|terative Solversfor Discretized Stationary
Euler Equations

Bernhard Pollul and Arnold Reusken

Abstract In this paper we treat subjects which are relevant in thescaof iterative
methods in implicit time integration for compressible floimalations. We present
a novel renumbering technique, some strategies for chgdsatime step in the im-
plicit time integration, and a novel implementation of a mafree evaluation for
matrix-vector products. For the linearized compressihieEequations, we present
various comparative studies within the QUADFLOW packageceoning precon-
ditioning techniques, ordering methods, time steppingtsties, and different im-
plementations of the matrix-vector product. The main geabiimprove efficiency
and robustness of the iterative method used in the flow solver

1 Introduction

Large sparse non-linear system of equations resulting faofimite volume dis-
cretization of compressible Euler equations are consitier¢his paper. This dis-
cretization is based on adaptive wavelet techniques fal Igdd refinement, For
an overview of the adaptivity concept and the finite volunserétization we refer
to [8]. The methods are implemented in the QUADFLOW solver[& 8]. In this
paper we only consider iterative methods for solving thgdaron-linear systems of
equations.

The approach of a “pseudo-transient continuation” is fedd. That is, an im-
plicit time integration method is applied to the unsteadyeE@quations so that
the corresponding non-stationary solution convergeseacstationary solution for
time tending to infinity. This then yields a non-linear systef equations in each

Bernhard Pollul
Chair for Numerical Mathematics e-mail: pollul@igpm.naghchen.de

Arnold Reusken
Chair for Numerical Mathematics e-mail: reusken@igpmhrafichen.de

2 Bernhard Pollul and Arnold Reusken

time step which is solved by a Newton-Krylov method. Themie applies a lin-
earization technique combined with a preconditioned Krglobspace algorithm for
solving the resulting linear problems. The computationatkrneeded for solving
the large sparse systems in the Newton-Krylov method détestio a large extent
the total computing time.

Because preconditioning is crucial for the convergencéefdrylov solver we
investigate different so-called “point-block” preconditers. Preconditioners usu-
ally strongly depend on the ordering of the (block) unknowfs present a new
renumbering technique that is based on a reduced matrihgrag that can sig-
nificantly improve both the robustness and the efficiencyhefiterative method.
The selection of the time step size in the implicit time imeggpn is crucial for
the performance of the iterative solver. We investigate kwown and two novel
time step selection strategies. A further acceleratiomeftime integration can be
achieved by the use of a second order accurate Jacobianudget®e stencils for
second order methods are relatively large resulting in apdexJacobian requiring
much memory, we present a second order matrix-free methaadues automatic
differentiation. Using the second order matrix-free eaéibbn of the matrix-vector
product the corresponding computational time can be sagmifly decreased.

2 The Euler Equations

Derived from the fundamental conservation laws of fluid dyiws, the time-
dependent Euler equations describe the motion for an iieyison-heat-conducting
compressible gas. For an arbitrary control volwhe Q ¢ RY with boundarydV
and outward unit normal vectaron the surface elemedSc gV they are given by

du

—dv+yf F(u)ndS=0. 1
ot MG 1)
The convective flux=(u) and the vector of unknown conserved quantitieson-
taining the density, the static pressung the velocity vector of the fluid, and the
total energyE are given by

pv p
F(u)= | pvov+pl , u={(pv], 2
Ev+ pv E

whereo denotes the dyadic product. The system is closed by suitaiti@ and

boundary conditions and the equation of state for a perfastusing the ratio of
C

specific heaty = ¢

_ b 1 >
E_—y_1+2pv . 3)

The equations (1) — (3) form the standard model that is censdlin this paper.

Iterative Solvers for Discretized Stationary Euler Eqoasi 3

3 Test Problems

We describe two classes of test problems which are used inuimerical experi-
ments below.

3.1 Homogeneous Stationary Flow on the Unit Square

In this simple test problem we consid& = [0,1]2 on a uniform meshQ, =
{(ih,jh) | 0<i,j < n} , with nh=1 and boundary conditions such that the sta-
tionary Euler equations have a constant solution. We ajpgl\/an Leer flux vector-
splitting scheme and use compatibility relations for thecktization of the bound-
ary conditions. A lexicographic ordering of the grid poiistapplied. The discretiza-
tion yields a non-linear system of equations

F:R™N R™N . FU)=0. (4)

The continuous constant solution (restricted to the gridyes the discrete prob-
lem and thus the solution of the non-linear discrete probléemoted byU*, is
known a-priori. In Subsection 4.2 we investigate the bedraof different precon-
ditioners when applied to a linear system of the fdbf(U*)x = b. The matrix
DF(U*) has apoint-blockstructure, that is, a regular block structié (U*) =
blockmatrixA j)o<i j<n With A j € R¥ for all i, j. Note thatA; ; # 0 can occur
only if i = j ori andj correspond to neighboring grid points.

3.2 Stationary Flow around NACA-0012 Airfoil

This problem is a standard test case for inviscid comprks§iow solvers [25]
in which the inviscid, transonic, stationary flow around H&CA0012 airfoil is
considered. We present results for the three test casasigifi@ble 1 characterized
by Mach numbeM., and angle of attack:.

| NACA0012 || Moo | a |
test case 2/0.80/1.25
test case 2§0.95/0.00°
test case 2(11.20/0.00°

Table 1 Test cases 2A, 2B, 2C: Mach numbéy, and angle of attack for NACA0012 airfoil

The problems are discretized using a hierarchy of locafipee grids on which
standard finite volumes are applied, cf. [8]. The steadiesalutions of test cases

4 Bernhard Pollul and Arnold Reusken

2A, 2B, and 2C are evolved in a pseudo-transient continaatdving (1), starting

on a coarse initial grid, and evolving a solution on an adaptirefined grid. We

perform one inexact Newton iteration per time step. Theasponding Jacobian
matrices are the system matrices of the occurring systetiteaf equations. These
systems are solved with a left-preconditioned BICGSTABhudt Preconditioning

will be explained in detail in Section 4.

In the implicit time integration, the size of the time stepletermined by a CFL
numberywhich is not limited by the Courant-Friedrichs-Levy (CFlondition [16].
Initialized by yyin on the coarse initial grid, the CFL number is increased by an
evolution method as presented in Section 6 in every timelstépan a-priori fixed
upper boundsax is reached. Time integration is continued until a toleragrite-
rion for the residual is satisfied. Then a (local) grid refiestis performed and the
procedure starts again with an initial CFL number equajif .

3.2.1 Grid Hierarchy

We show some first results for test cases 2A, 2B, and 2C, ussn@UADFLOW
solver with a standard time step selection strategy method € 1.1 W, Ymin =

Yo = 1, andymax = 1000), cf. Section 6. As in [8] we allow 8 maximum levels of
refinement, 10 cycles of adaptations in the cases 2A and 2Q 2uagicles in case
2B.

[Testcasf Grid][] 1 [2 | 3] 4] 5] 6 7]
2A #celld| 400 | 1384|2947| 3805| 4636|5689 6817

2B #cell§| 400 [1600|4264 7006(11827156342184]
2C |[#cell§| 400 | 1600| 4864(1018916 8852329030598

[Testcasf Grid[] 8 [9 [10 [11 | 12 | 13 [14 |
2A #celld| 7753|9028 | 9523(9874 only 10 adaptations carried out
2B # celld| 2587028 627/30 54731 828 33 06733 95534 552
2C # Ce”s 36 160 38 764 39 961 40 708 only 10 adaptations carried out

Table 2 Sequence of grids. Tabulated is the number of cells in negidd for test cases 2A and
2C (10 adaptations performed) and for test case 2B (13 atapaerformed)

In Table 2 the sequence of nested grids for the four test ¢éagpgen. In a full
simulation, the density residuals are decreased by a faétt®* in the finest grid
and by a factor of 19on all coarser grids. Note that the finest grids contain u® 1
times as much cells as the initial grids. Therefore the factise following sections
will be on reducing the time that is needed to achieve corarerg on the finest grid.
Therein, the main effort is the solution of the large, spéiresar equation systems
that arise in Newton’s linearization method.

Iterative Solvers for Discretized Stationary Euler Eqoasi 5

4 Point-Block Preconditioners

In the Newton-Krylov approach the arising linear systemsaiations are solved
by a Krylov method. Therein, the choice of the preconditraserucial for the con-
vergence process. Our main focus is on the incomplete Ltbfiaation (ILU) and
Gauss-Seidel (GS) preconditioners that are widely-usedlivers in the numerical
simulation of compressible flows [1, 6, 18, 31, 35, 40].

4.1 Methods

In the test problems described in the previous section we twesolve large systems
of linear equations. The matrices have a point-block stimecin which the blocks

correspond to the + 2 unknowns in each of thH cells (finite volume method).

Thus, we have linear systems of the form

Ax=b, A =blockmatrixA j)i<ijen, A jcROF2xE2) (5)

In the following we describe basic point-block iterative thieds that are used as
preconditioners in the iterative solver. For the right-thaide we use a block repre-
sentatiorb = (by,...,bn)T, bj € R9*2 that corresponds to the block structurefof
The same is done for the iteranxsthat approximate the solution of (5).

For the description of the preconditioners the nonzereepaR(A) correspond-
ing to the point-blocks in the matrik is important:

PA)={(,]) | A,j #0} (6)

4.1.1 Point-Block-Gauss-Seidel M ethod

The point-block-Gauss-Seidel method (PBGS) is the stahidiack Gauss-Seidel
method applied to (5). Le®® be a given starting vector. Fe> 0 the iterand+1 =
(XL XY T should satisfy

i—1 N
AT =b— 3 AT = S A, =1 N, 7
=1 j=+1

This method is well-defined if th@ + 2) x (d + 2) linear systems in (7) are uniquely
solvable, that is, if the diagonal blocks; are nonsingular. In our applications this
was always satisfied. This elementary method is very easyptement and needs
no additional storage. The algorithm is available in the B&Tibrary [2].

6 Bernhard Pollul and Arnold Reusken

4.1.2 Point-Block-1LU(0) Method

We consider the point-block version of the standard poitkk(R) algorithm, denoted
by PBILU(0). For the PBILU(0) preconditioner a preproceggphase is needed in
which the incomplete factorization is computed. Furthemnadditional storage
similar to the storage requirements for the matixs needed. One can consider
variants of this algorithm, e.g. PBIL@}, p = 1,2,.... This produces additional
storage requirements and additional arithmetic cost$,Bloé PBILU(0) algorithm
and such variants, are available in the PETSc library [2].

4.1.3 Point-Block Sparse Approximate Inverse

The SPAI method [20] can be modified to its point-block foratidn in the same
way as Gauss-Seidel and ILU. In its point-block version,aled by PBSPAI(0),

we useM = blockmatriXM; j)1<i j<n, Mi j € R(@+2)%(@+2) and denote the set of
admissible approximate inverses.bf := {M ¢ RA+2Nx(d+2N | p(M) C P(A) }.

A sparse approximate inverbg is determined by minimization over this set:

|AM —1[|g = min [AM — 1| ®)
Me.#

The choice for the Frobenius norm allows a splitting of thimimization prob-
lem leading to multipldow dimensionaleast squares problems that can be solved
by standard methods iparallel. The application of the PBSPAI(0) preconditioner
requires a sparse matrix-vector product computation whish has a high paral-
lelization potential. As for the PBILU(O) preconditionempaeprocessing phase is
needed in which the PBSPAI(0) preconditioméris computed. Additional storage
similar to the storage requirements for the ma#iis needed. We also implemented
the row-variant of SPAI, denoted by PBSRAI(0). As for the ILU preconditioner,
there exist variants in which additional fill-in is allowedd, [20].

4.2 Numerical Experiments

We present results of numerical experiments. Our goal Ikistiate and to compare
the behavior of the different preconditioners presentedealfor both test problems.
In test problem 1, the Jacobian is evaluated at the disoo&téan U*. The solution
is trivial, namely, constant. The solution is a complex flogldiin test problem 2.
In the latter linear systems with matrices as in (5) arisehi golver used in the
QUADFLOW package.

In all experiments below we use a left preconditioned BiC&BTethod. For
test problem 1, the discretization routines, methods ferctinstruction of the Jaco-
bian matrices and the preconditioners (PBGS, PBILU(0) &@&MAI(0)) are imple-

Iterative Solvers for Discretized Stationary Euler Eqoasi 7

mented in MATLAB. For the other test problems the approxedgtcobian matrices
are computed in QUADFLOW using PETSc [2]. More results asspnted in [32].

4.2.1 Arithmetic Costs

To measure the quality of the preconditioners we presenhtineber of iterations
that is needed to satisfy a certain tolerance criterion. Yiefliy comment on the
arithmetic work needed for the construction of the prectodér and the arithmetic
costs of one application of the preconditioner. As unit @¢hanetic work we take the
costs of one matrix-vector multiplication with the matAx denoted by 1 matvec.

For the PBGS method we have no construction costs. The aiitbmvork per
application of the PBGS preconditioner is about 0.7 mathreour experiments the
costs for constructing the PBILU(0) preconditioner areametn 2 and 4 matvecs.
We typically need 1.2—1.6 matvecs per application of theLRED) preconditioner.
The costs for constructing the PBSPAI(0) preconditionerratch higher. Typical
values (depending oR(A)) in our experiments are 20-50 matvecs. We typically
need 1.2-1.5 matvecs per application of the PBSPAI(0) praitoner.

4.2.2 Stationary 2D Euler

We consider the discretized stationary Euler equationessribed in Paragraph 3.1
with mesh sizén= 0.02. We vary the Mach number x3-direction, which is denoted

Test case 1
300

2001

150

Iterations BICGSTAB

1001

—PBGS
- = =PBILU(0)
- - PBSPAI(0)

50 .. 1
....PBSPAI_ (0)
row

. . . .
0.6 0.8 1 12
Mach number M

Fig. 1 Test problem 1: Iteration count for different Mach numbers

8 Bernhard Pollul and Arnold Reusken

by My: 0.05< My < 1.25. For the Mach number xp-direction, denoted by, we
takeMy = %Mx. The BICGSTAB iteration, initialized by the all-zero siag vec-
tor, is stopped if the relative residual is below £0measured in the 2-norm. The
results are presented in Figure 1. In the supersonic d4se (1), due to the down-
wind numbering, the upper block-diagonal part of the Jeaoks zero and thus both
the PBILU(0) method and PBGS are exact solvers. The PBSPAtéTonditioner
does not have this property, due to the fact Mais a sparse approximation &f 1,
which is adensélock lower triangular matrix. Fdvly < 1 with PBGS precondition-
ing we need about 1 to 4 times as much iterations as with PB)) pieconditioning.
Both preconditioners show a clear tendency, namely thatdhgergence becomes
faster ifMy is increased. Fo¥l, < 1 the PBSPAI(0) preconditioners show an unde-
sirable very irregular behavior, therefore we do not aplpiy preconditioner for test
problem 2.

4.2.3 Stationary Flow around NACA0012 Airfoil

In the computations with the three standard NACA0012 ditésit cases, the choice
of the time step is based on an exponential strategy as glasstribed in Para-
graph 3.2.1. The linear systems with the approximate Jaogldre solved until the
relative residual is smaller than 18 In Table 3 the averaged number of precon-
ditioned BIiCGSTARB iterations for the two finest grids is givéNote that applying
PBGS we need about 2-3 times as much iterations as when WBlhy @). With
PBILU(2) we save between 25% and 54% on the average iteretiont compared
with PBILU(O). Taking the arithmetic work per iteration meccount, cf. Para-
graph 4.2.1, we conclude that PBGS and PBILU(0) have corbpaefficiency,
whereas the PBILUYY), p= 1,2, preconditioners are (much) less efficient due to the
high memory requirements. In Section 5 we will see that amaate renumbering
technique significantly improves the situation for PBGS.

test case 2A 2B 2C
Grid 10| 11 13| 14 10| 11

PBGS ||2.89127.0/|14.9/18.6||6.50[20.7
PBILU(0)|[1.33[9.836.17/8.37||2.696.21]
PBILU(1)||1.04/6.07||4.24/4.65||1.81{2.41
PBILU(2)|[1.00[5.09|3.52/3.83||1.60[3.42,

Table 3 Test problem 2: Average iteration count on two finest grids

Iterative Solvers for Discretized Stationary Euler Eqoasi 9

4.3 Concluding Remarks

We summarize the main conclusions of this section. Alreadptr relatively sim-
ple model problems the PBSPAI(0) method has turned out to peoa precon-
ditioner. This method should not be used in a Newton-Krylatmod for solving
compressible Euler equations. Both for model problems arehbistic application
(QUADFLOW solver, test problem 2) the efficiency of the PBG®&qgwnditioner
and the PBILU(0) method are comparable. For our applicattba PBILU(1) and
PBILU(2) preconditioners are less efficient than the PBIQ)J{reconditioner.

5 Renumbering Techniques

In this section we present ordering algorithms for the PB@&®@nditioner. We do
not know of any literature in the context of linearized Ewdguations dealing with
ordering techniques for Gauss-Seidel preconditioners prasented ordering algo-
rithms consist of three steps. In the first step we construdighted directed graph
in which every vertex corresponds to a block unknown and thigis correspond
to the magnitude of the fluxes. This graph is usually very demamaking it al-
most impossible to work with standard ordering techniqliié®refore, we use an
approach that is very similar to coarsening techniques irsathebraic multigrid
methods [37]: At first we reduce the complex graph by deleéidges with rela-
tively small weights. Then we consider three different ailipons to determine the
renumbering of the vertices of the reduced graph.

5.1 Methods

ILU and Gauss-Seidel preconditioners depend on the omlefinhe cells [5, 21,
38]. This holds for their point-block variants, too. Manudites on numbering tech-
niques for ILU preconditioners appear in the literature, €fg., [18, 36] and ref-
erences therein. For ILU methods, in many applicationsyarse Cuthill-McKee
ordering algorithm [17] provides good results [6, 29, 34, 3he PBGS precondi-
tioner can be significantly improved by reordering techegjthat should be such
that one approximately follows the directions in which imf@tion is propagated.
In this section we introduce three renumbering methodsdinaiat realizing this.

All three algorithms are completely matrix-based, thatidy the block-structured
matrix from (5) is needed as input. We distinguish the follugwthree steps:

1. Construct a weighted directed matrix graphwhich
e every vertex corresponds to a block unknown (= cell)
e every edge corresponds to a nonzero off-diagonal blockeofiien matrixA

10 Bernhard Pollul and Arnold Reusken

2. Construct a reduced weighted directed matrix grdggh
e deleting edges with relatively small weights
3. Determine a renumbering of the vertices

While for all three algorithms presented below steps 1 ande2identical, they
differ in the methods used in the third step. We explain thet fiwo steps in Para-
graphs 5.1.1 and 5.1.2. In Paragraphs 5.1.3 - 5.1.5 we gubitbe different meth-
ods that are used in step 3 to determine the reordering.

5.1.1 Construction of Weighted Directed Matrix Graph ¢ (A)

We introduce standard notation related to matrix graphs#e- {1,...,N} be a
vertex set such that each vertex corresponds to a disdretizeell. The set of edges
& contains all directed edges and the mapping & — (0,0) assigns to every
directed edgé¢i, j) € & aweightw;:

&={0,]) e VxV|A;j#0 1]}, wj=w))=[Ajlr . (9)

We take the Frobenius-norm because it is easy to computdlartrées in a block
A j are weighted equally. This yieldsveeighted, directednatrix graph® (A) :=
(¥,&,w). Opposite to the commonly used definition we call an edge € & an
inflow edgeof vertexi € ¥ and aroutflow edgef vertexj € ¥. This is motivated
by the following: In our applications, an edgk j) in the graph corresponds to a
flow from cell j into cell i in the underlying physical problem. Consequently, for
(i,]) € & we callj apredecessoof i andi asuccessoof j. The set of predecessors
of vertexi € 7 is denoted by

A={ieV|(]) € &} . (10)

In the construction of/(A) one only has to compute the weighig in (9). For
storage of this information we use a sparse matrix formate Nwat the size of the
sparse matrix corresponding®(A) isN x N (and notN(d + 2) x N(d + 2), as for
A). Hence, the costs both for the computation and for the geoo&¥ (A) are low.

5.1.2 Construction of Reduced Matrix Graph g

Based on reduction techniques from algebraic multigridnm@s in whichstrong
couplingsandweak couplingare distinguished [37], we separateong edgefrom
weak edged-or every vertex € ¥ we neglect all inflow edge§, j) € & with a
weight smaller tham-times the average of the weights of all inflow edges of vertex
i. Thus we obtain a reduced set stffongedgesé” and a corresponding reduced
(weighted, directed) grapfi(A) := (¥, &, (%a):

Iterative Solvers for Discretized Stationary Euler Eqoasi 11

1 -
0= — wp &:={(,)) € &|wj>T1-0; 11
| |']'|JEZJ, J {(J) |] I} ()

This simple construction of a reduced matrix gr%h\) can be realized with low
computational costs. Moreover, we can overw#ted) with Z(A).

The use of graph reductionis essential for the performafiteseordering tech-
niques discussed below. Note that the parametmntrols the size of the reduced
graph: fort =0 there is no reduction of the original graph, whereag for « the re-
duced graph contains only vertices and no edges. The chicagceappropriate value
for the parameter is discussed in Subsection 5.2. In particular it will be shalat
the performance of the numbering techniques is not veryitsengvith respect to
perturbations of the parameter value. We cdijraph reduction parameter” below.

5.1.3 Downwind Numbering based on (7,&) (Bey and Wittum)

The downwind numbering algorithm due to Bey and Wittum [gndted by “BW”,
is presented in Figure 2. This ordering is used in multigrietmods for scalar
convection-diffusion problems for the construction ofcadled “robust smoothers”.
To apply this algorithm for our class of problems we need #wuced directed
graph(7,&) as input. Note that although they have been used to compeiteth
duced grapl{7, &), the weightsw; arenotused in the ordering algorithm.

forallP € ¥ : Index(P) :=-1;
ng:=1;
forP e ¥

if (Index(P) < 0) SetRP) ;
endP

procedure SetfP)
if (all predecessor8 of P have IndexB) > 0)
Index(P) := ng ;
NF:=nNr+1;
for Q successor oP
ig Index(Q) < 0) SetRQ) ;
en

end if

Fig. 2 Downwind numbering algorithm BW

Remark 1In the loop overP € ¥ in algorithm BW the ordering of the block-
unknowns (cells) corresponding to the input mattixis used. In the procedure
SetFP) a vertex is assigned the next number if all its predecedsave already
been numbered. Hence, the first number is assigned to a \thetkas no inflow
edges. Note that in the procedure SB)Hhere is freedom in the order in which
the successor® are processed. In our implementation we again use the agleri

12 Bernhard Pollul and Arnold Reusken

induced by the given matri&. The BW numbering is applied to the reduced matrix
graph. Ifthat graph is cycle-free, the algorithm returnsraumbering that is optimal
in the sense that this reordering applied to the matrix spading taZ (A) results
in a lower triangular matrix. However, in our problem clalse teduced graphs in
general contain cycles. In that case, after algorithm BWfiméghed, there still are
verticesP € 7 with Index(P)= —1, that is, there arBl — ng > O vertices that have
no (new) number. The numbeng,...,N are assigned to these remaining vertices
in the order induced by the input matrix ordering. The twadaats of BW that are
treated below in general have less of such “remaining” vesti

Note that in the BW algorithm there are logical operationd assignments but
no arithmetic operations. o

5.1.4 Down- and Upwind Numbering based on (7, &) (Hackbusch)

forallP € ¥ : Index(P) :=—1;
ne:=1;n:=N;
forP € v

if (Index(P) < 0) SetKP) ;

if (Index(P) < 0) Setl(P) ;
endP

procedure Set(P)
if (all successor® of P have IndexB) > 0)
IndexP) := n_;
n:=n_—1;
for Q predecessor d?
i& Index(Q) < 0) Setl(Q) ;
en

end if

Fig. 3 Down- and upwind numbering algorithm HB

In Figure 3 we present an ordering algorithm, referred toasnd and upwind
numbering and denoted by “HB”, that is due to Hackbusch [A%]input for this
algorithm one needs the reduced directed grggh?’). The routine “SetF” is the
same as in the BW algorithm in Figure 2.

Remark 2While in the BW algorithm the vertices are ordered in one diom,
namely “downwind”, that is, in the direction of the flow, thigarithm due to Hack-
busch uses two directions: “downwind” (SetF) and “upwin8&{L). The computa-
tional cost of algorithm HB is comparable to that of BW. o

Iterative Solvers for Discretized Stationary Euler Eqoasi 13

5.1.5 Weighted Reduced Graph Numbering based on (“I/,é",qb@)

The performance of the BW and HB numbering depend on the ioglef the in-
put graph. We present an algorithm that uses the weightseofettiuced graph to
avoid the dependence on the initial ordering. The algorjtthemoted by “WRG”, is
presented in Figure 4.

forallP € ¥ : Index(P):=—1;
nE:=1;n_:=N;

[+ (i) apply SetF and SetL to starting vertices x/

do in an outflow-ordered lis®), S(Zjwp,P): forP € 7 (22)
i&gndex(P) <0)SetkP1);

en

do in an inflow-ordered lis®, S(Zjwyj,P): forP € 7 (13)

if (Index(P) < 0) Setl(P) ;
enIdI(Dn ex(P) <0) Setl(P)

/= (ii) nunber remaining vertices */

do in an outflow-ordered lisB), S(Zjwp,P):forP € 7 (14)
|él(jlndex(P) < 0) SetkP,0) ;

en

procedure SetfP,s)
if (all predecessorB of P have IndexB) > 0) or (s=0)
Index(P) := ng ;
Nei=ng+1;
do in an outflow-ordered lis), S(Z;wq, Q): for Q successor oP (15)
if (Index(Q) < 0) SetRQ,1) ;

end

end if

procedure Set(P)

if (all successor® of P have IndexB) > 0)
Index(P) :T n;
n:=n_—1;
do in an inflow-ordered lisg), S(Zjwyj, Q): for Q predecessor d? (26)

if (Index(Q) < 0) Setl(Q) ; i

end

end if

®: pdenotes the index of the vert&of the input graphS(Zi), P) sorts the
verticesP descending in the corresponding valugea), (similar for 2 wpj, P)).

Fig. 4 Weighted reduced graph numbering algorithm WRG

There are two important differences to the algorithms HB Bid The first
differenceis related to the arbitrariness of the order ifcivkthe vertices are handled
in the loops in HB and BW, cf. Remark 1. If there are differensgibilities for
which vertex is to be handled next we now usewegghtswj of the reduced graph
to make a decision. This decision is guided by the principé edges with larger
weights are declared to be more important than those witttively small weights.
A weight based sorting occurs at several places, namely2n<{116). In (12) the

14 Bernhard Pollul and Arnold Reusken

vertices with no inflow edges (“starting” vertices) are sdrusing the sum of the
weights of the outflow edges at each vertex. Similarly, in) @b& vertices with no
outflow edges are sorted. The “remaining” vertices, thaglisyertices that have
inflow and outflow edges, are finally sorted based on the sum of the outfthyes
at each vertex in (14). In all three cases the number of w=rtic be sorted is much
smaller tharN and thus the time for sorting is acceptable. Sorting is atealin (15)
and (16) to determine the order in which successors and pesders are handled.
In SetH-,-) the successor® of the current? are sorted using the sum over the
weights of all outflow edges for ead. This is done similarly in Set(.) for all
predecessors of the currént

The second difference is that the loop over the numberingmesetF is called
two times. The first call SetfP, 1) in part(i) of algorithm WRG is similar to the
call of SetkP) in the algorithms BW and HB but now with an ordering procedure
used in SetF. The second call S@®) (in part(ii) in WRG) is introduced to
handle the remaining vertices that still have index vatde In this call we do not
consider the status of inflow edges and continue numberidgwnwind direction
(SetF¢,0)). The inner call Setf®), 1) to number the successors still requires that all
predecessors have been numbered. After(gair) of the algorithm is finished the
only possibly not yet numbered vertices are trivial oneshasense that these are
vertices that have no edges to other vertices.

Note that although the first part of this numbering (af.) in Figure 4) can be
also obtained by applying HB to an a-priori sorted graph séheond stejpi i) of
WRG does neither have a counterpart in HB nor in BW.

Remark 3In all three algorithms the computational time that is neledad the
storage requirements are modest compared with other canpoof the iterative
solver. Moreover, since the Jacobian matrices of consextithe steps are in some
sense similar we apply the reordering not in each iteratigrohly “now and then”
and keep it for the subsequent time steps, cf. SubsectiorBe@ause of the in-
frequent application of the numbering the total executioretfor the reordering
routines is very small compared with the total time needed. o

5.2 Numerical Experiments

We illustrate the behavior of four different numberingsddew test problems. The
BW, HB and WRG methods have been explained above. The founttbaring,
denoted by QN, is induced by multiscale analysis that is digedrror estimation
and generates local refinement leading to a hierarchy ofiyoedined grids. In the
QN numbering the cells are numbered level-wise from thesesito the finest level
resulting in a sort of hierarchical block-structure of thatrix.

For efficiency reasons we dwt apply the renumbering method (steps 1-3) to
every new Jacobian but use the known renumbering as computbd first time
step. All three numbering techniques are sensitive witpeessto the choice of the
value for the parametar. In our sub- and supersonic problems: 1.25 turned out

Iterative Solvers for Discretized Stationary Euler Eqoasi 15

to be a good default value. In highly transonic probleMs & 1) the performance
can often be improved by taking a somewhat largelue (e.g.r = 2.00).

Table 4 shows the average iteration count on the finest levethie different
orderings. The average is taken over all time steps thatesded to achieve con-
vergence on the finest discretization level for test case2BAand 2C. The savings
compared with the QN ordering are displayed in the last rdw$aile 4. In all nu-
merical experiments the reduced matrix graph was constluegith T = 1.25. For
test case 2C we give the graph{A) and the corresponding renumbered reduced
graph of a typical Jacobian matrix in Figure 5.

Test case 2A
| Numbering [[ON]] BW | HB JWRG]|

Average iteration couft32.0]] 30.6 | 28.6 | 23.0
Saving [| 0% || 4.4%]10.69428.1%

Test case 2B
| Numbering [[ON]] BW | HB JWRG]|

Average iteration couff20.2]] 20.1] 18.2] 18.4
Saving [0%]] 0.5%] 9.9%] 8.9%

Test case 2C
| Numbering [[ON]] BW | HB [WRG]|

Average iteration coufi24.2] 12.5] 12.6] 10.9
Saving || 0% |]148.39947.99455.0%

Table4 Test problems 2A, 2B, and 2C: Average iteration count on filee®!

Using the WRG renumbering method we save between 9% and 55BGS5-
preconditioned BiCGSTAB iterations on the finest level camag with the original
numbering QN. Since the renumbering has to be computed oicly,ohe additional
computational costs for WRG are negligible. The improvetigestrongest for case
2C, which is due to the fact that in this case the flow is almopessonic and thus
there is a main stream in which information is transported.

[Step of WRG[(1) [(i1) [[[Stepof WRG[(1) [(i1)]
T<075 [| 0 [40213]] r=175 [[40207 6
T—100 [|1115329060]] 7—2.00 |[4021] 2
T=125 |[39869 344 ||| t=225 [[40211 2
T=150 [[4020§ 8 T>250 [[40213 0

Table 5 Test problem 2C, finest computational grid: Different valfier T. Number of cells that
were numbered in stegs) and(i i) in WRG algorithm, cf. Figure 4

For test case 2C we illustrate the dependence of the itarationt on the graph
reduction parameter. In Figure 6 the results for = 0.25-k, k=0,1,...,12 are

16 Bernhard Pollul and Arnold Reusken

Test case 2C - Graph x10° Testcase2C- Graph, reduced and reordered
0

15 2 2.5 15 2 2.5 3
nnz = 134283 nnz = 43137 4

Fig. 5 Test problem 2C: Grapl/ (A) (left) and renumbered reduced graph (right) of Jacobian
matrix on finest gridy = 1.25.

V159018 suonesay

Fig. 6 Test case 2C, finest computational grid: Experiment witfedéht values for the graph
reduction parameter. Average iteration count using WRG numbering (dashedt rgfs) and
number of edges of the corresponding reduced graph (seftdptis)

given. The dashed line (right y-axis) shows that the numbedges in the corre-
sponding reduced graph of the Jacobian is decreasing nnally if the value of
Tisincreased. Table 5 shows how many vertices are renumbreeadh of the steps
(i) and(ii) inthe WRG algorithm, cf. Figure 4. For values< 0.75 the reduced
graph is too complex so that in the first step,(df) in Figure 4, none of the 40213
vertices is given a new number. On the other hand with 1.50, 98% of the ver-
tices are given a new number in the first sfep , so that a further increase of the
value fort would be counterproductive. The dashed line in Figure 6esgmting
the performance of the preconditioned BICGSTAB methoddatdis that the choice
of the value fort is not very sensitive. For this test case value& 1 < 2.00
all give quite good results. We obtain the best resultsfer1.25; in this case the

Iterative Solvers for Discretized Stationary Euler Eqoasi 17

reduced grap@(A) can be reordered so that it is nearly a lower-diagonal graph a
shown in the right subplot of Figure 5.

The effect of the reordering is that the dominant entriebefreordered Jacobian
lie mostly in the lower triangular part. It should be notedtthuch reordering tech-
nigues can only be effective for point-block matrices in evhihere is a significant
difference betweefiA j||r and||A;i||r for mosti, j with [|A; j||F # O.

Further results are presented in [33].

5.3 Concluding Remarks

We have presenteardering techniques for the PBGS methtbat use ideas from
algebraic multigrid methods. Except for the (critical) ginareduction parameter

in (11), the ordering methods aflelack-box”. In most test cases a good choice for
this grid-reduction parameter has turned out torbe 1.25. Only one reordering
per adaptation level has been needed neglecting the aulitosts of the ordering
algorithm. Using the WRG reordering one can improve rihlaustnessf and the
efficiencyof the linear solver.

6 Time Integration

In the pseudo-transient continuation [26], large time st@pan implicit time dis-
cretization method are preferred to achieve fast converm€dn every level of adap-
tation we start with an initial CFL number which determinies first time step. The
local time stepAt; for thei-th cell is given by

Qi

A=y /\f:f (jvn| +c)ds, (17)
i 0Q;

wherey is the CFL number [16] and{ is the maximum eigenvalue of the Euler
equations averaged over the bounding surface of the camiahne Q;, cf. [7].

During the time integration the CFL number is varied by onéhefthree strate-
gies described in Subsection 6.1. In every time step a maatisystem of equations
has to be solved. Note that the Jacobian has a structure anthtbeneral a smaller
time step will improve the condition number of the approxietaJacobian in the
Newton-Krylov method.

12|

J(u) = diag(A—ti) + ﬁlzl(]u) .

(18)

18 Bernhard Pollul and Arnold Reusken

6.1 CFL Evolution Strategies

Implicit time integration methods in principle allow largiene steps ¥ > 1). For
steady flows the CFL numbegg = y(k) at a time stefk is usually varied in a pre-
scribed intervalk € [Vmin, Ymax. With small CFL numberg; one has to perform
many time steps in order to achieve convergence. ChoosinGfh numbely too
large may result in a breakdown of the iteration process.

6.1.1 Exponential Progression (EXP)
The exponential law (EXP)

Y1 = Yo (¥exp)< k € No (19)

increases the CFL number in a regular manner, also used,re[@4, 39]. The
control parameterg andyexp completely determine a sequence of CFL numbers.
Appropriate values for the control parameters are proldemendentand in general
not known a priori. Typical values agg = ymin(= 1.0), andyexp € [1.05,1.5].

6.1.2 Switched Evolution Relaxation (SER)

The Switched Evolution Relaxation (SER) [30] method oftppears in the context
of compressible flow, cf., e.g., [7, 15, 27, 39]. The norm & tlensity residual,
denoted byR, is directly coupled with the CFL number of the following &nstep:

OSER
Y1 = YSER® (@) ke No (20)

This way, the sequence of CFL numbers selected by the SERothetmot only
determined by the choice of the control paramejggg andasgg but also depends
on the particular flow problem at hand. In this study we asgg € [1.0,5.0] and
YsErR= Ymin(= 1.0) as in [7]. A coupling of the CFL number with the residual iscals
used in the RDM strategy:

6.1.3 Residual Difference Method (RDM)

If the solutions seem to stagnate while evolving to a stestdte solution one may
increase the size of the time step to check if the solutioramesnstable. Since in
QUADFLOW the residual is taken as an estimate for the errersuggest the fol-
lowing evolution strategy, referred to as Residual Differe Method (RDM), as an
alternative to the SER method:

Iterative Solvers for Discretized Stationary Euler Eqoasi 19

Ymin if k< ko,

Yk+1 = 1 aRDM
| —— if k> ko,
YRow (|Rk_Rk—l|> = ko

whereky > 1 denotes the first index satisfyiri®y, < R¢,_1 — &rpm. The control
parameters angpm andarpm, and —like in the EXP and SER strategies— they must
be selected carefully in order to obtain rapid convergendéa avoid breakdowns.

In this study, we sedrpm = 10~2 and choosgrpm € {1, 2,5} andarpm € [0.6,6.0].

k € No (21)

6.2 Numerical Experiments

We present results of numerical experiments using therdifteCFL evolution
strategies described in Subsection 6.1, where the CFL nisnaloe allowed to vary
in the intervalymin, ymax = [1,10°]. We also investigate a test case mimicking a non-
adaptive scheme, calle@/, in which the calculation on the finest adaptation level
of test case 2A is initialized with free instream conditioather than an interpolated
solution of the previous adaptation level.

The point-block-ILU(0) method is the preconditioner cho$er all tests in this
section. More results are presented in [10].

6.2.1 Parameter Study on the CFL Control Parameters

We present the results of a parameter study on the CFL cqudraimeters for the
three evolution strategies. Here, the paramefegs, aser, drpm, andyrpm are
varied, whileyy andysgr are assigned the fixed value 1.0.

The results for test case 2A are displayed in the upper tabtilable 6, showing,
for varying parameter values, the number of time steps rk&wlachieve conver-
gence, denoted by “# ts”, as well as the actual CPU time, giveeconds. All tim-
ing results are obtained on an Intel Xeon processor runrtiBg@Hz clock speed.
It turns out that, for all three CFL evolution strategiese tthoice of the control
parameters has a great impact on the number of time stepsdh&mdconvergence
and the total execution time. For each CFL evolution stygtép “best” parameter
values are given in bold. Results for test cases 2B and 2Ciasa i the other
tables of Table 6. The results show that using other than ltleet” values for the
control parameters may lead to a doubling of time steps reade corresponding
CPU time. Because the results are equally efficient for athods, for these test
cases, the choice of the CFL evolution strategy is not theiartactor.

20 Bernhard Pollul and Arnold Reusken

Test Case 2A
| EXP T SER RDM |

|VEXP|# tS| CPU”C{SER|# tSl CPU“GRDM | MQDMl# tS| CPU|

11124/ 80.8|| 1.1|172/121.7| 1.0 | 1 |90|67.2
10|40|36.0|| 40|39|329|| 3.0 | 1 |42|345
15 |37|316|| 45|37|27.2|| 40| 1 |39|29.3
20 (38|32.4(| 50 |34(285|| 50| 1 |36|284
50 | 35|33.4]{10.0| T | — 6.0 1 |36|29.0

Test Case 2B
| EXP || SER || RDM |

|VEXP|# tS| CPU”C{SER|# tSl CPU“GRDM | MQDMl# tS| CPU|

1.1]115/204.7)| 1.1 |2714406.2| 1.0 | 1 |117/216.5
3.0|56(123.7| 3.0 |58|135.7| 2.0 | 5 |51|112.9
5.0 [46|101.9(| 4.0 |51|117.| 3.0 | 1 |49|113.7
10 | 49|115.3| 45|41 (105.4| 50 | 1 |50(112.3
15 | 41 |125.3| 5.0 | 47|105.1|] 6.0 | 1 |50|111.7

Test Case 2C
| EXP || SER || RDM |
|VEXP|# tS| CPU”C{SER|#IS| CPU“GRDM | WDMl#tS| CPU|
1.1(125(292.8| 1.1 |120j285.5| 1.0 1 |85|237.7
10 [70|211.4| 3.5| 71{211.9| 3.0 1 |71|208.3
15 | 69 |204.8|| 4.0 | 70{209.8| 4.0 1 |70|205.5
20 | 69(207.9| 5.0 | 69|211.1| 5.0 1 |70|210.5
100(69(212.9|10.0| 68 {199.1|| 10.0| 1 |[70|208.7

Table 6 Test cases 2A, 2B, and 2C: Time steps needed for convergeniieest grid and corre-
sponding CPU times in seconds for different values for thercb parameters

6.2.2 Results Mimicking a Non-Adaptive Scheme

The situation is, however, different in test cag@ 2The results of a corresponding
parameter study are presented in Table 7. It seems moreutitiicfind feasible

| EXP || SER || RDM |
| yExpl# tS| CPU“C{SER| #ts | CPU“C{RDM | YRDM |# tS| CPUl

1.05|189)116.3| 2.6 |1354322.4| 0.80| 1 |290/151.0
1.08[134] 93.0(| 2.7 | ¥ - 1/ 094| 1 (186/120.8
1.09|124| 87.6 || 2.8 |1329314.0|| 0.95| 1 | T | -
110 t| - 2.9 |1320|314.3| 0.98 | 1 |168|100.5
111 | - 30| ¥ - |{100| 1 [t | -

Table 7 Test case @A: Time steps needed for convergence on finest grid and gameting CPU
times in seconds.

Iterative Solvers for Discretized Stationary Euler Eqoasi 21

values for the control parameters because values assurhedfapropriate for test
case 2A may not even yield a converging iteration processh @udivergence in
the iteration process is indicated by “t” and “~" in the tabMthough EXP with
vexp = 1.09 yields the fastest convergence process, when incretg@rnuarameter
vexp to 1.1 or higher the iteration process diverges. Compared to E¥PSER
strategy leads to a much slower convergence. The reasam$msiow convergence
of SER is that it chooses only relatively small CFL numbgrsn the first 1200
iterations. For a feasible pair of values, RDM is signifidpfdster than SER.

We conclude from this experiment that SER is not suitablenfmn-adaptive
schemes. Therefore, we rather recommend using an expaHent(EXP) or RDM.

6.3 Locally Optimal CFL Numbers

Since there is no clear winner among the three basic stestegdifferent approach
is presented in this subsection. Reconsider that thewveldénsity residual is used
in the stopping criterion in QUADFLOW. For each time steywe define a function

R Ry =Ry, W Re(%) (22)

which maps a CFL numbey to the norm of the density residugj that is obtained
after performing this iteration using. Some typical plots of the function (22) are
given in Figure 7. Apparently the shape of the functions dmgshange much from
one time step to the following time step.

-3 Test case 2A -4 Test case 2A
1.6f 10.51
v

.
150
'

== k=13 3 JPtta

—eek=14 950, k=1
e — k=15 : - ---k=17
14F e : — k=18

50 100 150y 200 250 300 ’ 50 100 150 v 200 250 300 350
k k

Fig. 7 Relative residual of densitiy for different valuesy for test case 2A on the finest grid. The
residualsR, for time stepk = 13 tok = 15 and fork = 16 tok = 18 are shown in the left and right

subplot, respectively. The CFL numbers.. ., y_1 for the firstk — 1 time steps are selected by
the LOC strategy, that is, by approximating (23).

22 Bernhard Pollul and Arnold Reusken

The idea is to find the best CFL number in every iteration, ihyatve determine
a value fory, such that the residual gets as small as possible:

Re(W) = min R(y). (23)
YeRy
Note that the residud in thek-th iteration depends not only og, but also on the
CFL numbersy, ..., % 1 used in the previous iterations.

In order to test this approach, we implemented a heuristicbestrategy approx-
imating yk, denoted by LOC in the sequel, where in each iteration sktrexksteps
using different values for CFLare carried out. In the nemood of the CFL value
yielding a minimal residual further trial steps are perfednFrom the set of CFL
numbers tested during this heuristic search, the best Chibey that is, the value
W that yields the smallest residual, is then employed to pertbe actual iteration.
This method is (very) expensive and therefore only of thig@akconcern. This ap-
proach can be used in a faster strategy using derivativematon of the function
(22) so that no additional trial steps have to be carriedduRemark 4. The picked
CFL numbersy to actually perform time stek is the one that corresponds to the
smallest residud®. As indicated in Figure 7, for time steps 438 a clear decrease
of the residualf, can be observed in every time step.

However, it turns out that this method does not necessaetyahse the total
number of iterations. In fact, the total number of iteratioreeded for convergence
is typically larger than if any of the other methods desatilire section Subsec-
tion 6.1 were used. Results for the “pure” EXP strategy arnitthes aften oc — 1
time steps to the LOC strategy, denoted by L@G¢), reveal that, as soon as the
LOC strategy is initiated, the relative density residuatréases quite fast. In sub-
sequent iterations, the rate of decrease of the residusmkgsller such that almost
no progress can be observed. In the long run, the pure EXRegyraields faster
convergence although the residual actuadyreasegluring several iterations. This
result is presented in Figure 8.

Remark 41In the selected example, test case 2A, a closer look at thesogence
behavior corresponding to Figure 8 shows that the positidhedshock is slightly
moving during the time integration. This can be interpreted “coarse grid effect”.
Avoiding this effect can be achieved by a more precise swiudn the previous grid
leading to a better initial solution on the finest grid. A dzase of the tolerance on
the next coarser grid te, = 103 yields a fast convergence for the LOC(2) strategy,
denoted by LOC, for test case 2A. Because the LOC strategrysexpensive, we
compare the results not only with the EXP strategy but algb wn approxima-
tion of the LOC strategy, denoted by ADL. This approximatisrieasible thanks
to the similar shapes of the functions (22), cf. Figure 7. Ab& strategy uses two
derivatives of the function (22) obtained by automaticetintiation and approxi-
matesyk — R«(¥) by a quadratic polynomial.

This approach works fine in some of the test cases, howeveogeis not per-
form satisfactory for test case 2C. Figure 9 shows the resiistory for the three
strategies for test cases 2A (left subplot) and 2C (righpkith o

Iterative Solvers for Discretized Stationary Euler Eqoasi

Test case 2A Test case 2A
10 T T - T T T
- EXP b - EXP
---L0C(2) ! ---LOC(2)
——LOC(20) H ——LOC(20)
LOC(40) H ' LOC(40)
——LOC(80) 2|) A ——LOC(80)
10,
107 \
. \
H \
H \
"
e N IO
A .: ' Re | T e
T L Z N A4Sl
:‘.
P
0 :
d Iy %
b 5
§ wd {"L\ K
X .
b . N \/\ D
[} " .
' ,a .
. Tl R
uo .
) \
A L R A | . ;|
20 40 60 80 100 120 140 160 20 40 100 120
Time step k

and corresponding residual histdRy (right)

Fig. 8 Test case 2A: CFL numbesg selected by EXP and LO@(oc), for variousn oc (left),

80
Time step k

140

Remark 5Reconsidering the right subplot of Figure 8, it seems thasaiferation

process must allow an increase of the residyalVe have noted in Paragraph 6.2.2
that this fact results in a slow convergence behavior wharmguke SER method. A
similar effect eventually yields very small CFL numbers whising the LOGf_oc)

Test case 2A Test case 2C
. . 10° !
- EXP - EXP
---L0C . ---L0C
—ADL LN ——ADL
1071
) b
. .
'
. ‘,\
R | .
ho?
) .
1} ‘,‘
. \ .
~, 1} .
. \ .
R N % %
.. L \
SN 10 s “
. . s
" .. 0
£ .
s Sea .
. ~
L L L L L "‘ 10’4 L L L RARLTS L
20 40 60 80 100 20 40 0 100 120
Time step k

Fig.9 Test cases 2A (left) and 2C (right): Residual histories oesfirgrid when solving on coarser
levels to the smaller toleran@g = 103, EXP, LOC, and ADL strategies

8
Time step k

23

24 Bernhard Pollul and Arnold Reusken

strategy. In test casg&, the calculation on the finest adaptation level of test @#se
was initialized with free instream conditions. Apparertlig initial residual vanishes
in most of the cells. As reported in [26] an increase of th&eds is natural. Even
in an adaptive computation, the same effect can occur. o

To better understand the impact of the CFL numbers on thduals, a sensi-
tivity analysis has been carried out in [10] using automdifierentiation for eval-
uating sensitivities without additional truncation erfdhe analysis has confirmed
that CFL control is a subtle issue and that the three basitegjies have comparable
sensitivities.

6.4 Concluding Remarks

The results have shown that the best strategy does not héneatty minimize the
density residuals as much as possible in every time steghabdven an increase of
the residual must be accepted in order to achieve rapid ibeerasergence. A new
CFL evolution strategy, called RDM, has been introduced @rdpared with the
existing strategies EXP and SER. For the residual-basattgtes SER and RDM,
RDM has turned out to be faster than SER. Currently, appioegpecific knowl-
edge, intuition, and trial and error are still needed in otdaletermine appropriate
values for the CFL control parameters. Using all CFL evolustrategies within an
expert system like advocated in [39] may improve this situat

7 Matrix-free Methods for Second Order Jacobians

Matrix-free evaluations of matrix-vector products are plap because the system
matrix does not have to be stored and thus, one can simulaldepns with larger
stencils or that would not fit into memory when explicitly laling the Jacobian.

The Krylov subspace method does not require the systemxdatri(18) explic-
itly but needs the evaluation of the productlofith some given vectar € R(4+2N,
Hence, an evaluation of the Jacobian-vector product caedized without actually
storing the Jacobian matrix.

In contrast to the approach of using divided differences gpreximate the
Jacobian-vector product we use AD that does not produceddifi@nal truncation
error. Thus, the derivatives can be computed more accyrttah any approach
using divided differences. The computational effort to pore a Jacobian-vector
product by the forward mode of AD is typically similar to thenasputational cost of
a first order divided difference approximation. For additibinformation on auto-
matic differentiation and the actual implementation weeréd the article by Arno
Rasch within this issue of the book.

Iterative Solvers for Discretized Stationary Euler Eqoasi 25

7.1 Numerical Experiments

Itis known from experience, as reported in, e.g., [29, 31t & benefit from second
order methods can only be expected after a certain numbenefsteps have been
elapsed. Usually in the early iterations a first order immatmtion of a matrix-
vector product is faster and more robust. In our numericaégrments we therefore
usually switch at a certain threshaldor the density residual between the different
methods. A similar approach is followed in [6, 29]. In thewadtimplementation
we do not switch back from the higher order method to the lesvder method if
the residual increases again during the computatidg. dienotes the first time step
satisfyingRy,_1 < v the Jacobian approximations are as follows:

JowAU = =Ry, kK< ky

3l = —Ryg, k> ky } (24)

In the following subsection we also use a variant in which wich at an a-priori
prescribed time step,. This approach is also used, e.g., in [31]. If not stated
otherwise, we use the PBILU(0) preconditioner for the fingtes methods and a
PBILU(2) preconditioner, based on tfiest order Jacobian, for the matrix-free sec-
ond order method. Other results are presented in the dniidBero Schieffer within
this issue of the book and in [9].

7.1.1 Newton Convergence

We investigate the impact of the CFL number on the perforraasfcNewton’s
method using the first and second order methods by carryih@ éixed number
of time steps using the first order matrix-based method. isdimulation the cor-
responding value fok, was chosen to bk, = 20 (upper row of Figure 10) and
ky = 80 (lower row of Figure 10). Thereafter we perform 20 Newttaps with the
matrix-based first order method (left subplots) and mdtee-second order method
(right subplots). The plots show the Newton iteration higfor different CFL num-
bersy = 10°,10%,...,10%

The first order method shows linear or slower than linear egyence for all
tested values foy in both time steps (cf. left plots in Figure 10). The larges th
CFL number is selected, the slower the convergence of Nesvinaethod is. This
is expected because for larger time step sizes the norvlipeéthe corresponding
non-linear system of equation is increasing. Note that Netstmethod converges
only locally and the corresponding initial guesses haveetinithe region for that
the non-linear method converges. In time step 20 the flowligsits startup phase,
that is, most flow features (such as position of shocks) ateasmlved, and thus
even a a divergence of Newton’s method may occur. Nevegbe#d 20 Newton
iterations can be performed without a breakdown (cf. Sufis®e6.1). As expected,
the convergence for Newton’s method is better in time step 80

26 Bernhard Pollul and Arnold Reusken

Test case 2A —- time step 20 —— MATRIX 1 ST Test case 2A —- time step 20 —— MFREE 2 P

: :
w0’ W]
‘l ‘t
\

07 F s e y=1
-y=10
107 107 ——y= 100
y= 1000
D, D, —y= 1000
o ’ 107+
10 " [[-- y=1
-y= 10 11
——y= 100 10
™ y= 1000
101 |—y= 10009 107
4 T L TR L
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Newton step 1 Newton step

Test case 2A —- time step 80 —— MATRIX 1 ST Test case 2A —— time step 80 —— MFREE 2 "©

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Newton step 1 Newton step

Fig. 10 Test case 2A: Newton history for different values of the Ckimibery in time steps 20
(upper plots) and 80 (lower plots) for the matrix-based farster method (left subplots) and the
matrix-free second order method (right subplots)

Although the exact Newton method has the advantage of la@dmtic conver-
gence, it may be counterproductive to use it in the starthgsp of the computation.
This is demonstrated by the fact that two graphs in the ugpkt subplot of Fig-
ure 10 show that the iteration process does not convergefoe sigher values for
y when using the second order method. This divergence odctivs initial guess
for Newton’s method is too far away from the correspondirigtsan or the Krylov
solver diverges when solving the corresponding linearesystf equations. How-
ever, typical values at time step 20 grec [1,10 and it can be observed that for
y =1 andy = 10 the corresponding convergence of Newton’s method isfsign
cantly faster (than for the first order method). The secomgiomethod does not
show any divergence and the corresponding convergencgngisantly faster in
time step 80. Although the convergence of Newton’s methddster for smaller
values ofy in any case —which is related to the fact that the non-lingafi (18)
increases with larger time step sizes— in the computatidh kyi = 80, the sec-
ond order method shows a significant faster convergencdlferand especially

Iterative Solvers for Discretized Stationary Euler Eqoasi 27

for large— CFL numbers than the first order method, as showheariwo plots in
the lower row of Figure 10.

This is a major benefit of the second order method: Towarderldeof the com-
putation a significant acceleration of the time integrafioocess can be achieved
also due to the selection of larger CFL numbgrs

7.1.2 Acceleration of Time Integration
We study the impact of in order to reduce the execution time of the time integra-

tion. As for all stationary test cases in the previous sestionly one Newton step
is performed per time step. In Figure 11 numerical resuitsgusn exponential CFL

Test case 2B Test case 2B

10" F 1 10t
-= MATRIX 157 == MATRIX 157
= [ST |, — 1072
02| —--MFREE1ST V=107] 42| MFREE 157,v = 1072||
—MFREE 2°,v =107 ——MFREE 2'°,v =107
g ND
10° ¢ MrReE 2'0,v=109] 102 [MFREE 2'°,v =109
¢ — ND | _ ~6(
—MFREE 2'°,v = 10 MFREE 2'°, v = 10
10 10
5 5
10 10
R} R
10° 10°
i,
107 107
T,
8 [.] 8 |
10 g, 10
S
107 F S 1 w00l
.
-,
-10| - -10|
10

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 550
Time step k CPU time [s]

Fig. 11 Test case 2B: Residual history on finest grid in terms of filwna (left plot) and corre-
sponding CPU time (right plot) for different values wffor the second order matrix-free method
compared with the first order methods

strategy withyexp = 1.5, yuax = 10P are presented. We plotted the residual history
in terms of iteration number (left subplot) and the corregfpng execution time
(right subplot) for the matrix-based first order method dreltecond order method.
We give results for different switch toleranceslt can be observed that the second
order methods need in general less iterations. But theteffethe selection ofv

is crucial: v has to be selected small enough so that not most of the dasatire
performed by the —potentially slower— first order method. tBa other hand, if
the switch tolerance is chosertoo small the number of iterations is only insignifi-
cant smaller resulting in a bad CPU behavior. We also showtdqu the first order
matrix-free variant.

28 Bernhard Pollul and Arnold Reusken

7.2 Concluding Remarks

The convergence of Newton’s method is significantly betbertfie second order
method than for the first order method, especially when usirggr time step sizes.
This allows a clear reduction in the time steps needed foieatly convergence.
However, in the test problems for the stationary two-diname Euler equations,
a benefit from the second order method can only be achievégkifirtal iteration
process We have shown that switching at the “right” time,i.e= 10~°, from the
first order method to the second order method can speed upénallccomputation
process compared with the “pure” first order matrix-basethou

8 Outlook

We conclude with some remarks on topics that could be coreside future work in
this research area. The first two aspects address preamdgj the last item sug-
gests an expert system for time stepping and switching tegtiest order matrix-
based and second order matrix-free methods.

Parallel Preconditioners
The preconditioner and the corresponding ordering rostivave to be adapted and
optimized for a fully parallel version of QUADFLOW. The uskparallel ILU-type
preconditioners is possible if a multi-color ordering obdamain preconditioning
is used. These approaches are investigated and compaeed.in4]. For a paral-
lel preconditioner a Newton-Krylov-Schwarz algorithm [18ing overlapping do-
mains could be used. Such additive or multiplicative Sclavmeconditioners can
be viewed as an overlapping block-Jacobi or block-GausseSereconditioner, re-
spectively [3]. This technique is widely-used in the comtekpartial differential
equations as reported in many articles in the proceedingh®annually confer-
ences on domain decomposition methods. A cheap and faahtattie Restricted
Additive Schwarz Method (RAS, RASM) by Cai and Sarkis [138jattis also in-
tegrated in the PETSc library [2], has been successfullylioed with a Newton-
Krylov method within the context of flow solvers [12, 19, 23] 2As demonstrated
in [19] the RAS method can also be combined with the PBILU(@p&thm for
the subdomains. While the RAS method is used as preconeition the linear
systems in [13], Schwarz preconditioners can also be usedpasconditioner for
the non-linear systems of equations as presented in [11§.nkdm-linear technique
was applied to a one-dimensional compressible flow, dertptéddditive Schwarz
preconditioned inexact Newton method” (ASPIN), in [12] amak also been suc-
cessfully used in [23]. ASPIN is a non-linear block-Jacaéiation followed by a
Newton linearization. This non-linear Schwarz precowdigr could significantly
enlarge the region for that the non-linear solver convecgespared with Newton’s
method.

Matrix-Free Preconditioners
The matrix-based preconditioner PBGS, in whighis used for the computation of

Iterative Solvers for Discretized Stationary Euler Eqoasi 29

the preconditioner, can be replaced by some kind of matag-preconditioner in
the second order matrix-free implementation of the mategtor product. A gen-
eral approach for building a matrix-free preconditionem & found in [14]. The
use of a second order matrix-free preconditioner couldagdyt reduce the storage
requirements for the first order matrix-based precond#io®ne could also imple-
ment a symmetric variant of PBGS, such as the matrix-freeSG8 preconditioner
which is proposed in [28]. A symmetric PBGS-type precomdiér can also be used
with the described WRG ordering. In principle the renumhbgitechnique works
in a matrix-free context because only the relatively smedluced graph has to be
stored.

Expert Systemsfor Time Integration
The implicit time integration process may be automated byes&ind of advanced
expert system leading to a kind of “black-box” CFL evolutstrategy. A basic ex-
pert system is proposed in [39]. One can think of a complexergystem including
all basic strategies, the ADL strategy, plausibility check breakdown control, as
well as repetitions of time steps or the use of multiple Newgteps. In a more ad-
vanced expert system different switches between the CFlugeo strategies and
the first and second order methods can be realized inclutBogsavitches between
different preconditioners and Krylov methods.

Acknowledgment

The research for this article has been performed with fundiy the Deutsche
Forschungsgemeinschaft (DFG) in the Collaborative Rebe&enter SFB 401
“Flow Modulation and Fluid-Structure Interaction at Aigole Wings” of RWTH
Aachen University. We acknowledge the fruitful collabavatwith several mem-
bers of the QUADFLOW research group.

References

1. K. Ajmani, W.-F. Ng, and M. Liou. Preconditioned conjuggtradient methods for the Navier-
Stokes equationslournal of Computational Physic$10(1):68-81, 1994.

2. S.Balay, W.D. Gropp, L. C. Mclnnes, and B. F. Smith. Effitimanagement of parallelism in
object oriented numerical software libraries. In E. ArgeMA Bruaset, and H. P. Langtangen,
editors,Modern Software Tools in Scientific Computimgges 163-202. Birkhauser Press,
Basel, Switzerland, 1997.

3. R. Barett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, dn@arra, V. Eijkhout, R. Pozo,
C. Romine, and H. A. van der VorsfTemplates for the Solution of Linear Sparse Systems:
Building Blocks for Iterative MethodsSIAM, Philadelphia, PA, USA, 1994.

4. M. Benzi, W. Joubert, and G. Mateescu. Numerical expertmeith parallel orderings for
ILU preconditioners.Electronic Transactions on Numerical Analyss88—114, 1998.

5. J.Bey and G. Wittum. Downwind numbering: robust multigor convection-diffusion prob-
lems. Applied Numerical Mathematic83(1):177-192, 1997.

30

~N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

Bernhard Pollul and Arnold Reusken

M. Blanco and D. W. Zingg. Fast Newton-Krylov method forstmctured grids. AIAA
Journal 36(4):607-612, 1998.

F. D. BramkampUnstructured h-Adaptive Finite-Volume Schemes for Cosgilnée Viscous
Fluid Flow. PhD thesis, RWTH Aachen University, 2003.

F. D. Bramkamp, P. Lamby, and S. Miller. An adaptive nsgtile finite volume solver for
unsteady and steady state flow computatidosirnal of Computational Physic$97(2):460—
490, 2004.

F. D. Bramkamp, B. Pollul, A. Rasch, and G. Schieffer. lafiree second-order methods
in implicit time integration for compressible flows usingtamatic differentiation. Technical
Report 287, IGPM, RWTH Aachen University, 2008.

H. M. Bucker, B. Pollul, and A. Rasch. On CFL evolutioragtgies for implicit upwind
methods in linearized Euler equatiohsternational Journal for Numerical Methods in Fluids
59(1):1-18, 2009.

X.-C. Cai and D. E. Keyes. Nonlinearly preconditioneexact Newton algorithmsSIAM
Journal on Scientific Computing4(1):183—-200, 2002.

X.-C. Cai, D. E. Keyes, and D. P. Young. A nonlinear agiditschwarz preconditioned in-
exact Newton method for shocked duct flows. In N. Debit, Mif&sy R. Hoppe, J. Periaux,
D. Keyes, and Y. Kuznetsov, editorBjoceedings of the 13th International Conference on
Domain Decomposition Methods, Lyon, Franpages 345-352, 2001.

X.-C. Cai and M. Sarkis. A restricted additive Schwareconditioner for general sparse
linear systemsSIAM Journal on Scientific Computing1(2):792—797, 1999.

T. F. Chan and K. R. Jackson. Nonlinearly preconditiokeglov subspace methods for
discrete Newton algorithmsSIAM Journal on Scientific Computing(3):533-542, 1984.

T. Chisholm and D. W. Zingg. A fully coupled Newton-Krylgolver for turbulent aerody-
namic flows. INICAS 2002 Congress, Toronto, ON, CanagBaper 333. 2002.

R. Courant and K. O. FriedrichSupersonic Flow and Shock Wayeslume 21 ofApplied
Mathematical Sciences$pringer, Berlin, Germany, 1999, reprint from 1948.

E. Cuthill and J. McKee. Reducing the bandwidth of spaysemetric matrices. |Rroceed-
ings of the 24th national conferengeages 157 — 172, New York, NY, USA, 1969.

E. F. D'Azevedo, P. A. Forsyth, and W.-P. Tang. Orderirgthuds for preconditioned con-
jugate gradient methods applied to unstructured grid prabl SIAM Journal on Matrix
Analysis and Applicationd 3(3):944-961, 1992.

W. D. Gropp, D. E. Keyes, L. C. McInnes, and M. D. Tidriri.loBalized Newton-Krylov-
Schwarz algorithms and software for parallel implicit CFDiternational Journal of High
Performance Computing Application&4(2):102—-136, 2000.

M. J. Grote and T. Huckle. Parallel preconditioning véfarse approximate inverseSlAM
Journal on Scientific Computing8(3):838—-853, 1997.

W. Hackbusch. On the feedback vertex set for a planahg@pmputing 58:129-155, 1997.
P. D. Hovland and L. C. McInnes. Parallel simulation afhpoessible flow using automatic
differentiation and PETSd?arallel Computing27(4):503-519, 2001.

F.-N. Hwang and X.-C. Cai. A parallel nonlinear addit&ehwarz preconditioned inexact
Newton algorithm for incompressible Navier-Stokes edquati Journal of Computational
Physics 204(2):666—691, 2005.

E. Issman, G. Degrez, and H. Deconinck. Implicit upwiadidual-distribution Euler and
Navier-Stokes solver on unstructured meshd&A Journal 34(10):2021—-2028, 1996.

D. J. Jones. Reference test cases and contributdhk& ARD—AR-211: Test Cases for Inviscid
Flow Field Methods Advisory Group for Aerospace Research & Development, Nesur-
Seine, France, 1986.

C. T. Kelley and D. E. Keyes. Convergence analysis ofgiséxansient continuationSIAM
Journal on Numerical Analysi85(2):508-523, 1998.

D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Kryloethods: a survey of approaches
and applicationsJournal of Computational Physic$93(2):357-397, 2004.

H. Luo, D. Sharoy, J. D. Baum, and R. Lohner. Paralletructured grid GMRES+LU-SGS
method for turbulent flowsAIAA Paper 2003—-0273003.

Iterative Solvers for Discretized Stationary Euler Eqoasi 31

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

L. Manzano, J. V. Lassaline, P. Wong, and D. W. Zingg. A dewKrylov algorithm for the
Euler equations using unstructured gridsAA Paper 2003-0274003.

W. A. Mulder and B. van Leer. Experiments with implicitwipd methods for the Euler
equationsJournal of Computational Physic§9(2):232—-246, 1985.

A. Nejat and C. Ollivier-Gooch. Effect of discretizatiorder on preconditioning and conver-
gence of a high-order unstructured Newton-GMRES solvetfferEuler equationsJournal

of Computational Physi¢c227(4):2366-2386, 2008.

B. Pollul. Preconditioners for linearized discrete poassible Euler equations. In P. Wessel-
ing, E. Ofate, and J. Périaux, editdPspceedings of the European Conference on Computa-
tional Fluid Dynamics ECCOMASgmond aan Zee, The Netherlands, 2006.

B. Pollul and A. Reusken. Numbering techniques for pndit@mners in iterative solvers for
compressible flowslnternational Journal for Numerical Methods in Fluids5(3):241-261,
2007.

A. Pueyo and D. W. Zingg. Efficient Newton-Krylov solver faerodynamic computations.
AlAA Journa) 36(11):1991-1997, 1998.

Y. Saad. Preconditioned Krylov subspace methods for @pjiications. In W. Habashi,
editor, Solution techniques for Large-Scale CFD-Problempages 139-158, John Wiley &
Sons, New York, NY, USA, 1995.

Y. Saad.Iterative methods for sparse linear systen®AM, Philadelphia, PA, USA, second
edition, 2003.

K. Stiiben. An introduction in algebraic multigrid. In. Urottenberg, C. Osterlee, and
A. Schilller, editorsMultigrid, pages 413-532, 2001. Academic Press, London, GMD Bir-
linghoven, St. Augustin, Germany, 2001.

S. Turek. On ordering strategies in a multigrid algonthin W. Hackbusch and G. Wittum,
editors,Notes on Numerical Fluid Mechanicgolume 41 ofProc. 8th GAMM-Seminar, Kiel
Vieweg, Braunschweig, Germany, 1997.

D. Vanderstraeten, A. Csik, and D. Rose. An experesgydb control the CFL number of
implicit upwind methods. Technical Report TM 304, UnivéegtiLeuven, Belgium, 2000.

P. Wong and D. W. Zingg. Three-dimensional aerodynararoputations on unstructured
grids using a Newton-Krylov approacomputers & Fluids37(2):107-120, 2008.

