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A FINITE ELEMENT LEVEL SET REDISTANCING METHOD
BASED ON GRADIENT RECOVERY*

ARNOLD REUSKENT

Abstract. We introduce a new redistancing method for level set functions. This method applies
in a finite element setting and uses a gradient recovery technique. Based on the recovered gradient
a quasi-normal field on the zero level of the finite element level set function is defined and from this
an approximate signed distance function is determined. For this redistancing method rigorous error
bounds are derived. For example, the distance between the original zero level and the zero level after
redistancing can be shown to be bounded by ch®t1  if finite elements of degree k are used in the
discretization.
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1. Introduction. The level set method is a very popular method for treating
problems involving free surfaces or interfaces. We refer to the literature for an expla-
nation of this method and of fields of application, e.g., [17, 18, 13, 19]. Very often in
this level set method a so-called reinitialization or redistancing (or reparametrization)
procedure is used. Since the introduction of the reinitialization approach in [4] many
such methods have been proposed in the literature. Most of these can be classified
as either PDE based [20, 15] or geometry based [16, 18, 5]. We refer to the recent
paper [3] for a discussion and comparison of these approaches. For an approach based
on extension velocities, in which reinitialization is avoided, we refer to [1, 6].

In reinitialization methods, for a given discrete approximation ¢y, of the unknown
level set function ¢ one constructs an approzimate signed distance function dj to the
(only implicitly given) zero level T'j, of ¢p. Let the (implicitly given) zero level of dj,
be denoted by [ In general, for an approximate signed distance function one has
dist(f‘ h,I'n) > 0. In reinitialization methods one tries to construct a function th such
that, in a neighborhood of I'j,, this function is “close to” the exact signed distance
function to I'y,, denoted by d7*, and such that dist(T',T1) is “small.” In numerical
analyses of such methods one typically uses numerical experiments, for certain model
problems, to investigate and quantify what is meant by “close to” and “small.” We
are not aware of any paper in which rigorous error bounds for the difference between
dj, and ds* or for dist(f‘h, I'y,) > 0 are derived.

In this paper we present a new, geometry based, reinitialization method and
derive rigorous error bounds for it. Although its error analysis is rather technical,
the basic idea of the method is easy to explain. Our method is a geometric one, with
a structure that is common in fast marching techniques (FMM), namely, an initial
phase combined with an extension phase. In the initial phase one assigns values to
the finite element nodes of the simplices that are intersected by I'y. These values
are close to (as quantified further on) the signed distance values to I'y,. Given these
values, in the extension phase values are assigned to all other nodes, using, e.g., a
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fast marching sweeping approach. It is well known that in such redistancing methods
the initial phase is the critical one and determines the accuracy of the reinitialization
method. The method that we introduce is different from the methods known in the
literature with respect to its initial phase. For the extension phase one can use any
of the extension methods already available in the literature.

We explain the approach used in the initial phase. First consider a point z that is
close to the zero level I' of a smooth level set function ¢. The normals on I' are denoted
by n. We then have a unique decomposition z = p(z) + d*(2)n(p(z)), with p(z) € T’
the orthogonal projection of z on I'. By definition, the distance from z to I' is given
by |d**(2)| = ||z — p(z)||. We adapt this elementary distance characterization to the
discrete case. We assume that I'j, is the zero level of a finite element approximation
on of ¢. The function ¢, is continuous and a piecewise polynomial of degree k (on
simplices). Under weak assumptions, I'j is a Lipschitz manifold. We introduce the
notion of a quasi-normal field ny on such a Lipschitz manifold, which plays a key
role in the new redistancing method. Its essential conditions are that x — np(x),
x € Ty, is locally Lipschitz continuous and that ny(x) is “close to” orthogonal to T,
(cf. Definition 3.3 for a precise formulation). The “close to orthogonal” condition is
quantified using a parameter d; in the case of a smooth manifold one has § = |cos 6|,
with 0 the angle between n,(x) and the tangent plane at xz. Based on this quasi-
normal field, for z sufficiently close to I'j, there is a unique representation z = p(z) +
dn(2)nn(p(2)), p(2) € Ty, which induces an approzimate signed distance function
dn(z). In general z — p(z) is an oblique projection on I'j. In a general analysis,
presented in section 4, the difference between dj,(z) and the exact signed distance
value dj”(z) to I'p, can be bounded in terms of the orthogonality parameter 6. To
be able to apply this abstract approach in a concrete finite element setting we need
such a quasi-normal field. The normal field Vy(x)/||Von(z)||, € T's, (z not on a
simplex boundary) does not satisfy the requirements, since it is discontinuous between
simplices, hence not Lipschitz. In the finite element literature, however, there are so-
called gradient recovery techniques which result in approximations of V¢, that satisfy
the conditions of a quasi-normal field on I'y,. In this paper, as an example, we consider
the polynomial-preserving recovery (PPR) technique introduced in [21]. Using this
gradient recovery technique we obtain a quasi-normal field and the general approach
then results in an approximate signed distance function d;. To obtain a feasible
method, the nodal interpolation of this dj in the finite element space, denoted by
dy = Indp, is constructed. In the computation of this finite element function dh,
which is the output of our initialization phase, we only need evaluations of ¢y in
a small neighborhood of I',. Using error bounds for the recovery technique and
(discretization) error bounds for ¢, — ¢ we can quantify statements like “dy, is close
to d§*” and “dist(T'p,, 'y, is small.” We prove, for example, that dist(Ty,,T;) < ch*t1
and ||dj, — a5 | (ar, ) < ch**1 hold, with Qr, the neighborhood of I';, consisting of
all simplices that are intersected by I'j,. Thus, for quadratic finite elements (k = 2) our
reinitialization method has accuracy h®. We include results of a numerical experiment
(in three dimensions) that illustrates this h® error behavior.

The paper is organized as follows. In sections 2-5 we consider the redistancing
method and its analysis in a general setting. In sections 6 and 7 the general results
are applied in a finite element setting with a gradient recovery technique that is used
for the construction of a quasi-normal field. In section 8 results of a few numerical
experiments are presented.

2. Outline of the results in the general setting. We describe the key ideas
and main results presented in sections 3-5. Let I' be a compact (N — 1)-dimensional
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Lipschitz manifold. The exact signed distance function to I" is denoted by d°*. In sec-
tion 3 we introduce the notion of a quasi-normal field n : T' = R™. The “normality”
of this field depends on a parameter ¢ € (0, 1) (if 6 < 1 then n is close to orthogonal to
the tangent space on I'). Based on n we define an oblique projection p : U — I', with
U C RY a (small) neighborhood of T, and a corresponding unique representation for
z€Uasz=p(z)+d(z)n(p(z)), withd : U — R. The function d is called the approxi-
mate signed distance function. For this function the relation d(z) = (z —p(z), n(p(z)))
holds, which implies that d can evaluated if we know how to evaluate the oblique pro-
jection p. By construction we have that d(z) = 0 iff d**(z) = 0, i.e., the zero level of
the approximate signed distance function equals I'. In section 4 we derive properties
of p and d, for example, |Vd|| = 14 O() almost everywhere in U (Theorem 4.2) and
a bound for |d| — |d**| on U (Theorem 4.3). In section 5 we study an algorithm for
computing the oblique projection p(z) for z € U. The question of how to obtain a
quasi-normal field is left open in sections 3-5, but is addressed if we apply the general
approach in a finite element setting. The construction of a quasi-normal field based
on gradient recovery is treated in section 6.2.

3. A Lipschitz continuous local coordinate system. If I' is a C?-manifold
then the (oriented) normal field n(x), = € T', can be used to define a local coordinate
system of the form

(3.1) y=p(y) +dy)npy), ye{yeRY|ldy) <e}

with € > 0 sufficiently small, d(-) the signed distance function to I', and p(-) the
orthogonal projection onto I'. In this section we derive a generalization of this local
coordinate system for the case of a Lipschitz manifold.

In the literature there are several (not all equivalent) definitions of k-dimensional
Lipschitz manifolds in RY. A recent overview of the commonly used ones is given in
[11]. In this paper we restrict ourselves to the case k = N — 1 and use the standard
definition of an (N — 1)-dimensional Lipschitz manifold in graph representation; cf.,
e.g., [8, 11], which we now recall.

DEFINITION 3.1. A subset M C RY is called an (N — 1)-dimensional Lipschitz
manifold (in graph representation) if for every xo € M there exists a local Euclidean
coordinate system with origin O, in xo and such that

1. there are open subsets Vi € RN~ and Vo C R with O,, € V := Vi x Va,
2. there exists a Lipschitz mapping h : Vi3 — Vo with

MQV:{(QJl,h(ZIJl)) | & eVl}

In view of our application to the level set function we also introduce the fol-
lowing implicit representation of an (N — 1)-dimensional Lipschitz manifold which is
equivalent to the one given in Definition 3.1; cf. Theorem 2.11 in [11].

DEFINITION 3.2. A subset M C RY s called an (N — 1)-dimensional Lipschitz
manifold (in implicit representation) if for every xg € M there exists a local Fuclidean
coordinate system with origin O, in xo and such that

1. there are open subsets Vi € RN=! and Vo C R with Oy €V =V x V3,
2. there exists a scalar function ¢ : V. — R with ¢(Oy,) = 0 and there are
constants Ly, Ky > 0 such that

(32) |¢($) - (b(y)' S L¢H$ - y” fOT’ all €,y S Va
(3.3)  |p(z1,72) — d(z1,92)| > Kylz2 —ya| for all x1 € V1, 22,2 € Vo,
B MNV={zeV |¢x)=0}.
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We use B(x;7) C RN to denote the open ball with center z € RY and radius
r >0 and Br(z;r) := B(z;r)NT.

In the remainder, ' is assumed to be a compact (N — 1)-dimensional Lipschitz
manifold.

DEFINITION 3.3. A quasi-normal field is a mappingn : I' — RN | with |n(x)|| = 1
for all x, which has the following properties. For all x € T there exist 6, < 1,1, > 0,
and Yy, Cy with

34)  n(@) =)l <vellz -yl for all y € Br(w;ra),
(35)  [n(x),z —y)| < &ullz —yll +callz —y|* for all y € Br(z;ra),
(3.6) and supd, =:90 <1, supvy, < oo, supc, < oo, infr, > 0.
zel zel zel zel’
The conditions in (3.4) and (3.5) can be interpreted as smoothness and transver-
sality conditions that the field n has to satisfy. For a C?-manifold these conditions

are satisfied for the normal field (with é, = O(r;)). For a quasi-normal field we can
always reduce 7, (if necessary) such that

1-46,
3.7 0<ry < ———=—
(3.7) = 4(vz + cz)
holds. With r, such that this holds and y € Br(z;r;), property (3.5) implies that
[(n(z),z—y)| < +(1+6)||lz—y|| and thus the angle between n(z) and z—y is bounded

from below by a strictly positive constant, uniformly in  and y. Given a quasi-normal
field n we define

(3.8) F:TxR—=RY  F(xt):=x+tn(z).

We first derive the local injectivity of this function.
LEMMA 3.1. Given a quasi-normal field with r,, such that (3.7) is satisfied, define

(3.9) D= { (@) |z €T, te <—%rw, %T) }

The function F is injective on D.

Proof Take (z,t),(&,f) € D such that F(x,t) = F(&,1), i.e., z +tn(z) = &
tn(#). If x = & it follows that ¢ = £. Assume that x # 2. Note that ||F(z,t) — 2| =
and |[F(&,t) — 2| = |t|. Define m := max{r,,rs;}. Note that

T

It]
) . . 1

lz = 2[| = |[tn(@) — tn()] < [t +[t] < 5(rz +72) <m

holds. It suffices to consider the case m = r,. Thus & € Br(z,r;) holds. From (3.5)
and (3.4) we obtain

(3.10) [(n(x),x — )| < (0 + cara)llz — 2 < %(1 +dz)||lz — 2|,
[(n(2),z — )| < [(n(2) —n(z),x — )| + [(n(z),z — T)|
(3.11) < (e + 0o + cora) | — 2| < %(1 +6.)]z — 3],

From t = £ = 0 we obtain the contradiction 2 = &. Hence |t| + || > 0 holds. From
this and the results in (3.10)—(3.11) it follows that the triangle with vertices z, Z,
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and F(x,t) = F(&,f) is nondegenerated. The inner angle at vertex x is denoted
by 3. From (3.10) we obtain |cos3| < $(1 + 6,) and thus sin > 1 — [cos 3| >

1(1 - 6,) holds. The inner angle at F(x,t) = F(&,t) is denoted by o. The cosine

2
rule implies ||n(z) — n(2)||* = 2(1 — cos @) = 4sin*($a) and thus sina < 2sin(ia) =

[In(x) — n(2)|| g vz||x — &|| holds. Due to the sine rule we have % = %,
and thus [¢t| = :25 |z — 2| > 4(1 — 6,)7; " holds. This yields a contradiction with

t] < 3ry < 2(1—=6,)v; % cf. (3.9). Hence x = &, which implies ¢ = £, and thus
(z,t) = (2,%) holds. O

Take z € F(D), with D as in Lemma 3.1. There are unique p(z) = =z € T,
d(z) € (—3rs, 275) such that

(3.12) z = p(2) + d(z)n(p(2)).

THEOREM 3.2. Take D as in Lemma 3.1. Then F(D) C RY is open. The
functions z — p(z) and z — d(z) are continuous on F(D).

Proof. Take F(xq,to) = xo + ton(zg) € F(D), ie., g € T, —%rm <ty < %7‘10.
From the graph representation of T' (cf. Definition 3.1), it follows that there are
open subsets V; € RY~! V5, C R and a Lipschitz function h such that T NV =
{(21,h(x1)) | 21 € V1 } with V = V; x V4. Define ry, := inf{r, | x = (21, h(x1)), 21 €
Vi} > 0 and the open subset U := Vi X (—3714,3711) € RY. On U we define
the continuous mapping G(z1,t) = F((ml,h(ml)),tﬁ € F(D). Lemma 3.1 implies
injectivity of the function G. From Brouwer’s invariant domain theorem it follows
that G(U) C F(D) is open and the inverse of G~ : G(U) — U is continuous.
Hence, F(D) is open. The inverse is given by G~1(z) = (z1,t) with 7 and ¢ such
that z = (21, h(z1)) + tn(z1, h(z1)). Continuity of G=! implies that the mapping
z — t = d(z) is continuous. Furthermore, using the continuity of i we also obtain the
continuity of z — (z1, h(z1)) = p(2). O

The compact Lipschitz manifold T is contained in the open set F(D) and thus
for z sufficiently close to I' we have a unique decomposition z = p(z) + d(2) n(p(z)).
Note that the width of the domain D of the mapping F' is determined by r,, which
in turn depends on the parameters ., v, ¢, that quantify the local smoothness and
transversality of the quasi-normal field n and the local geometry (“curvature”) of the
manifold I'.

Based on the representation in (3.12) there is the following natural definition of
an approximate distance function.

DEFINITION 3.4. The function z — d(z), with d as in (3.12) is called the approz-
imate signed distance function.

Note that this function d(z) gives an approximation of the signed distance, only
for z close to the manifold I'. Below it will be convenient to use the relation

(3.13) d(z) = (z = p(2),n(p(2))),

which immediately follows form (3.12). The decomposition in (3.12) corresponds to a
local Lipschitz continuous coordinate system and is a generalization of the one for a
smooth manifold given in (3.1). Note that z — p(z) is an oblique projection onto T

4. Properties of the approximate signed distance function. In this sec-
tion we derive some properties of the approximate signed distance function d(z), z €
F (D), defined in (3.12). For convenience we extend the quasi-normal field n, by taking
a constant value in the quasi-normal direction, i.e., n(z) = n(p(z) + d(z)n(p(2)) :=
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n(p(z)) for all z € D. The normal field and the manifold T' are characterized by
Lipschitz functions. From a Lipschitz version of the implicit function theorem one
can conclude that the functions p and d are not only continuous (cf. Theorem 3.2)
but even locally Lipschitz continuous. Instead of applying such a theorem we derive
this property directly, using the continuity result from Theorem 3.2 and the proper-
ties in (3.4)—(3.5). This derivation yields bounds which show how the local Lipschitz
constant depends on the orthogonality parameter d in (3.5).

LEMMA 4.1. For every z € F(D) there exists an € > 0 such that for all z1, 22 €
B(z;€) the following hold:

4
(41) Ip(a1) = p(e2)| € 75— llz1 = .

p(z1)
2(1 + 51,(21))

|21 — 22
1-6 p(21)

(4.2) |d(z1) — d(z2)| <

Proof. Take zg = F(xo,t0) = xo + ton(zo) with o € T, 9 € (— 7‘10, 27“10) Note
that o = p(z0) and to = d(z0). Without loss of generality we can assume that for
z € T the function  — r,, with 7, as in Definition 3.3, and such that (3.7) holds, is
continuous. Due to this and the continuity of the functions p and d there exists an
€ > 0 such that for all 2 € B(zo; €) we have p(z) € Br(zo; 37a,), d(2) € (=372, 3720,
and max{ 7, | 2 € B(zo;€) } < 2min{ry;) | 2 € B(zo;¢€) }. Take arbitrary 21, 20 €
B(zp;€). From

1
Ip(21) = p(22)ll < llp(21) — 2ol + [lp(22) = @oll < 5720 < Tp(an)

it follows that p(z2) € Br(p(21);7p(2,)) holds. Thus, using (3.4) and (3.5) we get

)
|d(z1) = d(22)] = [(z1 — p(21),n(p(21))) + (22 — p(22), n(p(22)))]
< [{p(22) = p(z1), n(p(20)))] + [{p(22) — 22, n(p(22)) — n(p(21)))]
+ [{z1 — 22, n(p(21)))]
< [Op(er) + eyt +1d(22) pan)] [1P(21) = p(22) ]| + |21 = 22
Note that |d(22)] < 274, < 7p(s1), and using (3.7) we get

ld(z1) — d(22)| < [0p(a1) + (Cpea) + Vope)) o)) I1P(21) = P(22) || + |21 — 22|

7 (14 30p)llp(z1) — p(22)ll + 21 — 22|l

—_

(4.3) <7

Using this we obtain

[p(21) = p(22)|| = llz1 — d(z1)n(p(21)) — 22 + d(z2)n(p(22))||
< lz1 — 22| + [[(d(21) — d(z2))n(p(z1))]|
+ [ld(22) [n(p(21)) — n(p(22))] |
< |le1 — 22l + [d(21) — d(22)| + |d(22) |Vp(zn) IP(21) — p(22)]]

1 1
11 F306) + 7(1 =6y | lIp(21) — p(22)]

< 2|21 — 22| + 1

1
= 2llz1 = z2fl + 5 (L + 0y ) Ip(21) = pl22)l]-

Since 6,(.,) < 1 we obtain ||p(21) — p(z2)|| £ == |21 — 22|, and using this in (4.3)

results in |d(z1) — d(z2)] < %ﬁ((zzﬂ

p(z1)
|21 — 22||, which completes the proof. 0
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From Rademacher’s theorem it follows that p and d are Frechet differentiable
almost everywhere on F(D). Let Ny C F(D) be the subset with |Ng| = 0 such that
d is differentiable at F(D) \ Ns.

For the ezxact signed distance function to a Lipschitz-manifold, denoted by d°*, it
is known that ||[Vd**(2)|| = 1 almost everywhere in a neighborhood of the manifold.
From (4.2) it follows that for z € F(D)\ N, we have ||[Vd(2)[| < 2(1+0,(.))(1—0,(2)) ",

e., [|[Vd(2)]| < 2 for 0,;) < 1. In the next theorem we derive ||Vd(z)| =~ 1 if
5p(z) < 1.
THEOREM 4.2. The following holds, with 0,.y < 1 as in (3.5),

160, 16 6.
(44)  1- 200 vy <1y D@
71— 0pc)

F(D)\ Ns.
TF00,0 for all z € F(D)\

Proof. The Frechet derivative of a function G : RV — R is denoted by DG,
and its representation at x € RY by the Jacobian matrix DG(x) € RY*N. From
|[n(z)]| =1 for all z € D it follows that

(4.5) Dn(2)Tn(z) =0 forall z€ F(D)\ N,
holds. From the relation (3.13) we obtain, for z € F(D) \ Ny,
Vd(z) = D(id — p)(2)"n(p(2)) + D(n o p)(2)" (2 = p(2))
= (I = Dp(2)")n(p(2)) + Dp(2)" Dn(p(2))" (2 = p(2)).
Using (3.12), (4.5) we get Dn(p(2))7 (z — p(2)) = d(z)Dn(p(z))"n(p(z)) = 0 and

Vd(z) = n(p(2)) = Dp(2)"n(p(2)), =z € F(D)\Ns.

Hence,

(4.6) IVd(z) = n(p()]| < 1Dp(z) n(p(2))ll, =€ F(D)\ Ny

For w € RY and || sufficiently small we obtain, due to (3.5),

[{n(p(2)), p(2) = p(2 + ew))| < Gpa)llp(2) = Pz + ew)l| + cpia)llp(2) — p(2 + ew)||?,
and thus, for z € F(D) \ Ns,

1Dp(2)"n(p(2))| = [max (w, Dp(= ) n(p(2)))

= [max (n(p(2)), Dp(2)w) < Op(z) | Dp(2)]
holds. Relation (3.12) implies Dp(z) = I — d(z)Dn(p(z))Dp(z) —n(p(2))Vd(z)T, and
thus [1 +d(z) Dn(p(2))] Dp(z) = I —n(p(2)) V(2 )T From (3.4) we get | Dn(p(2))|| <
Yp(z) for z € F(D) \ N, and due to |d(z)| < 3r,() and the condition (3.7) we get
|d(2)][|[Dn(p(2))|| < §(1 = 0y(2)) and thus the matrix I + d(z)Dn(p(z)) is invertible

and we have the estimate || [I +d(z)Dn(p(=))] " || < 8(7+ dp(z)) . Combining these
results we get

[Vd(z) — n(p(2))|| < [Dp(2)"n(p(2))]| < 6z | Dp(2)]|
< Sy | [T+ d(2)Dn(p(2)] " 1T = n(p(2)Vd(z)"||
<8z (T4 Gp(z)) (L + [ VA(2)]))-
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Using [|n(p(z))|| = 1 and 80,(.)(7 + dp(»)) ' < 1 this implies

166, 16 Oy
- — 8 < vd(z)) < 14 F 2
7+95p(z)

71— 0y 7

i.e., the result in (4.4). O

Note that the bounds in (4.4) are determined (only) by the quantity d,.) from
(3.5). For a “close to orthogonal” quasi-normal field we have d,,) < 1 and thus
[Vd(z)| =~ 1 as quantified in (4.4). In our application below we have d,,) = O(h*) <
1, with h a (local) mesh size parameter and k related to the degree of the finite
elements used.

The next result quantifies in which sense the function d is close to the exact signed
distance function d**.

THEOREM 4.3. Take z € F(D),z ¢ T and let zo € T be such that |[d™*(z)| =
minger ||z — z|| = ||z — xol|. Define Ly, » :={xo+t(z—x0) | 0 <t <1} and assume
that L, . N Ns has one-dimensional measure zero. Then

|d(z)] = [d™(2)| _ 16 d
4. < < —
(47) 0 =@ =7i-s
holds, with 0, := max{dpy) | ¥ € Lgy,2 } < 1.
Proof. From |d(z)| = ||z—p(2)||, with p(z) € T, it follows that |d(z)| > |d®*(z)| and
thus the left inequality in (4.7) holds. Using the mean value theorem and d(xg) = 0
we get

1
d(z) = / Vd(xo +t(z —x0)) - (2 — x0) dt.
0
Hence, using Theorem 4.2 we obtain

16 &
d(2)| < max |[Vd(y)||||z — zo|| < max (1+—7p<y> )|de’<(z)|
yeLmo,z yeLzo,z

7 1= 0p(y)
16 6,
< + = 1_5L>Id ()1,

which proves the right inequality in (4.7). |

5. A method for computing p(z). In this section we introduce a simple
iterative procedure for computing the oblique projection p(z). If for a given z the
oblique projection p(z) € I' is known, the value for d(z) can directly be determined
from d(z) = (z — p(z),n(p(2))). Let z sufficiently close to I' (z € F(D)) be given. We
propose the following scheme:

let z° € T' (close to p(z)) be given. For k > 0:

5.1
(5.1) ¥ = 2 —an(2¥) with a € R such that 2! € I and |a| minimal.

The following theorem shows that this method is well defined and converges locally.

THEOREM 5.1. Let z € F(D) with |d(z)| < %%(P(;) be given. For 2° € T
p(z
sufficiently close to p(z) the iteration (5.1) is well defined and the following holds:
4 Yz
(5.2) | = p()] < 37—l e —p()], k=0,1....

p(2)
Proof. Take z as specified above. In a sufficiently small neighborhood V = V; x V4
of p(z) € I, as in the Definitions 3.1, 3.2, we can use both the graph representation
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and level set representation of I':
PNV ={(x1,h(x1)) |z1 €eV1}={2 eV | p(x) =0}

The function f : Vi x Vo — R given by f(z1,a) = ¢(z — an(z1,h(x1))) has a zero
(x7,0*) € Vi x Va, with o7 such that (z7,h(z])) = p(z) and o = d(z). From a
Lipschitz version of the implicit function theorem (cf. [7]), it follows that there exists
a neighborhood W of z} and a function « : W — V; such that f(z1,a(z1)) =0 for
allzy € Wand I'nN (W x Vo) = { f(x1,@(x1)) =0 | 1 € W }. This implies that for
20 € T sufficiently close to p(z) there is a unique a; = a;(2°) € V; such that

(5.3) vt =2z —a;n(2°) €.

We conclude that for k& = 0 the iteration (5.1) is well defined for all 2° € ' with
|29 — p(2)|| < € and ¢ sufficiently small. From a continuity argument it follows that
for £ > 0 sufficiently small we have z¥ € Br(p(z);ry(.)) for k = 0,1. We use the

notation e* = z¥ — p(z). From (5.3) and p(z) = z — d(2)n(p(2)) it follows that

el = d(z)n(p(z)) — arn(z’) = d(2) (n(p(2)) — n(z%)) + (d(z) — a1)n(a”)
holds, and thus
(5.4) le!1? < [d(2) vl et ]| + ld(z) — anl[{n(z°), ).

Note that |d(2) — au| = [[|p(2) — z]| = ||l=* — 2||| < [|p(2) — «*|| = [|e"||. Hence, ||| <
|d(2)|p() 1€°]] + [(n(a?), )| holds. Using z* € Br(p(z);7p(»)) and the conditions
(3.4)-(3.5) we get

[(n(2”),e")| = [(n(z°), p(z) — ")
(5.5) < [(n(z®) = n(p(2)),p(z) — 2")| + |(n(p(2)), p(z) — )|
< Vo)) €+ (Opz) + o) To()) et -

Using this we obtain [le!|| < [d(2)|vp()ll€°] + [0p(z) + (Cp(z) + Vo(2))Tp(») ] l€t]], and
using (3.7) this yields (1 — (14 38,02))[le*]] < |d(2)[vp(z)||€° . Hence, the result (5.2)
holds for £ = 0. From the assumption |d(z)| < %%(p:) it follows that ||| < ||e°|
and thus the same argument can be applied for k > 1. O

It remains to determine the value of o such that 2! = 2 — an(z¥) € T holds;
cf. (5.1). In our applications the manifold T' is represented as the zero level of a
level set function ¢. In that case the value of a can be determined by a line search
algorithm applied to gi(a) = 0, with gi(a) := ¢(z —an(z¥)). If gy is (only) Lipschitz,
special algorithms should be used; cf. [7, 14].

6. Application to the reinitialization of finite element level set func-
tions. In this section we explain how the approximate signed distance function in-
troduced above (cf. Definition 3.4), can be used in a reinitialization method. For a
general discussion of the role of reinitialization techniques in level set methods we
refer to the literature; cf. [12, 16, 17, 18].

We consider a finite element setting and a standard level set description of a
smooth manifold (interface) in RY (N = 2,3). Let ¢ : © — R be a smooth function
and QCRY, Q=0 U, IT=0N0 ={2€Q|é) =0}, ¢(x) <0 for z € Q,
¢(z) > 0 for x € Q.
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In applications one typically only has a finite element approximation ¢y, of ¢ avail-
able. Let {7 }r>0 be a family of shape regular simplicial triangulations of Q, and V},
the corresponding standard finite element space of continuous piecewise polynomials
of degree k > 1:

(6.1) Vh={1/)€C(Q)|’l/)|T€Pk forall T €Ty}
The function ¢, € V;, is a given (sufficiently accurate) approximation of ¢. We define
(6.2) I‘h:{xeﬂ|¢h(x):0}.

Note that the zero level set I'}, is only implicitly described and except for the case
k =1 (linear finite elements) it can generally not be represented in an explicit form.

We need some further notation. Let 7r, be the set of all simplices that are
intersected by I'p,. This set is called local triangulation. The corresponding local
domain is denoted by Qr, = Urer, T To avoid technical details, we assume the
generic situation that the intersection of any simplex T € 7r, with I', divides T" into
two subsets with nonzero N-dimensional measure. For a collection of simplices A let
V(A) be the set of all vertices of the simplices contained in A and N(A) the set of
all finite element nodes of the simplices contained in A. Hence, for kK = 1 we have
V(A) = N(A) and V(A) C N(A) for k > 2. For a vertex v the union of all simplices
that have v as a vertex is denoted by w(v). The local triangulation is enlarged by
adding the neighboring simplices, resulting in the set

I‘eh = UUGV(TI‘h)w(U)7

which is called the extended local triangulation. The corresponding domain is denoted
by Qf, . The finite element space V}, restricted to the local triangulation is denoted
by Vh(QFh) = { Yo, | ¥ €V} We define V4(Qf, ) similarly.

6.1. Outline of the results in the finite element setting. We are interested
in a reinitialization of the finite element function ¢, € V,. We only consider the
ingtialization phase. Given this initialization phase, any of the (many) known variants
of the fast marching eztension algorithms can be applied.

The initialization phase that we present in section 6.3 is based on an application
of the approach studied in sections 3-5. The Lipschitz manifold is given by I'j, from
(6.2). For the given ¢y, its gradient field V¢, cannot be used as a quasi-normal field
on T'y, since it is discontinuous (at the faces between simplices). In the finite element
literature there are well-established gradient recovery techniques. Such methods re-
sult in Lipschitz continuous gradient approximations. In section 6.2 we present one
particular technique, namely, the PPR method. The output of such a gradient re-
covery method can (after scaling) be used as a quasi-normal field np on I'y,. The
corresponding oblique projection and approximate signed distance function are de-
noted by p;, and dj, respectively. We recall that, by construction, the zero level of dj
equals I'j,. Using the method given in section 5, for z sufficiently close to I'j, the value
of py(z), and thus of dj(z), can be determined. This leads to the final step in our
approximation process, namely, the nodal interpolation of dj, in vertices v € V(7r, ) in
the finite element space Vh(QFh) The result is denoted by dy, = Ip,dj, and for the zero
level of dh we use the notation I';,. The finite element function dh is the output of our
initialization phase. We emphasize that for computing dp, we only need evaluations of
¢n, on the neighborhood Qf, of I',. Hence, we do not construct an approximation of
the zero level T',.
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In section 7.1 we show that the scaled recovered gradient forms a quasi-normal
field on I', and that for the orthogonality measure &, in (3.5) we have d, < h*. Using
this and the analysis in section 4 we derive an estimate that quantifies in which sense
the output dp, = Ipdy, of the initialization phase is “close to” the exact signed distance
function to I'y; cf. Theorem 7.3. Furthermore, we show that ', has optimal accuracy,
namely, dist(T's,T) < h¥*1. The precise result is given in Theorem 7.7.

6.2. The polynomial-preserving recovery (PPR) method. Gradient re-
covery techniques are often used in error estimators; cf., e.g., [2]. A famous example
is the gradient recovery method introduced by Zienkiewicz and Zhu (ZZ) [22, 23],
known as the superconvergence patch recovery (SPR), which forms the basis of the
77 error estimator. Basically, the SPR uses a least squares fit to the gradient of
the finite element function to recover a continuous gradient. Another method, the
so-called PPR is introduced in [21] and analyzed in [10]. In PPR one applies a least
squares fit directly to the finite element function and based on this fit a continuous
gradient is determined. The reason that we use PPR is that for this method more
theoretical analyses, e.g., error bounds as in [10], are known. We emphasize, how-
ever, that in the initialization method, presented in section 6.3, one could replace the
PPR method by another gradient recovery algorithm. The general description (i.e.,
N = 2,3, k > 1) of the PPR method is given in [10]. To simplify the presentation,
we restrict ourselves to the cases N =3, k=1,2.

For v € N(T,) let ¢, be the corresponding nodal finite element basis function.
Below we explain how, given the set of function values { ¢n(v) | v € N(Tp) }, the
gradient recovery vectors { (Gpoén)(v) | v € N(Tp)} are constructed. The induced
continuous gradient recovery finite element vector function is given by the operator
Gh V= Vh?’:

(6.3) Ghon =Y (Guon) (), € V3.

vEN(Tr)

The function Gp¢p is a continuous finite element approximation of the gradient
(Gron)(x) = V¢(x). In the application of the PPR method in section 6.3 we use
the gradient recovery only “close to I',.” More precisely, we only need

(6.4) Gronliar, = D (Grén) (@),

vEN(Tr),)

It remains to explain how the vectors (Gn¢n)(v), v € N(Tr,) are determined. We
first consider k£ = 1. In this case the set of finite element nodes and the set of vertices
coincide: V(7r,) = N(7r, ). Take v € V(7r,) and the corresponding neighborhood
w(v). Let p, be the polynomial of degree 2 that fits ¢, in a least-squares sense:

Yo 1@n(z) —pu@)P =min Y [(dn(z) —p(x) .

2eV (w(v)) PEP: eV o))
We assume that this least-squares problem has a unique solution p, and define
(Gron)(v) := Vpy(v). Note that the polynomial p, is uniquely defined if we have
at least 10 independent conditions. In our applications this holds, since we typi-
cally have 11-14 edges that have v as a vertex. If there are not enough independent
conditions one can enlarge the neighborhood w(v) by including further neighboring
simplices. This approach is explained in [10]. For ease of implementation we propose
to use a simpler (but theoretically less favorable) approach. In the case of fewer than
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10 independent conditions we fit a polynomial of degree 2 (or 1) with fewer degrees of
freedom. For example, we set the coefficient corresponding to xy and/or xz and/or yz
to zero. Another possibility is to use a local refinement of one or more of the T' € w(v)
and thus create more conditions.

We now consider k = 2, and thus V(7r,) # N(Tr,). We first take v € V(7r,).
The approach is the same as above: we fit a polynomial p, of degree 3 to the values
in all nodes in w(v):

(6.5) Yo @n(z) = pu(x)P =min > |(dn(z) - p(2)]*

P
2eN(w(v)) PE N (@)

We assume a unique solution p,, (which is generally true in our applications) and define

(Gron)(v) := Vpy(v). We now consider v € N(7r, ) \ V(Tr, ). Let v be the midpoint

of an edge with vertices v; and vy. We define (Gr¢p)(v) := (Vpy, (v) + Vpy, (v)),

where p,, are the least-squares polynomials defined in (6.5).

6.3. The initialization phase. As input for the method we need (only) 77,
and { ¢n(v) | v € N(Tf,) }. Note that we do not need an approximation of I';,. The
output is a finite element function Iy dp, € Vi, (Tr, ) that is “close to” the (local) signed
distance function to I'j,.

Given {¢n(v) | v € N(TfF, )}, the PPR method described in (6.4) results in
Gnon € Va(T5,)?, with (Ghon)(z) = Vo(x) for 2 € Qr, (cf. section 7). We define

(6.6) na(@) = [(Gron) (@)~ (Grén) (@), € .

As we will indicate in section 7, it is reasonable to assume that this function satisfies
the conditions of a quasi-normal field on I'}, as formulated in Definition 3.3. Hence,
for z close to I'j, the approximate signed distance function d(z) (cf. Definition 3.4),
is well defined. To emphasize the dependence on the triangulation Tj, we write dj,
instead of d. For h | 0 the points z € Qr, can be forced to be sufficiently close to
I',. We assume that h is small enough such that the approximate signed distance
function dp(z) is well defined for z € Qp,. Note that the function dj, is close to the
exact signed distance function to Iy, (cf. Theorems 4.2 and 4.3), and it has T'y, as its
zero level:

{SEEQFh |dh($)=0}=Ph.

Clearly, dn(z), z € Qr,, is not explicitly available. Therefore we introduce a nodal
interpolation Idy, € Vi,(Qr, ) of d, given by

(6.7) Indp(v) = dp(v) forall ve N(Tr,).

This finite element function Indy is the output of our initialization phase. Clearly,
the interpolation procedure introduces an interpolation error that causes a change in
the zero level, i.e.,

(6.8) f‘h = {CE € Qr, | (Indp)(z) = 0} ~ Iy,

The error in the approximation I', ~ I'j, will be analyzed in the next section. It
remains to discuss how dj(v), v € N(7r,), can be computed. For this we use an
obvious variant of the method explained in section 5. Given a node v € N(7r,) and
zF € T, 2% ~ p(v), we have to determine the zero of

(6.9) on(v — any(zh)) = 0;
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cf. (5.1). This can be realized by, for example, the following approzimate Newton line
search: ag := 0 and

Sn (v — omnn(*))
(Gnon) (v — amnn(a¥)) - nn(a*)’

The iteration in (5.1) takes the form

(6.10) Qnt1 = ap + n=20,1,....

(6.11) 2F =y — any ()

with an « that solves (6.9). A starting vector 2° € I'j, can be determined as follows.
Notice that the quasi-normal field n; is defined not only on I', but also on Qr, .
Hence, one can define z° := v — anp(v), with « such that ¢, (v — anp(v)) = 0 holds.

In the iterations (6.10), (6.11) the work per iteration is “low” since one only has
to evaluate the known finite element functions ¢, Gron, and ny,. These iterations
converge if v is sufficiently close to I'; cf. section 5. Furthermore, the contraction
of the iteration (6.11) can be bounded by c¢|d(v)|; cf. Theorem 5.1 for the precise
statement. In the initialization phase we have v € N(7r,) and thus |d(v)| = O(h),
i.e., we have “fast” convergence for small h.

The iteration (6.11) is stopped when a suitable tolerance criterion is satisfied.
The oblique projection of v is then given by pp(v) = z**!, and the value of dj(v)
follows from the relation dy (v) = (v — pp(v), np (pr(v))).

Concerning the practical realization of the algorithm there are several issues that
should be addressed. For example. it might be better to replace (6.10) by a damped
variant to guarantee that the iterates remain in Qr, . Furthermore it might be neces-
sary to choose a better starting value than 2° := v — any,(v) proposed above. These
and other numerical issues will be investigated in a forthcoming paper.

7. Analysis of the PPR based initialization phase. In this section we use
the results derived in section 4 to analyze the initialization phase presented in sec-
tion 6.3. We consider the following setting. We assume that I' is the zero level of a
level set function ¢, ie., I' = {x € Q | ¢(x) = 0}. The analysis is restricted to a
(small) neighborhood U C Q of I'. We assume that ¢ is smooth on U (¢ € C*¥TH(U))
and that there are constants ¢y, > 0 and ¢y such that

(7.1) e <||\Vo(z)|| <ey forall zel.

Let there be given a finite element function ¢, € V} that is an optimal approximation
of ¢ in the neighborhood U, in the sense that

(7.2) ¢ — dnllpe@y + hlld — dnllwre @) S A

holds. Here and in the remainder we use the notation a < b to denote a < ¢b with a
constant ¢ independent of h. In applications, the finite element function ¢ is known
and used as input for the initialization phase. Recall that the zero level of ¢, which
for k > 2 cannot be determined explicitly, is denoted by I'y; cf. (6.2). As output of
the initialization phase we obtain Idy, € V}, as in (6.7), with a zero level denoted by
T; cf. (6.8). Note that T'j, can also not be determined explicitly for k > 2.

7.1. Recovered gradient as a quasi-normal field on I'j,. In this section
we assume that (7.1) and (7.2) hold and we show that the scaled recovered gradient
(6.6) is a quasi-normal field on I';, (but not necessarily on I'!). In the analysis we
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also need certain properties of the PPR gradient recovery operator Gy, : Vi, — V;V.
This operator has been analyzed in [21, 10]. In our analysis we need the following
two approximation and stability properties:

(7.3) 1Gr(Ing) = Vo ooy S R,
(7.4) HGh'Uh”LOO(U) < C”UhHWl’x(UC) for all Vp € Vh,

with a constant ¢ independent of v, and h. Here U¢ denotes the neighborhood U ex-
tended with a suitable patch of surrounding elements (we refer to [10] for the details).
The approximation result (7.3) follows from the Bramble—Hilbert lemma and the fact
that G} has the consistency property Gy, (Inp) = Vp for all p € P;. The stability
property (7.4) is proved for N = 2 (under mild assumptions on the triangulation 7p,)
n [10]. A proof of this property for N = 3 is not known to us.

In the remainder we assume that (7.3) and (7.4) hold. In the following two
lemmas, we show that the scaled recovered gradient n;, defined in (6.6) satisfies the
two conditions (3.4) and (3.5) for a quasi-normal field on I'y,.

LEMMA 7.1. Consider np, as in (6.6). There exist constants ¢ and hg > 0 such
that for all h < hg the following holds:

(7.5) [nn(z) —nn(@)ll < clz =yl for all z €Th, ye Blx;ra),

with r, sufficiently small such that B(x;r,) C U.
Proof. Take x € ', and y € B(x;r,) C U. Inserting the definition we get

nn(2) Nl = H (Gron)(x) (Gron)(y) H
(7.6) [(Grén) @)l 1(Grdn) W)
< 2|| Gnén) (@) — (Gron)(y H.
- (Grén) ()]

We write Grop = Gp(dn — Ing) + (Gr(Ing) — Vo) + Vo, and using (7.3), (7.4), (7.1),
(7.2), and the interpolation bound ||¢ — In¢||w1. ey S h* we get

[(Gron) (@) = Vo(@)[| — cllén — Indllwrowe) — c|Gr(Ind) — VO L)
> cf, — ch®.

Hence, for h sufficiently small we have

(1) (@)@l = ger.

The vector function Gy, € Vh3 is Lipschitz continuous and

(7.8) [(Gron)(x) = (Gron) (W)l < /O IV(Ghn) (@ + t(x —y))| dt||z -yl

holds. We write z := z + t(x — y) € B(x;r,) and note that

IV(Gron) () < IV (Grhon — In(V) vy + IV In (V)| oo (1)

Using an inverse inequality and the boundedness of I, on W (U) we get

IV (Gron) ()| S b HIGron — In(Vo) || Lo () + 1,
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and using (7.3), (7.4) results in

IV (Gron) () S b~ HGr(n = Ind)l|Loewy + ™ HIGr(Ing) = V|l L)
(7.9) + W HIVe = In(Ve) || Lo (o) + 1
Sh M on — Indllwreeey + R +1 SR 41 <1
Using this result in (7.8), in combination with (7.7) and (7.6) completes the
proof. 0
LEMMA 7.2. There exist constants c1,co and hg > 0 such that for h < hg and

all x € Ty, y € Ty, N B(x;1y), with vy sufficiently small such that B(x;r,) C U, the
following holds:

[(na(2), 2 — y)| < erh¥ o — yl| + collz — y|*.

Proof. Using the definition of nj, and the lower bound in (7.7) results in
2
(7.10) (@), 2 = y)l < —[(Grdn) (), 2 = )l

Since z,y € T, we have 0 = ¢p(z) — dn(y) = fol (Von(x + tly — x),x — y) dt. Using
this relation we obtain

(7.11)
1
(Gron)(@),x —y) = /0 ((Gron)(@) = (Gudn)(z +t(y — x)), @ — y) di

+ / (Grén)(@ + tly — 2)) — Vn(e + tly —a)),a — y) dt.

From the Lipschitz continuity estimate (7.8)—(7.9), with y replaced by =z +t(y — x) €
B(x,r,;), we get

(7.12) [{(Gron)(x) = (Gron)(z +ty — 2)), 2 —y)| < cllz —y]*.

For the second term on the right-hand side in (7.11) we get

[(Gron)(z +t(y —2)) — Von(z +t(y — 2)),z — y)|
< NGhdn — Von|lLe@nllz -yl

< (||Gh(¢h — 19| L) + |Gh(In9) = VO o) + VP — V¢h||L°°(U)>||9C il
< (Ion — Indllwre ey + B+ W) |z — y|| S B ||lz —y].

Using this and (7.12) in (7.11) in combination with (7.10) completes the proof. O

From the lemmas above we conclude that indeed nj defines a quasi-normal field
on I'y, and that for the parameter 0, in (3.5) we have 0, < ch® with a constant ¢
independent of z € T'j,.

7.2. Accuracy of the initialization phase. In this section, we use the prop-
erties of ny, derived in the previous section and apply the results of section 4 to derive
properties of the signed distance function dj, and the zero level T';, given in (6.8).

The results in section 4, e.g., in Theorems 4.2 and 4.3, hold in a neighborhood
F(D) of the manifold. Using the fact that limj_odist(I'y,I') = 0 (follows from
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(7.2)) and the results in Lemmas 7.1 and 7.2 one can check that the width of this
neighborhood F(D) around T'j, is bounded from below by a strictly positive constant
uniformly for h — 0. Hence, for h sufficiently small the local neighborhood Qr, , that
has width O(h) is contained in the neighborhood F(D).

Let d7* denote the ezact signed distance function to I',. As output of the initial-
ization phase we obtain Idy; cf. (6.7). In the next theorem, which is an immediate
consequence of Theorem 4.3, we quantify the statement that I, dy is “close to” the
exact signed distance function to dy”.

THEOREM 7.3. There exist constants ¢ and hg > 0 such that for h < hqg the
following holds:

[ ndn(v)| = |d5* (v)]
|d5 (v)]

for all nodes v € N(Tr,), v ¢ Ty, that fulfill the condition, specified in Theorem 4.3,
that Ly, N Ng has one-dimensional measure zero.

Proof. We apply Theorem 4.3. For h sufficiently small we have v € F(D). For
v € N(Tr,) we have Indn(v) = dp(v). Due to Lemma 7.2 the parameter Jy, in
Theorem 4.3 is bounded by ch*. 0O

In the generic case the condition “Lg, , N N, has one-dimensional measure zero”
used in the theorem above is satisfied. In the remainder of this section we analyze
the accuracy of the perturbed zero level I compared to that of I'y,. We start with
the accuracy of the latter as an approximation of the zero level I' of the “exact”
level set solution ¢. The exact signed distance function to I' is denoted by d“*. The
exact normal field on T" is denoted by nr(x), z € I'. We take a (sufficiently small)
neighborhood U of T" such that for all z € U there exists a unique p(z) = € I" such
that z = p(z) + d**(z)nr(p(z)); cf. (3.12). Furthermore, to simplify the analysis, we
assume that I'y, C U is the graph of a function on I' in the following sense: there exists
a function g : I' — R such that T'y, = {z+g(x)nr(z) | z € T'}. Then d°*(z) = g(p(2))
holds for all z € T'y,.

LEMMA 7.4. Define cy := max,cy | V2¢(2)| < oo Assume that (7.1) and (7.2)

are satisfied and that |d°* ()| < cpcy' holds for all z € Ty,. For hg > 0 sufficiently
small and h < hg the following holds:

(7.14) dist(I's, T') = max |d°7(2)| < RFHL
z h

< ch®

(7.13) 0<

Proof. Take z = p(z) + d°“(z)nr(p(z)) € T',. Hence, |d**(z)| = ||z — p(2)]| holds.
From a Taylor expansion we obtain, for suitable &,

¢(2) = d(p(2)) = Vo(p(2))" (2 — p(2)) + %(2 = (2))TV26(E)(2 — p(2)).
Since Vo (p(2)) and z — p(z) are aligned we obtain, using ¢(p(z)) = ¢n(z) =0,

V6= - o)l
= IVH(p(2)” (z = p()] < 6(:) = ] + genllz — p(:)]?
= 16(z) — 6n( + genllz — p()I? < ek + Zenlz — p(a)]>

From (7.1), (7.2), and ||z — p(2)|| < crey" we then get ||z — p(2)| < h*H1. O
In the next lemma we show that from the result in (7.14) it follows that the signed
distance functions d;* and d°* to I';, and I, respectively, are close.
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LEMMA 7.5. Let the assumptions as in Lemma 7.5 be fulfilled. For hg > 0
sufficiently small and h < hg the following holds:

(7.15) [ — d || Loequy S WM

Proof. Take z € U. First we consider the case that d§*(z) and d°"(z) have the
same sign. Then |d§*(z) — d°(z)| = ||d§"(z)| — |d°"(z)|| holds. Let z}; € I'; be such
that |d5*(2)| = ||z — 2};||. Since p(z}) € I, we get, using (7.14),

|d° (2)] = 1d5 (2)] < llz = (i)l = Il = 23]l < ll2 = p(2p)]l = 1d° (=) S BPFL
Take y; := p(2) + g(p(2))nr(p(z)) € I'n. With (7.14) we obtain
|di" (2)] = 1d*(2)] < ||z = i ll = [lz = p(2) |
< lg(p(2))l = lg(p(yi))] = 1d° (yp)| S h*FL

Now we treat the case that d§*(z) and d°”(z) have opposite sign. With y; as defined
above we get

|3 (2) — d* ()] = |2 = p(2)l| + min [lz — ]| < lz = () + 2 — will

Due to the sign property, z is located on the line segment that connects p(z) with y}.
Hence,

|4 (2) = d“(2)] < |Ip(2) = yill = lg(p()| = l9(p(yi))| = 1 (yi)| < B

holds. O

We are now in a position to derive a bound for the difference between the in-
terpolated approximate signed distance function Ipd; € V3, that results from the
initialization phase, and the signed distance functions d*” and dj” to the zero levels
I'" and T'y,, respectively.

LEMMA 7.6. Let the assumptions as in Lemma 7.5 be satisfied. In addition we
assume (the generic case) that all v € N(Tr,) fulfill the condition that Ly, , N N has
one-dimensional measure zero (cf. Theorem 4.3). For hg > 0 sufficiently small and
h < hg the following hold:

(7.16) [Indn — d° || Lo (r, ) S BE,
(7.17) [ndn — d57 || L (r, ) S BEF

Proof. From Theorem 4.3 it follows that ||[Inds(v)| — |ds®(v)|| < A**! holds,
uniformly for v € N(7r, ). Since per construction Idp(v) and df”(v) have the same
sign, we get max,en (7, ) |dn(v) — di (v)| < h¥H, and thus,

ex ex k+1
= A5,y S0 s [da(0) = ()] S

From the smoothness of d°* (close to I') we get [|1,d®* — d*"|[L=(ar,) S RE+1. Com-
bining these results with the result in (7.15) we get
[Zndn — d** Lo (ar, ) < Ma(dn — i)l Lo (ar, ) + a(dy" — d°)| Loy, )
+ [ 1nd®® = d| o r, ) S B4 (|dRT — d° | L, )
< hk—i—l
hence (7.16) holds. The result in (7.17) follows from (7.15) and (7.16). O

As a direct consequence of Lemma 7.6 we obtain a result on the accuracy of the
zero level T'y, of Indp; cf. (6.8).
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THEOREM 7.7. Let the assumptions of Lemma 7.6 be fulfilled. For hg > 0
sufficiently small and h < hg the following hold:

(7.18) dist(T';,T) := max |d°(z)| < hFF1,
zel'y

(7.19) dist(T, ) 1= max |d5® (2)] < RFHL
zely

Proof. Take z € f‘h, hence (I,dp,)(z) = 0. Using (7.16) we obtain
@ ()] = |(Indn)(2) = ()] < |Tudn = A (0, ) S B,

which proves the result in (7.18). Using (7.17) the same argument can be applied to
prove (7.19). O

We conclude that under reasonable assumptions the PPR based initialization
phase results in a reinitialization Ind, € Vj,, which locally (i.e., on Qr, ) differs at
most O(h*+1) from the exact signed distance function d§* to I'y,. Furthermore, the
perturbation of the zero level caused by the reinitialization is also at most O(h¥*1).

8. Numerical experiments. In this section we present results of numerical ex-
periments. Related to the PPR based initialization algorithm introduced in section 6.3
there are several numerical issues that need further investigations; cf. section 9. Here
we consider only a few relatively simple test problems and illustrate the theoretical
accuracy bounds derived in section 7.2.

Example 1. For the manifold I' we take the torus, characterized by the distance

function
2
d°(x) = 4|23 + (V:z:% + 3 — R) -,

with radii 7 = 0.2 and R = 0.4. For computations I" is embedded in Q := [—1,1]3.

Example 2. We consider a manifold I' illustrated in Figure 8.1, which we call
the apple. It consists of the combination of a half-sphere with a large radius, a half-
torus, and a half-sphere with a small radius. For this manifold a formula for the exact
distance function d®® can be derived. In this example the variation of the curvature
is significantly larger than for the torus in Example 1. The manifold is embedded in
0 :=[-1.5,1.5].

Fia. 8.1. Manifold T in Example 2: the apple.
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Fic. 8.2. Cross section of tetrahedral triangulation on level £ = 5.

Fic. 8.3. Level lines of function (@) for a = 50.

We construct finite element spaces as follows. First a uniform tetrahedral triangu-
lation of 2 with mesh size parameter hg = 2/3 (Example 1) or hy = 1.0 (Example 2)
is constructed. This uniform grid is locally refined in a neighborhood of I by us-
ing a red-green procedure. This results in triangulations with mesh size parameters
he=2"thg, £ =1,2,...8, close to I'. These triangulations are denoted by 7;. A cross
section of the level £ = 5 triangulation in Example 1 is given in Figure 8.2.

We use standard finite element spaces with polynomials of degree £k = 1 and
k=2

VE={¢eCQ) | eP, forall TeT}, k=12

The nodal interpolation corresponding to this space is denoted by Iy, with h = hy. As
exact level set function we take a perturbation of d®*, given by ¢(® = d¢*¢(®)  with

¢ (z) = 9.0 + 4.0 cos (a1 /||2]]2), € {1,10,50}.

Note that ¢(® has I' as its zero level, it has a large gradient, and for increasing «
it becomes more and more distorted. For o = 50 the level lines of ¢(*) on the same
cross section as in Figure 8.2 are illustrated in Figure 8.3. The four level lines shown
in the figure correspond to the values ¢(®) = —0.2, —0.1, 0.1, 0.2.



2742 ARNOLD REUSKEN

As input for the initialization phase we take ¢§La) = I;,¢\®). Note that for k = 2

the zero level I'y, of (béa) can not be constructed explicitly. We implemented the
initialization phase described in section 6.3. We summarize its main components as
follows.
e Based on sign properties the local triangulation 7r, that contains I'j, is de-
termined.
e The recovered gradient Ghd)gf‘) € VF(T¢,)? and its normalization ny,(v) =
H(thﬁg;l))(v)H_l(Gh(b;la))(v), v € N(Tr,) are determined.
e For v € N(7r, ) the approximate signed distance value dga) (v) is determined
by using (6.10)—(6.11).
e Nodal interpolation results in the finite element function Ihdgf) e vikQr,),
which is the output of the initialization phase.
Since the signed distance function d§* to I'y, (the zero level of ¢§f‘)) is not known, we
compare the output Ihdglo‘)
following error measure:

to the exact signed distance function d* to I'. We use the

[ ndn(v) — d™(v)].

€oo = IMax
vEN(Tr),)

Furthermore, to measure the size of the gradient of I},d;, on Qr, we determine

1
Vo= — I 2ds —1].
Lo \/ = [ 9 eeas

The results for Example 1 are shown in the Tables 8.1, 8.2, and 8.3, for the cases
a = 1,10, 50, respectively.

TABLE 8.1
Ezxzample 1: Errors and order of convergence for a = 1.

k=1 k=1 k=2 k=2
l €oo order eovo order ¢ €oo order eovo order
3 | 1.21e-2 - 2.50e-1 - 3 | 5.73e-4 - 1.66e-2 -
4 | 3.0le-3 2.00 1.53e-1 0.71 4 | 7.21e-5 2.99 3.46e-3 2.26
5 | 7.54e-4 2.00 8.32e-2 0.87 5 | 9.94e-6 2.86 8.70e-4 1.99
6 | 1.90e-4 1.99 4.25e-2 0.97 6 | 1.24e-6 3.01 2.13e-4 2.03
7 | 4.68e-5 2.02 2.12e-2 1.00 7 | 1.58e-7 2.96 5.31e-5 2.01
8 | 1.19e-5 1.98 1.07e-2 0.99 8 | 2.07e-8 2.93 1.34e-5 1.98

TABLE 8.2
Ezxample 1: Errors and order of convergence for a = 10.

k=1 k=1 k=2 k=2
l €oo order eovo order l €oo order eovO order
3 | 1.15e-2 - 2.40e-1 - 3 | 7.16e-4 - 1.77e-2 -
4 | 3.24e-3 1.82 1.61e-1 0.57 4 | 1.04e-4 2.78 3.78e-3 2.23
5 | 7.91le-4 2.03 8.02e-2 1.00 5 | 1.56e-5 2.75 1.10e-3 1.78
6 | 2.07e-4 1.94 4.32e-2 0.89 6 | 1.87e-6 3.06 3.10e-4 1.83
7 | 5.18e-5 2.00 2.24e-2 0.95 7 | 2.44e-7 2.94 7.32e-5 2.08
8 | 1.32e-5 1.97 1.11e-2 1.01 8 | 3.09e-8 2.98 1.91e-5 1.94




LEVEL SET REDISTANCING BASED ON GRADIENT RECOVERY 2743

TABLE 8.3
Ezxzample 1: Errors and order of convergence for a = 50.

k=1 k=1 k=2 k=2
V4 €oo order eovo order l €oo order eovo order
3 | 4.07e-2 - 6.23e-1 - 3* | 7.47e-2 - 8.10e-1 -
4 | 1.05e-2 1.95 2.32e-1 1.42 4* | 2.86e-2 1.38 | 3.10e-1 1.39
5 | 2.91e-3 1.86 1.01le-1 1.21 5% 5.66e-4 5.66 1.63e-2 4.25
6 | 7.63e-4 1.93 5.76e-2  0.80 6 | 6.87e-5 3.04 2.48e-2  —0.61
7 1.94e-4 1.98 3.04e-2 0.92 7 7.21e-6 3.25 1.52¢-3 4.03
8 | 4.84e-5 2.00 1.58e-2  0.94 8 | 8.78e-7 3.04 | 3.90e-4 1.97
TABLE 8.4

Ezample 2: Errors and order of convergence for a = 10.

k=1 k=1 k=2 k=2
VA €oo order eovo order l €oo order eovo order
4 | 6.20e-3 - 2.11e-1 - 4 | 4.37e-4 - 8.69¢e-3 -
5 1.61e-3 1.94 1.21e-1 0.81 5 | 5.49¢e-5 2.99 2.33e-3 1.90
6 | 4.20e-4 1.94 | 6.26e-2 0.95 6 | 7.52e-6 2.87 | 6.08e-4 1.94
7 | 1.06e-4 1.99 3.17e-2 0.98 7 | 9.36e-7  3.01 1.54e-4 1.98
8 | 2.67e-5 1.98 1.64e-2 0.95 8 | 1.20e-7 297 | 3.90e-5 1.98

In the cases indicated with * in Table 8.3 there were convergence problems in
the sense that the approximate Newton line search (6.10) did not satisfy its tolerance
criterion.

The results in the tables show an error reduction behavior that is consistent
with the theoretical results derived in Lemma 7.6 for the error measure e,, and with
the results on the size of the gradient of the approximate signed distance function
in Theorem 4.2. In the application of the latter theorem to our method we have
Op(z) < ch®: cf. section 7.1.

The same experiment is repeated for the apple manifold of Example 2. It turns
out that the behavior of the method remains essentially the same if we change from
the torus to the apple manifold. In Table 8.4 we show the results for the case a = 10.

Repeated reparametrization: Volume conservation. As a final test we
consider the method repeatedly applied to a sphere with radius » = 0.25, in order to
investigate whether “drifting” or “shrinking” occurs. The exact distance function is
denoted by d°*. As input for the reparametrization we use the interpolation in the
finite element space V¥, which is denoted by dj, := I;d*® (recall that h = hy). We
repeated the reparametrization 100 times resulting in approximate distance functions
d) = dp, dj} := reparametrization of dZ_l, n = 1,...100. We determined (with
sufficient accuracy) the volume inside the approximate manifold induced by J};, ie.,
V™ := Vol(int((T'})), where I'? is the zero level of the finite element function CZZ The
corresponding relative volume error is denoted by

o Vn —4/3mr3
Vol == 4/3mwr3 ’

In Figure 8.4 we plot this error over the number of reparametrizations for two levels
of refinement, ¢ = 5,6. We observe a mild shrinking effect with increasing n and this
effect becomes weaker if we change from k =1 to k = 2.
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F1G. 8.4. Relative volume error. Left: k =1, right: k = 2.

9. Discussion and outlook. In this paper we introduce a new level set redis-
tancing method. The method is based on well-known finite element gradient recovery
techniques. Such a gradient recovery technique can be used to determine a quasi-
normal field on the (only implicitly given) zero level of a finite element level set
function ¢p. This quasi-normal field induces a natural approximate signed distance
function. The output of the initialization phase of the redistancing method is the
nodal interpolation (in a neighborhood of the zero level) of this approximate signed
distance function. This redistancing method does not need a reconstruction of the
zero level of ¢. We present an error analysis of this new method. A key assumption
in the analysis is that the underlying level set function ¢ (that is approximated by
the finite element level set function ¢y,) is sufficiently smooth such that error bounds
as in (7.2) and (7.3) hold.

A topic for further research is whether this approach (or a modification of it) is also
applicable for redistancing of a level set function ¢; that approximates a nonsmooth
level set function ¢, e.g., a ¢ with a zero level that has corners or edges. Related
to the PPR based initialization algorithm introduced in section 6.3 there are several
numerical issues that have to be studied further; for example, the computational work
needed in the PPR method and in the iterations (6.10)—(6.11), the robustness of these
iterations w.r.t. the choice of the starting value, and the rate of convergence of these
iterations. The performance of the new redistancing method in more challenging ap-
plications has to be investigated. We are particularly interested in applications in two-
phase incompressible flow simulations (where often the interface is smooth); cf. [9]. A
further issue that will be addressed in future work is the combination of this new ini-
tialization method with a standard (FMM based) extension phase and the comparison
of the resulting reinitialization method with other methods known in the literature.

Acknowledgments. The author thanks Patrick Esser for his support with the
implementation of the method and the referees for their constructive comments.
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