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Abstract. A rigorous method is presented for the systematic identification of the structure and
the parameters of transport coefficient models in three-dimensional, transient convection-diffusion
systems using high resolution measurement data. The transport is represented by a convection term
with known convective velocity and a diffusion term with an unknown, generally state-dependent,
transport coefficient. The identification of a transport coefficient model constitutes an ill-posed,
highly nonlinear inverse problem. In our previous work [29], we presented a novel incremental iden-
tification method, which decomposes this inverse problem into easier to handle inverse subproblems.
This way, the incremental identification method not only allows for the identification of the struc-
ture and the parameters of the model, but also supports the rigorous decision making on the best
suited transport model structure. Due to the decomposition approach, the identified transport model
structure and parameters are subject to errors. To cope with the error propagation inherent to the
incremental method, the present work suggests a model correction procedure as a supplement to the
incremental identification method [29], which results in a transport model of higher precision. The
correction refers to both, the model structure and parameters. No a priori knowledge on the unknown
transport model structure is necessary. The identification approach is numerically illustrated for a
three-dimensional, transient convection-diffusion equation which has its origin in the modeling and
simulation of energy transport in a laminar wavy film flow.
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1. Introduction. This work is motivated by inverse problems which occur in the
modeling of laminar wavy film flows. The goal of this paper is the identification of the
structure and the parameters of transport models describing transport phenomena in
laminar wavy film flows.

Falling film flows are characterized by the complex dynamics of developing surface
waves (cf. e. g. , [33]). The direct numerical simulation of the detailed flow model in
three space dimensions is complex and computationally demanding. Hence, such mod-
els can not be employed for model-based design of technical systems (e. g. , absorbers,
evaporators, cooling towers, etc.). Therefore, simplified flow models are desirable. To
this end, the real computational domain with its dynamical free boundary, i.e., the
liquid phase, is approximated by a simplified computational domain with a known
stationary (cf. e. g. , [44]) or slowly varying boundary. At the same time, effective
transport coefficients are introduced to capture the enhanced, wave-induced transport
in the reduced flow geometry. To support the design of technical systems, suitable
transport coefficient models have to be developed, which accurately depict the char-
acteristics of the film flow localised in time and space. In this paper, we consider the
following transport model to approximate the behavior of wavy film flows.

Let Ω ⊂ R
3 be a computational domain corresponding to a reduced flow geometry.

Let boundary parts ΓD ∪ΓN = ∂Ω := Γ denote the Dirichlet (index D) and Neumann
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(index N) parts of the boundary, respectively, and let [t0, tf ] be the time interval of
interest. Consider the balance equation

ρ(
∂u

∂t
+ w · ∇u) −∇ · ((amol + fw(u,x, t, θ))∇u) = 0 , (1.1a)

(x, t) ∈Ω × (t0, tf ] ,

with initial and boundary conditions

u(x, t0) = u0(x) , x ∈ Ω ,
u(x, t) = gD(x, t) , (x, t) ∈ ΓD × [t0, tf ] ,

∂u

∂n
(x, t) = gN(x, t) , (x, t) ∈ ΓN × [t0, tf ] .

(1.1b)

The scalar state variable u(x, t) represents, e. g. , specific enthalpy in case of energy
transport or mass density in case of mass transport. The vector field w(x, t) ∈
R

3 represents the mass-averaged convection velocity, which is assumed to be known
throughout this paper. ρ(x, t) stands for the density of the fluid and the vector n
denotes the outer normal on the boundary Γ.

The effective diffusive transport distinguishes between different transport mecha-
nisms, namely, - the molecular transport and the enhanced transport, which is induced
by waves [9, 11, 44]. The transport coefficient a(x, t) is represented as a sum of two
contributions (cf. (1.1a)):

a(x, t) = amol + fw(u,x, t, θ) , (x, t) ∈ Ω × [t0, tf ] . (1.1c)

The molecular transport (e.g., the heat conduction in case of energy transport) is
expressed by the constant molecular transport coefficient amol, the value of which
corresponds to the thermal properties of the fluid and is thus known. The unknown,
wavy transport, captures all remaining transport enhancing effects. It is expressed
by a scalar model function fw(u,x, t, θ) of the state variable u, space x, time t and
model parameters θ ∈ R

p. We assume that the diffusive transport is constant near the
boundary Γ, such that the boundary condition given at ΓN (cf. (1.1b)) is well-defined
(cf. e. g. , [27]). The problem (1.1) is called the direct problem.

Our goal is the identification of a wavy transport model f�
w( · , θ) in eq. (1.1)

from transient, distributed measurement data um(xj , tk) describing energy or mass
transport at a finite set of sampling points (xj , tk) ∈ Ω× [t0, tf ]. No specific structure
of such a model is assumed to be available. Hence, a set of candidate model structures
derived from different perspectives have to be considered. The ”best” transport model
has then to be selected from this set of candidates based on a meaningful measure
of model quality. We call this model f�

w( · , θ) the ”best-performing” model. With the
term ”best-performing” we refer to a transport model determined from a given mea-
surement data set, which, among the proposed candidates, exhibits highest precision
with respect to its structure f�

w( · , θ) and its parameters θ in terms of the model quality
measure employed. As for the latter, we use Akaike’s minimum information theoretic
criterion AIC [1] (cf. Section 3.2), which is well-established and widely used in model
identification, though there are alternative criteria for model structure discrimination
[13]. Obviously, despite our choice of the term ”best-performing model”, we cannot
claim that this model is reflecting reality close to perfection for the following two
reasons. First, the set of candidate structures has to contain a model structure which
matches reality well. Second, the identification of such a model constitutes a highly

2



nonlinear inverse problem, which is ill-posed in nature (cf. e. g. , [17]). Since an eval-
uation of different candidate model structures is necessary, a naive treatment of this
problem would require the solution of a series of complex, nonlinear inverse problems
to estimate the parameters θi ∈ R

pi for each transport model fw,i( · , θi) from the list
of candidates i ∈ I := {1, 2, . . . ,m} ,m ∈ N, in eq. (1.1).

Though there are many papers on parameter estimation in partial differential
equations (cf. e. g. , [3, 7, 8, 25, 35, 45] and references therein), the efficient solution
of these problems is still difficult, since the computational effort grows strongly with
the number of unknown model parameters (cf. [18]). Moreover, the numerical case
studies treated are often restricted to one or two space dimensions. Furthermore,
these studies do not aim at the identification of the most favorable transport model
structure from a set of candidates.

In the above stated identification problem the following difficulties occur. First,
the existence of a solution of the direct problem (1.1) for some transport model
fw( · , θ) is not guaranteed [27]; second, in case of measurement errors an incorrect
candidate model structure, biased or poor estimates are typically to be expected [43];
third, even in case the correct model structure is available, the lack of good initial
guesses for parameter estimation may lead to estimates of poor quality (cf. e. g. , [17])
or to a failure of the algorithm. These issues render the systematic identification of
the most suitable model structure very challenging.

In contrast to the direct identification of a transport model in eq. (1.1) from
a given set of candidates, we rely on the incremental identification method. The
incremental identification method comprises a general framework, cf. [6, 10, 29, 31,
32, 34], and is not restricted to the particular class of inverse problems addressed
in this paper. The main idea of incremental identification is the decomposition of
the nonlinear identification problem in a series of subproblems which are easier to
handle. This way, not only more reliable parameter estimates can be obtained for a
given model structure, but the identification of the best model structure can be dealt
with much more efficiently. On the other hand, due to the solution of a sequence
of inverse subproblems, error propagation is inevitable (cf. [5, 29]). This paper will
show however that such errors can be reduced to a large extent.

Recently, we applied and validated the incremental identification method for the
identification of the transport model (1.1) [29]. In that paper, however, we have
assumed a known model structure for the transport model. In the present paper, we
relax this assumption and present a method, which aims at the identification of the
transport model structure f�

w( · , θ) and its parameters θ from a given candidate set, the
so-called ”best-performing” transport model. This method comprises a procedure for
the efficient reduction of the errors resulting from the sequence of steps in incremental
identification and is thus a supplement to the method reported previously [29]. It will
be shown that no a priori knowledge on the transport mechanism is needed.

The paper is organized as follows. We first introduce the incremental identification
method in Section 2. In Section 3, we outline the procedure for the reduction of the
error induced by incremental identification. To this end, we aim at a correction in
both, the structure and the parameters. This requires the solution of a transient
inverse coefficient problem (cf., e. g. , [2]), which is solved by means of an inexact
Newton method. Regularization of this inverse problem is discussed in detail. A
numerical case study is presented in Section 4 for an illustration of the suggested
approach. The numerical example is the same as the one treated in [29]. In Section
5, conclusions are given and suggestions for future work are formulated.
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Fig. 2.1. Incremental modeling and identification of transport model structure and parameters.

2. Incremental modeling and identification. Incremental identification re-
flects the steps of incremental modeling (cf. Fig. 2.1). Incremental modeling refines
the model structure in a structured step-by-step procedure [31, 32] to allow for a
transparent and systematic modeling process which exploits the structure naturally
occurring in any model. In particular, the constitutive equations are introduced on
different modeling levels to (hopefully) reduce the structural uncertainty (to a mini-
mum). Incremental identification follows the steps of incremental modeling and de-
couples the identification process in a sequence of easier to handle subproblems. This
strategy facilitates an efficient identification of a suitable model structure and its
associated parameters. We present a brief description of incremental identification
method here, further details are given in [29].

Incremental identification assumes that transient, distributed measurement data
um(xj , tk) is available at sufficiently high resolution at spatial positions xj ∈ Ω and
at time instants tk ∈ [t0, tf ] (cf. Fig. 2.1).

The balance equations constitute the first modeling level – level B – of the incre-
mental modeling procedure (cf. Fig. 2.1). On this level, the source Fw(x, t) which
models the unknown, wavy diffusive transport is introduced without further specifi-
cations. Consequently, in the first identification step, this source Fw is reconstructed
as a function of space x and time t using the measurement data um(xj , tk). Hence,
the inverse source problem [2]

B : ρ(
∂u

∂t
+ w · ∇u) −∇ · (amol∇u) = Fw(x, t) , (x, t) ∈ Ω × (t0, tf ] . (2.1)

has to be solved. The initial and boundary conditions are the same as in eq. (1.1b).
This inverse problem is affine-linear, such that solution techniques for linear inverse
problems can be employed (cf., e. g. , [19, 24]). We denote the solution of this inverse
problem as F �

w(x, t).
In the second modeling level – level BF – a suitable constitutive relation for the

wavy source Fw is chosen (cf. Fig. 2.1). Here, this source is described by a diffusive
transport law, where the flux is assumed to be proportional to ∇u. Accordingly, the
wavy transport coefficient aw(x, t) is introduced to depict the enhanced wavy trans-
port contribution. This defines the second identification step, where the previously
reconstructed source F �

w(x, t) is used as inferential measurement data to reconstruct
the unknown, wavy transport coefficient aw as a function of space x and time t (cf. Fig.
2.1). Since diffusive transport is typically time-invariant, we introduce a decoupling of
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the space- and time-dependent function ξ(x, t) as ξt(x) := ξ(x, t) , (x, t) ∈ Ω× [t0, tf ].
The wavy transport coefficients at

w(x) are then reconstructed for each time t ∈ [t0, tf ]
in the t−parametric diffusion equation

BF : ∇ · (at
w(x)∇ut) = F � ,t

w (x) , (x, t) ∈ Ω × [t0, tf ] . (2.2)

The boundary conditions carry over from eq. (1.1b) for each t. These inverse problems
are referred to as coefficient inverse problems [2]. They are stationary and nonlinear.
The solutions of these problems are denoted by a� ,t

w (x).
On the last modeling level – level BFT – a set of different transport models

fw,i( · , θi) , i ∈ I, are proposed as closure constitutive relations (cf. Fig. 2.1) to
correlate aw with the state u and the model parameters θi ∈ R

pi . Hence, the recon-
structed wavy transport coefficients a� ,t

w (x) are assembled for t ∈ [t0, tf ] to result in
the function

a�
w(x, t) = a� ,t

w (x) , (x, t) ∈ Ω × [t0, tf ] . (2.3)

This ”model-free” wavy transport coefficient is first employed for the generation of
candidate transport model structures fw,i(u,x, t, θi) , i ∈ I, and next for the esti-
mation of their associated parameters θi in each of them. In this step, nonlinear
regression problems are stated and solved. These inverse problems are of algebraic
nature only. The resulting parameter estimates are denoted by θ�

i , i ∈ I.
Note, that the inverse problems arising in the incremental steps can be solved by

applying different, problem-adapted solution techniques. In our previous paper [29],
we have formulated the inverse problems for source estimation in the first step B (cf.
eq. (2.1)) and for coefficient estimation in the second step BF (cf. eq. (2.2)) as
optimization problems and solved them using suitable iterative solution techniques
for linear and nonlinear inverse problems. In the last step BFT (cf. Fig. 2.1), we
have employed standard least-squares solution techniques (cf. [36]) for parameter
estimation.

It is clear, however, that the decoupling into a sequence of inverse problems and
their numerical solution results in an inevitable error propagation. Nevertheless, a
subset Is ⊆ I = {1, 2, . . . ,m} of reasonable transport model structures can be chosen
by eliminating models showing a poor quality measure (such as the AIC criterion
used in this paper). To identify a transport model f�

w( · , θ) of and its parameters θ,
it suffices to restrict the list of all candidate models to the chosen subset Is in the
model correction procedure, i. e. , only the model structures

fw ,i( · , θi) , i ∈ Is ⊆ I . (2.4)

will be considered.
We remark that after carrying out all three steps of the incremental identification

method without the correction step, a single transport model f�
w,i( · , θi) showing the

best quality measure could be chosen. However, in general, this model is different
from the ”best-performing” transport model f�

w( · , θ) determined with the correction
step, due to uncertainty in both, structure fw( · , θ) and parameters θi.

3. Model correction. In this section, we propose a correction approach in
which we address the error propagation through the steps of the incremental identifi-
cation method. To facilitate efficient error correction independently of the employed
transport model structure, we treat the error caused in the first two steps of the incre-
mental identification method (cf. Fig. 2.1) separately from the error in the last step.
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Fig. 3.1. Correction of the transport model structure and parameters.

Hence, we again decouple parameter estimation and model selection in the nonlinear
problem (1.1) by carrying out two subsequent steps (cf. Fig. 3.1).

In the coefficient correction step, we first correct the transport coefficient a(x, t)
(cf. eq. (1.1c)) by assembling the first two steps of the incremental identification
method into one. Thus, the constitutive equation (2.2) and the balance equation
(2.1) are combined into one equation. Consequently, the transport coefficient a is
reconstructed as a function of space x and time t in the convection-diffusion equation

ρ(
∂u

∂t
+ w · ∇u) −∇ · ((amol + aw)∇u) = 0 , (x, t) ∈ Ω × (t0, tf ] , (3.1)

with initial and boundary conditions as in eq. (1.1b). This, again, corresponds to a
coefficient inverse problem [2]. However, compared to the coefficient inverse problems
in eq. (2.2), this nonlinear inverse problem has higher complexity due to the time-
dependence and the presence of a convective transport term. An efficient treatment
of this inverse problem is achieved by using the wavy transport coefficient a�

w (cf. eq.
(2.3)) obtained from solving the inverse problem involving eq. (2.2) as a good initial
value, i. e. ,

ainit(x, t) = amol + a�
w(x, t) . (3.2)

As a result, the diffusion transport coefficient a�(x, t) is obtained (cf. Fig. 3.1).
In the subsequent parameter correction step of the correction procedure, the

model structures (2.4) are considered. For the estimation of parameters of each con-
sidered candidate model, the wavy transport coefficient (a�(x, t) − amol) from the
coefficient correction step is used as inferential measurement data. The optimal pa-
rameter values θ�

i , i ∈ Is, available from the third step BFT of the incremental
identification procedure are employed as initial guesses for efficient parameter correc-
tion (cf. Fig. 3.1). Since the estimation problems in this step are of algebraic nature,
the consideration of a larger number of candidate model structures fw,i( ·, θi) , i /∈ Is
does not constitute a significant effort.

Finally, the model selection step is carried out to select the ”best-performing”
transport model structure f�

w( ·, θ) from the set of regressed algebraic candidate mod-
els. Here, the quality measures (such as the AIC criterion used in this work) of the
considered candidate models (cf. eq. (2.4)) are recomputed and the best performing
candidate is selected (cf. Fig. 3.1).

3.1. Correction of the transport coefficient. In this section, we consider the
inverse coefficient problem involving eq. (3.1) for the reconstruction of a corrected
transient transport coefficient a�(x, t) from the transient, distributed measurement
data um(xj , tk) , (xj , tk) ∈ Ω × [t0, tf ] to implement the coefficient correction step
depicted in Fig. 3.1. Considerable literature is available on the solution of inverse
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coefficient problems (e. g. , [3, 14, 26, 35, 40]). However, only a few of them address the
problem in three spatial dimensions (e. g. , [4, 20, 22, 23]). Moreover, such problems
are typically considered without a convective transport term, which is difficult to treat
numerically.

3.1.1. Optimization-based formulation. We formulate the coefficient inverse
problem as an optimization problem and solve it using an inexact Newton method
which is considered to be very suitable for the solution of highly nonlinear ill-posed
problems [17]. We use the so-called weighted minimum-norm solution [17] (cf. Section
3.1.4). We assume the unknown transport coefficient a(x, t) in X ⊂ L2(t0, tf ;H1(Ω)).
The transient measurement data um(xj , tk) can be represented in the finite element
space Yh ⊂ Y ⊂ L2(Ω × [t0, tf ]). This representation is denoted by um ∈ Y. The
corresponding norms ‖ · ‖X and ‖ · ‖Y are

‖ · ‖2
X =

∫ tf

t0

∫
Ω

( · )2dxdt +
∫ tf

t0

∫
Ω

∇( · )2dxdt , (3.3a)

‖ · ‖2
Y =

∫ tf

t0

∫
Ω

( · )2dxdt . (3.3b)

Note, that the use of the space X with norm (3.3a) for the unknown quantity implies
an a priori smoothness assumption on the solution of the inverse coefficient problem.

The optimization-based formulation of the coefficient inverse problem allows for
a model-free, function estimation. The transport coefficient a�(x, t) ∈ X minimizes
the quadratic objective function

J1(a) =
1
2
‖u(x, t; a) − um‖2

Y (3.4)

with transient measurement data um as defined before. Here, u(x, t; a) is the solu-
tion of the direct problem (3.1) with initial and boundary conditions (1.1b) for some
transport coefficient a. The initial and boundary data u0, gD and gN , respectively,
are assumed to be known [2].

3.1.2. Iterative optimization strategy. For the minimization of the objective
function (3.4) subject to the constraints (3.1) and (1.1b), an adapted Newton type
method is employed. In this method, an outer (Newton) iteration is combined with
an inner conjugate gradient (CG) iteration applied to the normal equation (NE),
which is referred to as CGNE method in the literature [21]. The stated nonlinear
inverse problem is first linearized to benefit from the regularization properties of the
inner (CGNE) iteration. A special stopping rule of the CGNE iteration results in
a regularized update in the Newton iteration. For a (convergence) analysis of this
method we refer to [23]. In case of nonlinear inverse problems, an additional strong
condition has to be imposed on the nonlinear remainder of the linearization of the
problem to achieve convergence (cf. Chapter 11 in [17], [23]). This condition restricts
essentially the solution space of the nonlinear inverse problem and requires initial
values sufficiently close to the solution.

The truncated Newton-CGNE [23] algorithm starts with an initial guess a0 ∈ X
for the transport coefficient and updates it in the Newton iterations according to

an+1 = an + αnx̂n , n ∈ N . (3.5)

x̂n stands for the Newton update, which is controlled by introducing a step-length
parameter αn. Instead of the exact Newton step αn = 1 , ∀n, we implement a damped

7



Newton step by choosing the step-length using the (first-order) standard Armijo-rule
[36]. This damping strategy is different from [23]; since the studied coefficient inverse
problem is highly nonlinear the Newton unit step-length needs to be appropriately
shortened.

The Newton update x̂n results from the inner CGNE iteration which solves the
linearization of the stated inverse problem. Starting from x0 = 0, this value is updated
by moving along a conjugate descent direction dk with an optimal step-length μk at
each CGNE iteration k. CGNE iterations also require updates for (linear) residuals
rk. The update formulas are given by (cf. [21])

xk+1 = xk + μkdk , (3.6a)

rk+1 = rk − μkS(an, dk) . (3.6b)

Here, each new descent direction dk in eq. (3.6a) is calculated from

dk+1 = G(an, rk) + γkdk , (3.7)

with the gradient of the objective functional G(an, rk) := dJ1
da (an)rk and the conjugate

coefficients γk given by

γ0 = 0 , γk =

∥∥G(an, rk+1)
∥∥2

X
‖G(an, rk)‖2

X
, k ≥ 1 . (3.8)

Using variational calculus, it can be shown that G := G(an, rk) is the solution of the
boundary value problem

−ΔG+G = −∇u(an)∇ψ(an, rk) , x ∈ Ω ,
G = 0 , x ∈ ΓD ,

∂G

∂n
= gNψ(an, rk) , x ∈ ΓN .

(3.9)

for each t ∈ [t0, tf ]. u(an) = u(x, t) denotes the solution of the direct problem (3.1),
(1.1b) with the insertion a(x, t) = an(x, t) for the transport coefficient from the n-th
Newton iteration. ψ(an, rk) = ψ(x, t) represents the solution of the adjoint problem

ρ(−∂ψ
∂t

− w · ∇ψ) −∇ · (an∇ψ) = rk , (x, t) ∈ Ω × [t0, tf ) , (3.10a)

with terminal and boundary conditions

ψ(x, tf ) = 0 , x ∈ Ω ,
ψ(x, t) = 0 , (x, t) ∈ ΓD × [t0, tf ] ,

∂ψ

∂n
(x, t) = 0 , (x, t) ∈ ΓN × [t0, tf ] .

(3.10b)

The derivation of the adjoint problem is based on standard procedures (cf. e.g. [2]).
By introducing a new time variable ta = (t0 + tf − t) we obtain an equation with the
same structure as the direct problem (3.1), (1.1b), however, with different boundary
conditions.

The CGNE step-length μk in eq. (3.6) is given by

μk =

∥∥G(an, rk)
∥∥2

X
‖S(an, dk)‖2

Y
. (3.11)
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Here and in the update formula for residuals (3.6b), S(an, dk) is the solution of the
sensitivity problem

ρ(
∂S

∂t
+ w · ∇S) −∇ · (an∇S) = ∇ · (dk∇u(an)) , (x, t) ∈ Ω × (t0, tf ] , (3.12a)

S(x, t0) = 0 , x ∈ Ω ,
S(x, t) = 0 , (x, t) ∈ ΓD × [t0, tf ] ,

∂S

∂n
(x, t) = 0 , (x, t) ∈ ΓN × [t0, tf ] .

(3.12b)

Here, again, u(an) = u(x, t) represents the solution of the direct problem (3.1), (1.1b)
for the Newton update an of the transport coefficient and the conjugate descent
direction dk. For the derivation of the sensitivity problem we refer to, e. g. , [2].

In summary, the truncated Newton-CGNE method solves the direct problem (3.1)
in each Newton iteration. In each CGNE iteration one has to solve an adjoint problem
(3.10) and additionally eq. (3.9) for each t ∈ [t0, tf ] for the determination of the
descent direction. Furthermore, in each iteration a sensitivity problem (3.12) for the
computation of the step length has to be solved. It is very important to terminate the
CGNE iterations early enough to handle the ill-posedness of the linearization of the
stated inverse problem [21, 23]. One possible stopping rule for the CGNE iterations
[23] is given by

∥∥rk
∥∥
Y < η ‖um − u(an)‖Y , 0 < η < 1 . (3.13)

Here, again, rk represents the (linear) residual from the k-th CGNE iteration (cf.
(3.6b)) and u(an) = u(x, t) is the solution of the direct problem (3.1), (1.1b) with
a(x, t) = an(x, t) of the n-th Newton iteration. The tolerance parameter η has to be
chosen appropriately (cf. Section 3.1.4).

3.1.3. Solution of the PDE problems. For the numerical realization of the
iterative optimization strategy, the direct problem (3.1), (1.1b), the adjoint problem
(3.10) and the sensitivity problem (3.12) have to be solved. Also, eq. (3.9) has to
be solved for each t ∈ [t0, tf ] for the gradient calculation. All problems are of elliptic
type, hence, similar numerical techniques can be employed for their solution.

Approximation of the solutions of all three-dimensional problems are calculated
by means of the software package DROPS [16], which is based on multilevel nested
grids and conforming finite-element discretization methods. For time discretization, a
standard one-step θ-method is used. For space discretization, piecewise linear finite-
elements on a tetrahedral grid are employed. The resulting discrete systems of linear
equations are solved by suitable preconditioned Krylov subspace methods. The cal-
culation of the norms (cf. eq. (3.11)) and computation of the conjugate coefficients
γk , k ≥ 1 (cf. eq. (3.8)) in the numerical optimization procedure are efficiently
realized in DROPS.

In this paper, we do not study the performance of the solvers employed for the
solution of the partial differential equations that occur in the truncated Newton-
CGNE method. We use a fixed (quasi-uniform) mesh for discretization and prescribe
a tolerance to which the resulting linear systems are solved.

9



3.1.4. Regularization. We outline the principal advantages concerning the reg-
ularization of the inverse problems in an appropriate norm and give the particular
regularization properties of the truncated Newton-CGNE method.

To enforce the uniqueness of the solution of the inverse problem, usually, the
minimum-norm solution is introduced which comprises the best approximation of the
solution with minimum norm [17]. In many applications, however, and particularly
in case of nonlinear inverse problems, the weighted minimum-norm solution is intro-
duced by putting additional conditions on the minimum-norm solution in terms of
the chosen norm space. For example, the norm ‖ · ‖X in eq. (3.3a) introduces ad-
ditional smoothness into the solution. This type of regularization also contributes
to convergence (cf. Chapter 8.1 in [17]). The availability of good initial guesses for
the optimization is essential for nonlinear inverse problems (cf. Chapter 11.1 in [17],
[23, 38]).

The regularization of the employed solution method is introduced via the fixed
spatial and temporal discretization and proper stopping criteria for the Newton (outer)
and the CGNE (inner) iterations as follows. As mentioned, before entering the op-
timization strategy, the coefficient inverse problem is linearized to benefit from the
regularization properties of the CGNE method. Therefore, the Newton iteration can
only make further progress if the Taylor remainder of the linearization is not domi-
nant. Hence, the CGNE iterations should run as long as the linearized equation still
provides the additional information. In particular, the stopping rule of the CGNE
iteration (3.13) with 0 < η < 1 prevents the unwanted dominance of the Taylor re-
mainder. Besides, the linearized problem needs to be regularized. It is well known
that the regularizing effect of the CGNE method comes from the early termination of
iterations [21]. Hence, depending on the value of η, the CGNE iteration should result
in a regularized Newton update x̂n (cf. eq. (3.5)). The larger η ↑ 1, the less CGNE
iterations are allowed, and the resulting Newton updates tend to be overregularized ;
the smaller the parameter η ↓ 0, the more CGNE iterations have to be carried out.
However, one should be careful not to allow a too large number of CGNE iterations
which would result in underregularized Newton updates. Consequently, the stopping
rule (3.13) should control the Taylor remainder and the ill-posedness of the linearized
problem simultaneously: in the vicinity of the solution (e. g. , in case of sufficiently
good initial values) relatively small values of η are advantageous, since in this case
more benefit from the quadratic Newton approximation can be gained; however, dur-
ing the Newton iterations it might be necessary to increase the value of η to handle
the ill-posedness of the linearized problem by early termination of the CGNE iteration
(cf. [38, 39] for more details on the choice of η).

We apply regularization by iteration to determine the optimal number of Newton
iterations. The discrepancy principle [21] is employed as parameter choice rule, i. e.
the iterations are stopped once the noise level in the data has been reached. Details
on the stopping criterion for the Newton iteration and on the choice of the parameter
η are given for the case study in Section 4.

3.2. Correction of parameters and model selection. In this section, we
turn to the parameter correction step of the overall correction procedure (cf. Fig.
3.1). We formulate this problem as a nonlinear least-squares minimization problem
with the objective function

J2(fw,i(u,x, t, θi)) =
1
2
‖(a�(x, t) − amol) − fw,i(u,x, t, θi)‖2

Y , i ∈ Is , (3.14)
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with Is being the subset of preselected transport model structures (cf. (2.4)).
To measure the model quality and to select a ”best-performing” transport model

f�
w( · , θ), we use Akaike’s minimum information theoretic criterion AIC [1]

AIC(fw,i( ·, θ�
i )) = 2pi +M [ln(2πRSS(θ�

i )/M) + 1] , i ∈ Is . (3.15)

It incorporates the residual sum of squares RSS(θ�
i ) of each estimated candidate

model fw,i( ·, θ�
i ) , i ∈ Is, at the corresponding optimum θ�

i , the number of candidate
model parameters pi and the number M of measurements employed for the solution of
the estimation problems. The model with minimum AIC is selected. Consequently,
this criterion chooses models with the best fit of the data and hence high precision in
the parameters and at the same time penalizes the number of model parameters.

Model identification for transport coefficients. We summarize the method-
ology of the identification of a ”best-performing” transport model in pseudo-code
notation as follows:

Incremental model identification: Decompose the problem of identifying the trans-
port model structure fw( · , θ) , θ ∈ R

p, in balance equation (1.1) into several easier
to handle subproblems (cf. Fig. 2.1):

(B) Reconstruct the source term Fw(x, t) using the transient, distributed mea-
surement data um (cf. eq. (2.1));
� return F �

w(x, t);
(BF ) Reconstruct the wavy transport coefficient aw(x, t) using the measurement

data um by employing the source estimate F �
w(x, t) as inferential measure-

ment data (cf. eqs. (2.2), (2.3));
� return a�

w(x, t);
(BFT ) Use a�

w(x, t) to
(a) propose a list I = {1, 2, . . . ,m} of candidate transport model struc-

tures fw,i( · , θi) , i ∈ I;
(b) estimate the parameters of each proposed transport model struc-

ture.
Compute the quality measures of each candidate model and eliminate can-
didate models of poor quality resulting in a subset Is ⊆ I of reasonable
candidates (cf. eq. (3.15));
� return Is ⊆ I ; fw,i( · , θi) and θ�

i , i ∈ Is.
Model correction: Decompose the correction of the model structure in eq. (1.1) (cf.
Fig. 3.1):

(1) Correct the transport coefficient a(x, t) (cf. eq. (1.1c)) by combining the
steps B and BF into one (cf. eq. (3.4) subject to eqs. (3.1), (1.1b)). Use
a�

w(x, t) (cf. eq. (3.2)) as good initial value for the solution of this inverse
problem.
� return a�(x, t);

(2) Use (a�(x, t) − amol) to
– estimate the parameters in the transport coefficient model struc-

tures fw,i( · , θi), i ∈ Is, using θ�
i , i ∈ Is as good initial values;

– optionally propose new candidate transport coefficient model struc-
tures.

Recompute the quality measures of the candidate models considered and
select the best candidate (cf. eq. (3.15));
� return f�

w( · , θ) and θ�.
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Remark 1. For a known velocity w(x, t) and molecular transport coefficient amol

(i) it suffices to reconstruct the source term F �
w(x, t) in B and the wavy transport

coefficient a�
w(x, t) in BF only once in the incremental model identification;

(ii) the reconstruction of a�(x, t) in the model correction step has to be carried
out only once;

(iii) the (repeated) estimation and the selection of suitable candidate models for
the transport coefficient is of algebraic nature in both, the incremental model
identification and model correction steps.

4. Numerical case study. In this section, we consider an illustrative case study
describing energy transport in laminar wavy film flows, without incorporating a priori
knowledge on the unknown transport. The simulation experiment considered corre-
sponds to the so-called flat-film model problem [44], which has been introduced for
the design of technical systems [9, 44].

The flat-film model reduces the complexity of the real film by mapping the three-
dimensional wavy, time-varying domain ΩW (t) corresponding to the liquid phase of
the film flow to a three-dimensional time-invariant waveless domain Ω := (0, Lx) ×
(0, Ly) × (0, Lz) ⊂ R

3. This reduction is compensated by the introduction of space-
and time-dependent effective transport coefficients [9, 15, 44], which capture wave-
induced transport enhancing effects in this flat film geometry.

In our previous work [29], we applied the incremental identification method (cf.
Fig. 2.1) to the flat film model problem to identify the energy transport model for
the effective energy transport coefficient, the effective thermal diffusivity aeff(x, t)
assuming an a priori known model structure. In this section, we reconsider the same
test problem but relax this assumption. We now eliminate model structures of poor
quality measure from a list of proposed candidate models (cf. (2.4)) to identify a
subset of reasonable model structures and apply the proposed correction procedure
(cf. Fig. 3.1). We briefly describe the flat film example model problem of the
simulation experiment.

We consider the convection-diffusion system describing energy transport in a sin-
gle component fluid of density ρ on the flat domain Ω = (0, 1)3[mm3], with boundary
Γ consisting of the inflow Γin = {x = 0}, the wall Γwall = {y = 0}, the outflow
Γout = {x = 1} and the remaining Γr = {y = 1} ∪ {z = 0} ∪ {z = 1} boundaries.
Here, x corresponds to the flow direction of the falling film, y is the direction in the
film thickness and z the direction along the film width (cf. Fig. 4.1).

In this case, the state variable in eq. (1.1) is u(x, t) = cT (x, t) with temperature
T (x, t) and heat capacity c of the fluid. We assume ρ and c to be constants. The
transport model fw( ·, θ), θ ∈ R

p, models the enhanced wavy part of the effective
thermal diffusivity a(x, t) = aeff(x, t) in eq. (1.1). The velocity w(x, t) is given by

Fig. 4.1. The flat film model problem. (Γr consists of the non-shaded faces.)
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the one-dimensional Nusselt profile w(x, t) = 4.2857(2y− y2) [37]1. The initial and
boundary conditions are

T (x, 0) = 15 [◦C], x ∈ Ω , (4.1a)
Tin(x, t) = (−30yt+ 15) [◦C], (x, t) ∈ Γin × [t0, tf ] , (4.1b)

Twall(x, t) =
(
100

(
1 − cos(π

x

2
)
)
t+ 15

)
[◦C], (x, t) ∈ Γwall × [t0, tf ]. (4.1c)

At the Neumann boundaries Γout and Γr, a zero flux condition is used, i.e.,

∂T

∂n
(x, t) = 0, (x, t) ∈ (Γout ∪ Γr) × [t0, tf ]. (4.1d)

The effective transport coefficient aeff (cf. eq. (1.1c)) in this simulation experi-
ment comprises the sum of a constant molecular thermal diffusivity amol = 0.35[mm2

s ]
and the exact wavy transport model

fex
w (x, t, θ) = 5(ϑ1 + ϑ2y sin(ϑ3x+ ϑ4t)+ϑ5xy + ϑ6xyz) , (4.2a)

(x, y, z, t) ∈ Ω × [t0, tf ] ,

with the exact parameter values θex ∈ R
6

θex = (ϑex
1 , . . . , ϑ

ex
6 )T = (1.1, 1.0, π, 0.02, 0.2, 0.02)T , (4.2b)

which corresponds to the wavy transport coefficient aw(x, t) (cf. eq. (2.2), Fig. 2.1).
Motivated by physical considerations, we have chosen a sinusoidal pattern over the
space coordinate in the flow direction of the falling film (i.e., the x-direction). The
time-dependency is introduced such that the waves travel along the x-direction and
propagate along the y- and z-directions, with a larger gradient in the y-direction (film
thickness) and with a relatively small gradient in the z-direction (film width).

High-quality temperature simulation data are generated by solving the linear
problem (1.1) with the exact transport model (4.2) on a uniform fine grid with the
spatial discretization consisting of 48 × 48 × 38 intervals in x, y, and z directions,
respectively. This yields a space discretization with 89, 856 unknowns and 525, 312
tetrahedra. As measurement data, we use the temperature data Tm on the coarser
grid with 24× 24× 19 intervals in x, y, and z directions, respectively, to avoid the so-
called inverse crime [28]. For the time discretization we use the implicit Euler scheme
with time step τ = 0.01 s and apply 50 time steps starting from the initial time
t0 = 0 s (i.e., tf = 0.5 s). This results in the number of measurements M = 637, 500.

Furthermore, we analyze the entire methodology both for noise-free and noisy
measurements by artificially perturbing the noise-free temperature Tm with measure-
ment error ω the values of which are generated from a zero mean normal distribution
with variance one. Hence, we compute the perturbed temperature

T̃m = Tm + σω , (4.3)

with the standard deviation σ = 0.1 of the measurement error.
We now reconstruct the wavy thermal diffusivity (cf. eq. (2.3)) by the incremental

identification method. Fig. 4.2 shows the wavy thermal diffusivity resulting from the
second step BF at time instance t = 0.01 s and constant z = 0.5mm reconstructed

1Alternatively, a more precise solution to the film Navier-Stokes equations can be used.
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AIC/106 AIC/106

i fw,i(x, t, θ) , θ ∈ R
p , i ∈ I := {1, . . . , 6} noise-free noisy

1 5(ϑ1 + ϑ2y sin(ϑ3x+ ϑ4t) + ϑ5xy + ϑ6xyz) -0.194 0.4272
2 5(ϑ1 + ϑ2y sin(ϑ3x+ ϑ4t)) -0.112 0.6467
3 5(ϑ1 + ϑ2y sin(ϑ3x+ ϑ4t) + ϑ5xy) -0.184 0.4289
4 5(ϑ1 + ϑ3x

2 + ϑ4t+ ϑ5xy) 1.785 1.9362
5 5(ϑ1 + sin(ϑ3x+ ϑ4t)) 2.210 2.2432
6 5(ϑ1 + cos(ϑ3x+ ϑ4t)) 2.334 2.3892

Table 4.1

List of candidate transport models fw,i( · , θ) , i ∈ I with the corresponding AIC values both for
noise-free and noisy measurement data.

in [29] (no reconstruction has been carried out at the time instance t = 0 s, since
T (x, 0) = const . (cf. eq. (4.1)). As it can be seen, the chosen constant initial guess
ainit ,0.01 s

w = 5.5[mm2

s ] is very different from the true solution at t = 0.01 s. Since
the reconstruction of the wavy transport coefficient in eq. (2.2) is decoupled in time,
the obtained optimal solution at time instance t = 0.01 s serves as a good initial
value for the efficient optimization at later times t > 0.01 s. Hence, the incremental
identification method generates good initial values for optimization, such that no a
priori knowledge is necessary for the reconstruction of the wavy thermal diffusivity
a� ,t

w (x) at all times t ∈ [t0, tf ] [29]. By assembling these estimates, a�
w(x, t) is obtained

as

a�
w(x, t) = a� ,t

w (x) , ∀ t ∈ [0, 0.5 s] . (4.4)

We explore the shape of this reconstructed wavy transport coefficient a�
w(x, t)

(cf. Fig. 4.2) to manually develop a list I of model structures fw ,i(· , θi) , i ∈ I.
The results in Fig. 4.2 suggest that a reasonable model structure should incorporate
a trigonometric function in the flow direction (i. e. , the x-direction) with a period
changing in time. The side and the surface views of this function (not shown) reveal

(a) (b)

 

 

estimation (BF) exact initial

Fig. 4.2. Estimated wavy thermal diffusivity a� ,t
w at t = 0.01 s for constant z = 0.5 mm for (a)

noise-free and (b) noisy (σ = 0.1) measurements. Adopted from [29].
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a slight nonlinear shape change. Based on these observations, we propose a set of six
candidate models I := {1, . . . , 6} as listed in Tab. 4.1. Note that the structure of the
candidate models fw,i , i ∈ {4, 5, 6} does not match the correct structure. Obviously,
the choice of model candidates requires intuition and physical insight. However, this
choice can be efficiently guided by the results of the transport coefficient estimation
step of the incremental identification method.

In what follows, we first enter the third step BFT of the incremental identification
method (cf. Fig. 2.1) to estimate model parameters for each candidate model by using
a�

w(x, t) as inferential measurement data. After choosing the corresponding subset
Is ⊆ I of reasonable transport models (cf. (2.4)), we turn to the model correction
procedure.

Noise-free measurements will be considered first. Subsequently, the influence of
artificially perturbed measurements will be studied.

4.1. Identification with noise-free measurements. We fit each of the can-
didate models from Tab. 4.1 to the function a�

w(x, t) (cf. eq. (4.4), Fig. 4.2). In
particular, we choose 500 different random initial values for each candidate model.
From the set of the resulting local solutions the one showing the lowest residual sum
of squares is selected. Note, that global optimization (e. g. , BARON, [42]) could re-
place this multi-start strategy for solving the non-convex optimization problem. The
resulting AIC values (cf. eq. (3.15)) for each candidate model at the correspond-
ing optimum are given in Tab. 4.1. The candidate models fw,i , i ∈ {4, 5, 6}, with
wrong model structure show much larger AIC values than the other candidates and
are thus discarded. The remaining candidate models show comparable quality. Note,
that candidate models fw,i , i ∈ {2, 3} constitute a simplification of the exact model
structure (4.2a), whereas fw,1 matches the exact model structure. These observations
reveal that the estimate a�

w(x, t) is of sufficient quality to distinguish between candi-
date model structures. Obviously, in a real situation, the true model structure would
not be among the candidates. The case study convincingly illustrates however, that
the AIC is able to adequately rank model candidates.

The subset Is ⊆ I of reasonable model structures (cf. eq. (2.4)) in this case is

Is = {1, 2, 3} . (4.5)

Note, that if the model selection step would have been carried out directly af-
ter completing all three steps of the incremental identification method, the model
f�

w,1( · , θ1) := fw,1( · , θ1) would have been chosen as the solution, since it exhibits the
smallest AIC value among the candidates fw,i , i ∈ Is (cf. Tab. 4.1). Consequently,
in the scenario chosen, the solution would comprise the exact model (4.2a) with the
optimal parameter vector

θ�
1 = (ϑ�

1, . . . , ϑ
�
6)

T = (1.121, 0.917, 3.417,−0.016, 0.512, 0.051)T . (4.6)

The comparison with the exact parameter vector (4.2b) reveals reasonable estimation
quality, but shows deviations. We now show that the error can be significantly reduced
if the correction step is carried out.

In the first step of the correction procedure (cf. Fig. 3.1), we employ (cf. eq.
(3.2))

ainit
eff = amol + a�

w(x, t) , amol = 0.35[
mm2

s
] , (4.7)
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Fig. 4.3. Initial (ainit
eff − amol) (cf. (4.7)), exact and corrected wavy thermal diffusivity

(a�
eff(x, t) − amol) at different times and constant z = 0.5 mm.

with a�
w(x, t) from eq. (4.4) as initial guess for the solution of the transient, nonlinear

inverse coefficient problem (3.4) subject to eqs. (3.1), (1.1b) to reconstruct the effec-
tive thermal diffusivity a�

eff(x, t). Some results are presented in Fig. 4.3 for selected
times t ∈ {0.01, 0.4} s. The truncated Newton-CGNE method is stopped after 5 New-
ton iterations when the (Euclidean) norm of the Newton update x̂n (cf. eq. (3.5))
becomes smaller than the chosen tolerance ε = 10−5. For the stopping rule (3.13)
in the CGNE iteration we use η = 0.5 at the beginning of the Newton iteration and
increase it to η = 0.6 in the last iteration. Our experiments reveal that this stopping
rule needs to be tuned to efficiently handle the nonlinear Taylor remainder and the
ill-posedness of the inverse problem (cf. discussion in section 3.1.4). One can see (cf.
Fig. 4.3) that the initial values have been slightly changed. This already suffices for
a significant correction in the transport model as will be shown below.

Remark 2. Recall, that in the solution of the stationary coefficient inverse prob-
lems in the second step of the incremental identification procedure (cf. eq. (2.2)), we
choose a constant initial guess ainit,0.01 s

w = 5.5[mm2

s ] at time instance t = 0.01 s (cf.
Fig. 4.2). By applying a similar initial guess, i. e. , ainit

eff = (amol +5.5)[mm2

s ] , amol =

0.35[mm2

s ] for the solution of the transient inverse coefficient problem (cf. eq. (3.4)
subject to eqs. (3.1), (1.1b)), we were not able to find a value of the parameter
0 < η < 1 in the stopping rule of the CGNE iteration (cf. eq. (3.13)) for the algo-
rithm to converge. Thus, as theoretically predicted, good initial values are a necessity
to successfully solve this nonlinear inverse problem (cf. Sections 3.1.2 and 3.1.4).

To obtain the ”best-performing” transport coefficient model structure, we solve
the nonlinear least-squares problem (3.14) with the corrected wavy thermal diffusivity
(a�

eff(x, t) − amol) (cf. Fig. 4.3) and candidate models fw,i(x, t, θi) , i ∈ Is = {1, 2, 3},
(cf. Tab. 4.1 and eq. (4.5)) in the second step of the correction procedure. In addition
to the optimal values available from the BFT step of the incremental identification
method, we again employ a multi-start strategy using 500 random initial values and
select the solution corresponding to the lowest residual sum of squares. The resulting
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Fig. 4.4. Initial, exact and ”best-performing” transport model f�
w(x, t, θ) = fw,1(x, t, θ1) at

different times and constant z = 0.5 mm.

AIC values for fw,i , i ∈ Is at their corrected optima are

AIC(fw,i(x, t, θ�
i ))

104
= {−2.6340, 0.3915,−2.0248} , i∈ Is = {1, 2, 3} . (4.8)

As the ”best-performing” model, we select the one with the smallest AIC value
among the structures in Is in eq. (4.8). This results in the same correct transport
model f�

w( · , θ) := fw,1( · , θ1) in this scenario (cf. Tab. 4.1). Fig. 4.4 shows the
results of the correction procedure. The corrected model structure is identified as

f�
w(x, t, θ) = fw,1(x, t, θ1) = 5(ϑ1 + ϑ2y sin(ϑ3x+ ϑ4t) + ϑ5xy + ϑ6xyz) , (4.9a)

with estimated parameters

θ�
1 = (ϑ�

1, . . . , ϑ
�
6)

T = (1.116, 0.923, 3.315,−0.015, 0.378, 0.045)T . (4.9b)

The comparison of these parameters with the exact parameters (4.2b) shows that
the estimation quality in all parameters has been improved over those in (4.6). How-
ever, the corrected estimate (cf. Fig. 4.3) still shows deviations especially in the
parameters ϑ�

4, ϑ
�
5 and ϑ�

6. One reason is due to the properties of the simulated trans-
port process. In the considered unit cube geometry, the first two summands (i. e. ,
the constant term and the trigonometric part of the model structure) of the transport
coefficient model (4.2) depict the dominant part, whereas the remaining summands
have comparably low influence and are thus hard to identify from any type of exper-
iment. A second reason is due to the experiment. Its short duration (tf − t0) = 0.5 s
results only in a very slight shift in time that can not be correctly recovered. Still,
the reduction of the propagation errors resulting from the incremental decomposition
can be clearly identified, e. g. , by comparing the AIC values of the model alternatives
(cf. eq. (4.8)) with each other. Namely, now the AIC value of the candidate model
fw,2 is much larger than that of model fw,3 because of its simpler structure.

The results of the parameter correction step are summarized for all models in Is
(cf. (4.5)) before and after correction in Tab. 4.2. One can see that the corrected pa-
rameter values have moved towards the exact solution (4.2b), though some deviations
are still present.
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incremental identification method correction procedure

noise-free data

θ�
1 = (1.121, 0.917, 3.417,−0.016, 0.512, 0.051)T θ�

1 = (1.116, 0.923, 3.315,−0.015, 0.378, 0.045)T

θ�
2 = (1.125, 1.173, 2.941, 0.045)T θ�

2 = (1.117, 1.118, 2.951, 0.049)T

θ�
3 = (1.121, 0.918, 3.416,−0.016, 0.538)T θ�

3 = (1.116, 0.924, 3.315,−0.015, 0.401)T

noisy data

θ�
1 = (1.140, 0.803, 4.077,−0.112, 0.989, 0.0336)T θ�

1 = (1.104, 0.723, 4.069,−0.149, 0.826, 0.186)T

θ�
2 = (1.150, 1.203, 2.975, 0.123)T θ�

2 = (1.108, 1.098, 2.926, 0.176)T

θ�
3 = (1.140, 0.804, 4.077,−0.112, 1.006)T θ�

3 = (1.104, 0.723, 4.069,−0.149, 0.919)T

Table 4.2

Parameter values after the incremental identification and after the correction.

To show that the proposed correction procedure is essential for handling error
propagation through the steps of the incremental identification method, we solve
parameter estimation problem directly using balance equation (1.1) and assuming that
the candidate model structure fw,1( · , θ1) resulting from the incremental identification
method were the correct one. Moreover, we use the optimal parameter values (4.6)
resulting from the incremental identification as initial values. As solution strategy we
employ the so-called Landweber-iteration method [17], a prototype of the steepest-
descent method for well-posed problems (cf. [36]), because this method is known not
to be as sensitive with respect to the initial parameter values as the Newton type
methods. The estimation result is given in Tab. 4.3 (a), left.

The comparison of this estimate with the one obtained after the correction proce-
dure in Tab. 4.2 reveals that the latter is more favorable in terms of error propagation.
One reason for this is the strong nonlinearity and the nonconvexity of the underlying
direct parameter estimation problem. More precisely, the step-lengths in the Landwe-
ber iteration are so small that only tiny parameters updates result. A second reason
is due to the uncertainty with respect to the model structure fw,1( · , θ1) analyzed in
the preceding paragraph. Using the parameter estimate θ�

1 from the Tab. 4.3 (a), left,
a sensitivity analysis of this model (cf. [12, 30]) has been carried out. It revealed that
all six parameters are identifiable. However, the parameters ϑ3 , . . . , ϑ6 are difficult
to estimate because of (i) the very small sensitivity of the model with respect to these
parameters (in particular, with respect to ϑ6) and (ii) the relatively high correlation
of the parameters ϑ3, ϑ4 and ϑ5 with ϑ2, as well as of ϑ5 with ϑ6. Exemplarily, if
we fix the values of parameters ϑ3 , . . . , ϑ6 to their corresponding exact values (cf.
(4.2b)) we obtain the estimate θ�

1 = (ϑ1, ϑ2)T as given in the Tab. 4.3 (b), left. These
values are closer to their exact counterparts (cf. (4.2b)). Also note, that this estimate
compares well with the corresponding estimate for the first two parameters obtained
after the correction procedure (cf. Tab. 4.2). We remark that the convergence can

noise-free data noisy data

θ�
1 = (1.123, 0.898, 3.408,−0.034, 0.512, 0.051)T θ�

1 = (1.209, 0.748, 4.048,−0.139, 1.009, 0.043)T

θ�
1 = (1.099, 0.982)T θ�

1 = (1.047, 0.839)T

Table 4.3

Parameter values after direct parameter estimation using eq. (1.1) the model structure
fw,1( · , θ1) and the initial parameter estimate (4.6) both resulting from the incremental identifi-
cation method upper row for the full parameter set and lower row for the reduced parameter set with
remaining parameters fixed at their exact values (cf. (4.2b))
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be achieved for the reduced parameter vector θ�
1 = (ϑ1, ϑ2)T even for initial value, far

from the exact solution.
We emphasize that the solution of the direct parameter estimation problem with

balance equation (1.1) and model structure fw,1( · , θ1) using the same initial values
for the parameters as the ones we employed in the third step of the incremental
identification method (recall, these were randomly chosen vectors), failed to converge.

Hence, at least for the simulation example studied in this paper we can conclude
that the incremental identification approach is able to deliver valuable results, even
when the level of detail of the investigated model structure is high and when poor
initial estimates are available, and thus represents a sound, rigorous alternative to the
so-called simultaneous (i. e. direct) identification approach. The disadvantageous error
propagation in the incremental identification approach can be effectively treated with
the correction procedure proposed in this paper. Because of the strong correlation
present, some of the parameter values could not be corrected well. However, the
correction procedure is still able to provide a significant correction in the significant
parameters.

4.2. Identification with noisy measurements. In this section, we carry out
the estimation procedure with perturbed temperature data as in eq. (4.3) with σ =
0.1.

The AIC values of the candidate models resulting from the multi-start strategy
are listed in the last column of Tab. 4.1. In the presence of noise, the AIC values
are significantly larger for all candidate models. Similar to the noise-free case, the
candidate models fw,i , i ∈ {4, 5, 6}, with an incorrect model structure show poor
quality, whereas all the remaining candidates are of comparable quality. Hence, a
subset Is ⊆ I of reasonable model structures results again in

Is = {1, 2, 3} . (4.10)

The model of best quality obtained directly from the incremental identification
method is again the correct model f�

w,1( · , θ1) := fw,1( · , θ1) (cf. AIC values in Tab.
4.1). The corresponding optimal parameter vector is

θ�
1 = (ϑ�

1, . . . , ϑ
�
6)

T = (1.140, 0.803, 4.077,−0.112, 0.989, 0.0336)T . (4.11)

The comparison with the result obtained using noise-free data (cf. eq. (4.6)) and
with the exact parameter vector (cf. eq. (4.2b)) shows that the deviation in most
of the parameters is now more significant. The reason for this is the larger error in
the wavy transport coefficient estimate a�

w(x, t) (cf. Fig. 4.2 (b)) as compared to
the one without the presence of the noise in the data (cf. Fig. 4.2 (a)). However,
despite the measurement noise, the same model structure as in the noise-free case can
be recovered. This result shows in fact, how difficult the solution of such ill-posed
identification problems is if (inevitable) noise is present in the measurements. Though
in the considered case the choice of the best model structure is not sensitive to noise,
the quality of the estimated parameters deteriorates significantly despite the favorable
situation that the model structure is correct.

In case of noisy data, the solution of the inverse coefficient problem (3.4) subject
to eqs. (3.1), (1.1b) has to be appropriately regularized to prevent unwanted resolu-
tion of measurement noise. We employ again the optimal, regularized wavy thermal
diffusivity resulting from the incremental identification method (cf. eq. (3.2) and Fig.
4.2) as initial value. To obtain the regularized Newton updates x̂n (cf. eq. (3.5)),
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Fig. 4.5. Regularized initial (ainit
eff − amol) (cf. (4.7)), exact and corrected wavy thermal diffu-

sivity (a�
eff(x, t) − amol) (upper row) and the agreement in the temperatures (lower row) at different

times and constant z = 0.5 mm for noisy data (σ = 0.1).

we choose η = 0.4 in the stopping rule (3.13) for all Newton iterations, and constrain
the maximal number of CGNE iterations to kmax = 50. Since good initial values are
available here, smaller values of η are more appropriate. However, now the number
of CGNE iterations has to be constrained to handle the ill-posedness of the problem.
This last statement applies especially to the noisy case (cf. discussion in section 3.1.4).

For the determination of the number of Newton iterations, we employ the dis-
crepancy principle [21], which suggests to stop the iterations once the condition

J1(an) ≤ κσ2 , κ > 1 , (4.12)

is satisfied for the residual norm (3.4) with parameter κ and noise level σ. The
parameter κ has to be chosen close to 1, to allow for a small residual norm. On
the other hand, the tolerance η (cf. eq. (3.13)) for the inexact Newton step should
be suffciently small to benefit from the quadratic Newton approximation. Therefore,
these two parameters can not be chosen independently [23]. Theory suggests the quite
restrictive condition (for details cf. [23])

κ > 2/η2 > 2 . (4.13)

However, in case of good initial values, and under the imposed additional smoothness
assumption on the inverse problem solution aeff ∈ L2(t0, tf ;H1(Ω)), this condition
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can be weakened [23, 41] such that smaller values of κ are allowed. In general, an
appropriate value of κ is highly problem-dependent.

For the studied example, the value of κ = 4.6 has shown to be the best choice.
This value is much smaller than the value suggested by eq. (4.13) for η = 0.4. For this
choice of κ the discrepancy principle (4.12) results in 4 Newton iterations. The cor-
responding regularized solution is presented in Fig. 4.5 (upper row). The agreement
in the measured and estimated temperatures is presented, too (lower row). It can
be seen, that because of the time dependence of the temperature (note the different
scales in the shown temperatures for the different time instances t ∈ {0.01, 0.4} s) the
same noise level in the data influences the quality of the solution remarkably: The
higher the slope in the temperature (i. e. , the lower the presence of the noise in the
data) the better the correction in the solution (t = 0.4 s). This is explained by the
extreme ill-posedness of the inverse coefficient problem (cf., e. g. , [17]).

In the second step of the correction procedure, we consider three candidate models
fw,i , i ∈ Is = {1, 2, 3}, (cf. eq. (4.10) and Tab. 4.1) for the corrected wavy thermal
diffusivity (a�

eff(x, t) − amol) (cf. Fig. 4.5) and employ it as inferential measurement
data to solve the least-squares problems (3.14) for each of these candidate models.
Again, besides the corresponding optimal values of parameters θ�

i available from the
incremental identification procedure, other 500 randomly chosen initial values are
used. The resulting AIC values for each of these candidates at their corrected optima
result in

AIC(fw,i(x, t, θ�))
106

= {0.635, 0.782, 0.671} , i ∈ Is = {1, 2, 3} . (4.14)

The selection of the ”best-performing” model with the smallest AIC value from
fw,i , i ∈ Is, from eq. (4.14) results again in the model f�

w(x, t, θ) := fw,1(x, t, θ1) (cf.
(4.2a)). Fig. 4.6 depicts the estimation result in comparison to the exact transport
coefficient. The corresponding corrected optimal parameter vector results now in

θ�
1 = (ϑ�

1, . . . , ϑ
�
6)

T = (1.104, 0.723, 4.069,−0.149, 0.826, 0.186)T . (4.15)

The comparison with the parameter estimates that follow directly after the incremen-
tal identification method (cf. (4.11)) and with the exact parameters in eq. (4.2b)
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reveals that most of the parameter estimates are moved towards the exact parameter
values. Note, that ϑ�

4 showing large deviations from the correct value governs the
time-dependency in the model structure. Because of the short duration of the exper-
iment, it can not be correctly recovered as in the noise-free case before (cf. (4.9b)).
The even larger deviation is due to the error in the measurement data that, as already
mentioned above, is more severe for small (cf. Fig. 4.5 lower row) rather than for
larger values of time t.

The results of the correction for all candidate models from Is (cf. (4.5)) in the case
of noisy measurements arealso shown in Tab. 4.2. Again, most of the corrected esti-
mates have moved towards the exact parameter values (cf. (4.2b)), though deviations
are still present.

The results obtained from a solution of the direct parameter estimation problem
(1.1) with the model fw,1( ·, θ1) using the parameter estimate (4.11) as initial value
is given in Tab. 4.3 (a), right. Similar to the noise-free case, this estimate is not as
good as the one obtained after the correction procedure. In addition to the reasons
explained in the previous section, the error in the measurement data contributes to the
deficiencies in the estimation. A sensitivity analysis of the model using the parameter
estimate θ�

1 Tab. 4.3 (a), right, lead to the very same insights as reported for the
noise-free case. The values of the correlated parameters ϑ3 , . . . , ϑ6 are fixed to their
exact values (cf. (4.2b)), the results in given in Tab. 4.3 (b), right are obtained.
As in the noise-free case, these values are much closer to their exact counterparts.
Moreover, the corresponding estimates obtained after the correction procedure (cf.
Tab. 4.2) compare with these values well.

Also in the case of noisy measurements, convergence to the solution could not be
achieved for the direct parameter estimation problem using the same initial values
employed in the third step of the incremental identification method. Consequently,
continuing the conclusion of the previous section, also in the more realistic case of noisy
measurement data, the incremental identification method supplied with the proposed
correction procedure represents an attractive strategy to handle nonlinear, ill-posed,
transient, distributed (three-dimensional) parameter systems with structural model
uncertainty as considered in this paper.

5. Conclusions. A method for the identification of a ”best-performing” model
for transport coefficients in a transient, distributed system of convection-diffusion type
given a set of measurements is presented. No a priori knowledge on the transport
model is necessary. The principal ingredient is the method of incremental identifica-
tion, which decomposes the problem (1.1) into three sequential steps. In this way, a
systematic identification of an appropriate model structure and associated parameters
becomes possible. Nevertheless, the error propagation through the sequence of inverse
subproblems and the associated numerical methods has to be treated to obtain ”best-
performing” transport model with highest precision in the parameters among the set
of proposed candidates. Therefore, a two-step correction procedure is proposed as a
supplement to the incremental identification. The computed optimal solutions avail-
able from the incremental identification are used as initial values in both steps of the
correction procedure facilitating convergence to a high quality correction.

The identification method is exemplarily applied to the identification of a sim-
ulated transport model for the effective thermal diffusivity in a three-dimensional
convection-diffusion model problem. The assumption of a known model structure for
the transport coefficient made in [29] is relaxed. Rather, a list of candidate models
is introduced by inspection of the results of the first two steps of the incremental
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identification method. After parameter estimation a subset of reasonable candidate
models is chosen from this list to apply the correction procedure in order to obtain
the ”best-performing” model.

Instead of re-solving problem (1.1) for each candidate model from the chosen
subset, the decoupled, two-step correction procedure is introduced for the reasons
of computational efficiency and estimation quality. The transient coefficient inverse
problem occurring in the coefficient correction step is solved using the truncated
Newton-CGNE method [23], which is suitable for the solution of such nonlinear in-
verse problems [17]. For reliable solutions, the problem has to be regularized in an
appropriate norm. Moreover, initial values, sufficiently close to the solution are neces-
sary. While these are usually not available in practice, they become accessible due to
the incremental decomposition introduced in our approach. Yet, regularization prop-
erties of the truncated Newton-CGNE method should be carefully applied to obtain
solutions of good quality.

After employing the corrected transport coefficient in the parameter correction
step of the correction procedure, the model selection step is carried out. As a result,
for a ”best-performing” transport model a significant correction can be observed, both
for noise-free and noisy data.

For comparison, the direct parameter estimation problem (1.1) assuming the cor-
rect candidate model structure fw,1(· , θ1) has been addressed. The parameter esti-
mates θ�

1 ∈ R
6 resulting from the incremental identification method (cf. (4.6) and

(4.11) for the noise-free and the noisy cases, respectively) were used as initial values.
The estimates resulting for noise-free and noisy measurements are worse than those
obtained after the correction procedure. This is attributed to the strong nonlinearity
and the nonconvexity of the parameter estimation problem and the uncertainty in the
transport model structure employed. This conjecture is farther supported by a sensi-
tivity analysis of the model, which uncovered the poor identifiability of some of the
parameters. In particular, though all parameters are identifiable, only after fixing the
poorly identifiable parameters to their exact values, it was possible to obtain good
estimates for the remaining parameters. These estimates are comparable to those
obtained after the correction procedure in the incremental approach. Hence, incre-
mental identification supplied with an appropriate correction procedure to address
inavitable error propagation can provide valuable estimates for all parameters even
when the level of detail of the exact transport model is high. Moreover, we emphasize
that we were not able to find a solution of the direct parameter estimation problem
if the initial values were not very close to the exact solution. This shows too that
the incremental identification method constitutes an attractive and sound strategy
for handling transient, distributed systems of convection-diffusion type in a rigorous
manner.

In our future work, the method will be applied to real data in a laminar film flow
experiment. Furthermore, we will aim to improve the identifiability of the transport
coefficients a (cf. eq. (1.1)) from experimental data by means of an optimal design of
experiments [43]. We will investigate to which extent different experimental conditions
(e. g. , measurement resolution and/or boundary conditions) result in experimental
data with sufficient information content for an even more reliable selection of the
model structure from a set of candidates and for an improvement of the precision of
the parameter estimates.
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