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Abstract. We consider a parabolic interface problem which models the transport of a dissolved
species in two-phase incompressible flow problems. Due to the so-called Henry interface condition
the solution is discontinuous across the interface. We use an extended finite element space combined
with a method due to Nitsche for the spatial discretization of this problem and derive optimal
discretization error bounds for this method. For the time discretization a standard θ-scheme is
applied. Results of numerical experiments are given that illustrate the convergence properties of this
discretization.
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1. Introduction. Let Ω ⊂ R
d, d = 2, 3, be a convex polygonal domain that

contains two different immiscible incompressible phases. The (in general time depen-
dent) subdomains containing the two phases are denoted by Ω1, Ω2, with Ω̄ = Ω̄1∪Ω̄2.
A typical example is a droplet surrounded by another fluid. In this paper we only
consider the stationary case in which the interface Γ := Ω̄1 ∩ Ω̄2 does not depend
on time. The interface Γ is assumed to be sufficiently smooth. A model example is
a droplet at a stationary position in a flow field. The fluid dynamics in such a flow
problem is usually modeled by the incompressible Navier-Stokes equations combined
with suitable conditions at the interface which describe the effect of surface tension.
For this model we refer to the literature, e.g. [2, 7, 19, 27]. By w we denote the
velocity field resulting from these Navier-Stokes equations. In this paper we consider
a model which describes the transport of a dissolved species in such a two-phase flow
problem. In strong formulation this model is as follows:

∂u

∂t
+ w · ∇u − div(α∇u) = f in Ωi, i = 1, 2, t ∈ [0, T ], (1.1)

[α∇u · n]Γ = 0, (1.2)

[βu]Γ = 0, (1.3)

u(·, 0) = u0 in Ωi, i = 1, 2, (1.4)

u(·, t) = 0 on ∂Ω, t ∈ [0, T ]. (1.5)

Here n denotes the unit normal at Γ pointing from Ω1 into Ω2. For a sufficiently
smooth function v, [v] = [v]Γ denotes the jump of v across Γ, i.e. [v] = (v1)|Γ −
(v2)|Γ, where vi = v|Ωi

is the restriction of v to Ωi. In (1.1) we have standard
parabolic convection-diffusion equations in the two subdomains Ω1 and Ω2. The
diffusion coefficient α is assumed to be piecewise constant:

α = αi > 0 in Ωi.

In general we have α1 6= α2. The interface condition in (1.2) results from the conser-
vation of mass principle. The condition in (1.3) is the so-called Henry condition, cf.
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[17, 23, 22, 3, 2]. In this condition the coefficient β is strictly positive and piecewise
constant:

β = βi > 0 in Ωi.

In general we have β1 6= β2, since species concentration usually has a jump discon-
tinuity at the interface due to different solubility within the respective fluid phases.
Hence, the solution u is discontinuous across the interface.

In this paper we analyze a special finite element method for the discretization of
this class of parabolic interface problems. For the special case β1 = β2 (no discontinu-
ity) and with a triangulation which is fitted to the interface, standard finite element
spaces have (close to) optimal approximation properties. In [4] it is proved that in
this special case for standard linear finite elements an L2-discretization error bound
of the order h2 log h holds.

In this paper we allow β1 6= β2 and use triangulations that are unfitted (as in
level set of VOF approaches), i.e. the interface crosses the elements. We will analyze
a variant of Nitsche’s method [20] for the spatial discretization of this problem. From
this semi-discrete problem a full discretization is obtained by using a standard θ-
scheme for time discretization. We use the same Nitsche method as presented and
analyzed in [8], cf. also [9, 10, 11]. In that paper this method is applied to a stationary
heat conduction problem with a conductivity that is discontinuous across the interface
(α1 6= α2) but with a solution that is continuous across the interface (β1 = β2).
We apply this method to the instationary problem described above, with β1 6= β2

(discontinuous solution), and furthermore allow a convection term in (1.1) (in [8] only
pure diffusion is considered). In the error analysis that we present some key results
from [8] are used.

We also mention the papers [12, 13, 14, 15, 16] in which a similar Nitsche method
is applied and analyzed in a different setting, namely as a mortar method, which
allows the use of non-matching meshes, for the discretization of elliptic and parabolic
problems with smooth solutions.

Remark 1. The discontinuity of u across the interface can be avoided by intro-
ducing transformed quantities ũ := βu, α̃ := α/β, w̃ := w/β. Then (1.1)-(1.3) can
be reformulated as

β−1 ∂ũ

∂t
+ w̃ · ∇ũ − div(α̃∇ũ) = f in Ωi, i = 1, 2, t ∈ [0, T ], (1.6)

[α̃∇ũ · n]Γ = 0, (1.7)

[ũ]Γ = 0. (1.8)

In this formulation we have continuity of ũ across Γ but, compared to (1.1), a subdo-
main dependent scaling factor β−1 in front of the time derivative.

We will consider the model in the formulation (1.1)-(1.5). The discretization
method obtained for this model immediately yields an analogon for the transformed
model (1.6)-(1.8), cf. remark 5.

The paper is organized as follows. In section 2 we discuss a weak formulation
of the problem (1.1)-(1.5). In section 3 Nitsche’s finite element method for the spa-
tial discretization is presented. In section 4 optimal discretization error bounds are
derived. In section 5 the issue of time discretization is briefly addressed. Finally,
in section 6 we present results of a numerical experiment with a three-dimensional
transport problem of the form (1.1)-(1.5).
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2. Weak formulation. In this section we give a weak formulation of the prob-
lem (1.1)-(1.5) which, under reasonable assumptions on the data f , u0 (and w), has a
unique solution. We assume that for the function u0 in the initial condition (1.4) the
conditions in (1.2), (1.3) are satisfied. For simplicity we only consider homogeneous
Dirichlet boundary conditions in (1.5). Note that this boundary condition is given
(only) on ∂Ω and thus if ∂Ω1∩∂Ω = ∅, then it does not prescribe values for u1 = u|Ω1

.
Due to the fact that the underlying two-phase fluid dynamics concerns two incom-

pressible immiscible phases it is reasonable to make the following assumption about
the velocity field w:

div w = 0 in Ωi, i = 1, 2, and w · n = 0 at Γ, ‖w‖L∞(Ω) ≤ c < ∞. (2.1)

In the remainder of the paper we assume that (2.1) holds.

For a weak formulation we introduce suitable Hilbert spaces. We define H1
0 (Ω1∪Ω2) :=

{ v ∈ L2(Ω)| vi ∈ H1(Ωi), i = 1, 2, v|∂Ω = 0 }, where vi := v|Ωi
, and

H := L2(Ω), V := { v ∈ H1
0 (Ω1 ∪ Ω2)| [βv]Γ = 0 }.

On H we use the scalar product

(u, v)0 :=

∫

Ω

βuv dx,

which clearly is equivalent to the standard scalar product on L2(Ω). The correspond-
ing norm is denoted by ‖·‖0. For u, v ∈ H1(Ωi) we define (u, v)1,Ωi

:= βi

∫

Ωi
∇u·∇v dx

and furthermore

(u, v)1,Ω1∪Ω2
:= (u, v)1,Ω1

+ (u, v)1,Ω2
=

2
∑

j=1

( ∂u

∂xj
,

∂v

∂xj

)

0
, u, v ∈ V.

The corresponding norm is denoted by | · |1,Ω1∪Ω2
. This norm is equivalent with

(

‖ · ‖2
0 + | · |21,Ω1∪Ω2

)
1

2 =: ‖ · ‖1,Ω1∪Ω2
.

The space
(

V, (·, ·)1,Ω1∪Ω2

)

is a Hilbert space. We obtain a Gelfand triple V →֒ H ≡
H ′ →֒ V ′, with dense and continuous embeddings →֒.

We now introduce the bilinear form

a(u, v) := (αu, v)1,Ω1∪Ω2
+ (w · ∇u, v)0, u, v ∈ V.

This bilinear form is continuous on V and using (2.1) we get, for u ∈ V ,

(w · ∇u, u)0 =
∑

i=1,2

βi

∫

Ωi

w · ∇ui ui dx

=

∫

Γ

w · n[βu2]|Γ ds −
∑

i=1,2

βi

∫

Ωi

div w u2
i dx − (w · ∇u, u)0

= −(w · ∇u, u)0.

(2.2)

Hence, (w · ∇u, u)0 = 0 holds. This yields ellipticity of a(·, ·):

a(u, u) ≥
(

min
i=1,2

αi

)

|u|21,Ω1∪Ω2
for all u ∈ V. (2.3)
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We introduce some further standard notation. If X is a Banach space then L2(0, T ; X)
is the space of L2 functions from (0, T ) into X , which is a Banach space for the norm

‖f‖L2(0,T ;X) =
(

∫ T

0

‖f(t)‖2
X dt

)
1

2

.

Furthermore C([0, T ]; X) denotes the space of continuous functions from [0, T ] into
X , which is a Banach space for the norm

‖f‖C([0,T ];X) = sup
t∈[0,T ]

‖f(t)‖X .

Now consider the following weak formulation of (1.1)-(1.5). Given f ∈ V ′, u0 ∈ H ,
determine u ∈ L2(0, T ; V ) such that

u(0) = u0, 〈
∂u

∂t
, u〉 + a(u, v) = 〈f, v〉 for all v ∈ V. (2.4)

Here 〈·, ·〉 denotes the duality pairing on V ′ × V . The derivative ∂u
∂t is defined in a

distributional sense, cf. for example [18, 25]. In particular ∂u
∂t ∈ L2(0, T ; V ′). It can

be shown ([18, 25]) that u ∈ C([0, T ]; H) holds and thus the initial condition u = u0

is well-defined. It is proved in [18, 25] that the weak formulation (2.4) has a unique
solution.

Remark 2. This existence and uniqueness result still holds (cf. [26, 6]) if instead
of ellipticity of the bilinear form a(·, ·), cf. (2.3), one has the weaker property

a(u, u) ≥ c0|u|
2
1,Ω1∪Ω2

− c1‖u‖
2
0 for all u ∈ V,

with constants c0 > 0 and c1 independent of u. Using |(w ·∇u, u)0| ≤ c|u|1,Ω1∪Ω2
‖u‖0

it easily follows that this property holds without using the first two assumptions in
(2.1). We introduce these assumptions because they simplify the presentation of the
analysis for the continuous problem and we need them in our analysis of Nitsche’s
method in section 4.

The duality pairing in (2.4) can be replaced by the scalar product (·, ·)0 on H if one
assumes additional regularity of the data f and u0. Related to this regularity issue
we first consider the stationary problem: for f ∈ H ,

find w ∈ V such that a(w, v) = (f, v)0 for all v ∈ V. (2.5)

The unique solution w of this problem satisfies (cf. [4])

w ∈ Vreg := { v ∈ V | vi ∈ H2(Ωi), i = 1, 2. }, (2.6)

and

‖w‖2,Ω1∪Ω2
:=

(

‖w‖2
1,Ω1∪Ω2

+ |w|22,Ω1∪Ω2

)
1

2 ≤ c ‖f‖0 (2.7)

holds, with a constant c independent of f . The space Vreg is a Banach space with
respect to the norm ‖·‖2,Ω1∪Ω2

. Using this regularity result it follows from Theorem 3.2
in [24] that the following holds:

Lemma 2.1. Take f ∈ H, u0 ∈ Vreg There exists a unique u ∈ C([0, T ]; Vreg)
such that u(0) = u0 and

(
∂u

∂t
, v)0 + a(u, v) = (f, v)0 for all v ∈ V. (2.8)
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Moreover, the distributional time derivative satisfies

∂u

∂t
∈ L2(0, T ; V ) ∩ C([0, T ]; H). (2.9)

We now show that the variational problem (2.8) is indeed a correct weak formulation
of the problem (1.1)-(1.5).

Lemma 2.2. Take f ∈ H, u0 ∈ Vreg. Assume that (1.1)-(1.5) has a so-
lution u(x, t) which is sufficiently smooth such that for u : t → u(·, t) we have
u ∈ C([0, T ]; Vreg) and ∂u

∂t ∈ L2(0, T ; H). This u solves the variational problem (2.8).
Conversely, if u ∈ C([0, T ]; Vreg) with u(0) = u0 solves the variational problem (2.8)
then u satisfies (1.1) in a weak L2(Ωi) sense and (1.2), (1.3), (1.5) in trace sense.

Proof. Take u ∈ C([0, T ]; Vreg) with ∂u
∂t ∈ L2(0, T ; H), and v ∈ V . Using [βv] = 0

we get

[α∇u · nβv]Γ = [α∇u · n]Γ
1

2

(

(β1v1)|Γ + (β2v2)|Γ
)

+
1

2

(

(α1∇u1 · n)|Γ + (α2∇u2 · n)|Γ
)

[βv]|Γ

= [α∇u · n]Γ
1

2

(

(β1v1)|Γ + (β2v2)|Γ
)

.

Using this we obtain

(
∂u

∂t
, v)0 + a(u, v)

= (
∂u

∂t
, v)0 + (w · ∇u, v)0 −

∑

i=1,2

∫

Ωi

div(αi∇u)βiv dx +

∫

Γ

[α∇u · nβv]Γ ds

=
∑

i=1,2

∫

Ωi

(∂u

∂t
+ w · ∇u − div(αi∇u)

)

βiv dx

+

∫

Γ

[α∇u · n]Γ
1

2

(

(β1v1)|Γ + (β2v2)|Γ
)

ds.

(2.10)

If u satisfies (1.1), (1.2) we thus obtain

(
∂u

∂t
, v)0 + a(u, v) = (f, v)0 for all v ∈ V,

i.e., (2.8) holds. Conversely, if u ∈ C([0, T ]; Vreg) with u(0) = u0 solves the variational
problem (2.8) we obtain

∑

i=1,2

∫

Ωi

(∂u

∂t
+ w · ∇u − div(αi∇u) − f

)

βiv dx

+

∫

Γ

[α∇u · n]Γ
1

2

(

(β1v1)|Γ + (β2v2)|Γ
)

ds = 0

for all v ∈ V . This implies that ∂u
∂t + w · ∇u − div(αi∇u) = f in L2(Ωi) sense and

[α∇u ·n]Γ = 0 in trace sense. The properties in (1.3) and (1.5) hold due to u ∈ V .

For the result in (2.10) it is essential that we multiply the equation (1.1) by βv
and not by v. This explains why in the scalar products (·, ·)0 and (·, ·)1,Ω1∪Ω2

we use
the weighting with the (piecewise constant) function β.
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3. Nitsche’s method. We present Nitsche’s method along the same lines as in
[8]. Let {Th}h>0 be a family of shape regular triangulations of Ω. A triangulation Th

consists of triangles T , with hT := diam(T ) and h := max{ hT | T ∈ Th}. For any
triangle T ∈ Th let Ti := T ∩Ωi be the part of T in Ωi. For any T with T ∩ Γ 6= ∅ we
define ΓT := T ∩ Γ. Related to the triangulation we formulate the same assumptions
as in [8]:

Assumption 1. Consider a T with T ∩ Γ 6= ∅. We assume that the interface Γ
intersects ∂T exactly twice and each edge of T at most once. Let ΓT,h be the straight
line connecting the points of intersection between Γ and ∂T . We assume that ΓT is a
function of length on ΓT,h:

ΓT,h = { (ξ, η)| 0 < ξ < |ΓT,h|, η = 0 }, ΓT = { (ξ, η)| 0 < ξ < |ΓT,h|, η = δ(ξ) }.

The assumptions formulated in assumption 1 are satisfied on sufficiently fine
meshes. We now introduce the finite element space

V Γ
h := { v ∈ H1

0 (Ω1 ∪ Ω2)| v|Ti
is linear for all T ∈ Th, i = 1, 2. } (3.1)

Note that V Γ
h ⊂ H1

0 (Ω1 ∪ Ω2), but V Γ
h 6⊂ V , since the Henry interface condition

[βvh] = 0 does not necessarily hold for vh ∈ V Γ
h .

Remark 3. In the literature a finite element discretization based on the space V Γ
h

is often called an extended finite element method (XFEM), cf. [1, 5]. Furthermore, in
the (engineering) literature this space is usually characterized in a different way, which
we briefly explain. Let Vh be the standard finite element space of continuous piecewise
linears, corresponding to the triangulation Th. Define the index set J = {1, . . . , n},
where n = dimVh, and let (φi)i∈J be the nodal basis in Vh. Let JΓ := { j ∈
J | |Γ∩ supp(φj)| > 0 } be the index set of those basis functions the support of which
is intersected by Γ. The heaviside function HΓ has the values HΓ(x) = 0 for x ∈ Ω1,
HΓ(x) = 1 for x ∈ Ω2. Using this, for j ∈ JΓ we introduce a so-called enrichment
function Φj(x) := HΓ(x)−HΓ(xj), where xj is the vertex with index j. We introduce
a new basis function φΓ

j := φjΦj , j ∈ JΓ, and define the space

V Γ
h := Vh ⊕ span{φΓ

j | j ∈ JΓ }.

This characterization accounts for the name “extended finite element method”. The
new basis functions φΓ

j have the property φΓ
j (xi) = 0 for all i ∈ J . An L2-stability

property of the basis (φj)j∈J ∪ (φΓ
j )j∈JΓ

of V Γ
h is given in [21].

Define

(κi)|T =
|Ti|

|T |
, T ∈ Th, i = 1, 2,

hence, κ1+κ2 = 1. For v sufficiently smooth such that (vi)|Γ, i = 1, 2, are well-defined,
we define the weighted average

{v} := κ1(v1)|Γ + κ2(v2)|Γ.

For the average and jump operators the following identity holds for all f, g such that
these operators are well-defined:

[fg] = {f}[g] + [f ]{g} − (κ1 − κ2)[f ][g]. (3.2)
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Let (f, g)Γ :=
∫

Γ
fg ds be the L2(Γ) scalar product. We introduce the bilinear form

ah(u, v) := (αu, v)1,Ω1∪Ω2
+ (w · ∇u, v)0 − ([βu], {α∇v · n})Γ

− ({α∇u · n}, [βv])Γ + λh−1([βu], [βv])Γ,
(3.3)

with λ > 0 a parameter. This bilinear form is well-defined on the space V Γ
h but also

on

Wreg := { v ∈ H1
0 (Ω1 ∪ Ω2)| vi ∈ H2(Ωi), i = 1, 2. }.

The space Wreg is larger than the space Vreg in (2.6). The interface condition [βv] is
fulfilled for all v ∈ Vreg but not neccesarily for v ∈ Wreg.

Using this bilinear form we define a method of lines discretization of (2.8). Let
û0 ∈ V Γ

h be an approximation of u0. For t ∈ [0, T ] let uh(t) ∈ V Γ
h be such that

uh(0) = û0 and

(
∂uh

∂t
, vh)0 + ah(uh, vh) = (f, vh)0 for all vh ∈ V Γ

h . (3.4)

Opposite to the weak formulation in (2.8), in this discretization method the Henry
interface condition [βuh] = 0 is not treated as an “essential” interface condition in the
finite element space V Γ

h . This interface condition is satisfied only approximately by
introducing the (penalty) term λh−1([βu], [βv])Γ in the bilinear form ah(·, ·). As we
will show in the following sections, this approach leads to optimal order error bounds
(section 4) and satisfactory results in numerical experiments (section 6).

4. Analysis of Nitsche’s method. In this section we present an error analysis
of the method of lines discretization given in (3.4). We start with a consistency result:

Lemma 4.1. Let u = u(t) ∈ Vreg be the solution defined in lemma 2.1. Then u(t)
satisfies

(
∂u

∂t
, vh)0 + ah(u, vh) = (f, vh) for al vh ∈ V Γ

h , t ∈ [0, T ]. (4.1)

Proof. From lemma 2.2 we have that u = u(t) satisfies [α∇u · n] = 0, [βu] = 0.
Using this and (3.2) we obtain:

−
∑

i=1,2

∫

Ωi

div(αi∇u)βvh dx + (w · ∇u, vh)0

= −

∫

Γ

[α∇u · nβvh] ds + (αu, vh)1,Ω1∪Ω2
+ (w · ∇u, vh)0

= −({α∇u · n}, [βvh])Γ + (αu, vh)1,Ω1∪Ω2
+ (w · ∇u, vh)0 = ah(u, vh).

Furthermore, u solves (1.1) (in the sense as in lemma 2.2). Multiplication of (1.1) by
βvh and integration over Ω results in

(f, vh)0 = (
∂u

∂t
, vh)0 + (w · ∇u, vh)0 −

∑

i=1,2

∫

Ωi

div(αi∇u)βvh dx

= (
∂u

∂t
, vh)0 + ah(u, vh),
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and thus the consistency result holds.
For the error analysis we introduce a suitable norm, as in [8]. Let Gh denote the set
of all triangles that are intersected by Γ. We define

‖v‖2
1/2,h,Γ :=

∑

T∈Gh

h−1
T ‖v‖2

L2(ΓT ), (4.2)

‖v‖2
−1/2,h,Γ :=

∑

T∈Gh

hT ‖v‖
2
L2(ΓT ), (4.3)

|||v|||2 := |v|21,Ω1∪Ω2
+ ‖{∇v · n}‖2

−1/2,h,Γ + ‖[βv]‖2
1/2,h,Γ. (4.4)

Note that different from [8] we have a scaling with β in the terms |v|1,Ω1∪Ω2
and

‖[βv]‖1/2,h,Γ. The bilinear form ah(·, ·) has the following continuity and ellipticity
properties with respect to the norm ||| · |||.

Lemma 4.2. There exist constants c1, c2 > 0 such that for λ sufficiently large
(independent of h) the following holds:

|ah(u, v)| ≤ c1|||u||| |||v||| for all u, v ∈ V Γ
h + Wreg, (4.5)

ah(vh, vh) ≥ c2|||vh|||
2 for all vh ∈ V Γ

h . (4.6)

Proof. First note that |(f, g)Γ| ≤ ‖f‖1/2,h,Γ‖g‖−1/2,h,Γ holds. Take u, v ∈ V Γ
h +

Wreg. Using the Cauchy-Schwarz inequality and the definitions of the norms we obtain

|ah(u, v)| ≤ c |u|1,Ω1∪Ω2
|v|1,Ω1∪Ω2

+ c |u|1,Ω1∪Ω2
‖v‖0

+ ‖[βu]‖1/2,h,Γ‖{α∇v · n}‖−1/2,h,Γ + ‖{α∇u · n}‖−1/2,h,Γ‖[βv]‖1/2,h,Γ

+ λ‖[βu]‖1/2,h,Γ‖[βv]‖1/2,h,Γ ≤ c |||u||||||v|||,

which proves the continuity. Using the assumptions (2.1) we obtain for vh ∈ V Γ
h , cf.

(2.2), (w · ∇vh, vh)0 = 0. Hence,

ah(vh, vh) ≥ |α
1

2 vh|
2
1,Ω1∪Ω2

− 2|({α∇vh · n}, [βvh], )Γ| + λc‖[βvh]‖2
1/2,h,Γ

≥ |α
1

2 vh|
2
1,Ω1∪Ω2

− 2‖{α∇vh · n}‖−1/2,h,Γ‖[βv]‖1/2,h,Γ + λc‖[βvh]‖2
1/2,h,Γ,

with c > 0 independent of h. From Lemma 4 in [8] we have

‖{α∇vh · n}‖−1/2,h,Γ ≤ c |α
1

2 vh|1,Ω1∪Ω2
.

Using this we obtain the ellipticity result in (4.6), provided the parameter λ is chosen
sufficiently large.

In [8] an interpolation operator I∗h : H1
0 (Ω) ∩ H2(Ω1 ∪ Ω2) → V Γ

h is defined and an
interpolation error bound is proved. This interpolation operator is defined by nodal
interpolation of H2-extensions of vi, i = 1, 2. The definition and the analysis of this
operator does not use the fact that v ∈ H1

0 (Ω) ∩ H2(Ω1 ∪ Ω2) is continuous across
Γ. The definition of I∗h and its analysis apply, with only minor changes, to v ∈ Wreg.
Furthermore, the analysis of the interpolation error in [8] also applies if in the norm
||| · ||| we use a scaling with β, cf. (4.4). Thus Theorem 2 in [8] yields the following.

Theorem 4.3. Let I∗h : Wreg → V Γ
h be the interpolation operator defined in [8].

There exists a constant c such that

|||v − I∗hv||| ≤ c h‖v‖2,Ω1∪Ω2
for all v ∈ Wreg (4.7)
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holds.

In the error analysis we use the elliptic projection Rh : Wreg + V Γ
h → V Γ

h , defined by

ah(Rhv, wh) = ah(v, wh) for all wh ∈ V Γ
h .

In the following two lemmas we derive error bounds for this projection.

Lemma 4.4. The following holds:

|||Rhv − v||| ≤ c h‖v‖2,Ω1∪Ω2
for all v ∈ Wreg.

Proof. For v ∈ Wreg define χh := Rhv − I∗hv ∈ V Γ
h . Using lemma 4.2 and

theorem 4.3 we get, with c2 > 0:

c2|||χh|||
2 ≤ ah(χh, χh) = ah(Rhv − I∗hv, χh)

= ah(v − I∗hv, χh) ≤ c1|||v − I∗hv||||||χh||| ≤ ch‖v‖2,Ω1∪Ω2
|||χh|||.

Hence, |||χh||| ≤ c h‖v‖2,Ω1∪Ω2
holds and thus

|||Rhv − v||| ≤ |||χh||| + |||v − I∗hv||| ≤ c h‖v‖2,Ω1∪Ω2

holds.

Lemma 4.5. The following holds:

‖Rhv − v‖0 ≤ c h2‖v‖2,Ω1∪Ω2
for all v ∈ Wreg.

Proof. For v ∈ Wreg define eh := Rhv − v ∈ V Γ
h + Wreg. Introduce the bilinear

form

ã(u, v) = (αu, v)1,Ω1∪Ω2
− (w · ∇u, v)0, u, v ∈ H1

0 (Ω1 ∪ Ω2).

Using w · n = 0 on Γ and div w = 0 in Ωi we get −(w · ∇u, v)0 = (w · ∇v, u)0 and
thus ã(u, v) = a(v, u) for u, v ∈ H1

0 (Ω1 ∪ Ω2). Let ũ ∈ V be the unique solution of

ã(ũ, v) = (eh, v)0 for all v ∈ V.

This dual problem has the same regularity properties as the one in (2.5), i.e., ũ ∈
H2(Ω1 ∪ Ω2) and

‖ũ‖2,Ω1∪Ω2
≤ c‖eh‖0,

with a constant c independent of eh. Using this regularity property, combined with
[βũ] = 0 (since ũ ∈ V ) it follows that ũ solves the following problem:

− div(α∇ũ) − w · ∇ũ = eh in Ωi, i = 1, 2, (in L2 sense), (4.8)

[α∇ũ · n]Γ = 0, (4.9)

[βũ]Γ = 0. (4.10)
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Multiplication of (4.8) with βeh, integration over Ωi and applying partial integration
we obtain, using (4.9),(4.10):

(eh, eh)0 = (αũ, eh)1,Ω1∪Ω2
− (w · ∇ũ, eh)0 −

∫

Γ

[α∇ũ · nβeh] ds

= (αeh, ũ)1,Ω1∪Ω2
+ (w · ∇eh, ũ)0 − ([βeh], {α∇ũ · n})Γ

− ({α∇eh · n}, [βũ])Γ + λh−1([βeh], [βũ])Γ

= ah(eh, ũ).

Using this in combination with theorem 4.3 and lemma 4.4 we get

(eh, eh)0 = ah(eh, ũ) = ah(eh, ũ − I∗hũ) ≤ c1|||eh||||||ũ − I∗hũ|||

≤ c h2‖v‖2,Ω1∪Ω2
‖ũ‖2,Ω1∪Ω2

≤ c h2‖v‖2,Ω1∪Ω2
‖eh‖0,

which completes the proof.
We now derive an error bound for the semi-discretization by Nitsche’s method in (3.4).
We require that the solution u = u(t) ∈ Vreg as defined in lemma 2.1 has sufficient
regularity, in particular ∂u

∂t ∈ L1
(

0, T ; Wreg). The analysis uses standard arguments
as in, for example, [26].

Theorem 4.6. Let u = u(t) ∈ Vreg be the solution defined in lemma 2.1 and
uh = uh(t) ∈ V Γ

h the solution of (3.4) with uh(0) = û0. The following holds

‖uh(t)−u(t)‖0 ≤ ‖û0−Rhu0‖0+c h2
{

‖u0‖2,Ω1∪Ω2
+

∫ t

0

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

dτ
}

, 0 ≤ t ≤ T.

Proof. Introduce the splitting uh(t) − u(t) = θ(t) + ρ(t), with θ := uh − Rhu,
ρ := Rhu − u. From lemma 4.5 we have

‖ρ(t)‖0 ≤ ch2‖u(t)‖2,Ω1∪Ω2
≤ c h2

(

‖u0‖2,Ω1∪Ω2
+

∫ t

0

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

dτ
)

. (4.11)

For θ = θ(t) ∈ V Γ
h we have, using lemma 4.1:

‖θ‖0
d

dt
‖θ‖0 =

1

2

d

dt
‖θ‖2

0 =
(∂θ

∂t
, θ

)

0
≤

(∂θ

∂t
, θ

)

0
+ ah(θ, θ)

=
(∂uh

∂t
, θ

)

0
+ ah(uh, θ) −

(∂Rhu

∂t
, θ

)

0
− ah(Rhu, θ)

= (f, θ)0 − ah(u, θ) −
(∂Rhu

∂t
, θ

)

0

=
(∂u

∂t
, θ

)

0
−

(∂Rhu

∂t
, θ

)

0
= (w − Rhw, θ

)

0
,

with w = ∂u
∂t . We assumed sufficient regularity, in particular w ∈ Wreg. Using

lemma 4.5 we get

(w − Rhw, θ
)

0
≤ c h2

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

‖θ‖0.

Thus we have

d

dt
‖θ‖0 ≤ c h2

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

.
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Integration over [0, t] and using ‖θ(0)‖0 = ‖û0 − Rhu0‖0 proves the desired result.

Remark 4. We comment on the error analysis for the three-dimensional case.
The Nitsche method given in (3.4) has an obvious analogon if we consider a problem
as in (1.1)-(1.5) with Ω ⊂ R

3 and use the extended finite element space on a family
of shape regular tetrahedral triangulations. The arguments to derive the consistency
result in lemma 4.1 are dimension independent. Results as in lemma 4.2, lemma 4.4
and lemma 4.5 can be proved using results from [9]. The arguments and the tech-
niques used are essentially the same as for the 2D case.

5. Time discretization. The semi-discretization (3.4), resulting from Nitsche’s
method, can be combined with standard time discretization methods. For example,
the θ-scheme (θ ∈ (0, 1]) takes the following form. For n = 0, 1, . . . , N − 1, with
N∆t = T , set u0

h := û0
h ∈ V Γ

h , and determine un+1
h ∈ V Γ

h such that for all vh ∈ V Γ
h

(

un+1
h − un

h

∆t
, vh

)

0

+ah(θun+1
h +(1−θ)un

h , vh) = (θf(tn+1)+(1−θ)f(tn), vh)0 (5.1)

holds. The error analysis of this full discretization method can be performed using
standard arguments, as in [26]. For completeness we derive an error bound for the
implicit Euler method. Again we require that the solution u = u(t) ∈ Vreg as defined

in lemma 2.1 has sufficient regularity, in particular ∂u
∂t ∈ L1

(

0, T ; Wreg

)

and ∂2u
∂t2 ∈

L1
(

0, T ; L2(Ω)
)

.
Theorem 5.1. Let u = u(t) ∈ Vreg be the solution defined in lemma 2.1 and

un
h ∈ V Γ

h , n = 0, 1, . . . , N the solution of the θ-scheme (5.1) for θ = 1. The following
holds:

‖un
h − u(tn)‖0

≤ ‖û0 − Rhu0‖0 + c h2
{

‖u0‖2,Ω1∪Ω2
+

∫ tn

0

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

dτ
}

+ ∆t

∫ tn

0

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

0

dτ.

Proof. We use the splitting un
h − u(tn) =

(

un
h − Rhu(tn)

)

+
(

Rhu(tn)− u(tn)
)

=:
θn + ρn. For ‖ρn‖0 = ‖ρ(tn)‖0 we have a bound as in (4.11). For the backward
difference quotient we introduce the notation ∂̄nw := (wn − wn−1)/∆t. Using the
definition of un

h in (5.1), the definition of the semi-discretization in (3.4) and the
consistency result in lemma 4.1 we obtain

(∂̄θn, vh)0 + ah(θn, vh) =
1

∆t
(un

h − un−1
h , vh)0 + ah(un

h, vh)

− (∂̄Rhu(tn), vh)0 − ah(Rhu(tn), vh)

= (f(tn), vh)0 − ah(u(tn), vh) − (∂̄Rhu(tn), vh)0

=
(∂u(tn)

∂t
, vh

)

0
− (Rh∂̄u(tn), vh)0 =: (ωn, vh)0,

with

ωn =
∂u(tn)

∂t
− Rh∂̄u(tn) =

[

(I − Rh)∂̄u(tn)
]

−

[

∂̄u(tn) −
∂u(tn)

∂t

]

=: ωn
1 − ωn

2 .

Taking vh = θn ∈ V Γ
h and using ah(θn, θn) ≥ 0 we get

‖θn‖2
0 − (θn−1, θn) ≤ ∆t‖ωn‖0‖θ

n‖0.
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Hence,

‖θn‖0 ≤ ‖θn−1‖0 + ∆t‖ωn‖0,

and

‖θn‖0 ≤ ‖θ0‖0 + ∆t

n
∑

j=1

‖ωj‖0 ≤ ‖û0 − Rhu0‖0 + ∆t

n
∑

j=1

‖ωj
1‖0 + ∆t

n
∑

j=1

‖ωj
2‖0. (5.2)

For ‖ωj
1‖0 we obtain with lemma 4.5

‖ωj
1‖0 =

∥

∥

∥

∥

∥

1

∆t
(I − Rh)

∫ tj

tj−1

∂u

∂t
dτ

∥

∥

∥

∥

∥

0

≤
1

∆t

∫ tj

tj−1

∥

∥

∥

∥

(I − Rh)
∂u

∂t

∥

∥

∥

∥

0

dτ

≤ c
h2

∆t

∫ tj

tj−1

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

dτ,

and thus

∆t
n

∑

j=1

‖ωj
1‖0 ≤ ch2

∫ tn

0

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

dτ. (5.3)

For ωj
2 we have

∆t ωj
2 = u(tj) − u(tj−1) − ∆t

∂u(tj)

∂t
= −

∫ tj

tj−1

(τ − tj−1)
∂2u(τ)

∂t2
dτ,

and thus

∆t

n
∑

j=1

‖ωj
2‖0 ≤

n
∑

j=1

∫ tj

tj−1

(τ − tj−1)

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

0

dτ ≤ ∆t

∫ tn

0

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

0

dτ. (5.4)

Using the results from (5.3), (5.4) in (5.2) in combination with the bound for ‖ρn‖0

from (4.11) we obtain the result.

The analysis of the time discretization given in this section is essentially dimension in-
dependent. Key ingredients are sufficient smoothnes of the solution u and the results
in lemma 4.2 and lemma 4.5, cf. remark 4.

Remark 5. Introducing the transformed variable ũn
h := βun

h ∈ V Γ
h the discretiza-

tion in (5.1) immediately results in a discretization of the transformed equations (1.6)-
(1.8), cf. remark 1.

6. Numerical experiments. In this section we present results of numerical
experiments. We consider a three-dimensional test problem in which the interface Γ
is planar. We use this simple interface geometry to avoid errors that are introduced by
a numerical interface approximation and to obtain a problem of the form (1.1)-(1.5)
with a known and sufficiently smooth solution u.

The domain Ω = (0, 1)3 is sudivided into the subdomains Ω1 := {(x, y, z) ∈
Ω : z < 0.34113} and Ω2 := Ω \ Ω1, which are seperated by the planar interface
Γ := {(x, y, z) ∈ Ω : z = 0.34113}. The position of the interface and the tetrahedral
triangulation (cf. below) are chosen such that these do not fit.
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We consider the problem (1.1)-(1.5) with α = (α1, α2) := (1, 2), β = (β1, β2) :=
(2, 1) and a stationary velocity field

w := (y(1 − z), x, 0)T , (6.1)

which satisfies the assumptions (2.1). The right hand side f is taken such that the
exact solution is

u(x, y, z, t) :=

{

exp(−t) cos(πx) cos(2πy)az(z + b) in Ω1,

exp(−t) cos(πx) cos(2πy)z(z − 1) in Ω2,
(6.2)

where the constants a and b are determined such that the interface conditions (1.2)-
(1.3) are satisfied. We take homogeneous Dirichlet boundary conditions on the bound-
ary segments z = 0 and z = 1 and homogeneous Neumann boundary conditions on
the remaining part of the boundary.

6.1. Spatial discretization error bound. For the spatial discretization, we
first create a uniform grid with mesh size h = 1

N , where N = 8, 16, 32. Starting from
this uniform grid the elements near the interface are refined two times further, i. e. the
local mesh size close to the interface is hΓ = 1

4N . For the case N = 32 this results
in a problem with 1293754 tetrahedra and 226087 unknowns. For the approximation
of the initial value we take û0 = I∗h(u(·, 0)), with I∗h the interpolation operator as in
theorem 4.3.

Fig. 6.1. A slice of the tetrahedral mesh at x = 0.25, for the case N = 16.

The semi-discretization uh(t) is not known. We computed an accurate approx-
imation of uh(t) using the implicit Euler time-stepping scheme ( (5.1) with θ = 1)
with a time step size ∆t which is sufficiently small (in our experiments: ∆t = 10−4)
such that the error due to the time discretization is negligible compared to the space
discretization error. The resulting reference solution is denoted by u∗

h(t). In the
implementation of (5.1) the basis in V Γ

h as explained in remark 3 is used. Note
that special quadrature methods are needed for computing quantities like (φΓ

i , φj)0
and ah(φΓ

i , φj). For the parameter λ in the bilinear form ah(·, ·) we take the value
λ = 100. This choice is based on numerical experiments. It turns out that the error
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behaviour is not very sensitive with respect the choice of the parameter value. The
results are essentially the same for all 101 ≤ λ ≤ 103.

In Table 6.1, the errors ‖u∗
h(T ) − u(T )‖L2 for T = 0.15 are displayed. These

results are consistent with the theoretical bound O(h2) given in theorem 4.6.

N ‖u∗
h(T ) − u(T )‖L2 factor order

8 0.00738506 - -
16 0.00202308 3.65 1.87
32 0.0005228 3.87 1.95

Table 6.1

Spatial discretization error in L2-norm and convergence order at T = 0.15

The exact solution satisfies [βu]Γ = 0. In the Nitsche discretization this interface
condition is satisfied only approximately. For a stationary symmetric elliptic problem
it is shown in [8] that for the discretization uh the error in this interface condition

is bounded by ‖[βuh]‖L2(Γ) ≤ ch1 1

2 ‖u‖2,Ω1∪Ω2
. For the instationary case we were

not able to derive a theoretical bound for this error quantity. We computed the
errors ‖[βu∗

h]‖L2(Γ) for our problem; the results are given in Table 6.2. It can be
observed that the interface condition (1.3) is satisfied only approximately and that
the error ‖[βu∗

h]‖L2(Γ) seems to behave like O(h). The numerical solution for N = 16

N ‖[βu∗
h(T )]‖L2(Γ) factor order

8 1.565e− 4 - -
16 7.975e− 05 1.96 0.972
32 3.900e− 05 2.05 1.03

Table 6.2

L2-norm of the jump [βu∗

h
(T )]Γ and convergence order at T = 0.15

at T = 0.15 in the plane x = 0.25 is shown in Figure 6.2.

Fig. 6.2. Numerical solution at T = 0.15 in the plane x = 0.25.
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6.2. Time discretization error bound. Now we study the time discretization
error bound for the implicit Euler method in Theorem 5.1. We use the fixed mesh
with N = 16 as described above and compute a reference solution with ∆t = 10−4 in
the time interval [0, T ], T = 0.2, which is denoted by u∗

h(t). The Euler discretization,
i.e. (5.1) with θ = 1, with time step ∆t = T

n results in approximations un
h(T ) of u∗

h(T ).
For the cases n = 5, 10, 20 the temporal errors in the L2-norm, i.e. ‖un

h(T )−u∗
h(T )‖L2,

are given in Table 6.3. We observe the expected first order of convergence in ∆t.

n ‖un
h(T ) − u∗

h(T )‖L2 factor order
5 1.254e− 05 - -
10 6.092e− 06 2.06 1.04
20 3.011e− 06 2.02 1.02

Table 6.3

Time discretization error in L2 norm and convergence order at T = 0.2

REFERENCES

[1] T. Belytschko, N. Moes, S. Usui, and C. Parimi, Arbitrary discontinuities in finite elements,
Int. J. Num. Meth. Eng., 50 (2001), pp. 993–1013.

[2] D. Bothe, M. Koebe, K. Wielage, J. Prüss, and H.-J. Warnecke, Direct numerical simu-

lation of mass transfer between rising gas bubbles and water, in Bubbly Flows: Analysis,
Modelling and Calculation, M. Sommerfeld, ed., Heat and Mass Transfer, Springer, 2004.

[3] D. Bothe, M. Koebe, K. Wielage, and H.-J. Warnecke, VOF-simulations of mass transfer

from single bubbles and bubble chains rising in aqueous solutions, in Proceedings 2003
ASME joint U.S.-European Fluids Eng. Conf., Honolulu, 2003, ASME. FEDSM2003-45155.

[4] Z. Chen and J. Zhou, Finite element methods and their convergence for elliptic and parabolic

interface problems, Numer. Math., 79 (1998), pp. 175–202.
[5] J. Chessa and T. Belytschko, An extended finite element method for two-phase fluids, ASME

Journal of Applied Mechanics, 70 (2003), pp. 10–17.
[6] A. Ern and J.-L. Guermond, Theory and practice of finite elements, Springer, New York,

2004.
[7] S. Groß, V. Reichelt, and A. Reusken, A finite element based level set method for two-phase

incompressible flows, Comp. Visual. Sci., 9 (2006), pp. 239–257.
[8] A. Hansbo and P. Hansbo, An unfitted finite element method, based on nitsche’s method, for

elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 5537–
5552.

[9] , A finite element method for the simulation of strong and weak discontinuities in solid

mechanics, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 3523–3540.
[10] A. Hansbo, P. Hansbo, and M. Larson, A finite element method on composite grids based

on Nitsche’s method, Math. Model. Numer. Anal., 37 (2003), pp. 495–514.
[11] P. Hansbo, Nitsche’s method for interface problems in computational mechanics, GAMM-

Mitt., 28 (2005), pp. 183–206.
[12] B. Heinrich and B. Jung, The Fourier-Nitsche-mortaring for elliptic problems with reentrant

edges, Computing, 80 (2007), pp. 221–246.
[13] , Nitsche finite element method for parabolic problems, preprint, Department of Mathe-

matics, Technical University Chemnitz, 2008.
[14] B. Heinrich and S. Nicaise, The Nitsche mortar finite-element method for transmission prob-

lems with singularities, IMA J. Numer. Anal., 23 (2003), pp. 331–358.
[15] B. Heinrich and K. Pietsch, Nitsche type mortaring for some elliptic problem with corner

singularities, Computing, 68 (2002), pp. 217–238.
[16] B. Heinrich and K. Pönitz, Nitsche type mortaring for singularly perturbed reaction-diffusion

problems, Computing, 75 (2005), pp. 257–279.
[17] M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975.
[18] J. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications,

Springer-Verlag, New York, 1972.

15



[19] M. Muradoglu and G. Tryggvason, A front-tracking method for computation of interfacial

flows with soluble surfactant, J. Comput. Phys., 227 (2008), pp. 2238–2262.
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