discretization, we create a uniform grid with mesh size \(h = \frac{1}{N} \) \((N = 8, 16, 32) \) then refine the elements near the interface two times further. The semi-discretization \(u_h(t) \) is approximated by \(u_h^*(t) \) using the implicit Euler time-stepping scheme with a (sufficiently small) time step size \(\Delta t = 10^{-4} \). In Table 1, the errors \(\|u_h^*(T) - u(T)\|_{L^2} \) for \(T = 0.15 \) are displayed, which are consistent with the theoretical bound \(O(h^2) \) given in theorem 1. For a stationary elliptic problem the bound \(\|\beta u_h\|_{L^2(\Gamma)} \leq c h^{1/2} \|u\|_{2,\Omega_{1}\cup\Omega_{2}} \) holds. For the time dependent case we were not able to derive a theoretical bound for this error quantity. The errors \(\|\beta u_h^*(T)\|_{L^2(\Gamma)} \) are given in Table 2, which seems to behave like \(O(h) \). The numerical solution for \(N = 16 \) at \(T = 0.15 \) in the plane \(x = 0.25 \) is shown in Figure 1. To investigate the time discretization

\begin{table}[h]
\begin{tabular}{|c|c|c|}
\hline
\(N \) & \(\|u_h^*(T) - u(T)\|_{L^2} \) & \text{factor} & \text{order} \\
\hline
8 & 0.00738506 & - & - \\
16 & 0.0020308 & 3.65 & 1.87 \\
32 & 0.0005228 & 3.87 & 1.95 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\begin{tabular}{|c|c|c|}
\hline
\(N \) & \(\|\beta u_h^*(T)\|_{L^2(\Gamma)} \) & \text{factor} & \text{order} \\
\hline
8 & 1.565e - 4 & - & - \\
16 & 7.975e - 05 & 1.96 & 0.972 \\
32 & 3.900e - 05 & 2.05 & 1.03 \\
\hline
\end{tabular}
\end{table}

To investigate the time discretization error, we use a fixed mesh with \(N = 16 \) and compute a reference solution \(u_h^*(t) \) with \(\Delta t = 10^{-4} \) in the time interval \([0, 0.2]\). The Euler discretization with time step \(\Delta t = \frac{T}{n} \) results in approximations \(u_h^*(T) \) of \(u_h^*(T) \). For the cases \(n = 5, 10, 20 \) the temporal errors in the \(L^2 \)-norm are given in Table 3. We observe the expected first order of convergence in \(\Delta t \).

4.2 Experiment with a nonstationary interface

We consider the problem (1)-(2) in the unit cube \(\Omega \) and with \(\Omega_1(0) \) a sphere of radius \(R = 0.2 \) centered at the barycenter of \(\Omega \). This sphere is moved in with constant velocity \(w = (0, 1, 0)^T \), i.e.,
Arnold Reusken and Trung Hieu Nguyen

<table>
<thead>
<tr>
<th>n</th>
<th>$|u_h^n - u^*h(0.2)|{L^2}$</th>
<th>factor</th>
<th>order</th>
<th>N</th>
<th>$|u_h^*(T) - u(T)|_{L^2}$</th>
<th>factor</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$1.254e-05$</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>0.00490676</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>$6.092e-06$</td>
<td>2.06</td>
<td>1.04</td>
<td>32</td>
<td>0.00121142</td>
<td>4.05</td>
<td>2.018</td>
</tr>
<tr>
<td>20</td>
<td>$3.011e-06$</td>
<td>2.02</td>
<td>1.02</td>
<td>64</td>
<td>0.000310616</td>
<td>3.9</td>
<td>1.963</td>
</tr>
</tbody>
</table>

Table 3: Planar interface: Time discretization error in L^2 norm and convergence order at $T = 0.2$

Table 4: Moving interface: Spatial discretization error in L^2-norm and convergence order at $T = 0.1$

$\Omega_1(t) = \Omega_1(0) + tw$. Let $d(x, t)$ be the distance from the point $x \in \Omega$ to the center of $\Omega_1(t)$. We take the piecewise quadratic solution

$$u(x, t) := \begin{cases}
\alpha_2 (d(x, t)^2 - R^2) + 0.1 \cdot \beta_2 & \text{in } \Omega_1, \\
\alpha_1 (d(x, t)^2 - R^2) + 0.1 \cdot \beta_1 & \text{in } \Omega_2,
\end{cases}$$

with coefficients $(\alpha_1, \alpha_2) := (1, 5), (\beta_1, \beta_2) := (2, 1)$. As the XFEM space now is time dependent, we discretize the problem first in time using the implicit Euler method with the time step size $\Delta t = 10^{-4}$. The resulting convection-diffusion-reaction problem is discretized with the Nitsche method. We use a uniform grid with the mesh size $h = \frac{1}{N}$, where $N = 16, 32, 64$. The errors $\|u_h^*(T) - u(T)\|_{L^2}$ for $T = 0.1$ are displayed in Table 4 with the expected convergence order 2.

Figure 1: Planar interface: Numerical solution at $T = 0.15$ in the plane $x = 0.25$.

Figure 2: Moving interface: Numerical solution at $T = 0.1$ in the plane $x = 0.5$.

REFERENCES

