
Iterative Solvers for Discretized Stationary
Euler Equations

Bernhard Pollul and Arnold Reusken

Abstract In this paper we treat subjects which are relevant in the context of iterative
methods in implicit time integration for compressible flow simulations. We present
a novel renumbering technique, some strategies for choosing the time step in the im-
plicit time integration, and a novel implementation of a matrix-free evaluation for
matrix-vector products. For the linearized compressible Euler equations, we present
various comparative studies within the QUADFLOW package concerning precon-
ditioning techniques, ordering methods, time stepping strategies, and different im-
plementations of the matrix-vector product. The main goal is to improve efficiency
and robustness of the iterative method used in the flow solver.

1 Introduction

Large sparse non-linear system of equations resulting froma finite volume dis-
cretization of compressible Euler equations are considered in this paper. This dis-
cretization is based on adaptive wavelet techniques for local grid refinement, For
an overview of the adaptivity concept and the finite volume discretization we refer
to [8]. The methods are implemented in the QUADFLOW solver, cf. [7, 8]. In this
paper we only consider iterative methods for solving the large non-linear systems of
equations.

The approach of a “pseudo-transient continuation” is followed. That is, an im-
plicit time integration method is applied to the unsteady Euler equations so that
the corresponding non-stationary solution converges to the stationary solution for
time tending to infinity. This then yields a non-linear system of equations in each

Bernhard Pollul
Chair for Numerical Mathematics e-mail: pollul@igpm.rwth-aachen.de

Arnold Reusken
Chair for Numerical Mathematics e-mail: reusken@igpm.rwth-aachen.de

1

2 Bernhard Pollul and Arnold Reusken

time step which is solved by a Newton-Krylov method. Thereinone applies a lin-
earization technique combined with a preconditioned Krylov subspace algorithm for
solving the resulting linear problems. The computational work needed for solving
the large sparse systems in the Newton-Krylov method determines to a large extent
the total computing time.

Because preconditioning is crucial for the convergence of the Krylov solver we
investigate different so-called “point-block” preconditioners. Preconditioners usu-
ally strongly depend on the ordering of the (block) unknowns. We present a new
renumbering technique that is based on a reduced matrix graph and that can sig-
nificantly improve both the robustness and the efficiency of the iterative method.
The selection of the time step size in the implicit time integration is crucial for
the performance of the iterative solver. We investigate twoknown and two novel
time step selection strategies. A further acceleration of the time integration can be
achieved by the use of a second order accurate Jacobian. Because the stencils for
second order methods are relatively large resulting in a complex Jacobian requiring
much memory, we present a second order matrix-free method that uses automatic
differentiation. Using the second order matrix-free evaluation of the matrix-vector
product the corresponding computational time can be significantly decreased.

2 The Euler Equations

Derived from the fundamental conservation laws of fluid dynamics, the time-
dependent Euler equations describe the motion for an inviscid, non-heat-conducting
compressible gas. For an arbitrary control volumeV ⊂ Ω ⊂ R

d with boundary∂V
and outward unit normal vectorn on the surface elementdS⊂ ∂V they are given by

∫

V

∂u
∂ t

dV +

∮

∂V
F(u)ndS= 0 . (1)

The convective fluxF(u) and the vector of unknown conserved quantitiesu con-
taining the densityρ , the static pressurep, the velocity vector of the fluidv, and the
total energyE are given by

F(u) =





ρv
ρv◦ v+ pI
Ev+ pv



 , u =





ρ
ρv
E



 , (2)

where◦ denotes the dyadic product. The system is closed by suitableinitial and
boundary conditions and the equation of state for a perfect gas using the ratio of
specific heatsγ =

cp
cv

:

E =
p

γ −1
+

1
2

ρv2
. (3)

The equations (1) – (3) form the standard model that is considered in this paper.

Iterative Solvers for Discretized Stationary Euler Equations 3

3 Test Problems

We describe two classes of test problems which are used in thenumerical experi-
ments below.

3.1 Homogeneous Stationary Flow on the Unit Square

In this simple test problem we considerΩ = [0,1]2 on a uniform meshΩh =
{(ih, jh) | 0 ≤ i, j ≤ n} , with nh= 1 and boundary conditions such that the sta-
tionary Euler equations have a constant solution. We apply the Van Leer flux vector-
splitting scheme and use compatibility relations for the discretization of the bound-
ary conditions. A lexicographic ordering of the grid pointsis applied. The discretiza-
tion yields a non-linear system of equations

F : R
4N → R

4N
, F(U) = 0 . (4)

The continuous constant solution (restricted to the grid) solves the discrete prob-
lem and thus the solution of the non-linear discrete problem, denoted byU∗, is
known a-priori. In Subsection 4.2 we investigate the behavior of different precon-
ditioners when applied to a linear system of the formDF(U∗)x = b. The matrix
DF(U∗) has apoint-blockstructure, that is, a regular block structureDF(U∗) =
blockmatrix(Ai, j)0≤i, j≤N with Ai, j ∈ R

4×4 for all i, j. Note thatAi, j 6= 0 can occur
only if i = j or i and j correspond to neighboring grid points.

3.2 Stationary Flow around NACA-0012 Airfoil

This problem is a standard test case for inviscid compressible flow solvers [25]
in which the inviscid, transonic, stationary flow around theNACA0012 airfoil is
considered. We present results for the three test cases given in Table 1 characterized
by Mach numberM∞ and angle of attackα.

NACA0012 M∞ α
test case 2A0.80 1.25◦

test case 2B0.95 0.00◦

test case 2C1.20 0.00◦

Table 1 Test cases 2A, 2B, 2C: Mach numberM∞ and angle of attackα for NACA0012 airfoil

The problems are discretized using a hierarchy of locally refined grids on which
standard finite volumes are applied, cf. [8]. The steady-state solutions of test cases

4 Bernhard Pollul and Arnold Reusken

2A, 2B, and 2C are evolved in a pseudo-transient continuation solving (1), starting
on a coarse initial grid, and evolving a solution on an adaptively refined grid. We
perform one inexact Newton iteration per time step. The corresponding Jacobian
matrices are the system matrices of the occurring systems oflinear equations. These
systems are solved with a left-preconditioned BiCGSTAB method. Preconditioning
will be explained in detail in Section 4.

In the implicit time integration, the size of the time step isdetermined by a CFL
numberγ which is not limited by the Courant-Friedrichs-Levy (CFL) condition [16].
Initialized by γMIN on the coarse initial grid, the CFL number is increased by an
evolution method as presented in Section 6 in every time stepuntil an a-priori fixed
upper boundγMAX is reached. Time integration is continued until a tolerancecrite-
rion for the residual is satisfied. Then a (local) grid refinement is performed and the
procedure starts again with an initial CFL number equal toγMIN .

3.2.1 Grid Hierarchy

We show some first results for test cases 2A, 2B, and 2C, using the QUADFLOW
solver with a standard time step selection strategy method (γk+1 = 1.1 · γk, γmin =
γ0 = 1, andγmax = 1000), cf. Section 6. As in [8] we allow 8 maximum levels of
refinement, 10 cycles of adaptations in the cases 2A and 2C and13 cycles in case
2B.

Test case Grid 1 2 3 4 5 6 7

2A # cells 400 1 384 2 947 3 805 4 636 5 689 6 817
2B # cells 400 1 600 4 264 7 006 11 827 15 634 21 841
2C # cells 400 1 600 4 864 10 189 16 885 23 290 30 598

Test case Grid 8 9 10 11 12 13 14

2A # cells 7 753 9 028 9 523 9 874 only 10 adaptations carried out

2B # cells 25 870 28 627 30 547 31 828 33 067 33 955 34 552
2C # cells 36 160 38 764 39 961 40 708 only 10 adaptations carried out

Table 2 Sequence of grids. Tabulated is the number of cells in nestedgrids for test cases 2A and
2C (10 adaptations performed) and for test case 2B (13 adaptations performed)

In Table 2 the sequence of nested grids for the four test casesis given. In a full
simulation, the density residuals are decreased by a factorof 104 in the finest grid
and by a factor of 102 on all coarser grids. Note that the finest grids contain up to 102
times as much cells as the initial grids. Therefore the focusin the following sections
will be on reducing the time that is needed to achieve convergence on the finest grid.
Therein, the main effort is the solution of the large, sparselinear equation systems
that arise in Newton’s linearization method.

Iterative Solvers for Discretized Stationary Euler Equations 5

4 Point-Block Preconditioners

In the Newton-Krylov approach the arising linear systems ofequations are solved
by a Krylov method. Therein, the choice of the preconditioner is crucial for the con-
vergence process. Our main focus is on the incomplete LU-factorization (ILU) and
Gauss-Seidel (GS) preconditioners that are widely-used insolvers in the numerical
simulation of compressible flows [1, 6, 18, 31, 35, 40].

4.1 Methods

In the test problems described in the previous section we have to solve large systems
of linear equations. The matrices have a point-block structure in which the blocks
correspond to thed + 2 unknowns in each of theN cells (finite volume method).
Thus, we have linear systems of the form

Ax = b , A = blockmatrix(Ai, j)1≤i, j≤N , Ai, j ∈ R
(d+2)×(d+2)

. (5)

In the following we describe basic point-block iterative methods that are used as
preconditioners in the iterative solver. For the right-hand side we use a block repre-
sentationb = (b1, . . . ,bN)T , bi ∈ R

d+2 that corresponds to the block structure ofA.
The same is done for the iterandsxk that approximate the solution of (5).

For the description of the preconditioners the nonzero patternP(A) correspond-
ing to the point-blocks in the matrixA is important:

P(A) = {(i, j) | Ai, j 6= 0} (6)

4.1.1 Point-Block-Gauss-Seidel Method

The point-block-Gauss-Seidel method (PBGS) is the standard block Gauss-Seidel
method applied to (5). Letx0 be a given starting vector. Fork≥ 0 the iterandxk+1 =
(xk+1

1 , . . . ,xk+1
N)T should satisfy

Ai,ix
k+1
i = bi −

i−1

∑
j=1

Ai, jx
k+1
j −

N

∑
j=i+1

Ai, jx
k
j , i = 1, . . . ,N . (7)

This method is well-defined if the(d+2)×(d+2) linear systems in (7) are uniquely
solvable, that is, if the diagonal blocksAi,i are nonsingular. In our applications this
was always satisfied. This elementary method is very easy to implement and needs
no additional storage. The algorithm is available in the PETSc library [2].

6 Bernhard Pollul and Arnold Reusken

4.1.2 Point-Block-ILU(0) Method

We consider the point-block version of the standard point ILU(0) algorithm, denoted
by PBILU(0). For the PBILU(0) preconditioner a preprocessing phase is needed in
which the incomplete factorization is computed. Furthermore, additional storage
similar to the storage requirements for the matrixA is needed. One can consider
variants of this algorithm, e.g. PBILU(p), p = 1,2, This produces additional
storage requirements and additional arithmetic costs. Both, the PBILU(0) algorithm
and such variants, are available in the PETSc library [2].

4.1.3 Point-Block Sparse Approximate Inverse

The SPAI method [20] can be modified to its point-block formulation in the same
way as Gauss-Seidel and ILU. In its point-block version, denoted by PBSPAI(0),
we useM = blockmatrix(Mi, j)1≤i, j≤N, Mi, j ∈ R

(d+2)×(d+2) and denote the set of
admissible approximate inverses byM := {M ∈ R

(d+2)N×(d+2)N | P(M) ⊆ P(A)}.
A sparse approximate inverseM is determined by minimization over this set:

‖AM− I‖F = min
M̃∈M

‖AM̃− I‖F (8)

The choice for the Frobenius norm allows a splitting of this minimization prob-
lem leading to multiplelow dimensionalleast squares problems that can be solved
by standard methods inparallel. The application of the PBSPAI(0) preconditioner
requires a sparse matrix-vector product computation whichalso has a high paral-
lelization potential. As for the PBILU(0) preconditioner apreprocessing phase is
needed in which the PBSPAI(0) preconditionerM is computed. Additional storage
similar to the storage requirements for the matrixA is needed. We also implemented
the row-variant of SPAI, denoted by PBSPAIrow(0). As for the ILU preconditioner,
there exist variants in which additional fill-in is allowed,cf. [20].

4.2 Numerical Experiments

We present results of numerical experiments. Our goal is to illustrate and to compare
the behavior of the different preconditioners presented above for both test problems.
In test problem 1, the Jacobian is evaluated at the discrete solutionU∗. The solution
is trivial, namely, constant. The solution is a complex flow field in test problem 2.
In the latter linear systems with matrices as in (5) arise in the solver used in the
QUADFLOW package.

In all experiments below we use a left preconditioned BiCGSTAB method. For
test problem 1, the discretization routines, methods for the construction of the Jaco-
bian matrices and the preconditioners (PBGS, PBILU(0) and PBSPAI(0)) are imple-

Iterative Solvers for Discretized Stationary Euler Equations 7

mented in MATLAB. For the other test problems the approximate Jacobian matrices
are computed in QUADFLOW using PETSc [2]. More results are presented in [32].

4.2.1 Arithmetic Costs

To measure the quality of the preconditioners we present thenumber of iterations
that is needed to satisfy a certain tolerance criterion. We briefly comment on the
arithmetic work needed for the construction of the preconditioner and the arithmetic
costs of one application of the preconditioner. As unit of arithmetic work we take the
costs of one matrix-vector multiplication with the matrixA, denoted by 1 matvec.

For the PBGS method we have no construction costs. The arithmetic work per
application of the PBGS preconditioner is about 0.7 matvec.In our experiments the
costs for constructing the PBILU(0) preconditioner are between 2 and 4 matvecs.
We typically need 1.2–1.6 matvecs per application of the PBILU(0) preconditioner.
The costs for constructing the PBSPAI(0) preconditioner are much higher. Typical
values (depending onP(A)) in our experiments are 20–50 matvecs. We typically
need 1.2–1.5 matvecs per application of the PBSPAI(0) preconditioner.

4.2.2 Stationary 2D Euler

We consider the discretized stationary Euler equations as described in Paragraph 3.1
with mesh sizeh= 0.02. We vary the Mach number inx1-direction, which is denoted

0 0.2 0.4 0.6 0.8 1 1.2

50

100

150

200

250

300

Mach number M
x

Ite
ra

tio
ns

 B
iC

G
S

T
A

B

Test case 1

PBGS

PBILU(0)

PBSPAI(0)
PBSPAI

row
(0)

Fig. 1 Test problem 1: Iteration count for different Mach numbers

8 Bernhard Pollul and Arnold Reusken

by Mx: 0.05≤ Mx ≤ 1.25. For the Mach number inx2-direction, denoted byMy, we
takeMy = 3

2Mx. The BiCGSTAB iteration, initialized by the all-zero starting vec-
tor, is stopped if the relative residual is below 10−6, measured in the 2-norm. The
results are presented in Figure 1. In the supersonic case (Mx > 1), due to the down-
wind numbering, the upper block-diagonal part of the Jacobian is zero and thus both
the PBILU(0) method and PBGS are exact solvers. The PBSPAI(0) preconditioner
does not have this property, due to the fact thatM is a sparse approximation ofA−1,
which is adenseblock lower triangular matrix. ForMx < 1 with PBGS precondition-
ing we need about 1 to 4 times as much iterations as with PBILU(0) preconditioning.
Both preconditioners show a clear tendency, namely that theconvergence becomes
faster ifMx is increased. ForMx < 1 the PBSPAI(0) preconditioners show an unde-
sirable very irregular behavior, therefore we do not apply this preconditioner for test
problem 2.

4.2.3 Stationary Flow around NACA0012 Airfoil

In the computations with the three standard NACA0012 airfoil test cases, the choice
of the time step is based on an exponential strategy as already described in Para-
graph 3.2.1. The linear systems with the approximate Jacobians are solved until the
relative residual is smaller than 10−2. In Table 3 the averaged number of precon-
ditioned BiCGSTAB iterations for the two finest grids is given. Note that applying
PBGS we need about 2–3 times as much iterations as when using PBILU(0). With
PBILU(2) we save between 25% and 54% on the average iterationcount compared
with PBILU(0). Taking the arithmetic work per iteration into account, cf. Para-
graph 4.2.1, we conclude that PBGS and PBILU(0) have comparable efficiency,
whereas the PBILU(p), p= 1,2, preconditioners are (much) less efficient due to the
high memory requirements. In Section 5 we will see that an adequate renumbering
technique significantly improves the situation for PBGS.

test case 2A 2B 2C
Grid 10 11 13 14 10 11

PBGS 2.89 27.0 14.9 18.6 6.50 20.7
PBILU(0) 1.33 9.83 6.17 8.37 2.69 6.21
PBILU(1) 1.04 6.07 4.24 4.65 1.81 2.41
PBILU(2) 1.00 5.09 3.52 3.83 1.60 3.42

Table 3 Test problem 2: Average iteration count on two finest grids

Iterative Solvers for Discretized Stationary Euler Equations 9

4.3 Concluding Remarks

We summarize the main conclusions of this section. Already for our relatively sim-
ple model problems the PBSPAI(0) method has turned out to be apoor precon-
ditioner. This method should not be used in a Newton-Krylov method for solving
compressible Euler equations. Both for model problems and arealistic application
(QUADFLOW solver, test problem 2) the efficiency of the PBGS preconditioner
and the PBILU(0) method are comparable. For our applications the PBILU(1) and
PBILU(2) preconditioners are less efficient than the PBILU(0) preconditioner.

5 Renumbering Techniques

In this section we present ordering algorithms for the PBGS preconditioner. We do
not know of any literature in the context of linearized Eulerequations dealing with
ordering techniques for Gauss-Seidel preconditioners. The presented ordering algo-
rithms consist of three steps. In the first step we construct aweighted directed graph
in which every vertex corresponds to a block unknown and the weights correspond
to the magnitude of the fluxes. This graph is usually very complex making it al-
most impossible to work with standard ordering techniques.Therefore, we use an
approach that is very similar to coarsening techniques usedin algebraic multigrid
methods [37]: At first we reduce the complex graph by deletingedges with rela-
tively small weights. Then we consider three different algorithms to determine the
renumbering of the vertices of the reduced graph.

5.1 Methods

ILU and Gauss-Seidel preconditioners depend on the ordering of the cells [5, 21,
38]. This holds for their point-block variants, too. Many studies on numbering tech-
niques for ILU preconditioners appear in the literature, cf., e.g., [18, 36] and ref-
erences therein. For ILU methods, in many applications, a reverse Cuthill-McKee
ordering algorithm [17] provides good results [6, 29, 34, 35]. The PBGS precondi-
tioner can be significantly improved by reordering techniques that should be such
that one approximately follows the directions in which information is propagated.
In this section we introduce three renumbering methods thataim at realizing this.

All three algorithms are completely matrix-based, that is,only the block-structured
matrix from (5) is needed as input. We distinguish the following three steps:

1. Construct a weighted directed matrix graphin which
• every vertex corresponds to a block unknown (= cell)
• every edge corresponds to a nonzero off-diagonal block of the given matrixA

10 Bernhard Pollul and Arnold Reusken

2. Construct a reduced weighted directed matrix graphby
• deleting edges with relatively small weights

3. Determine a renumbering of the vertices

While for all three algorithms presented below steps 1 and 2 are identical, they
differ in the methods used in the third step. We explain the first two steps in Para-
graphs 5.1.1 and 5.1.2. In Paragraphs 5.1.3 – 5.1.5 we give the three different meth-
ods that are used in step 3 to determine the reordering.

5.1.1 Construction of Weighted Directed Matrix Graph G (A)

We introduce standard notation related to matrix graphs. Let V = {1, . . . ,N} be a
vertex set such that each vertex corresponds to a discretization cell. The set of edges
E contains all directed edges and the mappingω : E → (0,∞) assigns to every
directed edge(i, j) ∈ E a weightωi j :

E = {(i, j) ∈ V ×V | Ai, j 6= 0, i 6= j} , ωi j := ω(i, j) := ‖Ai, j‖F . (9)

We take the Frobenius-norm because it is easy to compute and all entries in a block
Ai, j are weighted equally. This yields aweighted, directedmatrix graphG (A) :=
(V ,E ,ω). Opposite to the commonly used definition we call an edge(i, j) ∈ E an
inflow edgeof vertexi ∈ V and anoutflow edgeof vertex j ∈ V . This is motivated
by the following: In our applications, an edge(i, j) in the graph corresponds to a
flow from cell j into cell i in the underlying physical problem. Consequently, for
(i, j) ∈ E we call j apredecessorof i andi asuccessorof j. The set of predecessors
of vertexi ∈ V is denoted by

Ii := { j ∈ V | (i, j) ∈ E } . (10)

In the construction ofG (A) one only has to compute the weightsωi j in (9). For
storage of this information we use a sparse matrix format. Note that the size of the
sparse matrix corresponding toG (A) is N×N (and notN(d+2)×N(d+2), as for
A). Hence, the costs both for the computation and for the storage ofG (A) are low.

5.1.2 Construction of Reduced Matrix Graph Ĝ

Based on reduction techniques from algebraic multigrid methods in whichstrong
couplingsandweak couplingsare distinguished [37], we separatestrong edgesfrom
weak edges. For every vertexi ∈ V we neglect all inflow edges(i, j) ∈ E with a
weight smaller thanτ-times the average of the weights of all inflow edges of vertex
i. Thus we obtain a reduced set ofstrong edgesÊ and a corresponding reduced
(weighted, directed) grapĥG (A) := (V , Ê ,ω|Ê):

Iterative Solvers for Discretized Stationary Euler Equations 11

σi :=
1

|Ii |
∑
j∈Ii

ωi j , Ê := {(i, j) ∈ E | ωi j ≥ τ ·σi} (11)

This simple construction of a reduced matrix graphĜ (A) can be realized with low
computational costs. Moreover, we can overwriteG (A) with Ĝ (A).

The use of graph reduction is essential for the performance of the reordering tech-
niques discussed below. Note that the parameterτ controls the size of the reduced
graph: forτ = 0 there is no reduction of the original graph, whereas forτ →∞ the re-
duced graph contains only vertices and no edges. The choice of an appropriate value
for the parameterτ is discussed in Subsection 5.2. In particular it will be shown that
the performance of the numbering techniques is not very sensitive with respect to
perturbations of the parameter value. We callτ “graph reduction parameter” below.

5.1.3 Downwind Numbering based on (V , Ê) (Bey and Wittum)

The downwind numbering algorithm due to Bey and Wittum [5], denoted by “BW”,
is presented in Figure 2. This ordering is used in multigrid methods for scalar
convection-diffusion problems for the construction of so-called “robust smoothers”.
To apply this algorithm for our class of problems we need the reduced directed
graph(V , Ê) as input. Note that although they have been used to compute the re-
duced graph(V , Ê), the weightsωi j arenot used in the ordering algorithm.

for all P ∈ V : Index(P) := −1 ;
nF := 1 ;
for P ∈ V

if (Index(P) < 0) SetF(P) ;
endP

procedure SetF(P)
if (all predecessorsB of P have Index(B) > 0)

Index(P) := nF ;
nF := nF +1 ;
for Q successor ofP

if (Index(Q) < 0) SetF(Q) ;
endQ

end if

Fig. 2 Downwind numbering algorithm BW

Remark 1.In the loop overP ∈ V in algorithm BW the ordering of the block-
unknowns (cells) corresponding to the input matrixA is used. In the procedure
SetF(P) a vertex is assigned the next number if all its predecessorshave already
been numbered. Hence, the first number is assigned to a vertexthat has no inflow
edges. Note that in the procedure SetF(P) there is freedom in the order in which
the successorsQ are processed. In our implementation we again use the ordering

12 Bernhard Pollul and Arnold Reusken

induced by the given matrixA. The BW numbering is applied to the reduced matrix
graph. If that graph is cycle-free, the algorithm returns a renumbering that is optimal
in the sense that this reordering applied to the matrix corresponding toĜ (A) results
in a lower triangular matrix. However, in our problem class the reduced graphs in
general contain cycles. In that case, after algorithm BW hasfinished, there still are
verticesP∈ V with Index(P)=−1, that is, there areN−nF > 0 vertices that have
no (new) number. The numbersnF , . . . ,N are assigned to these remaining vertices
in the order induced by the input matrix ordering. The two variants of BW that are
treated below in general have less of such “remaining” vertices.

Note that in the BW algorithm there are logical operations and assignments but
no arithmetic operations. ⋄

5.1.4 Down- and Upwind Numbering based on (V , Ê) (Hackbusch)

for all P ∈ V : Index(P) := −1 ;
nF := 1 ; nL := N ;
for P ∈ V

if (Index(P) < 0) SetF(P) ;
if (Index(P) < 0) SetL(P) ;

endP

procedure SetL(P)
if (all successorsB of P have Index(B) > 0)

Index(P) := nL ;
nL := nL −1 ;
for Q predecessor ofP

if (Index(Q) < 0) SetL(Q) ;
endQ

end if

Fig. 3 Down- and upwind numbering algorithm HB

In Figure 3 we present an ordering algorithm, referred to as down- and upwind
numbering and denoted by “HB”, that is due to Hackbusch [21].As input for this
algorithm one needs the reduced directed graph(V , Ê). The routine “SetF” is the
same as in the BW algorithm in Figure 2.

Remark 2.While in the BW algorithm the vertices are ordered in one direction,
namely “downwind”, that is, in the direction of the flow, the algorithm due to Hack-
busch uses two directions: “downwind” (SetF) and “upwind” (SetL). The computa-
tional cost of algorithm HB is comparable to that of BW. ⋄

Iterative Solvers for Discretized Stationary Euler Equations 13

5.1.5 Weighted Reduced Graph Numbering based on (V , Ê ,ω|Ê)

The performance of the BW and HB numbering depend on the ordering of the in-
put graph. We present an algorithm that uses the weights of the reduced graph to
avoid the dependence on the initial ordering. The algorithm, denoted by “WRG”, is
presented in Figure 4.

for all P ∈ V : Index(P) := −1 ;
nF := 1 ; nL := N ;

/* (i) apply SetF and SetL to starting vertices */
do in an outflow-ordered lists, S(Σiωip,P): for P ∈ V (12)

if (Index(P) < 0) SetF(P,1) ;
endP
do in an inflow-ordered lists, S(Σ j ωp j,P): for P ∈ V (13)

if (Index(P) < 0) SetL(P) ;
endP

/* (ii) number remaining vertices */
do in an outflow-ordered lists, S(Σiωip,P): for P ∈ V (14)

if (Index(P) < 0) SetF(P,0) ;
endP

procedure SetF(P,s)
if (all predecessorsB of P have Index(B) > 0) or (s= 0)

Index(P) := nF ;
nF := nF +1 ;
do in an outflow-ordered lists, S(Σiωiq,Q): for Q successor ofP (15)

if (Index(Q) < 0) SetF(Q,1) ;
endQ

end if

procedure SetL(P)
if (all successorsB of P have Index(B) > 0)

Index(P) := nL ;
nL := nL −1 ;
do in an inflow-ordered lists, S(Σ j ωq j,Q): for Q predecessor ofP (16)

if (Index(Q) < 0) SetL(Q) ;
endQ

end if

s : p denotes the index of the vertexP of the input graph.S(Σiωip,P) sorts the
verticesP descending in the corresponding valuesΣiωip (similar for S(Σ j ωp j,P)).

Fig. 4 Weighted reduced graph numbering algorithm WRG

There are two important differences to the algorithms HB andBW. The first
difference is related to the arbitrariness of the order in which the vertices are handled
in the loops in HB and BW, cf. Remark 1. If there are different possibilities for
which vertex is to be handled next we now use theweightsωi j of the reduced graph
to make a decision. This decision is guided by the principle that edges with larger
weights are declared to be more important than those with relatively small weights.
A weight based sorting occurs at several places, namely in (12) – (16). In (12) the

14 Bernhard Pollul and Arnold Reusken

vertices with no inflow edges (“starting” vertices) are sorted using the sum of the
weights of the outflow edges at each vertex. Similarly, in (13) the vertices with no
outflow edges are sorted. The “remaining” vertices, that is,all vertices that have
inflow andoutflow edges, are finally sorted based on the sum of the outflowedges
at each vertex in (14). In all three cases the number of vertices to be sorted is much
smaller thanN and thus the time for sorting is acceptable. Sorting is also used in (15)
and (16) to determine the order in which successors and predecessors are handled.
In SetF(·, ·) the successorsQ of the currentP are sorted using the sum over the
weights of all outflow edges for eachQ. This is done similarly in SetL(·) for all
predecessors of the currentP.

The second difference is that the loop over the numbering routine SetF is called
two times. The first call SetF(P,1) in part(i) of algorithm WRG is similar to the
call of SetF(P) in the algorithms BW and HB but now with an ordering procedure
used in SetF. The second call SetF(P,0) (in part(ii) in WRG) is introduced to
handle the remaining vertices that still have index value−1. In this call we do not
consider the status of inflow edges and continue numbering indownwind direction
(SetF(·,0)). The inner call SetF(Q,1) to number the successors still requires that all
predecessors have been numbered. After part(ii) of the algorithm is finished the
only possibly not yet numbered vertices are trivial ones, inthe sense that these are
vertices that have no edges to other vertices.

Note that although the first part of this numbering (cf.(i) in Figure 4) can be
also obtained by applying HB to an a-priori sorted graph, thesecond step(ii) of
WRG does neither have a counterpart in HB nor in BW.

Remark 3.In all three algorithms the computational time that is needed and the
storage requirements are modest compared with other components of the iterative
solver. Moreover, since the Jacobian matrices of consecutive time steps are in some
sense similar we apply the reordering not in each iteration but only “now and then”
and keep it for the subsequent time steps, cf. Subsection 5.2. Because of the in-
frequent application of the numbering the total execution time for the reordering
routines is very small compared with the total time needed. ⋄

5.2 Numerical Experiments

We illustrate the behavior of four different numberings fora few test problems. The
BW, HB and WRG methods have been explained above. The fourth numbering,
denoted by QN, is induced by multiscale analysis that is usedfor error estimation
and generates local refinement leading to a hierarchy of locally refined grids. In the
QN numbering the cells are numbered level-wise from the coarsest to the finest level
resulting in a sort of hierarchical block-structure of the matrix.

For efficiency reasons we donot apply the renumbering method (steps 1–3) to
every new Jacobian but use the known renumbering as computedin the first time
step. All three numbering techniques are sensitive with respect to the choice of the
value for the parameterτ. In our sub- and supersonic problemsτ = 1.25 turned out

Iterative Solvers for Discretized Stationary Euler Equations 15

to be a good default value. In highly transonic problems (M∞ ≈ 1) the performance
can often be improved by taking a somewhat largeτ-value (e.g.,τ = 2.00).

Table 4 shows the average iteration count on the finest level for the different
orderings. The average is taken over all time steps that are needed to achieve con-
vergence on the finest discretization level for test cases 2A, 2B, and 2C. The savings
compared with the QN ordering are displayed in the last rows of Table 4. In all nu-
merical experiments the reduced matrix graph was constructed with τ = 1.25. For
test case 2C we give the graphG (A) and the corresponding renumbered reduced
graph of a typical Jacobian matrix in Figure 5.

Test case 2A
Numbering QN BW HB WRG

Average iteration count32.0 30.6 28.6 23.0
Saving 0% 4.4% 10.6% 28.1%

Test case 2B
Numbering QN BW HB WRG

Average iteration count20.2 20.1 18.2 18.4
Saving 0% 0.5% 9.9% 8.9%

Test case 2C
Numbering QN BW HB WRG

Average iteration count24.2 12.5 12.6 10.9
Saving 0% 48.3% 47.9% 55.0%

Table 4 Test problems 2A, 2B, and 2C: Average iteration count on finest level

Using the WRG renumbering method we save between 9% and 55% ofPBGS-
preconditioned BiCGSTAB iterations on the finest level compared with the original
numbering QN. Since the renumbering has to be computed only once, the additional
computational costs for WRG are negligible. The improvement is strongest for case
2C, which is due to the fact that in this case the flow is almost supersonic and thus
there is a main stream in which information is transported.

Step of WRG (i) (ii) Step of WRG (i) (ii)

τ ≤ 0.75 0 40 213 τ = 1.75 40 207 6
τ = 1.00 11 153 29 060 τ = 2.00 40 211 2
τ = 1.25 39 869 344 τ = 2.25 40 211 2
τ = 1.50 40 205 8 τ ≥ 2.50 40 213 0

Table 5 Test problem 2C, finest computational grid: Different values for τ . Number of cells that
were numbered in steps(i) and(ii) in WRG algorithm, cf. Figure 4

For test case 2C we illustrate the dependence of the iteration count on the graph
reduction parameterτ. In Figure 6 the results forτ = 0.25· k, k = 0,1, . . . ,12 are

16 Bernhard Pollul and Arnold Reusken

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

nnz = 134283

Test case 2C − Graph

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

nnz = 43137

Test case 2C − Graph, reduced and reordered

Fig. 5 Test problem 2C: GraphG (A) (left) and renumbered reduced graph (right) of Jacobian
matrix on finest grid,τ = 1.25.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14
x 10

4

Graph reduction parameter τ

N
um

be
r

of
 e

dg
es

 in
 r

ed
uc

ed
 g

ra
ph

0 0.5 1 1.5 2 2.5 3
10

11

12

13

14

15

16

17

18

19

20

Iterations B
iC

G
S

T
A

B

Test case 2C

Fig. 6 Test case 2C, finest computational grid: Experiment with different values for the graph
reduction parameterτ . Average iteration count using WRG numbering (dashed, right axis) and
number of edges of the corresponding reduced graph (solid, left axis)

given. The dashed line (right y-axis) shows that the number of edges in the corre-
sponding reduced graph of the Jacobian is decreasing monotonically if the value of
τ is increased. Table 5 shows how many vertices are renumberedin each of the steps
(i) and(ii) in the WRG algorithm, cf. Figure 4. For valuesτ ≤ 0.75 the reduced
graph is too complex so that in the first step, cf.(i) in Figure 4, none of the 40 213
vertices is given a new number. On the other hand withτ = 1.50, 98% of the ver-
tices are given a new number in the first step(i), so that a further increase of the
value forτ would be counterproductive. The dashed line in Figure 6 representing
the performance of the preconditioned BiCGSTAB method indicates that the choice
of the value forτ is not very sensitive. For this test case values 0.75≤ τ ≤ 2.00
all give quite good results. We obtain the best results forτ = 1.25; in this case the

Iterative Solvers for Discretized Stationary Euler Equations 17

reduced graphĜ (A) can be reordered so that it is nearly a lower-diagonal graph as
shown in the right subplot of Figure 5.

The effect of the reordering is that the dominant entries of the reordered Jacobian
lie mostly in the lower triangular part. It should be noted that such reordering tech-
niques can only be effective for point-block matrices in which there is a significant
difference between‖Ai, j‖F and‖A j ,i‖F for mosti, j with ‖Ai, j‖F 6= 0.

Further results are presented in [33].

5.3 Concluding Remarks

We have presentedordering techniques for the PBGS methodthat use ideas from
algebraic multigrid methods. Except for the (critical) graph reduction parameterτ
in (11), the ordering methods are“black-box” . In most test cases a good choice for
this grid-reduction parameter has turned out to beτ = 1.25. Only one reordering
per adaptation level has been needed neglecting the additional costs of the ordering
algorithm. Using the WRG reordering one can improve therobustnessof and the
efficiencyof the linear solver.

6 Time Integration

In the pseudo-transient continuation [26], large time steps in an implicit time dis-
cretization method are preferred to achieve fast convergence.On every level of adap-
tation we start with an initial CFL number which determines the first time step. The
local time step∆ ti for the i-th cell is given by

∆ ti = γ
|Ωi |

λ c
i

, λ c
i =

∮

∂Ωi

(|vn|+c)dS, (17)

whereγ is the CFL number [16] andλ c
i is the maximum eigenvalue of the Euler

equations averaged over the bounding surface of the controlvolumeΩi , cf. [7].
During the time integration the CFL number is varied by one ofthe three strate-

gies described in Subsection 6.1. In every time step a non-linear system of equations
has to be solved. Note that the Jacobian has a structure and thus in general a smaller
time step will improve the condition number of the approximated Jacobian in the
Newton-Krylov method.

J(u) = diag
(|Ωi |

∆ ti

)

+
∂R(u)

∂u
. (18)

18 Bernhard Pollul and Arnold Reusken

6.1 CFL Evolution Strategies

Implicit time integration methods in principle allow largetime steps (γ > 1). For
steady flows the CFL numberγk = γ(k) at a time stepk is usually varied in a pre-
scribed intervalγk ∈ [γmin,γmax]. With small CFL numbersγk one has to perform
many time steps in order to achieve convergence. Choosing the CFL numberγk too
large may result in a breakdown of the iteration process.

6.1.1 Exponential Progression (EXP)

The exponential law (EXP)

γk+1 = γ0 · (γEXP)
k
,k∈ N0 (19)

increases the CFL number in a regular manner, also used, e.g., in [24, 39]. The
control parametersγ0 andγEXP completely determine a sequence of CFL numbers.
Appropriate values for the control parameters are problem-dependent and in general
not known a priori. Typical values areγ0 = γmin(= 1.0), andγEXP ∈ [1.05,1.5].

6.1.2 Switched Evolution Relaxation (SER)

The Switched Evolution Relaxation (SER) [30] method often appears in the context
of compressible flow, cf., e.g., [7, 15, 27, 39]. The norm of the density residual,
denoted byRk, is directly coupled with the CFL number of the following time step:

γk+1 = γSER·

(

R0

Rk

)αSER

,k∈ N0 (20)

This way, the sequence of CFL numbers selected by the SER method is not only
determined by the choice of the control parametersγSER andαSER but also depends
on the particular flow problem at hand. In this study we useαSER∈ [1.0,5.0] and
γSER= γmin(= 1.0) as in [7]. A coupling of the CFL number with the residual is also
used in the RDM strategy:

6.1.3 Residual Difference Method (RDM)

If the solutions seem to stagnate while evolving to a steady-state solution one may
increase the size of the time step to check if the solution remains stable. Since in
QUADFLOW the residual is taken as an estimate for the error, we suggest the fol-
lowing evolution strategy, referred to as Residual Difference Method (RDM), as an
alternative to the SER method:

Iterative Solvers for Discretized Stationary Euler Equations 19

γk+1 =















γmin if k < k0,

γRDM ·

(

1
|Rk−Rk−1|

)αRDM

if k≥ k0,

k∈ N0 (21)

wherek0 ≥ 1 denotes the first index satisfyingRk0 ≤ Rk0−1 − εRDM. The control
parameters areγRDM andαRDM, and –like in the EXP and SER strategies– they must
be selected carefully in order to obtain rapid convergenceand to avoid breakdowns.
In this study, we setεRDM = 10−2 and chooseγRDM ∈{1,2,5} andαRDM ∈ [0.6,6.0].

6.2 Numerical Experiments

We present results of numerical experiments using the different CFL evolution
strategies described in Subsection 6.1, where the CFL numbers are allowed to vary
in the interval[γmin,γmax] = [1,105]. We also investigate a test case mimicking a non-
adaptive scheme, called 2nA, in which the calculation on the finest adaptation level
of test case 2A is initialized with free instream conditionsrather than an interpolated
solution of the previous adaptation level.

The point-block-ILU(0) method is the preconditioner chosen for all tests in this
section. More results are presented in [10].

6.2.1 Parameter Study on the CFL Control Parameters

We present the results of a parameter study on the CFL controlparameters for the
three evolution strategies. Here, the parametersγEXP, αSER, αRDM, andγRDM are
varied, whileγ0 andγSER are assigned the fixed value 1.0.

The results for test case 2A are displayed in the upper tabular of Table 6, showing,
for varying parameter values, the number of time steps needed to achieve conver-
gence, denoted by “# ts”, as well as the actual CPU time, givenin seconds. All tim-
ing results are obtained on an Intel Xeon processor running at 3 GHz clock speed.
It turns out that, for all three CFL evolution strategies, the choice of the control
parameters has a great impact on the number of time steps needed for convergence
and the total execution time. For each CFL evolution strategy, the “best” parameter
values are given in bold. Results for test cases 2B and 2C are given in the other
tables of Table 6. The results show that using other than the “best” values for the
control parameters may lead to a doubling of time steps needed and corresponding
CPU time. Because the results are equally efficient for all methods, for these test
cases, the choice of the CFL evolution strategy is not the crucial factor.

20 Bernhard Pollul and Arnold Reusken

Test Case 2A
EXP SER RDM

γEXP # ts CPU αSER # ts CPU αRDM γRDM # ts CPU

1.1 124 80.8 1.1 172 121.7 1.0 1 90 67.2
10 40 36.0 4.0 39 32.9 3.0 1 42 34.5
15 37 31.6 4.5 37 27.2 4.0 1 39 29.3
20 38 32.4 5.0 34 28.5 5.0 1 36 28.4
50 35 33.4 10.0 † – 6.0 1 36 29.0

Test Case 2B
EXP SER RDM

γEXP # ts CPU αSER # ts CPU αRDM γRDM # ts CPU

1.1 115 204.1 1.1 271 406.2 1.0 1 117 216.5
3.0 56 123.7 3.0 58 135.7 2.0 5 51 112.9
5.0 46 101.9 4.0 51 117.8 3.0 1 49 113.7
10 49 115.3 4.5 41 105.6 5.0 1 50 112.3
15 41 125.3 5.0 47 105.1 6.0 1 50 111.7

Test Case 2C
EXP SER RDM

γEXP # ts CPU αSER # ts CPU αRDM γRDM # ts CPU

1.1 125 292.8 1.1 120 285.5 1.0 1 85 237.7
10 70 211.4 3.5 71 211.5 3.0 1 71 208.3
15 69 204.8 4.0 70 209.8 4.0 1 70 205.5
20 69 207.8 5.0 69 211.1 5.0 1 70 210.5
100 69 212.9 10.0 68 199.1 10.0 1 70 208.7

Table 6 Test cases 2A, 2B, and 2C: Time steps needed for convergence on finest grid and corre-
sponding CPU times in seconds for different values for the control parameters

6.2.2 Results Mimicking a Non-Adaptive Scheme

The situation is, however, different in test case 2nA. The results of a corresponding
parameter study are presented in Table 7. It seems more difficult to find feasible

EXP SER RDM

γEXP # ts CPU αSER # ts CPU αRDM γRDM # ts CPU

1.05 189 116.3 2.6 1354 322.6 0.80 1 290 151.0
1.08 134 93.0 2.7 † – 0.94 1 186 120.8
1.09 124 87.6 2.8 1329 314.0 0.95 1 † –
1.10 † – 2.9 1320 314.3 0.98 1 168 100.5
1.11 † – 3.0 † – 1.00 1 † –

Table 7 Test case 2nA: Time steps needed for convergence on finest grid and corresponding CPU
times in seconds.

Iterative Solvers for Discretized Stationary Euler Equations 21

values for the control parameters because values assumed tobe appropriate for test
case 2A may not even yield a converging iteration process. Such a divergence in
the iteration process is indicated by “†” and “–” in the table. Although EXP with
γEXP = 1.09 yields the fastest convergence process, when increasingthe parameter
γEXP to 1.1 or higher the iteration process diverges. Compared to EXP,the SER
strategy leads to a much slower convergence. The reason for this slow convergence
of SER is that it chooses only relatively small CFL numbersγk in the first 1200
iterations. For a feasible pair of values, RDM is significantly faster than SER.

We conclude from this experiment that SER is not suitable fornon-adaptive
schemes. Therefore, we rather recommend using an exponential law (EXP) or RDM.

6.3 Locally Optimal CFL Numbers

Since there is no clear winner among the three basic strategies, a different approach
is presented in this subsection. Reconsider that the relative density residual is used
in the stopping criterion in QUADFLOW. For each time stepk we define a function

Rk : R+ → R+, γk 7→ Rk(γk) (22)

which maps a CFL numberγk to the norm of the density residualRk that is obtained
after performing this iteration usingγk. Some typical plots of the function (22) are
given in Figure 7. Apparently the shape of the functions doesnot change much from
one time step to the following time step.

50 100 150 200 250 300
1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

−3

γ
k

R
k

Test case 2A

k = 13
k = 14
k = 15

50 100 150 200 250 300 350
6.5

7

7.5

8

8.5

9

9.5

10

10.5
x 10

−4

γ
k

R
k

Test case 2A

k = 16
k = 17
k = 18

Fig. 7 Relative residual of densityRk for different valuesγk for test case 2A on the finest grid. The
residualsRk for time stepsk = 13 tok = 15 and fork = 16 tok = 18 are shown in the left and right
subplot, respectively. The CFL numbersγ1, . . . ,γk−1 for the firstk−1 time steps are selected by
the LOC strategy, that is, by approximating (23).

22 Bernhard Pollul and Arnold Reusken

The idea is to find the best CFL number in every iteration, thatis, we determine
a value forγk such that the residual gets as small as possible:

Rk(γk) = min
γ∈R+

Rk(γ). (23)

Note that the residualRk in thek-th iteration depends not only onγk, but also on the
CFL numbersγ1, . . . ,γk−1 used in the previous iterations.

In order to test this approach, we implemented a heuristic search strategy approx-
imatingγk, denoted by LOC in the sequel, where in each iteration several trial steps
using different values for CFLare carried out. In the neighborhood of the CFL value
yielding a minimal residual further trial steps are performed. From the set of CFL
numbers tested during this heuristic search, the best CFL number, that is, the value
γk that yields the smallest residual, is then employed to perform the actual iteration.
This method is (very) expensive and therefore only of theoretical concern. This ap-
proach can be used in a faster strategy using derivative information of the function
(22) so that no additional trial steps have to be carried out,cf. Remark 4. The picked
CFL numbersγk to actually perform time stepk is the one that corresponds to the
smallest residualRk. As indicated in Figure 7, for time steps 13−18 a clear decrease
of the residualsRk can be observed in every time step.

However, it turns out that this method does not necessarily decrease the total
number of iterations. In fact, the total number of iterations needed for convergence
is typically larger than if any of the other methods described in section Subsec-
tion 6.1 were used. Results for the “pure” EXP strategy and switches afternLOC−1
time steps to the LOC strategy, denoted by LOC(nLOC), reveal that, as soon as the
LOC strategy is initiated, the relative density residual decreases quite fast. In sub-
sequent iterations, the rate of decrease of the residual gets smaller such that almost
no progress can be observed. In the long run, the pure EXP strategy yields faster
convergence although the residual actuallyincreasesduring several iterations. This
result is presented in Figure 8.

Remark 4.In the selected example, test case 2A, a closer look at the convergence
behavior corresponding to Figure 8 shows that the position of the shock is slightly
moving during the time integration. This can be interpretedas a “coarse grid effect”.
Avoiding this effect can be achieved by a more precise solution on the previous grid
leading to a better initial solution on the finest grid. A decrease of the tolerance on
the next coarser grid toε1 = 10−3 yields a fast convergence for the LOC(2) strategy,
denoted by LOC, for test case 2A. Because the LOC strategy is very expensive, we
compare the results not only with the EXP strategy but also with an approxima-
tion of the LOC strategy, denoted by ADL. This approximationis feasible thanks
to the similar shapes of the functions (22), cf. Figure 7. TheADL strategy uses two
derivatives of the function (22) obtained by automatic differentiation and approxi-
matesγk 7→ Rk(γk) by a quadratic polynomial.

This approach works fine in some of the test cases, however, itdoes not per-
form satisfactory for test case 2C. Figure 9 shows the residual history for the three
strategies for test cases 2A (left subplot) and 2C (right subplot). ⋄

Iterative Solvers for Discretized Stationary Euler Equations 23

20 40 60 80 100 120 140 160
10

0

10
1

10
2

10
3

Time step k

γ
k

Test case 2A

EXP
LOC(2)
LOC(20)
LOC(40)
LOC(80)

20 40 60 80 100 120 140 160
10

−4

10
−3

10
−2

Time step k

R
k

Test case 2A

EXP
LOC(2)
LOC(20)
LOC(40)
LOC(80)

Fig. 8 Test case 2A: CFL numbersγk selected by EXP and LOC(nLOC), for variousnLOC (left),
and corresponding residual historyRk (right)

Remark 5.Reconsidering the right subplot of Figure 8, it seems that a fast iteration
process must allow an increase of the residualRk. We have noted in Paragraph 6.2.2
that this fact results in a slow convergence behavior when using the SER method. A
similar effect eventually yields very small CFL numbers when using the LOC(nLOC)

20 40 60 80 100
10

−4

10
−3

10
−2

Time step k

R
k

Test case 2A

EXP
LOC
ADL

20 40 60 80 100 120 140 160
10

−4

10
−3

10
−2

10
−1

10
0

Time step k

R
k

Test case 2C

EXP
LOC
ADL

Fig. 9 Test cases 2A (left) and 2C (right): Residual histories on finest grid when solving on coarser
levels to the smaller toleranceε1 = 10−3, EXP, LOC, and ADL strategies

24 Bernhard Pollul and Arnold Reusken

strategy. In test case 2nA, the calculation on the finest adaptation level of test case2A
was initialized with free instream conditions. Apparentlythe initial residual vanishes
in most of the cells. As reported in [26] an increase of the residuals is natural. Even
in an adaptive computation, the same effect can occur. ⋄

To better understand the impact of the CFL numbers on the residuals, a sensi-
tivity analysis has been carried out in [10] using automaticdifferentiation for eval-
uating sensitivities without additional truncation error. The analysis has confirmed
that CFL control is a subtle issue and that the three basic strategies have comparable
sensitivities.

6.4 Concluding Remarks

The results have shown that the best strategy does not have tolocally minimize the
density residuals as much as possible in every time step, andthat even an increase of
the residual must be accepted in order to achieve rapid overall convergence. A new
CFL evolution strategy, called RDM, has been introduced andcompared with the
existing strategies EXP and SER. For the residual-based strategies SER and RDM,
RDM has turned out to be faster than SER. Currently, application-specific knowl-
edge, intuition, and trial and error are still needed in order to determine appropriate
values for the CFL control parameters. Using all CFL evolution strategies within an
expert system like advocated in [39] may improve this situation.

7 Matrix-free Methods for Second Order Jacobians

Matrix-free evaluations of matrix-vector products are popular because the system
matrix does not have to be stored and thus, one can simulate problems with larger
stencils or that would not fit into memory when explicitly building the Jacobian.

The Krylov subspace method does not require the system matrix J in (18) explic-
itly but needs the evaluation of the product ofJ with some given vectorx ∈R

(d+2)N.
Hence, an evaluation of the Jacobian-vector product can be realized without actually
storing the Jacobian matrix.

In contrast to the approach of using divided differences to approximate the
Jacobian-vector product we use AD that does not produce any additional truncation
error. Thus, the derivatives can be computed more accurately than any approach
using divided differences. The computational effort to compute a Jacobian-vector
product by the forward mode of AD is typically similar to the computational cost of
a first order divided difference approximation. For additional information on auto-
matic differentiation and the actual implementation we refer to the article by Arno
Rasch within this issue of the book.

Iterative Solvers for Discretized Stationary Euler Equations 25

7.1 Numerical Experiments

It is known from experience, as reported in, e.g., [29, 31], that a benefit from second
order methods can only be expected after a certain number of time steps have been
elapsed. Usually in the early iterations a first order implementation of a matrix-
vector product is faster and more robust. In our numerical experiments we therefore
usually switch at a certain thresholdν for the density residual between the different
methods. A similar approach is followed in [6, 29]. In the actual implementation
we do not switch back from the higher order method to the lower-order method if
the residual increases again during the computation. Ifkν denotes the first time step
satisfyingRkν−1 ≤ ν the Jacobian approximations are as follows:

Jlow∆u = −Rhigh, k < kν
Jhigh∆u = −Rhigh, k≥ kν

}

(24)

In the following subsection we also use a variant in which we switch at an a-priori
prescribed time stepkν . This approach is also used, e.g., in [31]. If not stated
otherwise, we use the PBILU(0) preconditioner for the first order methods and a
PBILU(2) preconditioner, based on thefirst order Jacobian, for the matrix-free sec-
ond order method. Other results are presented in the articleby Gero Schieffer within
this issue of the book and in [9].

7.1.1 Newton Convergence

We investigate the impact of the CFL number on the performance of Newton’s
method using the first and second order methods by carrying out a fixed number
of time steps using the first order matrix-based method. In this simulation the cor-
responding value forkν was chosen to bekν = 20 (upper row of Figure 10) and
kν = 80 (lower row of Figure 10). Thereafter we perform 20 Newton steps with the
matrix-based first order method (left subplots) and matrix-free second order method
(right subplots). The plots show the Newton iteration history for different CFL num-
bersγ = 100,101, . . . ,104.

The first order method shows linear or slower than linear convergence for all
tested values forγ in both time steps (cf. left plots in Figure 10). The larger the
CFL number is selected, the slower the convergence of Newton’s method is. This
is expected because for larger time step sizes the non-linearity of the corresponding
non-linear system of equation is increasing. Note that Newton’s method converges
only locally and the corresponding initial guesses have to be in the region for that
the non-linear method converges. In time step 20 the flow is still in its startup phase,
that is, most flow features (such as position of shocks) are not resolved, and thus
even a a divergence of Newton’s method may occur. Nevertheless, all 20 Newton
iterations can be performed without a breakdown (cf. Subsection 6.1). As expected,
the convergence for Newton’s method is better in time step 80.

26 Bernhard Pollul and Arnold Reusken

2 4 6 8 10 12 14 16 18 20

10
−11

10
−9

10
−7

10
−5

10
−3

Newton step ι

Dι

Test case 2A −− time step 20 −− MATRIX 1 ST

γ = 1
γ = 10
γ = 100
γ = 1000
γ = 10000

2 4 6 8 10 12 14 16 18 20

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

Newton step ι

Dι

Test case 2A −− time step 20 −− MFREE 2 ND

γ = 1
γ = 10
γ = 100
γ = 1000
γ = 10000

2 4 6 8 10 12 14 16 18 20
10

−15

10
−13

10
−11

10
−9

10
−7

10
−5

Newton step ι

Dι

Test case 2A −− time step 80 −− MATRIX 1 ST

γ = 1
γ = 10
γ = 100
γ = 1000
γ = 10000

2 4 6 8 10 12 14 16 18 20
10

−15

10
−13

10
−11

10
−9

10
−7

10
−5

Newton step ι

Dι

Test case 2A −− time step 80 −− MFREE 2 ND

γ = 1
γ = 10
γ = 100
γ = 1000
γ = 10000

Fig. 10 Test case 2A: Newton history for different values of the CFL numberγ in time steps 20
(upper plots) and 80 (lower plots) for the matrix-based firstorder method (left subplots) and the
matrix-free second order method (right subplots)

Although the exact Newton method has the advantage of local quadratic conver-
gence, it may be counterproductive to use it in the start-up phase of the computation.
This is demonstrated by the fact that two graphs in the upper right subplot of Fig-
ure 10 show that the iteration process does not converge for some higher values for
γ when using the second order method. This divergence occurs if the initial guess
for Newton’s method is too far away from the corresponding solution or the Krylov
solver diverges when solving the corresponding linear system of equations. How-
ever, typical values at time step 20 areγ ∈ [1,10] and it can be observed that for
γ = 1 andγ = 10 the corresponding convergence of Newton’s method is signifi-
cantly faster (than for the first order method). The second order method does not
show any divergence and the corresponding convergence is significantly faster in
time step 80. Although the convergence of Newton’s method isfaster for smaller
values ofγ in any case —which is related to the fact that the non-linearity of (18)
increases with larger time step sizes— in the computation with kν = 80, the sec-
ond order method shows a significant faster convergence for all —and especially

Iterative Solvers for Discretized Stationary Euler Equations 27

for large— CFL numbers than the first order method, as shown inthe two plots in
the lower row of Figure 10.

This is a major benefit of the second order method: Towards theend of the com-
putation a significant acceleration of the time integrationprocess can be achieved
also due to the selection of larger CFL numbersγ.

7.1.2 Acceleration of Time Integration

We study the impact ofν in order to reduce the execution time of the time integra-
tion. As for all stationary test cases in the previous sections, only one Newton step
is performed per time step. In Figure 11 numerical results using an exponential CFL

50 100 150 200 250 300 350 400 450 500
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Time step k

R
k

Test case 2B

MATRIX 1ST

MFREE 1ST, ν = 10−2

MFREE 2ND, ν = 10−2

MFREE 2ND, ν = 10−5

MFREE 2ND, ν = 10−6

50 100 150 200 250 300 350 400 450 500 550
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CPU time [s]

R
k

Test case 2B

MATRIX 1ST

MFREE 1ST, ν = 10−2

MFREE 2ND, ν = 10−2

MFREE 2ND, ν = 10−5

MFREE 2ND, ν = 10−6

Fig. 11 Test case 2B: Residual history on finest grid in terms of iterations (left plot) and corre-
sponding CPU time (right plot) for different values ofν for the second order matrix-free method
compared with the first order methods

strategy withγEXP = 1.5, γMAX = 106 are presented. We plotted the residual history
in terms of iteration number (left subplot) and the corresponding execution time
(right subplot) for the matrix-based first order method and the second order method.
We give results for different switch tolerancesν. It can be observed that the second
order methods need in general less iterations. But the effect of the selection ofν
is crucial:ν has to be selected small enough so that not most of the iterations are
performed by the —potentially slower— first order method. Onthe other hand, if
the switch toleranceν is chosentoosmall the number of iterations is only insignifi-
cant smaller resulting in a bad CPU behavior. We also show a plot for the first order
matrix-free variant.

28 Bernhard Pollul and Arnold Reusken

7.2 Concluding Remarks

The convergence of Newton’s method is significantly better for the second order
method than for the first order method, especially when usinglarger time step sizes.
This allows a clear reduction in the time steps needed for achieving convergence.
However, in the test problems for the stationary two-dimensional Euler equations,
a benefit from the second order method can only be achieved in the final iteration
process We have shown that switching at the “right” time, i.e. ν = 10−5, from the
first order method to the second order method can speed up the overall computation
process compared with the “pure” first order matrix-based method.

8 Outlook

We conclude with some remarks on topics that could be considered in future work in
this research area. The first two aspects address preconditioning, the last item sug-
gests an expert system for time stepping and switching between first order matrix-
based and second order matrix-free methods.

Parallel Preconditioners
The preconditioner and the corresponding ordering routines have to be adapted and
optimized for a fully parallel version of QUADFLOW. The use of parallel ILU-type
preconditioners is possible if a multi-color ordering or subdomain preconditioning
is used. These approaches are investigated and compared in,e.g., [4]. For a paral-
lel preconditioner a Newton-Krylov-Schwarz algorithm [19] using overlapping do-
mains could be used. Such additive or multiplicative Schwarz preconditioners can
be viewed as an overlapping block-Jacobi or block-Gauss-Seidel preconditioner, re-
spectively [3]. This technique is widely-used in the context of partial differential
equations as reported in many articles in the proceedings onthe annually confer-
ences on domain decomposition methods. A cheap and fast variant, the Restricted
Additive Schwarz Method (RAS, RASM) by Cai and Sarkis [13], that is also in-
tegrated in the PETSc library [2], has been successfully combined with a Newton-
Krylov method within the context of flow solvers [12, 19, 22, 23]. As demonstrated
in [19] the RAS method can also be combined with the PBILU(0) algorithm for
the subdomains. While the RAS method is used as preconditioner for the linear
systems in [13], Schwarz preconditioners can also be used asa preconditioner for
the non-linear systems of equations as presented in [11]. This non-linear technique
was applied to a one-dimensional compressible flow, denotedby “additive Schwarz
preconditioned inexact Newton method” (ASPIN), in [12] andhas also been suc-
cessfully used in [23]. ASPIN is a non-linear block-Jacobi iteration followed by a
Newton linearization. This non-linear Schwarz preconditioner could significantly
enlarge the region for that the non-linear solver convergescompared with Newton’s
method.

Matrix-Free Preconditioners
The matrix-based preconditioner PBGS, in whichJlow is used for the computation of

Iterative Solvers for Discretized Stationary Euler Equations 29

the preconditioner, can be replaced by some kind of matrix-free preconditioner in
the second order matrix-free implementation of the matrix-vector product. A gen-
eral approach for building a matrix-free preconditioner can be found in [14]. The
use of a second order matrix-free preconditioner could certainly reduce the storage
requirements for the first order matrix-based preconditioner. One could also imple-
ment a symmetric variant of PBGS, such as the matrix-free LU-SGS preconditioner
which is proposed in [28]. A symmetric PBGS-type preconditioner can also be used
with the described WRG ordering. In principle the renumbering technique works
in a matrix-free context because only the relatively small reduced graph has to be
stored.

Expert Systems for Time Integration
The implicit time integration process may be automated by some kind of advanced
expert system leading to a kind of “black-box” CFL evolutionstrategy. A basic ex-
pert system is proposed in [39]. One can think of a complex expert system including
all basic strategies, the ADL strategy, plausibility checks, a breakdown control, as
well as repetitions of time steps or the use of multiple Newton steps. In a more ad-
vanced expert system different switches between the CFL evolution strategies and
the first and second order methods can be realized including also switches between
different preconditioners and Krylov methods.

Acknowledgment

The research for this article has been performed with funding by the Deutsche
Forschungsgemeinschaft (DFG) in the Collaborative Research Center SFB 401
“Flow Modulation and Fluid-Structure Interaction at Airplane Wings” of RWTH
Aachen University. We acknowledge the fruitful collaboration with several mem-
bers of the QUADFLOW research group.

References

1. K. Ajmani, W.-F. Ng, and M. Liou. Preconditioned conjugate gradient methods for the Navier-
Stokes equations.Journal of Computational Physics, 110(1):68–81, 1994.

2. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in
object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen,
editors,Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press,
Basel, Switzerland, 1997.

3. R. Barett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. A. van der Vorst.Templates for the Solution of Linear Sparse Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, USA, 1994.

4. M. Benzi, W. Joubert, and G. Mateescu. Numerical experiments with parallel orderings for
ILU preconditioners.Electronic Transactions on Numerical Analysis, 8:88–114, 1998.

5. J. Bey and G. Wittum. Downwind numbering: robust multigrid for convection-diffusion prob-
lems.Applied Numerical Mathematics, 23(1):177–192, 1997.

30 Bernhard Pollul and Arnold Reusken

6. M. Blanco and D. W. Zingg. Fast Newton-Krylov method for unstructured grids. AIAA
Journal, 36(4):607–612, 1998.

7. F. D. Bramkamp.Unstructured h-Adaptive Finite-Volume Schemes for Compressible Viscous
Fluid Flow. PhD thesis, RWTH Aachen University, 2003.

8. F. D. Bramkamp, P. Lamby, and S. Müller. An adaptive multiscale finite volume solver for
unsteady and steady state flow computations.Journal of Computational Physics, 197(2):460–
490, 2004.

9. F. D. Bramkamp, B. Pollul, A. Rasch, and G. Schieffer. Matrix-free second-order methods
in implicit time integration for compressible flows using automatic differentiation. Technical
Report 287, IGPM, RWTH Aachen University, 2008.

10. H. M. Bücker, B. Pollul, and A. Rasch. On CFL evolution strategies for implicit upwind
methods in linearized Euler equations.International Journal for Numerical Methods in Fluids,
59(1):1–18, 2009.

11. X.-C. Cai and D. E. Keyes. Nonlinearly preconditioned inexact Newton algorithms.SIAM
Journal on Scientific Computing, 24(1):183–200, 2002.

12. X.-C. Cai, D. E. Keyes, and D. P. Young. A nonlinear additive Schwarz preconditioned in-
exact Newton method for shocked duct flows. In N. Debit, M.Garbey, R. Hoppe, J. Periaux,
D. Keyes, and Y. Kuznetsov, editors,Proceedings of the 13th International Conference on
Domain Decomposition Methods, Lyon, France, pages 345–352, 2001.

13. X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse
linear systems.SIAM Journal on Scientific Computing, 21(2):792–797, 1999.

14. T. F. Chan and K. R. Jackson. Nonlinearly preconditionedKrylov subspace methods for
discrete Newton algorithms.SIAM Journal on Scientific Computing, 5(3):533–542, 1984.

15. T. Chisholm and D. W. Zingg. A fully coupled Newton-Krylov solver for turbulent aerody-
namic flows. InICAS 2002 Congress, Toronto, ON, Canada, Paper 333. 2002.

16. R. Courant and K. O. Friedrichs.Supersonic Flow and Shock Waves, volume 21 ofApplied
Mathematical Sciences. Springer, Berlin, Germany, 1999, reprint from 1948.

17. E. Cuthill and J. McKee. Reducing the bandwidth of sparsesymmetric matrices. InProceed-
ings of the 24th national conference, pages 157 – 172, New York, NY, USA, 1969.

18. E. F. D’Azevedo, P. A. Forsyth, and W.-P. Tang. Ordering methods for preconditioned con-
jugate gradient methods applied to unstructured grid problems. SIAM Journal on Matrix
Analysis and Applications, 13(3):944–961, 1992.

19. W. D. Gropp, D. E. Keyes, L. C. McInnes, and M. D. Tidriri. Globalized Newton-Krylov-
Schwarz algorithms and software for parallel implicit CFD.International Journal of High
Performance Computing Applications, 14(2):102–136, 2000.

20. M. J. Grote and T. Huckle. Parallel preconditioning withsparse approximate inverses.SIAM
Journal on Scientific Computing, 18(3):838–853, 1997.

21. W. Hackbusch. On the feedback vertex set for a planar graph. Computing, 58:129–155, 1997.
22. P. D. Hovland and L. C. McInnes. Parallel simulation of compressible flow using automatic

differentiation and PETSc.Parallel Computing, 27(4):503–519, 2001.
23. F.-N. Hwang and X.-C. Cai. A parallel nonlinear additiveSchwarz preconditioned inexact

Newton algorithm for incompressible Navier-Stokes equations. Journal of Computational
Physics, 204(2):666–691, 2005.

24. E. Issman, G. Degrez, and H. Deconinck. Implicit upwind residual-distribution Euler and
Navier-Stokes solver on unstructured meshes.AIAA Journal, 34(10):2021–2028, 1996.

25. D. J. Jones. Reference test cases and contributors. InAGARD–AR–211: Test Cases for Inviscid
Flow Field Methods. Advisory Group for Aerospace Research & Development, Neuilly-sur-
Seine, France, 1986.

26. C. T. Kelley and D. E. Keyes. Convergence analysis of pseudo-transient continuation.SIAM
Journal on Numerical Analysis, 35(2):508–523, 1998.

27. D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylovmethods: a survey of approaches
and applications.Journal of Computational Physics, 193(2):357–397, 2004.

28. H. Luo, D. Sharov, J. D. Baum, and R. Löhner. Parallel unstructured grid GMRES+LU-SGS
method for turbulent flows.AIAA Paper 2003–0273, 2003.

Iterative Solvers for Discretized Stationary Euler Equations 31

29. L. Manzano, J. V. Lassaline, P. Wong, and D. W. Zingg. A Newton-Krylov algorithm for the
Euler equations using unstructured grids.AIAA Paper 2003–0274, 2003.

30. W. A. Mulder and B. van Leer. Experiments with implicit upwind methods for the Euler
equations.Journal of Computational Physics, 59(2):232–246, 1985.

31. A. Nejat and C. Ollivier-Gooch. Effect of discretization order on preconditioning and conver-
gence of a high-order unstructured Newton-GMRES solver forthe Euler equations.Journal
of Computational Physics, 227(4):2366–2386, 2008.

32. B. Pollul. Preconditioners for linearized discrete compressible Euler equations. In P. Wessel-
ing, E. Oñate, and J. Périaux, editors,Proceedings of the European Conference on Computa-
tional Fluid Dynamics ECCOMAS, Egmond aan Zee, The Netherlands, 2006.

33. B. Pollul and A. Reusken. Numbering techniques for preconditioners in iterative solvers for
compressible flows.International Journal for Numerical Methods in Fluids, 55(3):241–261,
2007.

34. A. Pueyo and D. W. Zingg. Efficient Newton-Krylov solver for aerodynamic computations.
AIAA Journal, 36(11):1991–1997, 1998.

35. Y. Saad. Preconditioned Krylov subspace methods for CFDapplications. In W. Habashi,
editor, Solution techniques for Large-Scale CFD-Problems, pages 139–158, John Wiley &
Sons, New York, NY, USA, 1995.

36. Y. Saad.Iterative methods for sparse linear systems. SIAM, Philadelphia, PA, USA, second
edition, 2003.

37. K. Stüben. An introduction in algebraic multigrid. In U. Trottenberg, C. Osterlee, and
A. Schüller, editors,Multigrid, pages 413–532, 2001. Academic Press, London, GMD Bir-
linghoven, St. Augustin, Germany, 2001.

38. S. Turek. On ordering strategies in a multigrid algorithm. In W. Hackbusch and G. Wittum,
editors,Notes on Numerical Fluid Mechanics, volume 41 ofProc. 8th GAMM-Seminar, Kiel.
Vieweg, Braunschweig, Germany, 1997.

39. D. Vanderstraeten, A. Csı́k, and D. Rose. An expert-system to control the CFL number of
implicit upwind methods. Technical Report TM 304, Universiteit Leuven, Belgium, 2000.

40. P. Wong and D. W. Zingg. Three-dimensional aerodynamic computations on unstructured
grids using a Newton-Krylov approach.Computers & Fluids, 37(2):107–120, 2008.

