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Abstract. In two-phase incompressible flow problems surface tension effects often play a key
role. Due to surface tension the pressure is discontinuous across the interface. In interface capturing
methods the grids are typically not aligned to the interface and thus in problems with an evolving
interface time dependent pressure spaces should be used. Hence, a method of lines approach is
not very suitable for this problem class. We consider a Rothe method with an implicit Euler or a
Crank-Nicolson time discretization method. The order of convergence of these methods is not clear,
since the surface tension force results in a right-hand side functional in the momentum equation
with poor regularity properties. These regularity properties are such that for the Crank-Nicolson
method one can not apply error analyses known in the literature. In this paper, for a simplified
non-stationary Stokes problem a convergence analysis is presented. The analysis leads to optimal
order error bounds. For the Crank-Nicolson method the error analysis uses a norm that is weaker
that the L2-norm. Results of numerical experiments are shown that confirm the analysis.
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1. Introduction. Two-phase incompressible flow problems with surface tension
forces are usually modeled by the Navier-Stokes equations with a surface tension
force term on the right-hand side in the momentum equation, cf. section 2. There are
several reasons why such a model has a very high numerical complexity. For exam-
ple, the interface is unknown and due to this the flow problem is strongly nonlinear.
Secondly, the surface tension force is localized at the (unknown) interface and often
has a major effect on the fluid dynamics. Thirdly, the pressure has a discontinuity
across the interface, and also the viscosity and density coefficients are discontinuous
across the interface. There are several important issues relevant for the simulation of
two-phase flows that are non-existent in one-phase incompressible flow problems. To
handle these issues, special numerical techniques are required. Concerning the devel-
opment and analysis of such special numerical methods on ly relatively few (compared
to methods for one-phase flows) studies are available in the literature, cf. [6] for a
recent overview. In particular only very few papers have appeared in which rigorous
analyses (e.g., on discretization errors, rate of convergence of solvers) are presented.

In this paper we consider only one particular aspect that arises in the simulation
of two-phase flows and is non-existent in one-phase flow problems. We outline this
aspect, which is explained in more detail in the sections 2 and 3. We simplify the
Navier-Stokes problem to the Stokes problem. Since the pressure is discontinuous
across the interface, in a finite element discretization method for the Stokes problem
one then should use a pressure finite element space that is time dependent. Hence,
the Rothe approach is more natural than the method of lines. Alternatively one could
consider a space-time finite element technique but we do not treat this here.

For a given evolution of the interface the non-stationary Stokes problem (with
constant viscosity and density coefficients) can be represented as a parabolic equation
of the following form: determine u(t) ∈ Vdiv such that u(0) = u0 and for t ∈ (0, T ):

u′(t)(v) + (∇u(t),∇v)L2 = f(t)(v) for all v ∈ Vdiv, (1.1)
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with Vdiv the space of divergence free velocity fields and u′ a suitable generalized
time derivative of u. In the setting of the Rothe method we are interested in time
discretization methods for the parabolic problem (1.1). In particular we want to
derive error bounds for the very basic (but still very popular) implicit Euler and
Crank-Nicolson method. Such an error analysis is presented in this paper. There
is extensive literature on error analyses of time discretization methods for parabolic
problems (cf. [16] for an overview) but as far as we know there is no analysis that
applies to the parabolic problem (1.1). The reason for this is the fact that the surface
tension functional f(t) is nonsmooth. As noted above, this surface tension force
is an essential feature of most two-phase flows. In the literature there are many
studies on time discretization methods for parabolic problems with smooth data, i.e.
smooth initial and bo undary conditions and a smooth source term, cf. [16]. Some
of these results have been generalized to the (Navier-)Stokes equations [8, 17], with
smooth data, in which a certain non-local compatibility condition at t = 0 plays
an important role. Furthermore, there are analyses of time discretization methods
for parabolic problems with nonsmooth initial data, e.g. [10, 7]. In these analyses
a so-called parabolic smoothing property plays an important role, cf. also [19]. An
analysis of implicit Runge-Kutta time stepping schemes for parabolic problems with
incompatible initial-boundary data or nonsmooth boundaries is presented in [9]. In
all these studies and the other papers we are aware of, the source term is either zero
(homogeneous problem) or assumed to be sufficiently smooth.

In our case the source term f(t) has only low regularity, as specified in section 5.
This of course has consequences for the regularity of the solution and also for the
accuracy of a higher order discretization method. It turns out that the smoothness is
still sufficient to apply a standard analysis to the implicit Euler method, resulting in
an optimal O(∆t) error bound in the L2-norm. The smoothness is too low to apply a
similar analysis to the Crank-Nicolson method. Instead, weaker norms are introduced
and we obtain an O(∆t2) error bound for the Crank-Nicolson method in a suitable
weaker norm. Results of numerical experiments are presented, which illustrate the
error behavior of the implicit Euler and Crank-Nicolson methods applied to a two-
phase Stokes problem.

2. Stokes two-phase flow with surface tension. Let Ω ⊂ Rd, d = 2, 3,
be a domain containing two different immiscible incompressible phases. The time
dependent subdomains containing the two phases are denoted by Ω1(t) and Ω2(t)
with Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. We assume that Ω1 and Ω2 are connected and
∂Ω1 ∩ ∂Ω = ∅ (i. e., Ω1 is completely contained in Ω). The interface is denoted by
Γ(t) = Ω1(t) ∩ Ω2(t). The standard model for describing incompressible two-phase
flows consists of the Navier-Stokes equations in the subdomains with the coupling
condition

[σn]Γ = −τκn

at the interface, i. e., the surface tension balances the jump of the normal stress on
the interface. We use the notation [v]Γ for the jump across Γ, n = nΓ is the unit
normal at the interface Γ (pointing from Ω1 into Ω2), κ the curvature of Γ, τ the
surface tension coefficient (assumed to be constant) and σ the stress tensor defined
by

σ = −pI + µD(u), D(u) = ∇u + (∇u)T ,
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with p = p(x, t) the pressure, u = u(x, t) the velocity and µ the viscosity. We assume
continuity of u across the interface. Combined with the conservation laws for mass
and momentum we obtain the following standard model, cf. for example [11, 14, 13, 6],ρi

∂u
∂t − div(µiD(u)) + ρi(u · ∇)u−∇p = ρig in Ωi × [0, T ]

div u = 0 in Ωi × [0, T ]
for i = 1, 2, (2.1)

[σn]Γ = −τκn, [u]Γ = 0. (2.2)

The constants µi, ρi denote viscosity and density in the subdomain Ωi, i = 1, 2, and
g is an external volume force (gravity). To make this problem well-posed we need
suitable boundary conditions for u and an initial condition for u. For simplicity we
restrict to homogeneous Dirichlet boundary conditions for u.

The location of the interface Γ(t) is in general unknown and is determined by the
local flow field which transports the interface. For immiscible fluids this transport of
the interface is modeled by VΓ = u · n, where VΓ denotes the normal velocity of the
interface.

We make the following simplifications. The densities and viscosities are assumed
to be constant, i.e., ρ1 = ρ2 = 1 and µ1 = µ2 = 1. The cases ρ1 6= ρ2 and µ1 6= µ2 are
briefly addressed in section 6. Furthermore we restrict to the case of a Stokes flow.
For a corresponding weak formulation we introduce the standard spaces V = H1

0 (Ω)d,
Q = L2

0(Ω) and Ŵ (I) :=
{

u ∈ L2(I; V) : u′ ∈ L2(I,V′) exists
}

, with I = (0, T ) a
time interval and u′ a suitable generalized time derivative as explained in section 4.
An appropriate weak formulation of the Stokes two-phase problem is as follows (cf.
[6]): determine u ∈ Ŵ (I), p ∈ L2(I;Q) such that for t ∈ I:

u′(t)(v) + a(u(t),v) + b(v, p(t)) = f(t)(v) + g(v) for all v ∈ V (2.3)

b(u(t), q) = 0 for all q ∈ Q (2.4)

u(0) = u0, (2.5)

with

a(u,v) =

∫
Ω

∇u · ∇v dx =

d∑
i=1

∫
Ω

∇ui · ∇vi dx (2.6)

b(v, q) = −
∫

Ω

q div v dx (2.7)

g(v) =

∫
Ω

g · v dx, f(t)(v) = −τ
∫

Γ(t)

κn · v ds. (2.8)

The functional f(t) arises due to the interface conditions in (2.2) and models the
surface tension force, which acts only at the interface. Due to this, the pressure has a
jump across the evolving interface Γ(t). Related to this, f(t) has only low regularity:
f(t) ∈ V′, but f(t) /∈ L2(Ω)d. For the derivation and analysis of time discretization
methods it is convenient to eliminate the pressure variable and formulate the non-
stationary Stokes problem in the spave Vdiv := {v ∈ V : div v = 0 }: determine u ∈
W (I) :=

{
u ∈ L2(I; Vdiv) : u′ ∈ L2(I; V′div)

}
such that u(0) = u0 and

u′(t)(v) + a(u(t),v) = f(t)(v) + g(v) for all v ∈ Vdiv, t ∈ I. (2.9)

As noted above, the interface Γ(t) is unknown and implicitly determined by the con-
dition VΓ = u ·n. Due to this, even for a Stokes flow the problem is strongly nonlinear
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and only for very special cases results on well-posedness are known, cf. [6]. We make
one further (strong) simplification, namely assume that the dynamics of the interface
is not driven by u but by a given smooth velocity field, which we denote by b in the
remainder, i.e. VΓ = b · n. Under this assumption the Stokes two-phase flow is linear
and existence and uniqueness results for variational formulations as in (2.3)-(2.5) or
in (2.9) are known in the literature, e.g. [2]. In this simplified linear case we still
have the same localized, time-dependent, surface tension functional at the interface
which causes a jump in the pressure and there is, as far as we know, no analysis of
time integration methods for this type of Stokes problems. In section 3 we introduce
the implicit Euler and Crank-Nicolson time discretization methods for the problems
in (2.3)-(2.5) and in (2.9), and in section 5 we derive discretization error bounds for
these.

3. Discretization of the Stokes two-phase flow problem. We consider a
finite element Eulerian setting in which a given (possibly locally refined) triangula-
tion is used for the spatial discretization of the Stokes equations. In two-phase flow
problems (with Γ(t) unknown) this is typically the case if popular interface capturing
methods like VOF or the level set method are applied. In such a setting the triangu-
lation is not aligned to the interface and as time evolves, the interface moves through
the given triangulation. Since the pressure has a jump across this non-stationary in-
terface, for an accurate discretization of the pressure one should use a finite element
space that depends on time. Therefore a method of lines approach (first space, then
time) is not appropriate for (2.3)-(2.5). Hence, we consider the Rothe approach. An
alternative would be to use a space-time finite element method, but we do not treat
this here. For the derivation and analysis of time discretization methods i t is natural
to consider (2.9) instead of (2.3)-(2.5), and introduce the Lagrange multiplier p after
time discretization.

For N ∈ N define the time step ∆t = T/N . For the implicit Euler method the
sequence of approximations un ∈ Vdiv, 0 ≤ n ≤ N , is defined as follows: u0 = u0,
and for n ≥ 0:

(un+1−un,v)L2 + ∆t a(un+1,v) = ∆t
(
f(tn+1)(v) + g(v)

)
for all v ∈ Vdiv. (3.1)

The Crank-Nicolson method is defined by: u0 = u0 and for n ≥ 0 the approximation
un+1 ∈ Vdiv is determined by

(un+1 − un,v)L2 +
∆t

2
a(un+1 + un,v) =

∆t

2
(f(tn+1)(v) + f(tn)(v) + 2g(v)) (3.2)

for all v ∈ Vdiv. In section 5 we prove discretization error bounds for these methods,
cf. Theorems 5.3, 5.6, 5.7.

After the time discretization a suitable space discretization has to be applied.
Since finite element subspaces of Vdiv are inconvenient, in order to satisfy the con-
straint div un+1 = 0 one usually introduces a pressure variable p and applies a
Galerkin discretization for the pair (un+1, p) in the space V × Q. We outline this
for the Crank-Nicolson method. Consider the following problem: u0 = u0 and for
n ≥ 0 the velocity un+1 ∈ V and pressure p ∈ Q are determined by

(un+1 − un,v)L2 +
∆t

2
a(un+1 + un,v) + ∆t b(v, p)

=
∆t

2

(
f(tn+1)(v) + f(tn)(v) + 2g(v)

)
for all v ∈ V (3.3)

b(un+1, q) = 0 for all q ∈ Q. (3.4)
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From standard analysis, cf. [4], it follows that the problem (3.3)-(3.4) has a unique
solution. From (3.4) it follows that un+1 ∈ Vdiv and by restricting the test functions
in (3.3) to v ∈ Vdiv we see that un+1 also is the unique solution of (3.2). A spatial
discretization can be realized by applying a finite element discretization to the saddle
point problem (3.3)-(3.4). Related to this spatial discretization there is the following
subtle point concerning the choice of the pressure variable p. Clearly the solution un+1

doesn’t change if p in (3.3) is replaced by p + p̂, with p̂ any given pressure function
from Q. It is important to choose p+ p̂ in such a way that an accurate discretization
of the pressure variable can be obtained. Comparing the Crank-Nicolson method in
(3.3)-(3.4) with the continuous saddle point problem in (??)-(2.4) we see that p in
(3.3) is an approximation of 1

2 (p(·, tn+1) +p(·, tn)). The exact pressure solution p(·, t)
has a jump across Γ(t). These observations lead to the following choice for p in (3.3):

p =
1

2
(pn+1 + pn), (3.5)

with pn+1 ∈ Q the unknown pressure and pn the pressure from the previous time step.
In the spatial discretization of (3.3)-(3.4) one then has to determine a discrete pressure
approximation pn+1 ≈ p(·, tn+1). For this one should use a finite element space
Qn+1
h ⊂ Q that is such that functions with jumps across Γ(tn+1) can be approximated

accurately. As an example we mention the XFEM technique, cf. [5, 12, 1, 3]. As
expected, in the spatial discretization of the pressure we then have finite element
spaces Qn+1

h that are adapted to the location of the interface Γ(tn+1) and thus depend
on n. Using the choice as in (3.5) one has to determine an initial pressure p0. This
can be achieved by first applying one implicit Euler time step.

4. Discretization of a parabolic problem in a Hilbert space. In this sec-
tion we first summarize some basic results on parabolic problems in Hilbert spaces,
known from the literature, e.g. [18, 15, 20]. Then we analyze the Euler and Crank-
Nicolson time discretization methods in this Hilbert space setting. The abstract
analysis is applied in section 5 to derive discretization error bounds for these methods
applied to the Stokes problem described in section 2.

Let (Z, (·, ·)Z) be a Hilbert and I := (0, T ) a time interval. We recall two definitions on
generalized derivatives in the Bochner-Lebesque space L2(I;Z). Take u ∈ L2(I;Z).
If there exists w ∈ L2(I;Z) such that∫ T

0

(u(t), z)Zφ
′(t) dt = −

∫ T

0

(w(t), z)Zφ(t) dt for all φ ∈ C∞0 (I), z ∈ Z,

then w =: u′ is called the generalized derivative of u in L2(I;Z).
We also need the following weaker notion of a generalized derivative of u. Let

(V, (·, ·)V ), (H, (·, ·)H) be Hilbert spaces that form a Gelfand triple V ↪→ H ↪→ V ′.
Take u ∈ L2(I;V ). If there exists w ∈ L2(I;V ′) such that∫ T

0

(u(t), v)Hφ
′(t) dt = −

∫ T

0

w(t)(v)φ(t) dt for all φ ∈ C∞0 (I), v ∈ V,

then w =: u′ is called the generalized derivative of u in L2(I;V ′).
These notions of generalized derivatives can be introduced in the more general

setting of distribution theory, cf. [18, 20]. The definitions above mean that if for
u ∈ L2(I;V ) there exists a generalized derivative in L2(I;V ) or in L2(I;V ′) then
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the distributional derivative of u can be represented as a function, namely u′, in
L2(I;V ) or in L2(I;V ′), respectively. If u ∈ L2(I;V ) has a generalized derivative
u′ ∈ L2(I;V ) then also the generalized derivative of u in L2(I;V ′) exists and is given
by t→ (u′(t), ·)H .

In the remainder we need the following spaces:

W (I) =
{
u ∈ L2(I;V ) : u′ ∈ L2(I;V ′) exists

}
,

W k(I;Z) =
{
u ∈ L2(I;Z) : u(n) ∈ L2(I;Z) , 1 ≤ n ≤ k, exists

}
, k ≥ 1.

Note that W (I) depends on V and H and that W 1(I;V ) ⊂W (I) holds. Furthermore
(cf. [18, 20]) there are continuous embeddings W (I) ↪→ C(I;H) and W 1(I;Z) ↪→
C(I;Z), which implies that for u ∈ W (I), v ∈ W 1(I;Z) the values u(t) ∈ H and
v(t) ∈ Z, t ∈ I, are well-defined (in the usual Lebesgue sense).

We consider a standard formulation of a parabolic problem in V . Let a(·, ·) be a
continuous elliptic bilinear form on V , i.e., there are constants γ > 0 and γ̂ such that
a(v, v) ≥ γ‖v‖2V for all v ∈ V and a(u, v) ≤ γ̂‖u‖V ‖v‖V for all u, v ∈ V .

Let f ∈ L2(I;V ′) and u0 ∈ H be given. The abstract parabolic problem is as
follows: determine u ∈W (I) such that u(0) = u0 and

u′(t)(v) + a(u(t), v) = f(t)(v) for all v ∈ V, t ∈ I. (4.1)

It is well-known (e.g. [18, 20]) that this problem has a unique solution.
Remark 1. We discuss an abstract regularity result, cf. [18] section 27. Assume

u0 ∈ V and define f0(v) := f(0)(v), a0(v) := a(u0, v), v ∈ V . If the data satisfy the
smoothness conditions

f ∈W 1(I;V ′), (4.2)

f0, a0 ∈ H ′ ≡ H, (4.3)

then the solution u of (4.1) has the smoothness properties

u ∈W 1(I;V ), u′ ∈W (I). (4.4)

It can be shown that in our application it is reasonable to assume that the con-
ditions (4.2) and (4.3) are satisfied, cf. Remark 2. In the remainder of this section
we assume that the conditions in (4.2), (4.3) are satisfied, hence for the solution u
we have u ∈ W 1(I;V ) and u′ ∈ W (I). Then the time derivative in (4.1) can be
reformulated as u′(t)(v) = (u′(t), v)H , where u′ on the right-hand side is the gen-
eralized derivative of u in L2(I;V ). Due to the embeddings W 1(I;V ′) ↪→ C(I;V ′),
W 1(I;V ) ↪→ C(I;V ), for t ∈ I the values f(t) ∈ V ′ and u(t) ∈ V are well-defined.

4.1. Implicit Euler method. We first consider the implicit Euler method and
derive an (expected) first order error bound. We assume u0 ∈ V , hence a(u0, v),
v ∈ V , is well-defined. For N ∈ N define the time step ∆t := T/N . The sequence of
approximations un ∈ V , 0 ≤ n ≤ N , is defined as follows: u0 := u0 and for n ≥ 0,

(un+1 − un, v)H + ∆t a(un+1, v) = ∆t f(tn+1)(v) for all v ∈ V. (4.5)

From the Lax-Milgram lemma it follows that the variational problem (4.5) has a
unique solution un+1 ∈ V . The discretization error is denoted by en := u(tn)−un ∈ V .
From (4.1) and (4.5) we obtain the error formula

(en+1 − en, v)H + ∆t a(en+1, v) = Rna (v) +Rnf (v), v ∈ V, 0 ≤ n ≤ N − 1, (4.6)
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with

Rna (v) := ∆t a(u(tn+1), v)−
∫ tn+1

tn

a(u(t), v) dt,

Rnf (v) :=

∫ tn+1

tn

f(t)(v) dt−∆t f(tn+1)(v).

Lemma 4.1. The following holds:

‖Rna‖V ′ ≤ γ̂∆t

∫ tn+1

tn

‖u′(t)‖V dt,

‖Rnf ‖V ′ ≤ ∆t

∫ tn+1

tn

‖f ′(t)‖V ′ dt.

Proof. For g ∈ C1([a, b]) we have
∫ b
a
g(x) dx− (b−a)g(b) =

∫ b
a
g′(x)(a−x) dx and

thus ∣∣∣∣∣
∫ b

a

g(x) dx− (b− a)g(b)

∣∣∣∣∣ ≤ (b− a)

∫ b

a

|g′(x)| dx.

A density argument shows that this inequality also holds for g from the Sobolev space
H1((a, b)). Take v ∈ V and define gv(t) := a(u(t), v). From u ∈ W 1(I;V ) it follows
that gv ∈ H1(I) and thus we get

|Rna (v)| =
∣∣∣∣∫ tn+1

tn

gv(t) dt−∆t gv(tn+1)

∣∣∣∣ ≤ ∆t

∫ tn+1

tn

|g′v(t)| dt

= ∆t

∫ tn+1

tn

|a(u′(t), v)| dt ≤ γ̂∆t

∫ tn+1

tn

‖u′(t)‖V dt ‖v‖V ,

and thus the bound for ‖Rna‖V ′ is proved. The bound for ‖Rnf ‖V ′ follows with the
same arguments.

Hence, we easily obtain an optimal error bound for the Euler method.
Theorem 4.2. The error bound

‖en‖H ≤
1
√
γ

(
γ̂‖u′‖L2(I;V ) + ‖f ′‖L2(I;V ′)

)
∆t, 0 ≤ n ≤ N, (4.7)

holds.
Proof. From the error formula (4.6) with v = en+1 we get, using Lemma 4.1,

1

2
‖en+1‖2H + γ∆t‖en+1‖2V

≤ 1

2
‖en‖2H + ∆t ‖en+1‖V

(
γ̂

∫ tn+1

tn

‖u′(t)‖V dt+

∫ tn+1

tn

‖f ′(t)‖V ′ dt
)
.

Combining this with

∆t ‖en+1‖V
(
γ̂

∫ tn+1

tn

‖u′(t)‖V dt+

∫ tn+1

tn

‖f ′(t)‖V ′ dt
)

≤ γ∆t ‖en+1‖2V +
(∆t)2

2γ

(
γ̂2

∫ tn+1

tn

‖u′(t)‖2V dt+

∫ tn+1

tn

‖f ′(t)‖2V ′ dt
)
,
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and using e0 = 0 we get

‖en+1‖2H ≤
(∆t)2

γ

n∑
k=0

(
γ̂2

∫ tk+1

tk

‖u′(t)‖2V dt+

∫ tk+1

tk

‖f ′(t)‖2V ′ dt
)

≤ (∆t)2

γ

(
γ̂2‖u′‖2L2(I;V ) + ‖f ′‖2L2(I;V ′)

)
.

Hence the error bound (4.7) holds.

4.2. Crank-Nicolson method. We apply the Crank-Nicolson method to the
problem in (4.1). We assume u0 ∈ V , hence a(u0, v), v ∈ V , is well-defined. For
N ∈ N define the time step ∆t := T/N . The sequence of approximations un ∈ V ,
0 ≤ n ≤ N , is defined as follows: u0 := u0 and for n ≥ 0,

(un+1 − un, v)H +
∆t

2
a(un+1 + un, v) =

∆t

2

(
f(tn+1)(v) + f(tn)(v)

)
∀ v ∈ V. (4.8)

From the Lax-Milgram lemma it follows that the variational problem (4.8) has a
unique solution un+1 ∈ V . The discretization error is denoted by en := u(tn)−un ∈ V .
From (4.1) and (4.8) we obtain the error formula

(en+1−en, v)H +
∆t

2
a(en+1 +en, v) = Rna (v)+Rnf (v), v ∈ V, 0 ≤ n ≤ N−1, (4.9)

with

Rna (v) :=
∆t

2
a(u(tn) + u(tn+1), v)−

∫ tn+1

tn

a(u(t), v) dt,

Rnf (v) :=

∫ tn+1

tn

f(t)(v) dt− ∆t

2

(
f(tn)(v) + f(tn+1)(v)

)
.

For the analysis of these residual terms we use the following elementary result. Con-
sider g ∈ C2([a, b]). Using the Peano quadrature error representation formula∫ b

a

g(x) dx− b− a
2

(
g(a) + g(b)

)
=

1

2

∫ b

a

g(2)(x)(x− a)(x− b) dx

we obtain ∣∣∣∣∣
∫ b

a

g(x) dx− b− a
2

(
g(a) + g(b)

)∣∣∣∣∣ ≤ (b− a)2

8

∫ b

a

|g(2)(x)| dx. (4.10)

A density argument shows that this inequality also holds for g from the Sobolev space
H2((a, b)).

Using (4.10) one can easily show that if the regularity condition f ∈ W 2(I;V ′)
is satisfied, then

|Rnf (v)| ≤ (∆t)2

8

∫ tn+1

tn

‖f (2)(t)‖V ′ dt‖v‖V for all v ∈ V

holds. In our applications, however, the assumption f ∈ W 2(I;V ′) is not realistic,
cf. Remark 3. Therefore, in the analysis in this section we use other (weaker) norms
which are suitable for our applications.
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For this we introduce the Friedrichs operator corresponding to the bilinear form.
We briefly recall some elementary properties of this operator, cf. [20]. The bilinear
form a(·, ·) on V can be represented by a bounded linear self-adjoint operator A :
V → V ′, given by (Au)(v) = a(u, v) for all u, v ∈ V . The corresponding Friedrichs
operator AF : D(AF ) ⊂ H → H is unbounded and has the following properties. Its
domain D(AF ) is dense in H and satisfies D(AF ) ⊂ V . Furthermore (AFu, v)H =
a(u, v) = (Au)(v) holds for all u ∈ D(AF ), v ∈ V . Hence, there is a constant cF > 0
such that (AFu, u)H ≥ cF ‖u‖2H for all u ∈ D(AF ). The mapping AF has a bounded
self-adjoint inverse A−1

F : H → H which satisfies A−1
F v = A−1v for all v ∈ H. We

also need the square root A
1
2

F : D(A
1
2

F ) → H of AF . This is a positive self-adjoint

(unbounded) operator and its domain satisfies D(A
1
2

F ) = V . Furthermore

a(u, v) = (A
1
2

Fu,A
1
2

F v)H for all u, v ∈ V

holds. Corresponding norms are defined by ‖v‖A−α := (A−αF v,A−αF v)
1
2

H , v ∈ H, with
α = 1

2 or α = 1. The following holds:

‖v‖A−1 ≤ c−
1
2

F ‖v‖A− 1
2
≤ c−1

F ‖v‖H for all v ∈ H. (4.11)

Using the Friedrichs operator we can avoid the regularity condition f ∈W 2(I;V ′) and
derive second order error bounds for the Crank-Nicolson method in a weaker norm
than ‖ · ‖H .

Theorem 4.3. Assume that the solution u satisfies u ∈W 2(I,H) and that there
exists a constant cf independent of n and ∆t such that

|Rnf (A−1
F v)| ≤ cf (∆t)3‖v‖H for all v ∈ V. (4.12)

Then the error bound

‖en‖
A−

1
2
≤
(

1

8
‖u(2)‖L2(I;H) + cf

√
T

)
(∆t)2, 0 ≤ n ≤ N, (4.13)

holds.
Proof. From the error formula (4.9) with v = A−1

F (en+1 + en) we get, with
wn := en+1 + en,

‖en+1‖2
A−

1
2
− ‖en‖2

A−
1
2

+
1

2
∆t‖wn‖2H = Rna (A−1

F wn) +Rnf (A−1
F wn).

From (4.12) we get

|Rnf (A−1
F wn)| ≤ cf (∆t)3‖wn‖H ≤ c2f (∆t)5 +

1

4
∆t‖wn‖2H .

For the other residual term we have

Rna (A−1
F wn) =

∆t

2
(A

1
2

F (u(tn) + u(tn+1)), A
1
2

FA
−1
F wn)H

−
∫ tn+1

tn

(A
1
2

Fu(t), A
1
2

FA
−1
F wn)H dt

=
∆t

2
(u(tn) + u(tn+1), wn)H −

∫ tn+1

tn

(u(t), wn)H dt.
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Applying (4.10) with gv(t) = (u(t), v)H and using u ∈W 2(I;H) we get

|Rna (A−1
F wn)| ≤ 1

8
(∆t)2

∫ tn+1

tn

‖u(2)‖H dt ‖wn‖H

≤ 1

64
(∆t)4

∫ tn+1

tn

‖u(2)‖2H dt+
1

4
∆t‖wn‖2H .

Thus we obtain

‖en+1‖2
A−

1
2
≤ ‖en‖2

A−
1
2

+
1

64
(∆t)4

∫ tn+1

tn

‖u(2)‖2H dt+ c2f (∆t)5.

Recursive application of this inequality and e0 = 0 yields

‖en+1‖2
A−

1
2
≤
( 1

64
‖u(2)‖2L2(I;H) + Tc2f

)
(∆t)4,

which completes the proof.

In Theorem 4.3 we used the smoothness assumption u ∈ W 2(I,H). From the data
smoothness assumptions in (4.2) and (4.3) we can (only) conclude, cf. (4.4), that
the generalized derivative u(2) ∈ L2(I;V ′) exists, which is weaker than the property
u(2) ∈ L2(I;H) that is needed to have u ∈ W 2(I,H). In concrete applications
there may be regularity analyses (using e.g. parabolic smoothing effects) from which
u ∈W 2(I,H) can be concluded. It is not clear whether in our application in section 5
a regularity property u ∈W 2(I,H) can be derived. Therefore, in Theorem 4.5 below
we give a result in which this regularity assumption is not needed. The key idea is to
replace the norm ‖ · ‖

A−
1
2

used in Theorem 4.3 by the weaker norm ‖ · ‖A−1 .

Lemma 4.4. If w ∈W (I) then A
− 1

2

F w ∈W 1(I;H) holds.
Proof. For w ∈ W (I) there exists a generalized derivative w′ ∈ L2(I;V ′) such

that ∫ T

0

(w(t), v)Hφ
′(t) dt = −

∫ T

0

w′(t)(v)φ(t) dt for all φ ∈ C∞0 (I), v ∈ V.

Take an arbitrary z ∈ H, hence A
− 1

2

F z ∈ V and∫ T

0

(A
− 1

2

F w(t), z)Hφ
′(t) dt =

∫ T

0

(w(t), A
− 1

2

F z)Hφ
′(t) dt = −

∫ T

0

w′(t)(A
− 1

2

F z)φ(t) dt

for all φ ∈ C∞0 (I). From∫ T

0

|w′(t)(A−
1
2

F z)|2 dt ≤
∫ T

0

‖w′(t)‖2V ′ dt ‖A
− 1

2

F z‖2V ≤ ‖w′‖2L2(I;V ′)

1

γ
a(A

− 1
2

F z,A
− 1

2

F z)

= ‖w′‖2L2(I;V ′)

1

γ
‖z‖2H

it follows that w′(t)(A
− 1

2

F ·) ∈ L2(I;H ′) ≡ L2(I;H). Hence, A
− 1

2

F w has a generalized
derivative in L2(I;H).

For the solution u we have u ∈ W 1(I;V ), u′ ∈ W (I) and thus, using the result in

Lemma 4.4, we get A
− 1

2

F u ∈W 2(I;H).

10



Theorem 4.5. Assume that there exists a constant cf independent of n and ∆t
such that

|Rnf (A−1
F v)| ≤ cf (∆t)3‖v‖H for all v ∈ V. (4.14)

Then the error bound

‖en‖A−1 ≤
(

1

8
‖(A−

1
2

F u)(2)‖L2(I;H) + cfc
− 1

2

F

√
T

)
(∆t)2, 0 ≤ n ≤ N, (4.15)

holds, with cF as in (4.11).

Proof. We use similar arguments as in the proof of Theorem 4.3. From the error
formula (4.9) with v = A−2

F (en+1 + en) we get, with wn := en+1 + en,

‖en+1‖2A−1 − ‖en‖2A−1 +
1

2
∆t‖wn‖2

A−
1
2

= Rna (A−2
F wn) +Rnf (A−2

F wn).

From (4.14) and (4.11) we get

|Rnf (A−2
F wn)| ≤ cf (∆t)3‖A−1

F wn‖H = cf (∆t)3‖wn‖A−1

≤ cfc
− 1

2

F (∆t)3‖wn‖
A−

1
2
≤ c2fc−1

F (∆t)5 +
1

4
∆t‖wn‖2

A−
1
2
.

For the other residual term we have

Rna (A−2
F wn) =

∆t

2

(
A
− 1

2

F (u(tn) + u(tn+1)), A
− 1

2

F wn
)
H
−
∫ tn+1

tn

(A
− 1

2

F u(t), A
− 1

2

F wn)H dt.

For the solution u we have A
− 1

2

F u ∈W 2(I;H), and thus applying (4.10) with gv(t) =

(A
− 1

2

F u(t), A
− 1

2

F v)H we get

|Rna (A−2
F wn)| ≤ 1

8
(∆t)2

∫ tn+1

tn

‖(A−
1
2

F u)(2)‖H dt ‖A
− 1

2

F wn‖H

≤ 1

64
(∆t)4

∫ tn+1

tn

‖(A−
1
2

F u)(2)‖2H dt+
1

4
∆t‖wn‖2

A−
1
2
.

Thus we obtain

‖en+1‖2A−1 ≤ ‖en‖2A−1 +
1

64
(∆t)4

∫ tn+1

tn

‖(A−
1
2

F u)(2)‖2H dt+ c2fc
−1
F (∆t)5.

Recursive application of this inequality and e0 = 0 yields

‖en+1‖2A−1 ≤
( 1

64
‖(A−

1
2

F u)(2)‖2L2(I;H) + Tc2fc
−1
F

)
(∆t)4,

which completes the proof.
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5. Analysis of the Stokes two-phase flow equation. In this section we
analyze the Stokes problem introduced in section 2 using the abstract setting presented
in section 4. First we introduce suitable function spaces. Let V := H1

0 (Ω)d,

N(Ω) :=
{

v ∈ C∞0 (Ω)d : div v = 0
}
,

and

Hdiv := N(Ω)
‖·‖L2

(closure of N(Ω) in L2(Ω)d ), (5.1)

Vdiv := N(Ω)
‖·‖1

(closure of N(Ω) in V). (5.2)

The spaces
(
Hdiv, ‖ · ‖L2

)
,
(
Vdiv, ‖ · ‖1

)
are Hilbert spaces. From ‖v‖L2 ≤ c‖v‖1 for

all v ∈ N(Ω) and a density argument it follows that there is a continuous embedding
Vdiv ↪→ Hdiv. Using N(Ω) ⊂ Vdiv ⊂ Hdiv and the fact that Hdiv is the closure of
N(Ω) w.r.t. ‖ · ‖L2 it follows that Vdiv is dense in Hdiv. Thus we have a Gelfand
triple

Vdiv ↪→ Hdiv ≡ H′div ↪→ V′div. (5.3)

The space Vdiv can also be characterized as, cf. [15],

Vdiv = {v ∈ V : div v = 0 } .

Corresponding to this Gelfand triple we define the space W (I) as in section 4. We
consider the variational Stokes problem given in (2.9), which fits in the abstract setting
given in section 4. The right-hand side in the Stokes flow consists of two terms. Firstly,
a time independent force (gravity), represented by the functional g(v) = (g,v)L2 with
a given function g ∈ L2(Ω)d. Secondly, there is a surface tension force located at the
(evolving) interface, represented by the time dependent functional

f(t)(v) = −τ
∫

Γ(t)

κn · v ds.

We take τ = 1. The right-hand side term g does not play a role in the error analysis
and is neglected in the remainder.

Related to the evolving interface Γ(t) we make several smoothness assumptions. In
particular, we assume that for all t ∈ I = (0, T ) the interface Γ(t) is a C2-hypersurface
in Rd. Furthermore we assume that Γ(t) is the boundary of a connected subdomain
Ω1(t) ⊂ Ω with (for simplicity) Ω1(t) ∩ ∂Ω = ∅. The interface is assumed to be
transported by a smooth velocity field b = b(x, t). For convenience we assume div b =
0. This assumption is not essential for the analysis presented below. Finally, we
assume that the curvature function κ = div n, which is defined (only) on Γ(t) has
a smooth global extension, denoted by κ(x, t), (x, t) ∈ Ω × I. These smoothness
assumptions are reasonable if one considers viscous two-phase flows with a smoothly
evolving interface.

A key issue is the regularity with respect to t of the right-hand side functional f . We
investigate this regularity issue and start with the following observation:

f(t)(v) = −
∫

Γ(t)

κn · v ds = −
∫

Ω1(t)

∇κ · v dx for all v ∈ Vdiv. (5.4)
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From this result it follows that f ∈ L2(I; V′div) holds. From the next lemma it follows,
cf. Corollary 5.2, that f ∈W 1(I; V′div) holds.

For smooth vector functions q = q(x, t) ∈ Rd and matrix functions Q = Q(x, t) ∈
Rd×d we use the notation ‖q‖∞ := max { |q(x, t)|2 : (x, t) ∈ Ω× I }, where | · |2 de-
notes the Euclidean vector norm. and ‖Q‖∞ := max { |Q(x, t)|F : (x, t) ∈ Ω× I },
with | · |F the Frobenius norm of the matrix Q.

Lemma 5.1. Let q = q(x, t) ∈ Rd be a smooth vector function. Then∣∣∣∣∣ ddt
∫

Ω1(t)

q · v dx

∣∣∣∣∣ ≤ c1‖v‖1 for all v ∈ C∞0 (Ω)d

holds, with c1 = c1(‖q‖∞, ‖∇q‖∞, ‖∂q∂t ‖∞, ‖b‖∞) independent of t and v.
Proof. Take v ∈ C∞0 (Ω)d. From Reynolds’ transport theorem and div v = 0 we

get ∣∣∣∣∣ ddt
∫

Ω1(t)

q · v dx

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ω1(t)

∂q

∂t
· v + b · ∇q v + b · ∇v q dx

∣∣∣∣∣
≤ c

(∫
Ω1(t)

|v|22 + |∇v|2F dx

) 1
2

≤ c‖v‖1,

and the result holds.

Corollary 5.2. We use the result in Lemma 5.1 with q = ∇κ and apply a
density argument. This implies that f ∈W 1(I; V′) holds.

Remark 2. We comment on the data smoothness assumptions discussed in
Remark 1, with V = Vdiv and H = Hdiv. We assume that the initial data u0 satsfies
u0 ∈ Vdiv. From Corollary 5.2 it follows that the condition in (4.2) is satisfied.
From |f(0)(v)| ≤ c‖v‖L2 for all v ∈ Vdiv and a density argument it follows that
f(0) ∈ H′div ≡ Hdiv holds. We assume that the initial condition u0 is sufficiently
smooth, e.g. u0 ∈ H2(Ω)d, such that v→ a(u0, bv) is an element of H′div, too. Hence
the assumption in (4.3) is also satisfied. From the abstract regularity result in (4.4)
we conclude that the solution of the Stokes problem has the regularity properties
u ∈ W 1(I; Vdiv) and u′ ∈ W (I), i.e. the generalized second derivative of u exists in
L2(I; V′div).

From the regularity properties discussed in Remark 2 and the analysis in section 4.1
we obtain the following optimal error bound for the Euler method.

Theorem 5.3. The errors en = u(tn)−un in the Euler method (3.1) are bounded
by

‖en‖L2 ≤ 1
√
γ

(
‖u′‖L2(I;Vdiv) + ‖f ′‖L2(I;V′div)

)
∆t, 0 ≤ n ≤ N, (5.5)

where γ is the ellipticity constant of a(·, ·) in V.
Proof. Follows immediately from Theorem 4.2.
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Remark 3. We note that f ∈W 2(I; V′div) is not a realistic assumption. Consider

a simplified one-dimensional analogon given by f(t)(v) :=
∫ Γ(t)

0
v(x) dx, v ∈ V :=

H1
0 ((0, 1)) and Γ(t) a smooth function with 0 < Γ(t) < 1. For smooth functions v

we have d
dtf(t)(v) = v(Γ(t)) and d2

dt2 f(t)(v) = v′(Γ(t))Γ′(t). From this it follows that
f ∈W 1(I;V ′) but f /∈W 2(I;V ′).

In the abstract error analysis of the Crank-Nicolson method given in Theorem 4.3 we
need a bound for the residual term Rnf , cf. (4.12). Below in Theorem 5.5 we derive
such a bound. We first derive a result that will be used in the proof of that theorem.

Lemma 5.4. For f ∈W 1(I; V′div) as in (5.4) the following holds:∣∣∣∣ d2

dt2
f(t)(v)

∣∣∣∣ ≤ c(‖v‖1 + ‖v‖H2(Ω1(t))

)
for all v ∈ N(Ω), (5.6)

with a constant c that depends only on (smoothness properties of) κ and b.
Proof. From Reynolds’ transport theorem and using div b = 0 we obtain

d

dt
f(t)(v) =

∫
Ω1(t)

∇κt · v + b · ∇2κv + b · ∇v∇κ dx

=

∫
Ω1(t)

(∇κt +∇2κb) · v dx+

∫
Ω1(t)

b · ∇v∇κ dx.

For the second derivative w.r.t. t we get, using Lemma 5.1,∣∣∣∣∣ ddt
∫

Ω1(t)

(∇κt +∇2κb) · v dx

∣∣∣∣∣ ≤ c‖v‖1.
For the second term on the right-hand side we again apply Reynolds’ theorem and
obtain∣∣∣∣∣ ddt

∫
Ω1(t)

b · ∇v∇κ dx

∣∣∣∣∣ ≤
∫

Ω1(t)

∣∣∣∣∂b

∂t
· ∇v∇κ+ b · ∇v∇κt + b · ∇(b · ∇v∇κ)

∣∣∣∣ dx
≤ c‖v‖H2(Ω1(t)).

Combination of the two bounds completes the proof.

In order to be able to derive the main result we need a regularity assumption concern-
ing the solution of a stationary Stokes problem. For this we introduce the Friedrichs
operator AF as explained in section 4 and corresponding to the Gelfand triple in (5.3)
and the Stokes bilinear form a(·, ·) as defined in (2.6). The domain of AF , denoted
by D(AF ) ⊂ Vdiv, equipped with the inner product (u,v)A := (AFu, AFv)L2 is a
Hilbert space. We introduce the subspace of Vdiv of functions that are in H2 on the
subdomain Ω1(t):

S = S(t) := {v ∈ Vdiv | v|Ω1(t) ∈ H2(Ω1(t))d },

with norm ‖v‖2S = ‖v‖21 + ‖v‖2H2(Ω1(t)). We introduce the following regularity as-

sumption: there exists a continuous embedding D(AF ) ↪→ S(t) that is uniform in
t ∈ I, i.e. there exists a constant c independent of t such that

‖v‖S ≤ c‖v‖A for all v ∈ D(AF ). (5.7)
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Remark 4. This regularity assumption is a rather weak one, since it only re-
quires, uniformly in t, H2-regularity of the stationary Stokes equations in the interior
subdomain Ω1(t) ⊂ Ω.

Theorem 5.5. For f as in (5.4) define Rnf (v) :=
∫ tn+1

tn
f(t)(v) dt−∆t

2

(
f(tn)(v)+

f(tn+1)(v)
)
, v ∈ Vdiv. Assume that the regularity assumption (5.7) is satisfied. Then

the following holds:

|Rnf (A−1
F v)| ≤ cf (∆t)3‖v‖L2 for all v ∈ Vdiv,

with a constant cf independent of v, n and ∆t.
Proof. Take v ∈ N(Ω). Using (4.10) and (5.6) we get

|Rnf (A−1
F v)| ≤ 1

8
(∆t)2

∫ tn+1

tn

∣∣∣∣ d2

dt2
f(t)(A−1

F v)

∣∣∣∣ dt
≤ c(∆t)3

(
‖A−1

F v‖1 + max
t∈I
‖A−1

F v‖H2(Ω1(t))

)
.

From the Friedrichs inequality and (4.11) we obtain

‖A−1
F v‖1 ≤ c a(A−1

F v, A−1
F v)

1
2 = c‖A−

1
2

F v‖L2 ≤ c‖v‖L2 .

Using the regularity assumption (5.7) it follows that

max
t∈I
‖A−1

F v‖H2(Ω1(t)) ≤ max
t∈I
‖A−1

F v‖S ≤ c‖A−1
F v‖A = c‖v‖L2 .

Thus we conclude that |Rnf (A−1
F v)| ≤ cf (∆t)3‖v‖L2 holds for all v ∈ N(Ω) and, by a

density argument, also for all v ∈ Vdiv.

Application of the general results in Theorem 4.3 and Theorem 4.5 result in the
following O(∆t2) error bounds for the Crank-Nicolson method.

Theorem 5.6. Assume that the regularity assumption (5.7) is satisfied and that
the solution u satisfies u ∈ W 2(I,Hdiv). Then the errors en = u(tn) − un in the
Crank-Nicolson method (3.2) are bounded by

‖en‖
A−

1
2
≤
(

1

8
‖u(2)‖L2(I;Hdiv) + cf

√
T

)
(∆t)2, 0 ≤ n ≤ N. (5.8)

Proof. Follows immediately from Theorem 4.3 and Theorem 5.5.

In general we only have, cf. Remark 2, the regularity properties u ∈ W 1(I; Vdiv)
and u′ ∈ W (I), i.e. u(2) ∈ L2(I; V′div). In Theorem 5.6 we need the (slightly)
stronger regularity condition u ∈W 2(I,Hdiv). It is not clear, whether under realistic
assumptions this condition holds. In the next theorem this regularity condition is
circumvented.

Theorem 5.7. Assume that the regularity assumption (5.7) is satisfied. Then
the errors en = u(tn)− un in the Crank-Nicolson method (3.2) are bounded by

‖en‖A−1 ≤
(

1

8
‖(A−1

F u)(2)‖L2(I;Hdiv) + cfc
− 1

2

F

√
T

)
(∆t)2, 0 ≤ n ≤ N. (5.9)

Proof. Follows immediately from Theorem 4.5 and Theorem 5.5.

15



6. Generalizations. We briefly address a few generalizations of the analysis
presented above.

Instead of the Stokes problem one can consider a linearized Navier-Stokes problem
(Oseen equation) of the following form. Let û = û(x, t) be a given (sufficiently
smooth) velocity field with div û = 0 and consider a bilinear form ã(·, ·) on V given
by

ã(u,v) = a(u,v) + (û · ∇u,v)L2 = a(u,v)− (u, û · ∇v)L2 ,

with a(·, ·) as in (2.6). For the convection term we have

|(u, û · ∇v)L2 | ≤ ‖û‖∞‖u‖L2a(v,v)
1
2 ,

| d
dt

(u, û · ∇v)L2 | ≤ c(‖u‖L2 + ‖u′‖L2)a(v,v)
1
2 ,

| d
2

dt2
(u, û · ∇v)L2 | ≤ c(‖u‖L2 + ‖u′‖L2 + ‖u(2)‖L2)a(v,v)

1
2 ,

with constants c = c(û) independent of t. The Oseen generalization of the Stokes
problem in (2.9) is as follows: determine u ∈W (I) such that u(0) = u0 and

u′(t)(v) + ã(u(t),v) = f(t)(v) + g(v) for all v ∈ Vdiv, t ∈ I.

For this problem, discretization error bounds for the implicit Euler and Crank-Nicolson
method can be derived based on a slight generalization of the abstract analysis in sec-
tion 4. For this we introduce the bilinear form

ã(u, v) = a(u, v) + ac(u, v)

with a(·, ·) as in section 4 and ac(u, v) = ac(t;u, v) a (time-dependent) continuous
bilinear form on V such that

ac(u, u) = 0 for all u ∈ V,

ac(u, v) ≤ cd‖u‖H a(v, v)
1
2 , for all u, v ∈ V, t ∈ I,

| d
k

dtk
ac(u, v)| ≤ c

( k∑
j=0

(‖u(j)‖H
)
a(v, v)

1
2 , k = 1, 2, u ∈W k(I;H), v ∈ V, t ∈ I,

with constants cd and c independent of t. We consider the abstract parabolic problem
as in (4.1) with a(·, ·) replaced by ã(·, ·). The regularity results formulated in Remark 1
still hold. The abstract analysis of the implicit Euler method in section 4.1 can
be applied with only minor modifications. In the error formula (4.6) we now have
ã(en+1, v) and Rnã (v) = Rna (v) + Rnac(v). Taking v = en+1 we get ã(en+1, en+1) =
a(en+1, en+1) ≥ γ‖en+1‖2V . The additional (due to convection) residual term Rnac(v)
can be bounded by

|Rnac(v)| ≤ ∆t

∫ tn+1

tn

∣∣∣∣ ddtac(u, v)

∣∣∣∣ dt ≤ c∆t∫ tn+1

tn

‖u(t)‖H + ‖u′(t)‖H dt ‖v‖V .

Using these results the same analysis as in the proof of Theorem 4.2 can be applied,
leading to a first order error bound of the form ‖en‖H ≤ c∆t. The analysis of the
Crank-Nicolson method in section 4.2 can also be generalized. We briefly address the
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analysis in Theorem 4.3. In the error formula we now have, with v = A−1
F wn, the

term ã(wn, A−1
F wn) which can be estimated by

ã(wn, A−1
F wn) = a(wn, A−1

F wn) + ac(w
n, A−1

F wn) = ‖wn‖2H + ac(w
n, A−1

F wn) ≥

‖wn‖2H − cd‖wn‖Ha(A−1
F wn, A−1

F wn)
1
2 ≥ (1− cdc

− 1
2

F )‖wn‖2H .

We assume that 1 − cdc
− 1

2

F > 0 holds (which in the application is fulfilled if ‖û‖∞
is sufficiently small). The residual term Rnã (A−1

F v) = Rna (A−1
F v) +Rnac(A

−1
F v) can be

treated by using

|Rnac(A
−1
F v)| ≤ (∆t)2

8

∫ tn+1

tn

∣∣∣∣ d2

dt2
ac(u,A

−1
F v)

∣∣∣∣ dt
≤ c(∆t)2

∫ tn+1

tn

2∑
j=0

‖u(j)(t)‖H dt a(A−1
F v,A−1

F v)
1
2

≤ c(∆t)2

∫ tn+1

tn

2∑
j=0

‖u(j)(t)‖H dt ‖v‖H .

Using these estimates the analysis in Theorem 4.3 applies with minor modifications.
A similar generalization of Theorem 4.5 can be obtained.

We return to the Stokes problem and consider the case with piecewise constant
viscosities µi(t) in the subdomains Ωi(t), with µ1 6= µ2. The corresponding bilinear
form is denoted by

aµ(u,v) =

∫
Ω

µ(t)∇u · ∇v dx =

2∑
i=1

∫
Ωi(t)

µi∇u · ∇v dx.

Note that µmina(u,u) ≤ aµ(u,u) ≤ µmaxa(u,u) for all u ∈ V, with µmin :=
min{µ1, µ2}, µmax := max{µ1, µ2}. The Stokes problem considered is as in (2.9),
with a(·, ·) replaced by aµ(·, ·). Existence and uniqueness of a solution of this problem
follow from the literature, cf. [18]. In the analysis of the implicit Euler method as in
section 4.1 the following complication arises. We have to control the time derivative
of gv(t) := aµ(t)(u(t),v). For sufficiently smooth u,v we have

d

dt
aµ(u(t),v) =

2∑
i=1

∫
Ωi(t)

µi∇u′(t) · ∇v + µib · ∇(∇u · ∇v) dx.

Hence there occur second order spatial derivatives of v and due to this a bound of
the form |Rnaµ(v)| ≤ c(u)‖v‖V , similar to the one in Lemma 4.1, does not hold. To
deal with this problem one could use a weaker norm (as in the analysis of the Crank-
Nicolson method) and, instead of en+1, insert A−1

F en+1 in the error formula (4.6),
with AF a Friedrichs operator. Obvious possibilities for this AF are the Friedrichs
operator correpsonding to the Stokes bilinear form a(·, ·) (as in section 5), or the one
corresponding to the bilinear form aµ(tn+1)(·, ·). A further investigation of this is left
for future research.

Finally we comment on the case of a two-phase Stokes problem with a constant
viscosity but piecewise constant densities ρi(t) in the subdomains Ωi(t), with ρ1 6= ρ2.
This case is more involved and can not be analyzed by a simple modification of the
analysis presented in this paper. Difficulties are caused by the fact that one has to con-
trol the error that arises due to the discretization of the term

∫ tn+1

tn
(ρ(t)u′(t),v)L2 dt

by e.g., (ρ(tn+ 1
2
)(un+1 − un),v)L2 .
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7. Numerical experiments. We present results of a numerical experiment for
a non-stationary Stokes problem as in (2.9). We take Ω = (0, 1)3 and consider a time
dependent interface Γ(t) which is an oscillating ellipsoid with major axes given by 0.25(1.0 + t · 0.1 sin(4πt))

0.25(1.0 + t · 0.1 cos(4πt))
0.25

 , t ∈ [0, 1].

On Γ we have a surface tension force as in (2.8) with τ = 1 and gravity g = 0.
The viscosities and densities are equal to one on Ω, the boundary conditions are of
homogeneous Dirichlet type. The initial conditon is given by the velocity solution of
the stationary Stokes problem at t = 0.
A cross section of the (size of the) computed discrete velocity solution for t = 1

8 i,
i = 0, . . . , 8 is given in Fig. 7.1.

Fig. 7.1. x-z-plane: velocity magnitude for t = 1
8
i, i = 0, . . . , 8

We solve the problem in a fully discrete, i.e. time and space, form. We use
the Rothe approach and consider the implicit Euler and the Crank-Nicolson time
discretization. The space discretization is based on a variational formulation in the
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space H1
0 (Ω)3×L2

0(Ω), i.e. a formulation that uses the pressure variable to satisfy the
divergence free constraint. For the Crank-Nicolson method this variational problem
is given in (3.3)-(3.4). For an accurate discretization it is important to use pressure
spaces that adapt to the discontinuity of the pressure across the interface. We use
the XFEM (extended finite element method) approach, based on the extension of
the standard linear finite element space with suitable discontinuous basis functions
corresponding to vertices close to the interface. We refer to the literature for an expla-
nation of this method [5]. It can be shown that this space has optimal approximation
properties for the discontinuous piecewise smooth pressure function. For the velocity
we use continuous piecewise quadratics. These finite elements are used on a fixed (i.e.
time independent) locally refined triangulation as illustrated in Fig. 7.2, with 18936
tetrahedra (62256 velocity unknowns).

Fig. 7.2. Cross section of tetrahedral triangulation.

In the remainder the triangulation and the corresponding velocity finite element
space (piecewise quadratics) are fixed. We vary the time discretization method (im-
plicit Euler or Crank-Nicolson) and the time step ∆t. Note that due to the non-
stationary interface the pressure XFEM space varies during the time integration. For
the Crank-Nicolson method the (discrete) pressure is treated in the trapezoidal form
p = 1

2 (pn+1 + pn), cf. (3.5). For the implicit Euler method we use p = pn+1.
In the experiments below we computed a (discrete) reference solution uh(t), t ∈

[0, 1], by using a sufficiently small time step ∆t. Given this reference solution, a
time discretization method and a time step we can then determine the error enh =
uh(tn)− unh, where unh is the computed discrete solution at time tn = n∆t.

We measure errors ‖enh‖ using the L2-norm and the following weaker norm, de-
noted by ‖ · ‖A−1

h
, which in a certain sense (cf. Remark 5) resembles the norm ‖ · ‖A−1

used in Theorem 5.7. Let Vh ⊂ V be the velocity finite element space of piecewise
quadratics. For f ∈ L2(Ω)3 we consider the variational Poisson equation: determine
uh ∈ Vh such that

a(uh,vh) = (f ,vh)L2 for all vh ∈ Vh. (7.1)

Let m be the number of degrees of freedom in this discretization and Ah, Mh ∈ Rm×m
the stiffness and mass matrix corresponding to the problem (7.1). The norm we use
is given by

‖x‖A−1
h

:= ‖M
1
2

hA−1
h Mhx‖2, x ∈ Rm, (7.2)
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where ‖ · ‖2 is the (scaled) Euclidean norm on Rm.

Remark 5. The norm in (7.2) is related to the ‖ · ‖A−1-norm as follows. The
inverse Friedrichs operator A−1

F : L2(Ω)3 → D(AF ) ⊂ Vdiv used in the analysis in
section 5 is the solution operator corresponding to the stationary Stokes problem, i.e.,
for f ∈ L2(Ω)3 we have u = A−1

F f iff u ∈ Vdiv satisfies

a(u,v) = (f ,v)L2 for all v ∈ Vdiv.

Then we have ‖f‖A−1 = ‖A−1
F f‖L2 = ‖u‖L2 . We assume this stationary Stokes

problem to be H2-regular, i.e., there is a constant c such that ‖A−1
F g‖H2 ≤ c‖g‖L2 for

all g ∈ L2(Ω)3. A corresponding Poisson problem, with Friedrichs operator denoted
by AP , is defined as follows: determine û = A−1

P f ∈ V such that

a(û,v) = (f ,v)L2 for all v ∈ V.

For the solutions u and û of the Stokes and Poisson problem, respectively, we have
a(u,v) = a(û,v) for all v ∈ Vdiv. For w := A−1

F u we get

‖u‖2L2 = a(w,u) = a(u,w) = a(û,w) ≤ ‖w‖H2‖û‖L2 ≤ c‖u‖L2‖û‖L2 .

From this and from the boundedness of A−1
P : L2(Ω)3 → L2(Ω)3 we conclude

‖f‖A−1 = ‖A−1
F f‖L2 ≤ c‖A−1

P f‖L2 ≤ ĉ‖f‖L2 for all f ∈ L2(Ω)3,

with constants c and ĉ independent of f . Hence ‖A−1
P · ‖L2 defines a norm on L2(Ω)3

that is weaker than ‖ · ‖L2 and stronger than ‖ · ‖A−1 . The norm in (7.2) is the vector
representation of this norm ‖A−1

P · ‖L2 . To be more precise, for fh ∈ Vh and with
Ph : Rm → Vh the finite element isomorphism we have

‖A−1
P fh‖L2 = ‖M

1
2

hA−1
h MhP

−1
h fh‖2 = ‖P−1

h fh‖A−1
h
.

We finally note that we use ‖A−1
P · ‖L2 instead of ‖A−1

F · ‖L2 since the former is much
easier to compute.

Implicit Euler method. We applied the implicit Euler method with N∆t = 1
and vary N between N = 32 and N = 4096. Results for the relative L2-error
‖enh‖L2/‖uh(tn)‖L2 are shown in Figure 7.3 and Table 7.1. The results in Figure 7.3
are obtained by evaluating, for given N ∈ {512, 1024, 2048, 4096}, the error in equidis-
tant time steps ti = i/32, 0 < i ≤ 32. The mean error, denoted by ‖emean

h ‖L2 ,
is obtained by computing the mean of these relative errors at the time points ti,
0 < i ≤ 32. The results and corresponding numerical convergence order are given
in Table 7.1. These results clearly show the expected first order convergence of the
implicit Euler method.

Crank-Nicolson method. We repeated the experiment but now with the Crank-
Nicolson method instead of the Euler method. The error behavior in the L2-norm
is shown in Figure 7.4. The mean L2-errors and corresponding numerical order are
given in Table 7.2.

Note the very irregular error behavior in Figure 7.4. Furthermore, from the
results in that figure and in Table 7.2 it is clear that the Crank-Nicolson method does
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Fig. 7.3. L2-errors in implicit Euler method: ||en
h ||L2/‖uh(tn)‖L2

N ||emean
h ||L2 order

32 3.20e-2 -
64 1.67e-2 0.94
128 8.57e-3 0.97
256 4.34e-3 0.98
512 2.18e-3 0.99
1024 1.09e-3 1.00
2048 5.48e-4 1.00
4096 2.74e-4 1.00

Table 7.1
L2-errors in implicit Euler method.

N ||emean
h ||L2 order

32 7.06e-3 -
64 8.74e-4 3.01
128 2.10e-4 2.06
256 5.54e-5 1.92
512 2.04e-5 1.44
1024 1.26e-5 0.69
2048 7.90e-6 0.67
4096 4.77e-6 0.73

Table 7.2
L2-errors in Crank-Nicolson method.

not show second order convergence with respect to the L2-norm. We repeated the
experiment, but now with the weaker ‖ · ‖A−1

h
-norm instead of the L2-norm. The

results are shown in Figure 7.5 and Table 7.3 (first three columns).
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Fig. 7.4. L2-errors in Crank-Nicolson method: ||en
h ||L2/‖uh(tn)‖L2
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Fig. 7.5. A−1
h -errors in Crank-Nicolson method: ||en

h ||A−1
h

/‖uh(tn)‖
A−1
h

We now observe a much smoother error behavior and a second order convergence.
This is consistent to the theoretical error analysis presented in this paper.

Finally we address an issue related to the choice of the pressure Lagrange mul-
tiplier, which is introduced to satisfy the divergence free constraint for the velocity..
Based on heuristic arguments we used the choice p = 1

2 (pn+1 + pn). An alternative
is to use p = pn+1. We repeated the experiment with the latter choice; the results
are given in Table 7.3 (columns 4,5). We see that using p = pn+1 leads to a strong
deterioration of the rate of convergence of the Crank-Nicolson method. A theoretical
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p = 1
2 (pn+1 + pn) p = pn+1

N ||emean
h ||A−1

h
order ||emean

h ||A−1
h

order

32 6.86e-3 - 6.92e-3 -
64 1.11e-3 2.63 1.15e-3 2.58
128 2.71e-4 2.03 3.15e-4 1.87
256 6.77e-5 2.00 1.01e-4 1.63
512 1.69e-5 2.00 3.91e-5 1.37
1024 4.22e-6 2.00 1.75e-5 1.16
2048 1.05e-6 2.01 8.42e-6 1.05
4096 2.58e-7 2.02 4.17e-6 1.01

Table 7.3
A−1

h -errors in Crank-Nicolson method.

analysis which explains this effect, for this class of problems, is not known, yet.
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