
NITSCHE-XFEM WITH STREAMLINE DIFFUSION
STABILIZATION FOR A TWO-PHASE MASS TRANSPORT

PROBLEM

CHRISTOPH LEHRENFELD AND ARNOLD REUSKEN∗

Abstract. We consider an unsteady convection diffusion equation which models the transport
of a dissolved species in two-phase incompressible flow problems. The so-called Henry interface
condition leads to a jump condition for the concentration at the interface between the two phases. In
[A. Hansbo, P. Hansbo, Comput. Methods Appl. Mech. Engrg. 191 (2002)], for the purely elliptic
stationary case, extended finite elements (XFEM) are combined with a Nitsche-type of method,
and optimal error bounds are derived. These results were extended to the unsteady case in [A.
Reusken, T. Nguyen, J. Fourier Anal. Appl. 15 (2009)]. In the latter paper convection terms are
also considered, but assumed to be small. In many two-phase flow applications, however, convection
is the dominant transport mechanism. Hence there is a need for a stable numerical method for the
case of a convection dominated transport equation. In this paper we address this topic and study
the streamline diffusion stabilization for the Nitsche-XFEM method. The method is presented and
results of numerical experiments are given that indicate that this kind of stabilization is satisfactory
for this problem class. Furthermore, a theoretical error analysis of the stabilized Nitsche-XFEM
method is presented that results in optimal a-priori discretization error bounds.

AMS subject classification. 65N12, 65N30

1. Introduction. Let Ω ⊂ Rd, d = 2, 3, be a convex polygonal domain that con-
tains two different immiscible incompressible phases. The (in general time dependent)
subdomains containing the two phases are denoted by Ω1, Ω2, with Ω̄ = Ω̄1∪ Ω̄2. The
interface Γ := Ω̄1 ∩ Ω̄2 is assumed to be sufficiently smooth. A model example is a
(rising) droplet in a flow field. The fluid dynamics in such a flow problem is usually
modeled by the incompressible Navier-Stokes equations combined with suitable con-
ditions at the interface which describe the effect of surface tension. For this model
we refer to the literature, e.g. [4, 11, 18, 24, 12]. By w we denote the velocity field
resulting from these Navier-Stokes equations. We assume that div w = 0 holds. Fur-
thermore, we assume that the transport of the interface is determined by this velocity
field, in the sense that VΓ = w ·n holds, where VΓ is the normal velocity of the inter-
face and n denotes the unit normal at Γ pointing from Ω1 into Ω2. In this paper we
restrict ourselves to the case of a stationary interface, i.e., we assume w ·n = 0. This
case is (much) easier to handle than the case of an non-stationary interface Γ = Γ(t).
We restrict to this simpler case because even for that the issue of stabilization of the
Nitsche-XFEM method for convection-dominated transport problems has not been
investigated, yet. The case of a non-stationary interface will be studied in a forth-
coming paper. We comment on this further in Remark 7 at the end of the paper. We
consider a model which describes the transport of a dissolved species in a two-phase
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flow problem. In strong formulation this model is as follows, cf. Remark 1:

∂u

∂t
+ w · ∇u− div(ε∇u) = f in Ωi, i = 1, 2, t ∈ [0, T ], (1.1)

[ε∇u · n]Γ = 0, (1.2)

[βu]Γ = 0, (1.3)

u(·, 0) = u0 in Ωi, i = 1, 2, (1.4)

u(·, t) = 0 on ∂Ω, t ∈ [0, T ]. (1.5)

For a sufficiently smooth function v, [v] = [v]Γ denotes the jump of v across Γ, i.e.
[v] = (v1)|Γ − (v2)|Γ, where vi = v|Ωi

is the restriction of v to Ωi. In (1.1) we have
standard parabolic convection-diffusion equations in the two subdomains Ω1 and Ω2.
In most applications one has a homogeneous problem, i.e. f ≡ 0. The diffusion
coefficient ε = ε(x) is assumed to be piecewise constant ε = εi > 0 in Ωi:

ε = εi > 0 in Ωi.

In general we have ε1 6= ε2. The interface condition in (1.2) results from the conser-
vation of mass principle. The condition in (1.3) is the so-called Henry condition, cf.
[17, 23, 22, 5, 4]. In this condition the coefficient β = β(x) is strictly positive and
piecewise constant β = βi > 0 in Ωi:

β = βi > 0 in Ωi.

In general we have β1 6= β2, since species concentration usually has a jump disconti-
nuity at the interface due to different solubilities within the respective fluid phases.
Hence, the solution u is discontinuous across the interface.

Remark 1. We briefly comment on the physical background of the interface con-
dition (1.3). It originates from Henry’s law, which is a constitutive law stating that for
a gas in equilibrium with its solution in some (liquid) solvent the solubility of the gas
in the solvent is proportional to the pressure of the gas. Since at constant temperature
the pressure is proportional to the concentration, one obtains a dimensionless Henry
constant as the ratio between the solvent-phase concentration of the solute and the
gas-phase concentration. Similar constitutive laws hold for many liquid-liquid-solute
systems at equilibrium, where the liquids are immiscible. Such constant concentration
ratio constitutive laws are valid only under isothermal conditions and in general the
solute concentrations have to be small, i.e. one considers sufficiently dilute solutions.
In systems that are not in equilibrium one typically assumes a “local” equilibrium
at the interface, i.e. a constant concentration ratio at the interface, resulting in the
(Henry) condition (1.3). Clearly there is a dependence of the Henry coefficient β on
the diffusion coefficient ε in the sense that if one changes the material system, resulting
in other diffusion coefficients εi, then also the Henry coefficient will be different. We
do not consider this dependence here and assume a fixed β. The Dirichlet boundary
condition in (1.5) is used to simplify the presentation and the theoretical analysis.
Other, from a physical point of view more realistic, boundary conditions are used in
section 3 and remark 6.

In recent years it has been shown that for such a transport problem with an (evolving)
interface the Nitsche-XFEM method is very well suited [13, 20]. In [14, 15, 16, 1, 8]
the application of the Nitsche-XFEM to other classes of problems is studied. In [13]
this method is analyzed for a stationary heat diffusion problem (no convection) with
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a conductivity that is discontinuous across the interface (ε1 6= ε2) but with a solution
that is continuous across the interface (β1 = β2). In [20] the method is studied for
the parabolic problem described above, with β1 6= β2 (discontinuous solution), and
with a convection term in (1.1). It is assumed, however, that the transport prob-
lem is diffusion dominated. In the papers [25, 7] domain decomposition methods
with Nitsche type conditions at the subdomain interfaces and streamline-diffusion or
interior penalty stabilization (for strong convection) are studied. In these papers,
however, the interfaces (subdomain boundaries) are aligned to the grids and therefore
an XFEM technique is not needed. In none of the above-mentioned papers, or in
other literature that we know of, the Nitsche-XFEM method is considered for a two-
phase transport problem as in (1.1)-(1.5) that is convection-dominated. In this paper
we treat this topic. We combine the Nitsche-XFEM method with one of the most
popular FE stabilization techniques for convection-dominated problems, namely the
streamline diffusion finite element method (SDFEM), cf. [21]. The resulting method is
presented in section 2. In section 3 the method is applied to convection-dominated test
problems and its performance is investigated. An error analysis of the Nitsche-XFEM
with SD stabilization is given in section 4.

2. The Nitsche-XFEM method with SD stabilization. Since we restrict to
the case of a stationary interface, the discontinuity in the solution is located at a fixed
position, independent of t, which then allows a rather standard weak formulation and
a corresponding discretization based on the method of lines approach. In this section
we present this weak formulation and the stabilized Nitsche-XFEM discretization. In
case of an evolving interface a space-time weak formulation and corresponding space-
time XFEM discretization is more natural, cf. Remark 7.

We describe the Nitsche-XFEM method as treated in detail in [20]. We first introduce
a suitable weak formulation of the transport problem. For this we need the space

H1
0 (Ω1 ∪ Ω2) := { v ∈ L2(Ω) | v|Ωi

∈ H1(Ωi), i = 1, 2, v|∂Ω = 0 }.

For v ∈ H1
0 (Ω1 ∪ Ω2) we write vi := v|Ωi

, i = 1, 2. Furthermore

H := L2(Ω), V := { v ∈ H1
0 (Ω1 ∪ Ω2) | [βv]Γ = 0 }. (2.1)

Note that v ∈ V iff βv ∈ H1
0 (Ω). On H we use the scalar product

(u, v)0 := (βu, v)L2 =

∫
Ω

βuv dx,

which clearly is equivalent to the standard scalar product on L2(Ω). The corre-
sponding norm is denoted by ‖ · ‖0. For u, v ∈ H1(Ωi) we define (u, v)1,Ωi :=
βi
∫

Ωi
∇ui · ∇vi dx and furthermore

(u, v)1,Ω1∪Ω2
:= (u, v)1,Ω1

+ (u, v)1,Ω2
, u, v ∈ V.

The corresponding norm is denoted by | · |1,Ω1∪Ω2
. This norm is equivalent to(

‖ · ‖20 + | · |21,Ω1∪Ω2

) 1
2 =: ‖ · ‖1,Ω1∪Ω2 .

We emphasize that the norms ‖ · ‖0 and ‖ · ‖1,Ω1∪Ω2 depend on β. We define the
bilinear form

a(u, v) := (εu, v)1,Ω1∪Ω2
+ (w · ∇u, v)0, u, v ∈ V. (2.2)
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Consider the following weak formulation of the mass transport problem (1.1)-(1.5):
Determine u ∈W 1(0, T ;V ) := { v ∈ L2(0, T ;V ) | v′ ∈ L2(0, T ;V ′) } such that u(0) =
u0 and for almost all t ∈ (0, T ):

(
du

dt
, v)0 + a(u, v) = (f, v)0 for all v ∈ V. (2.3)

In [20] it is proved that if the velocity field w satisfies div w = 0 in Ωi, i = 1, 2,
w · n = 0 at Γ, and ‖w‖L∞(Ω) ≤ c < ∞, then for f ∈ H, and u0 sufficiently smooth
the weak formulation (2.3) has a unique solution. For precise definitions of the gen-
eralized time derivatives used in the definition of W 1(0, T ;V ) and in (2.3) we refer to
[20].

We describe the Nitsche-XFEM method for spatial discretization of the weak formu-
lation in (2.3). Let {Th}h>0 be a family of shape regular triangulations of Ω. A trian-
gulation Th consists of simplices T , with hT := diam(T ) and h := max{hT | T ∈ Th}.
For any simplex T ∈ Th let Ti := T ∩ Ωi be the part of T in Ωi. We now introduce
the finite element space

V Γ
h := { v ∈ H1

0 (Ω1 ∪ Ω2) | v|Ti
is linear for all T ∈ Th, i = 1, 2. }. (2.4)

Note that V Γ
h ⊂ H1

0 (Ω1 ∪ Ω2), but V Γ
h 6⊂ V , since the Henry interface condition

[βvh] = 0 does not necessarily hold for vh ∈ V Γ
h .

Remark 2. In the literature a finite element discretization based on the space
V Γ
h is often called an extended finite element method (XFEM), cf. [3, 9]. Furthermore,

in the (engineering) literature this space is usually characterized in a different way,
which we briefly explain. Let Vh ⊂ H1

0 (Ω) be the standard finite element space of
continuous piecewise linears, corresponding to the triangulation Th. Define the index
set J = {1, . . . , n}, where n = dimVh, and let (φi)i∈J be the nodal basis in Vh.
Let JΓ := { j ∈ J | |Γ ∩ supp(φj)| > 0 } be the index set of those basis functions
the support of which is intersected by Γ. The Heaviside function HΓ has the values
HΓ(x) = 0 for x ∈ Ω1, HΓ(x) = 1 for x ∈ Ω2. Using this, for j ∈ JΓ we introduce a
so-called enrichment function Φj(x) := HΓ(x)−HΓ(xj), where xj is the vertex with
index j. We introduce new basis functions φΓ

j := φjΦj , j ∈ JΓ, and define the space

Vh ⊕ span{φΓ
j | j ∈ JΓ }. (2.5)

This space is the same as V Γ
h in (2.4) and the characterization in (2.5) accounts for

the name “extended finite element method”. The new basis functions φΓ
j have the

property φΓ
j (xi) = 0 for all i ∈ J . An L2-stability property of the basis (φj)j∈J ∪

(φΓ
j )j∈JΓ of V Γ

h is given in [19].

Define (κi)|T = |Ti|/|T |, T ∈ Th, i = 1, 2, hence, κ1 + κ2 = 1. For v sufficiently
smooth such that (vi)|Γ, i = 1, 2, are well-defined, we define the weighted average

{v} := κ1(v1)|Γ + κ2(v2)|Γ.

For the average and jump operators the following identity holds for all f, g such that
these operators are well-defined:

[fg] = {f}[g] + [f ]{g} − (κ1 − κ2)[f ][g]. (2.6)

Define the scalar products

(f, g)Γ :=

∫
Γ

fg ds, (f, g) 1
2 ,h,Γ

:=
∑
T∈T Γ

h

h−1
T

∫
ΓT

fg ds,
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where T Γ
h is the collection of T ∈ Th with ΓT = T ∩ Γ 6= ∅. With ε̄ := 1

2 (ε1 + ε2) we
introduce the bilinear form

ah(u, v) := a(u, v)− ([βu], {ε∇v ·n})Γ− ({ε∇u ·n}, [βv])Γ +λε̄([βu], [βv]) 1
2 ,h,Γ

, (2.7)

with λ > 0 a parameter that will be specified below. In the literature for a diffusion
dominated problem λ is chosen as a “sufficiently large” constant. We will denote this
choice as the diffusive scaling λd. Using the mesh Péclet number Ph := 1

2‖w‖∞h/ε̄
with ‖w‖∞ := ‖w‖L∞(Ω) the analysis in section 4 motivates the condition

λd ≤ λ ≤ λc := λd max(Ph, 1) (2.8)

on λ. The choice λ = λc will be denoted as the convective scaling as in that case
the stabilization term ([βu], [βv]) 1

2 ,h,Γ
in (2.7) scales with ‖w‖∞ in the convection-

dominated case Ph ≥ 1.
Remark 3. In practice the following localized variant of the parameter choice rule

for λ is used. For T ∈ Th we define the element Péclet number PTh := 1
2‖w‖∞,ThT /ε̄.

A generalization of the analysis in section 4 leads to the following condition on λ = λT :

λdT ≤ λT ≤ λcT with λdT = c, λcT = cmax(PTh , 1) (2.9)

The stabilization term λε̄([βu], [βv]) 1
2 ,h,Γ

in (2.7) is generalized to

ε̄
∑
T∈T Γ

h

λTh
−1
T

∫
ΓT

[βu][βv] ds.

In practice this variant typically performs better than the one with a global stabiliza-
tion parameter λ.

Using the bilinear form ah(·, ·) we define a method of lines discretization of (2.3).
Let û0 ∈ V Γ

h be an approximation of u0. For t ∈ [0, T ] let uh(t) ∈ V Γ
h be such that

uh(0) = û0 and

(
duh
dt

, vh)0 + ah(uh, vh) = (f, vh)0 for all vh ∈ V Γ
h . (2.10)

Opposite to the weak formulation in (2.3), in this discretization method the Henry
interface condition [βuh] = 0 is not treated as an “essential” interface condition in
the finite element space V Γ

h . This interface condition is satisfied only approximately
by using a modified bilinear form ah(·, ·), which is a technique due to Nitsche. For
this semi-discretization optimal order error bounds are derived in [20]. In the analysis
in that paper it is assumed that the transport problem is diffusion-dominated. In
the evaluation of the bilinear form ah(·, ·) one has to determine integrals over Γ. In
practice the weak formulation will be used with Γ replaced by an approximation Γh.

We now add the streamline diffusion stabilization to this semi-discretization. Recall
that in a one-phase problem (set β = 1) in the SD approach one adds a residual term
of the form ∑

T∈Th

γT

∫
T

(
∂uh
∂t

+ w · ∇uh − div(ε∇uh)− f
)

(w · ∇vh) dx (2.11)

to the variational formulation. The choice of the stabilization parameter value γT is
discussed below. If, as in our case, one considers linear finite elements then the term
div(ε∇uh) vanishes.
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For the stabilization of the Nitsche-XFEM method we make obvious modifications
related to the fact that in the XFEM space, close to the interface we have contributions
on elements T ∩Ωi 6= T . For the stabilization we introduce a locally weighted discrete
variant of (·, ·)0:

(u, v)0,h :=

2∑
i=1

∑
T∈Th

βiγT

∫
T∩Ωi

uv dx =
∑
T∈Th

γT (u, v)0,T (2.12)

For the choice of γT we use a strategy as in the standard finite element method, cf.
[21, 10]. We take γT as follows:

γT =

{ 2hT

‖w‖∞,T
if PTh > 1

h2
T /ε̄ if PTh ≤ 1.

(2.13)

Very similar results (both in the theoretical analysis and in the experiments) are
obtained if for the case PTh ≤ 1 one sets γT = 0. Note that the stabilization parameter
γT does not depend on the position of the interface within the element. We introduce
the following Nitsche-XFEM semi-discretization method with SD stabilization: For
t ∈ [0, T ] let uh(t) ∈ V Γ

h be such that uh(0) = û0 and

(
duh
dt

, vh)0 + (
duh
dt

,w · ∇vh)0,h + ah(uh, vh) + (w · ∇uh,w · ∇vh)0,h

= (f, vh)0 + (f,w · ∇vh)0,h for all vh ∈ V Γ
h .

(2.14)

Clearly, this semi-discretization can be combined with standard methods for time
discretization to obtain a fully discrete problem. For example, the θ-scheme takes the
following form, where for notational simplicity we assume that f does not depend on
t. For n = 0, 1, . . . , N − 1, with N∆t = T , set u0

h := û0 and determine un+1
h ∈ V Γ

h

such that for all vh ∈ V Γ
h :(

un+1
h − unh

∆t
, vh

)
0

+

(
un+1
h − unh

∆t
,w · ∇vh

)
0,h

+ ah(θun+1
h + (1− θ)unh, vh) + (w · (θ∇un+1

h + (1− θ)∇unh),w · ∇vh)0,h

= (f, vh)0 + (f,w · ∇vh)0,h.

(2.15)

In the numerical experiments in section 3 we used this method with θ = 1.
Remark 4. Above we considered the case of a stationary interface and an XFEM

space based on piecewise linears. Both the Nitsche-XFEM method and the SD sta-
bilization method presented above have a straightforward extension to higher order
piecewise polynomials. Note that for higher order finite elements in the SD stabiliza-
tion the term (div(ε∇uh),w · ∇vh)0,h has to be taken into account, cf. (2.11).

3. Numerical experiments. In this section we present results of numerical ex-
periments to illustrate properties of the stabilized Nitsche-XFEM method introduced
above. We investigate the effect of the choice of the stabilization parameter λ in the
Nitsche term. In section 3.1 we consider two stationary convection-diffusion problems
with a Henry interface condition in two space dimensions. The first problem in section
3.1.1, which has a known smooth solution, is used to illustrate the optimal conver-
gence order of the stabilized method. The second problem in section 3.1.2, which has
a known solution with an interior layer, illustrates the effects of SD stabilization. In a
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‖eh‖0 ‖w·∇eh‖0 ‖[eh]‖L2(Γ)

L conv eoc diff eoc conv eoc diff eoc conv eoc diff eoc
1 1.67e-1 - 1.75e-1 - 1.58e-0 - 1.57e-0 - 1.25e-2 - 5.76e-1 -
2 4.41e-2 1.9 4.41e-2 2.0 7.83e-1 1.0 7.83e-1 1.0 2.06e-3 2.6 1.14e-1 2.3
3 9.58e-3 2.2 9.62e-3 2.2 3.88e-1 1.0 3.88e-1 1.0 5.60e-4 1.9 2.76e-2 2.1
4 2.04e-3 2.2 2.06e-3 2.2 1.93e-1 1.0 1.93e-1 1.0 1.13e-4 2.3 6.03e-3 2.2
5 4.57e-4 2.2 4.60e-4 2.2 9.62e-2 1.0 9.62e-2 1.0 3.48e-5 1.7 1.76e-3 1.8
6 1.07e-4 2.1 1.07e-4 2.1 4.80e-2 1.0 4.80e-2 1.0 1.08e-5 1.7 5.40e-4 1.7

Table 3.1
Example of section 3.1.1: Errors on six refinement levels.

third example, which is given in section 3.2, we consider a transient spatially 3D trans-
port problem as described in section 1. The example demonstrates the performance
of the (un)stabilized Nitsche-XFEM method for a more realistic case. We consider
two extreme cases for the penalty term of the Nitsche formulation. The one choice
λT = λdT is denoted as the diffusive scaling(diff) whereas the other choice λT = λcT
is denoted as the convective scaling(conv). Furthermore in all the experiments we use
a slightly different stabilization parameter as in (2.13):

γT =

{
(1− 1

PT
h

) hT

2‖w‖∞,T
if PTh > 1

0 if PTh ≤ 1
(3.1)

This choice can also be found in [10].

3.1. Stationary mass transport problems. We start with two examples in
two space dimensions with a known solution.

3.1.1. Problem with a smooth solution. We consider a two-dimensional sta-
tionary problem with a smooth solution. The interface is Γ = {y = 0} and the domains
are Ω1 = [−1, 1]× [−1, 0] and Ω2 = [−1, 1]× [0, 1]. The piecewise constant coefficients
ε, β are chosen as ε = (ε1, ε2) = (2 · 10−7, 1 · 10−7), β = (β1, β2) = (3, 2) and a
stationary velocity field is given by w = (1, 0). We adapt the right hand side f and
the Dirichlet boundary conditions such that u∗ defines the solution to our problem,
with

u∗(x, y) =

{
2
3 sin(π(x+ y)) for (x, y) ∈ Ω1,
sin(π(x+ 4

3y)) for (x, y) ∈ Ω2.

The problem is solved on an unstructured mesh with 240 elements (on the coarsest
level) by the proposed stabilized method. The coarsest mesh (L = 1) is uniformly
refined five times. The norms used in the error analysis of section 4 for the error
eh = u − uh are listed in Table 3.1. We observe the expected linear convergence
in the norm ‖w · ∇eh‖0. The (β-weighted) L2-norm converges with O(h2) which is
half an order better than in the estimates. For the interface jump error the order of
convergence appears to be smaller than two, but larger than 3/2 for both scalings of
the Nitsche stabilization while the convective scaling leads to an interface error which
is roughly 100 times smaller than for the diffusive scaled Nitsche method.

3.1.2. Problem with a sharp layer. In this example a two-dimensional sta-
tionary problem with a parabolic layer at the interface is considered. The interface is
Γ = {y = 0} and the domains are Ω1 = [0.25, 2] × [−1, 0] and Ω2 = [0.25, 2] × [0, 1].
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The piecewise constant coefficients ε, β are chosen as ε = (ε1, ε2) = (9 ·10−7, 4 ·10−7),
β = (β1, β2) = (27, 11) and a stationary velocity field is given by w = (1, 0). We
adapt the right hand side f and the boundary conditions such that the solution to
our problem is given by

u∗(x, y) =

{
1− 16

27 exp(Cn√
x
y) for (x, y) ∈ Ω1,

exp(
−Cp√
x
y) for (x, y) ∈ Ω2

where the constants Cp and Cn are chosen s.t. the width of the layers at the outflow
(x = 2) is approximately 10% of the domain size. The solution close to the interface is
displayed in Figure 3.1. According to the solution u∗ we prescribe Dirichlet boundary
conditions on ∂ΩD := {x = 0.25} and Neumann boundary conditions ε∇u · n = g on
∂Ω \ ∂ΩD.

The problem is discretized on an unstructured triangular mesh with 400 elements
on the coarsest mesh which is uniformly refined five times. Apart from the error in
the weighted interface jump the errors are measured in Ω̃ = {|y| > 0.1} away from the
interface. In Figure 3.1 and 3.2 the convergence of the errors in the (β-weighted) L2-
norm of the solution and the streamline derivative as well as the interface jump error
are displayed. We observe that the error of the streamline derivative is drastically
improved by the stabilized methods. In contrast to the stabilized methods the error of
the unstabilized methods are not even monotonously decreasing. In the (β-weighted)
L2-norm one also observes a significant improvement of the stabilization. Concerning
the different scalings of the Nitsche stabilization it is expected that the convective
scaling leads to a better resolution of the interface jump condition. This is confirmed
by the results in Fig. 3.1 (right).
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‖[eh]‖L2(Γ)

Fig. 3.1. Example of section 3.1.2: Solution at in- and outflow (left) close to the interface and
interface jump error(right).

3.2. Transient mass transport problem.

3.2.1. Problem description. We consider a time dependent problem with a
stationary interface. The domain Ω := [0, 2]×[0, 2]×[0, 1] is separated into a cylindrical
domain Ω1 :=

{
(x, y, z) ∈ R3 : (x− 1)2 + (y − 1)2 < R2

}
, with R = 0.25, and Ω2 :=

Ω \Ω1 by the stationary interface Γ := ∂Ω1 \ ∂Ω. The piecewise constant coefficients
ε, β are chosen as ε = (ε1, ε2) = (10−4, 2 ·10−4), β = (β1, β2) = (3, 1) and a stationary
velocity field is given by

w|Ω1
= (0, 0, 0), w|Ω2

= (1 +R2(d2
y − d2

x)r−4, −2R2(dxdy)r−4, 0) (3.2)
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Fig. 3.2. Example of section 3.1.2: Errors away from the layer on six refinement levels.

where dx := x− 1, dy := y − 1 and r := (d2
x + d2

y)
1
2 . A sketch of the domains and of

w in term of field-lines is given in Fig. 3.3.

Ω1

Γ
∂ΩD

Ω2

Fig. 3.3. Sketch of interface position and flow field (left) and mesh (right)

The assumptions on the velocity field made in section 1 are satisfied: div w = 0
in both domains and w · n = 0 on Γ. We impose a Dirichlet boundary condition on
∂ΩD := {(x, y, z) ∈ Ω : x = 0}, s.t. u|∂ΩD

= 0.05 and a homogeneous Neumann
boundary condition ε∇u · n = 0 on ∂Ω \ ∂ΩD. As initial condition we take u = 0
on Ω1, u = 0.05 on Ω2. Note that this initial condition does not satisfy the Henry
interface condition (1.3).

This time dependent convection-diffusion problem is strongly convection domi-

nated with a physical Péclet number PL := 2‖w‖
ε̄ ≈ 2 · 104. Furthermore, due to the

inconsistent (w.r.t. condition (1.3)) initial condition a parabolic boundary layer of
thickness O(

√
εt) at the interface will form directly after t = 0, independent of the

velocity field. For t→∞ the solution converges to the stationary piecewise constant
function u = 0.05β−1. In Fig. 3.4 the solution along a line is displayed, where one
observes the predicted boundary layer behavior. In the experiments we consider t = 1.

3.2.2. Discretization. We use the mesh with 30000 elements displayed in Fig.
3.3 with an average mesh size h = 0.05 and element Péclet numbers up to PTh ≈ 250.
Thus, the mesh resolution is too low to resolve the boundary layer (for t ≤ 1).
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Fig. 3.4. Concentration profile through line γx := {(x, y, z) ∈ Ω : y = 1, z = 0.5} for several
values of t. One can observe the predicted O(

√
εt) sized boundary layer.

In the discretization we use a (sufficiently accurate) polygonal approximation Γh of
the interface. This introduces an additional error which is not analyzed here but
is considered to be sufficiently small and to have negligible effect on the accuracy
and stability properties of the (stabilized) Nitsche-XFEM method. We are primarily
interested in the accuracy of the spatial discretization. Hence, in the implicit Euler
method (2.15) we choose a small time step size ∆t = 10−4, such that the total
discretization error is dominated by the spatial discretization error.
Again we consider the same four methods as in section 3.1. We computed a reference
solution on a very fine 2D mesh which is aligned to the interface and resolves the
boundary layer for t > 10−2. This reference solution is used to provide the profiles in
Fig. 3.4 and the reference profiles in Fig. 3.6 below.

3.2.3. Numerical results. In Fig. 3.5 the numerical solution in the plane z =
0.5 at t = 1 (where the boundary layer has a width of approximately 0.01 in Ω2) is
shown for four different methods. Below each picture we also give the L2 norm of the
jump [βuh] on the approximate interface Γh.

We observe several effects. The first one also occured in the numerical experiment
treated in section 3.1: if one considers the different scalings in the Nitsche method,
i.e. the left and the right columns in Fig. 3.5, then the convective scaling results
in a better approximation of the interface condition. But it also increases the effect
of non-physical oscillations. Comparing the first and the second row in Fig. 3.5, we
see that the streamline diffusion stabilization suppresses the oscillations whereas the
quality of the approximation of the interface condition is not negatively affected by
this stabilization.
In Fig. 3.6 the numerical solutions of the same four methods as in Fig. 3.5 together
with the reference solution, on the line z = 0.5, y = 1.0 in Ω2 at time t = 1 are shown.
One can observe that the boundary layer which is represented well by the reference
solution is not resolved accurately by any of the four methods. Especially for x > 1.25,
i.e. downwind of Ω1 none of the methods yields a discrete solution that is close to
the reference solution. The solutions uh of the SD-Nitsche-XFEM methods are much
smoother than the solutions obtained without stabilization and upwind of Ω1, where
the solution is almost constant outside the boundary layer, it is very accurate.

In Fig. 3.7 the results of the SD-Nitsche-XFEM methods on three successively
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‖[βuh]‖L2(Γh) = 4.5 · 10−2 ‖[βuh]‖L2(Γh) = 3.3 · 10−3

‖[βuh]‖L2(Γh) = 4.5 · 10−2 ‖[βuh]‖L2(Γh) = 2.3 · 10−3

Fig. 3.5. Numerical solution in the plane z = 0.5 at t = 1 for Nitsche-XFEM (top) and SD-
Nitsche-XFEM (bottom), with diffusive scaling (left) and convective scaling (right) of the Nitsche
stabilization.
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Fig. 3.6. Numerical solutions on the line z = 0.5, y = 1.0 at time t = 1 obtained with Nitsche-
XFEM, SD-Nitsche-XFEM, and the reference solution.

(uniformly) refined meshes are shown. The resolution of the boundary layer at t = 1
improves if the grid is refined, but on level 3 the discrete solution downwind of Ω1
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Fig. 3.7. Numerical solutions on the line z = 0.5, y = 1.0 at time t = 1 obtained with SD-
Nitsche-XFEM applying the convective scaling (left) and the diffusive scaling (right) on three con-
secutively refined meshes and the reference solution.

is still not in good agreement with the reference solution. This can be interpreted
as follows. For small times t the boundary layers are much smaller, namely O(

√
εt),

cf. Fig. 3.4, and cannot be resolved. For small t we thus have (very) large spatial
discretization errors. If time evolves until t = 1 these large errors are transported
in downwind direction and are only mildly damped. This time dependent transport
effect causes the large errors downwind of Ω1 (x > 1.25) in Fig. 3.6 and 3.7.

4. Error analysis. In this section we present an error analysis of the Nitsche-
XFEM with SD stabilization. We investigate the bilinear form

ah(u, v) := (εu, v)1,Ω1∪Ω2
+ (w · ∇u, v)0 + ξ(u, v)0

− ([βu], {ε∇v · n})Γ − ({ε∇u · n}, [βv])Γ + λε̄([βu], [βv]) 1
2 ,h,Γ

+ (ξu+ w · ∇u,w · ∇u)0,h

on Wreg + V Γ
h , with V Γ

h the XFEM space, cf. (2.4), and Wreg := {u ∈ H1
0 (Ω1 ∪

Ω2) | u|Ωi
∈ H2(Ωi), i = 1, 2 }. Compared to the transport problem considered above

we introduced an additional zero order term ξ(u, v)0, with a given constant ξ ≥ 0.
This is standard in the analysis of convection-dominated problems (cf. [21]), since
only if this zero order term is present (ξ > 0) one can derive uniform error bounds in
the L2-norm. We derive an error bound for the Galerkin projection of u ∈Wreg on the
XFEM space V Γ

h , cf. Theorem 4.7 below. We start with the main assumptions used
and introduce additional notation. To obtain estimates that are uniform with respect
to the parameter ξ, we have to generalize the choice of of the stabilization parameter

γT . If ξ = 0 we take γT as in (2.13). For the case ξ > 0 we take γT = min{ξ−1, γ
(2.13)
T }.

This parameter choice is essentially the same as in [21]. The following estimates can
be derived:

γT ξ ≤ 1, γT ‖w‖∞,T ≤ 2hT , γ−1
T h2

T ≤ ξh2
T +

1

2
‖w‖∞,ThT + ε̄. (4.1)

The family of triangulations {Th}h>0 is assumed to be shape regular, but not neces-
sarily quasi-uniform. The triangulation Th is not assumed to be fitted to the interface
Γ, but the resolution close to the interface should be sufficiently high such that the
interface can be resolved by the triangulation, in the sense that if Γ ∩ T =: ΓT 6= ∅
then ΓT can be represented as the graph of a function on a planar cross-section of
T (cf. [13] for precise conditions). In the analysis of the Nitsche-XFEM method an
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interpolation operator IΓ
h : Wreg → V Γ

h plays an important role. We recall the def-
inition of this operator. For i = 1, 2, let Ri be the restriction operator to Ωi, i.e.,
(Riv)(x) = v(x) for x ∈ Ωi and (Riv)(x) = 0 otherwise. Let Ei : H2(Ωi)→ H2(Ω) be
a bounded extension operator with Eiv = 0 on ∂Ω, and Ih : H2(Ω)∩H1

0 (Ω)→ Vh the
standard nodal interpolation operator corresponding to the space Vh of continuous
linear finite elements. The XFEM interpolation operator is given by

IΓ
h = R1IhE1R1 +R2IhE2R2.

Define Ti := T ∩ Ωi. Note that Ti can be very shape irregular. The constants that
occur in the estimates in this section are independent of the shape regularity of Ti.
For the interpolation operator IΓ

h optimal (local) interpolation error bounds can easily
be derived (cf. [13, 19]). The following holds:

‖u− IΓ
hu‖Hm(Ti) ≤ ‖EiRiu− IhEiRiu‖Hm(T )

≤ ch2−m
T ‖EiRiu‖H2(T ), m = 0, 1, 2, for u ∈Wreg.

(4.2)

In the analysis below we use the assumptions div w = 0 on Ω, ‖w‖L∞(Ω) < ∞ and
w · n = 0 on Γ.

We are particularly interested in the convection-dominated case, and therefore
allow ε̄ = 1

2 (ε1 + ε2) ↓ 0, but we assume the ratio between ε1 and ε2 to be bounded,
i.e. for i = 1, 2, we have ε̄/εi ≤ c with a uniform (for ε̄ ↓ 0) constant c.

We assume that the constants βi used in the Henry condition are of order one.
We will need several norms related to the Nitsche stabilization and the streamline
diffusion stabilization. The inner products (·, ·)0 and (·, ·)1,Ω1∪Ω2

(with corresponding
norms ‖·‖0 and |·|1,Ω1∪Ω2) have been defined above in section 2. These inner products
depend on a weighting with β, but this causes no problem since β is assumed to be of
order one. For the streamline diffusion stabilization we introduced the inner product
(u, v)0,h =

∑
T∈Th γT (u, v)0,T with corresponding norm denoted by ‖ · ‖0,h. In the

analysis of the Nitsche method the following norms are used:

‖v‖21
2 ,h,Γ

= (v, v) 1
2 ,h,Γ

=
∑
T∈T Γ

h

h−1
T ‖v‖

2
L2(ΓT ), ‖v‖

2
− 1

2 ,h,Γ
:=

∑
T∈T Γ

h

hT ‖v‖2L2(ΓT ).

Recall that T Γ
h is the collection of T ∈ Th with ΓT = T ∩ Γ 6= ∅. We first derive

interpolation error bounds in different norms, which turn out to be useful.
The constants used in the results derived below are all independent of λ, ξ, ε̄, h, ‖w‖,
and of how the interface Γ intersects the triangulation Th (i.e. of the shape regularity
of Ti).

Lemma 4.1. For u ∈Wreg the following interpolation error bounds hold:

‖u− IΓ
hu‖0 ≤ ch2‖u‖2,Ω1∪Ω2 (4.3)

|u− IΓ
hu|1,Ω1∪Ω2

≤ ch‖u‖2,Ω1∪Ω2
(4.4)√

ξ‖u− IΓ
hu‖0,h ≤ ch2‖u‖2,Ω1∪Ω2

(4.5)

‖w · ∇(u− IΓ
hu)‖0,h ≤ c‖w‖

1
2∞h

1 1
2 ‖u‖2,Ω1∪Ω2

(4.6)

2∑
i=1

‖Ri(u− IΓ
hu)‖ 1

2 ,h,Γ
≤ ch‖u‖2,Ω1∪Ω2 (4.7)

2∑
i=1

‖n · ∇Ri(u− IΓ
hu)‖− 1

2 ,h,Γ
≤ ch‖u‖2,Ω1∪Ω2 . (4.8)
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Proof. The results in (4.3), (4.4) are known in the literature, e.g. [13, 19]. Using
the choice of the stabilization parameter γT we obtain

ξ‖u− IΓ
hu‖20,h =

∑
T∈Th

ξγT ‖u− IΓ
hu‖20,T ≤ ‖u− IΓ

hu‖20 ≤ ch4‖u‖22,Ω1∪Ω2
,

and thus the result in (4.5) holds. The result in (4.6) follows from

‖w · ∇(u− IΓ
hu)‖20,h =

∑
T∈Th

γT ‖w · ∇(u− IΓ
hu)‖20,T ≤

2∑
i=1

∑
T∈Th

γT ‖w‖2∞,T |u− IΓ
hu|21,Ti

≤ c‖w‖L∞(Ω)h|u− IΓ
hu|21,Ω1∪Ω2

≤ c‖w‖L∞(Ω)h
3‖u‖22,Ω1∪Ω2

.

The results in (4.7), (4.8), are derived in [13]. The essential ingredient is the following
result:

‖w‖2L2(ΓT ) ≤ c
(
h−1
T ‖w‖

2
L2(T ) + hT |w|21,T

)
for all w ∈ H1(T ),

which holds for all T ∈ T Γ
h and with a constant c that is independent of the shape

regularity of Ti, cf. [13, 12]. For completeness we give a proof of (4.7):

2∑
i=1

‖Ri(u− IΓ
hu)‖21

2 ,h,Γ
=

2∑
i=1

∑
T∈T Γ

h

h−1
T ‖EiRiu− IhEiRiu‖

2
L2(ΓT )

≤ c
2∑
i=1

∑
T∈T Γ

h

(
h−2
T ‖EiRiu− IhEiRiu‖

2
L2(T ) + |EiRiu− IhEiRiu|21,T

)

≤ ch2
2∑
i=1

∑
T∈T Γ

h

‖EiRiu‖22,T ≤ ch2
2∑
i=1

‖EiRiu‖22,Ω ≤ ch2‖u‖22,Ω1∪Ω2
.

The result in (4.8) can be proved with similar arguments.

As we will see below, we can derive an ellipticity and continuity result for the bi-
linear form ah(·, ·) with respect to a suitable norm. As expected this norm involves
terms that come from the Nitsche stabilization and from the streamline diffusion
stabilization. To simplify the presentation we split the bilinear form in two parts
(corresponding to Nitsche and streamline diffusion stabilization) and first consider
these two parts separately. Afterwards the results for these two parts can easily be
glued together. We use the splitting

ah(u, v) = aNh (u, v) + aSDh (u, v)

aNh (u, v) =
1

2
(εu, v)1,Ω1∪Ω2

− ([βu], {ε∇v · n})Γ − ({ε∇u · n}, [βv])Γ

+ λε̄([βu], [βv]) 1
2 ,h,Γ

aSDh (u, v) =
1

2
(εu, v)1,Ω1∪Ω2

+ (w · ∇u, v)0 + ξ(u, v)0 + (ξu+ w · ∇u,w · ∇u)0,h.

Corresponding norms are defined as

‖v‖2N =
1

2
ε̄|v|21,Ω1∪Ω2

+ λε̄‖[βv]‖21
2 ,h,Γ

,

‖v‖2SD =
1

2
ε̄|v|21,Ω1∪Ω2

+ ξ‖v‖20 + ‖w · ∇v‖20,h.

14



Lemma 4.2. There exists a constant c > 0 such that

aSDh (vh, vh) ≥ c‖vh‖2SD for all vh ∈ V Γ
h .

Proof. We apply partial integration to the term (w · ∇vh, vh)0. Since vh may be
discontinuous across Γ we have to split the integral. Using w · n = 0, div w = 0 and
vh(x) = 0 for x ∈ ∂Ω we obtain

(w · ∇vh, vh)0 =

2∑
i=1

∫
Ωi

βiw · ∇vh vh dx =

2∑
i=1

∫
∂Ωi∩∂Ω

βiv
2
h w · nΩ ds

+

∫
Γ

[βv2
h]w · n ds−

2∑
i=1

∫
Ωi

βiw · ∇vh vh + βi(div w)v2
h dx

= −(w · ∇vh, vh)0.

(4.9)

Hence, (w · ∇vh, vh)0 = 0 holds. Furthermore, using γT ξ ≤ 1 we get

ξ(vh,w · ∇vh)0,h = ξ
∑
T∈Th

γT (vh,w · ∇vh)0,T

≤ 1

2

∑
T∈Th

ξ2γT ‖vh‖20,T + γT ‖w · ∇vh‖20,T

≤ 1

2
ξ‖vh‖20 +

1

2
‖w · ∇vh‖20,h.

Hence,

aSDh (vh, vh) ≥ 1

2
min{ε1, ε2}‖vh‖21,Ω1∪Ω2

+ ξ‖vh‖20 + ‖w · ∇vh‖20,h + ξ(vh,w · ∇vh)0,h

≥ cε̄‖vh‖21,Ω1∪Ω2
+

1

2
ξ‖vh‖20 +

1

2
‖w · ∇vh‖20,h,

with a constant c > 0 which depends only on the ratio between ε1 and ε2, which is
assumed to be bounded.

Lemma 4.3. There exists a constant c such that

aSDh (u−IΓ
hu, vh) ≤ c

(√
ε̄+
√
‖w‖∞h+

√
ξ h
)
h‖u‖2,Ω1∪Ω2

‖vh‖SD ∀ u ∈Wreg, vh ∈ V Γ
h .

Proof. We use the notation eh := u− IΓ
hu and recall the definition of aSDh (·, ·):

aSDh (eh, vh) =
1

2
(εeh, vh)1,Ω1∪Ω2

+(w·∇eh, vh)0+ξ(eh, vh)0+(ξeh+w·∇eh,w·∇vh)0,h.

Using the interpolation error bounds of lemma 4.1 we obtain

1

2
(εeh, vh)1,Ω1∪Ω2

≤ c
√
ε̄ h‖u‖2,Ω1∪Ω2

‖vh‖SD

ξ(eh, vh)0 ≤ c
√
ξh2‖u‖2,Ω1∪Ω2‖vh‖SD

ξ(eh,w · ∇vh)0,h ≤ c
√
ξh2‖u‖2,Ω1∪Ω2‖vh‖SD

(w · ∇eh,w · ∇vh)0,h ≤ c‖w‖
1
2∞h

1 1
2 ‖u‖2,Ω1∪Ω2‖vh‖SD.
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To the term (w · ∇eh, vh)0 we apply partial integration as in (4.9), resulting in

(w · ∇eh, vh)0 = −(eh,w · ∇vh)0 ≤
( ∑
T∈Th

γ−1
T ‖eh‖

2
0,T

) 1
2 ‖vh‖SD

≤ c
(
ξh2 + ‖w‖∞h+ ε̄)

1
2h‖u‖2,Ω1∪Ω2

‖vh‖SD,

where in the last inequality we used the bound for γ−1
T h2

T given in (4.1). Combining
these estimates completes the proof.

We now turn to the analysis of the Nitsche bilinear form aNh (·, ·). We need the following
inverse inequality given in [13].

Lemma 4.4. There exists a constant cI independent of ε̄ such that

‖{ε∇vh · n}‖− 1
2 ,h,Γ

≤ cI ε̄|vh|1,Ω1∪Ω2 for all vh ∈ V Γ
h .

Proof. Lemma 4 in [13].

We now derive an ellipticity result for aNh (·, ·):
Lemma 4.5. There exist constants c1 > 0, cs > 0 such that for λ > cs

aNh (vh, vh) ≥ c1‖vh‖2N for all vh ∈ V Γ
h .

Proof. Define ĉ = 1
2̄ε

min{ε1, ε2} ≤ 1
2 and take λ ≥ 4c2I ĉ

−1 with cI from lemma 4.4.
The following holds:

aNh (vh, vh) ≥ ĉε̄|vh|21,Ω1∪Ω2
− 2‖[βvh]‖ 1

2 ,h,Γ
‖{ε∇vh · n}‖− 1

2 ,h,Γ
+ λε̄‖[βvh]‖21

2 ,h,Γ

≥ ĉε̄|vh|21,Ω1∪Ω2
− 2cI ε̄‖[βvh]‖ 1

2 ,h,Γ
|vh|1,Ω1∪Ω2

+ λε̄‖[βvh]‖21
2 ,h,Γ

≥ 1

2
ĉε̄|vh|21,Ω1∪Ω2

+ (λ− 2c2I ĉ
−1)ε̄‖[βvh]‖21

2 ,h,Γ

≥ 1

2
ĉε̄|vh|21,Ω1∪Ω2

+
1

2
λε̄‖[βvh]‖21

2 ,h,Γ
≥ ĉ‖vh‖2N .

Lemma 4.6. There exists a constant c such that for λ > 0

aNh (u− IΓ
hu, vh) ≤ c

√
ε̄
(√
λ+

1√
λ

)
h‖u‖2,Ω1∪Ω2

‖vh‖N

holds for all u ∈Wreg, vh ∈ V Γ
h .

Proof. We use the notation eh := u− IΓ
hu and recall the definition of aNh (·, ·):

aNh (eh, vh) =
1

2
(εeh, vh)1,Ω1∪Ω2

− ([βeh], {ε∇vh · n})Γ − ({ε∇eh · n}, [βvh])Γ

+ λε̄([βeh], [βvh]) 1
2 ,h,Γ

.

Using the interpolation error bounds of lemma 4.1 and the inverse inequality in
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lemma 4.4 we obtain

1

2
(εeh, vh)1,Ω1∪Ω2 ≤ c

√
ε̄ h‖u‖2,Ω1∪Ω2‖vh‖N

−([βeh], {ε∇vh · n})Γ ≤ ‖[βeh]‖ 1
2 ,h,Γ
‖{ε∇vh · n}‖− 1

2 ,h,Γ

≤ cε̄
2∑
i=1

‖Rieh‖ 1
2 ,h,Γ
|vh|1,Ω1∪Ω2

≤ c
√
ε̄ h‖u‖2,Ω1∪Ω2

‖vh‖N

−({ε∇eh · n}, [βvh])Γ ≤ ‖{ε∇eh · n}‖− 1
2 ,h,Γ
‖[βvh]‖ 1

2 ,h,Γ

≤ cε̄
2∑
i=1

‖n · ∇Rieh‖− 1
2 ,h,Γ
‖[βvh]‖ 1

2 ,h,Γ

≤ c
√
ε̄

λ
h‖u‖2,Ω1∪Ω2‖vh‖N

λε̄([βeh], [βvh]) 1
2 ,h,Γ

≤ λε̄‖[βeh]‖ 1
2 ,h,Γ
‖[βvh]‖ 1

2 ,h,Γ
≤ c
√
ε̄λ h‖u‖2,Ω1∪Ω2‖vh‖N .

Combination of these estimates and using 1√
λ

+
√
λ > 1 proves the result.

We now combine the estimates derived above for aNh (·, ·) and aSDh (·, ·). For this we
introduce the norm

|||v|||2 = ‖v‖2N + ‖v‖2SD = ε̄|v|21,Ω1∪Ω2
+ ξ‖v‖20 + ‖w · ∇v‖20,h + λε̄‖[βv]‖21

2 ,h,Γ
.

Note that the two terms ‖w ·∇v‖20,h and λε̄‖[βv]‖21
2 ,h,Γ

originate from the stabilization

terms in the streamline diffusion and the Nitsche method, respectively.
We discuss the choice of the stabilization parameter λ in the Nitsche method.

For the error analysis in the norm ||| · ||| it is natural to balance the upper bounds in
lemma 4.3 and in lemma 4.6 to derive an upper bound for λ. For simplicity we make
the (weak) assumption that ξh2 ≤ c(ε̄+‖w‖∞h) holds, i.e. in the bound in lemma 4.3
the factor

√
ε̄ +

√
‖w‖∞h +

√
ξ h can be replaced by

√
ε̄ +

√
‖w‖∞h. The factor√

ε̄(
√
λ + 1/

√
λ) in the upper bound in lemma 4.6 should balance the latter factor,

i.e.,
√
ε̄ +

√
‖w‖∞h ≈

√
ε̄(
√
λ + 1/

√
λ). This leads to the choice as in (2.8), namely

λ = λc = cmax( 1
2‖w‖∞h/ε̄, 1). It is, however, not necessary to balance the upper

bounds; if we take λ = λd = c > 0, then the bound in lemma 4.6 is smaller than the one
in lemma 4.3. We take c = cs, cf. lemma 4.5, to guarantee ellipticity. A slightly refined
error analysis leads to a localized variant of this parameter choice given in remark 3.
In the remainder we assume λd ≤ λ ≤ λc as in (2.8), with c = cs, cf. lemma 4.5. To
simplify the presentation, we assume ‖w‖∞ = O(1) and in the estimates below the
terms ‖w‖∞ are absorbed in the constant c. In convection-dominated problems with
‖w‖∞ � 1 one can derive corresponding modified estimates.

From the interpolation error bounds in lemma 4.1, and using λε̄ ≤ c(ε̄+‖w‖∞h) ≤
c(ε̄+ h), we obtain

|||u− IΓ
hu||| ≤ c

(√
ε̄+
√
h+

√
ξ h
)
h‖u‖2,Ω1∪Ω2

for all u ∈Wreg. (4.10)

Theorem 4.7. For u ∈ Wreg let RGu ∈ V Γ
h be the Galerkin projection for the

bilinear form ah(·, ·), i.e. ah(RGu, vh) = ah(u, vh) for all vh ∈ V Γ
h . The following

holds:

|||u−RGu||| ≤ c
(√
ε̄+
√
h+

√
ξ h
)
h‖u‖2,Ω1∪Ω2

for all u ∈Wreg. (4.11)
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The constant c is independent of ε̄, h, ξ and of how the interface Γ intersects the
triangulation Th.

Proof. The proof uses standard arguments. Define χh = RGu− IΓ
hu ∈ V Γ

h . Using
the results in the lemmas above we obtain, with a suitable c > 0,

|||χh|||2 = ‖χh‖2N + ‖χh‖2SD ≤ c
(
aNh (χh, χh) + aSDh (χh, χh)

)
= c ah(χh, χh) = c ah(u− IΓ

hu, χh) = c aNh (u− IΓ
hu, χh) + c aSDh (u− IΓ

hu, χh)

≤ c
(√
ε̄+
√
h+

√
ξ h
)
h‖u‖2,Ω1∪Ω2 |||χh|||.

The result follows from a triangle inequality and the interpolation error bound in
(4.10).

We comment on the bound derived in (4.11). For the diffusion dominated case, i.e.
ε̄ ∼ 1, this result reduces to results known in the literature. We discuss the convection
dominated case ε̄ ≤ ‖w‖∞h with ξ ∈ [0, 1] and write eh := u−RGu. Furthermore we
assume h ≤ chT (quasi-uniformity of the family of triangulations). Using h ≤ cγT for
all T ∈ Th we obtain from (4.11)

‖w · ∇eh‖L2(Ω) ≤ ch‖u‖2,Ω1∪Ω2 .

Hence, as for the streamline diffusion finite element method with the standard linear
finite element space, we have an optimal error bound (uniformly in ε̄) for the derivative
of the error in streamline direction. The estimate (4.11) also implies

λε̄‖[βeh]‖21
2 ,h,Γ

≤ ch3‖u‖22,Ω1∪Ω2
.

For the convective scaling we have λε̄ ∼ ch and thus obtain ‖[βeh]‖L2(Γ) ≤ ch1 1
2 ‖u‖2,Ω1∪Ω2

uniformly in ε̄. For the diffusive scaling we have λ ∼ c and thus obtain a worse bound
‖[βeh]‖L2(Γ) ≤ ch2ε̄−

1
2 ‖u‖2,Ω1∪Ω2 . Finally, if we take ξ > 0 we obtain an L2-norm

error bound that is the same as for the streamline diffusion finite element method
with the standard linear finite element space, namely

‖eh‖L2(Ω) ≤
c√
ξ
h1 1

2 ‖u‖2,Ω1∪Ω2 .

Remark 5. As noted in Remark 4, the SD-Nitsche-XFEM method has a straight-
forward extension to finite elements of higher order. We comment on the generaliza-
tion of the error analysis presented above to the higher order case. The interpolation
error bounds in Lemma 4.1 can easily be generalized to higher order extended finite
elements. The result in Lemma 4.4 also holds for higher order elements, cf. [2]. Using
this the results for the Nitsche bilinear form in the Lemmas 4.5 and 4.6 can be gener-
alized. In the analysis of the streamline diffusion bilinear form, however, a difficulty
arises related to an inverse inequality needed in the analysis. For higher order finite el-
ements the term (div(ε∇uh),w·∇vh)0,h arises in the streamline diffusion stabilization.
In the analysis of the streamline diffusion method for a standard higher order finite ele-
ment space Vh one uses an inverse inequality of the form ‖∆vh‖0,T ≤ µinvh

−1
T |vh|1,T for

all vh ∈ Vh, cf. [21]. Such a result does not hold in a higher order XFEM space, since
the supports Ti = T ∩Ωi of the additional (discontinuous) basis functions can be very
shape irregular. We only have ‖∆vh‖0,Ti ≤ µ(Ti)h

−1
Ti
|vh|1,Ti with a factor µ(Ti) that

depends on the shape regularity of Ti. To control this, instead of min{ξ−1, γ
(2.13)
T },
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one can choose a stabilization parameter γTi
that is sufficiently small. This would

yield a stability result as in Lemma 4.2. If, however, this parameter is “too small” it
is not likely that a result as in Lemma 4.3, which uses the third inequality in (4.1),
still holds. We did not investigate this further.

Remark 6. For the proposed stabilized semi-discretization (2.14) for the case of
a stationary interface, i.e. w ·n = 0, there holds a mass conservation property. Define
the inflow boundary by ∂Ω− := {x ∈ ∂Ω | w · nΩ < 0 }, where nΩ is the outward
pointing unit normal on ∂Ω, and ∂Ω+ := ∂Ω \ ∂Ω−. Instead of (1.5) we consider

(uw − ε∇u) · nΩ = uIw · nΩ on ∂Ω−, t ∈ [0, T ]

ε∇u · nΩ = 0 on ∂Ω+, t ∈ [0, T ],
(4.12)

with uI a given mass inflow function. Integrating the equations in (1.1) over Ω, and
using the relations in (1.2), (4.12), we obtain the global mass conservation property

d

dt

∫
Ω

u dx+

∫
∂Ω−

uIw · nΩ ds+

∫
∂Ω+

uw · nΩ ds =

∫
Ω

f dx. (4.13)

We show that an analogon of the conservation law (4.13) holds for the Nitsche-XFEM
stabilized discretization. Due to the modification of the boundary condition the
XFEM space we use is given by Ṽ Γ

h := { v ∈ H1(Ω1 ∪ Ω2) | v|Ti
is linear for all T ∈

Th, i = 1, 2. } and the discretization in (2.14) is modified by adding the boundary inte-
gral−

∫
∂Ω−

βuhvhw·nΩ ds to the l.h.s. and−
∫
∂Ω−

βuIvhw·nΩ ds to the r.h.s.. Taking

the test function β−1 ∈ Ṽ in the modified version of (2.14) all terms with ∇vh vanish
and for the Nitsche bilinear form, cf. (2.7), we have ah(uh, β

−1) = (w · ∇uh, β−1)0.
Partial integration for the term (w · ∇uh, β−1)0 =

∫
Ω

w · ∇uh dx results in

d

dt

∫
Ω

uh dx+

∫
∂Ω−

uIw · nΩ ds+

∫
∂Ω+

uhw · nΩ ds =

∫
Ω

f dx,

which is the discrete global mass conservation analogon of the one in (4.13).

Remark 7. In the error analysis in section 4 we only studied the bilinear form
for the quasi-stationary problem. Based on the techniques presented in the recent
paper [6] it may be possible to derive, for the case of a stationary interface, error
bounds for the semi-discrete problem (2.14).

In view of applications the case of a non-stationary interface Γ(t) is much more
interesting than that of a stationary one. We comment on a generalization of the
method in (2.15) to the former case. For an evolving interface Γ(t), instead of the
weak formulation in (2.3), one has to consider a space-time variational formulation
to obtain a well-posed problem, cf. [12]. A discretization of the time derivative by
means of finite difference approximations (as done here for a stationary interface)
does no longer lead to a consistent discretization if the interface Γ(t) is moving in
time. A discretization based on a space-time formulation using a suitable space-time
extended finite element space should be used. This can be combined with a space-time
streamline diffusion stabilization. The development and analysis of such a space-time
SD-Nitsche-XFEM method is a topic of current research.
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