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Abstract. The zero level set of a piecewise-affine function with respect to a consistent tetra-
hedral subdivision of a domain in R3 is a piecewise-planar hyper-surface. We prove that if a family
of consistent tetrahedral subdivions satisfies the minimum angle condition, then after a simple post-
processing this zero level set becomes a consistent surface triangulation which satisfies the maximum
angle condition. We treat an application of this result to the numerical solution of PDEs posed on
surfaces. We show that the nodal basis of a P1 finite element space with respect to this surface
triangulation is L2-stable, provided a natural scaling is used. Furthermore, the issue of stability of
the nodal basis with respect to the H1-norm is addressed.
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1. Introduction. Surface triangulations occur in, for example, visualization,
shape optimization, surface restoration and in applications where differential equa-
tions posed on surfaces are treated numerically. Hence, properties of surface trian-
gulations such as shape regularity and angle conditions are of interest. For example,
angle conditions are closely related to approximation properties and stability of cor-
responding finite element [1, 2].

In this note, we are interested in the properties of a surface triangulation if one
considers the zero level of a piecewise-affine function with respect to a consistent tetra-
hedral subdivision of a domain in R3. The zero level of a piecewise-affine function
is a piecewise-planar hyper-surface consisting of triangles and quadrilaterals. Each
quadrilateral can be divided into two triangles in such a way that the resulting sur-
face triangulation satisfies the following property proved in this paper: if the volume
tetrahedral subdivision satisfies a minimum angle condition, then the correspond-
ing surface triangulation satisfies a maximum angle condition. We show that the
maximum angle occuring in the surface triangulation can be bounded by a constant
φmax < π that depends only on a stability constant for the family of tetrahedral
subdivisions.

The paper also discusses a few implications of this property for the numerical
solution of surface partial differential equations. Numerical methods for surface PDEs
are studied in e.g., [5, 4, 8, 3, 6, 11]. We derive optimal approximation properties of
P1 finite element functions with respect to the surface triangulation and a uniform
bound for the condition number of the scaled mass matrix. We also show that the
condition number of the (scaled) stiffness matrix can be very large and is sensitive
to the distribution of the vertices of tetrahedra close to the surface. Some numerical
examples illustrate the analysis of the paper.

2. Surface meshes induced by regular bulk triangulations. Consider a
smooth surface Γ in three dimensional space. For simplicity, we assume that Γ is
connected and has no boundary. Let Ω ⊂ R3 be a bulk domain which contains
Γ. Let {Th}h>0 be a family of tetrahedral triangulations of the domain Ω. These
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triangulations are assumed to be regular, consistent and stable. To simplify the
presentation we assume that this family of triangulations is quasi-uniform. The latter
assumption, however, is not essential for our analysis.

We assume that for each Th a polygonal approximation of Γ, denoted by Γh, is
given with the following properties. Γh is a C0,1 surface without boundary and Γh can
be partitioned in planar triangular segments. We assume that Γh is consistent with
the outer triangulation Th in the following sense. For any tetrahedron ST ∈ Th such
that meas2(ST ∩Γh) > 0 define T = ST ∩Γh. We assume that every T ∈ Γh is a planar
segment and thus it is either a triangle or a quadrilateral. Each quadrilateral segment
can be divided into two triangles, so we may assume that every T is a triangle.

Let Fh be the set of all triangular segments T , then Γh can be decomposed as

Γh =
⋃
T∈Fh

T. (2.1)

The most prominent example of such a surface triangulation is obtained in the context
of level set techniques. Assume that Γ is represented as the zero level of a level set
function φ and that φh is a continuous linear finite element approximation on the outer
tetrahedral triangulation Th. Then if we define Γh to be the zero level of φh then Γh
consists of piecewise planar segments and is consistent with Th. As an example,
consider a sphere Γ, represented as the zero level of its signed distance function. For
φh we take the piecewise linear nodal interpolation of this distance function on a
uniform tetrahedral triangulation Th of a domain that contains Γ. The zero level of
this interpolant defines Γh and is illustrated in Fig. 2.1.

Fig. 2.1. Approximate interface Γh for an example of a sphere, resulting from a coarse tetra-
hedral triangulation (left) and after one refinement (right).

In the setting of level set methods, such surface triangulations induced by a finite
element level set function on a regular outer tetrahedral triangulation are very natural
and easy to construct. A surface triangulation Γh that is consistent with the outer
triangulation may be the result of another method than the level set method. In the
remainder we only need that Γh is consistent to the outer triangulation and not that
it is generated by a level set technique.

Note that the triangulation Fh is not necessarily regular, i.e. elements from
T may have very small inner angles and the size of neighboring triangles can vary
strongly, cf. Fig. 2.1. In the next section we prove that, provided each quadrilateral
is divided into two triangles properly, the induced surface triangulation is such that
the maximal angle condition [1] is satisfied.
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3. The maximal angle condition. The surface triangulation Γh = ∪T∈Fh
T

is assumed to be consistent with the outer tetrahedral triangulation Th, as defined in
section 2. The family of outer tetrahedral triangulations {Th}h>0 is assumed to be
regular, i.e., it contains no hanging nodes and the following stability property holds:

sup
h>0

sup
S∈Th

ρ(S)/r(S) ≤ α <∞, (3.1)

where ρ(S) and r(S) are the diameters of the smallest ball that contains S and the
largest ball contained in S, respectively. Although the surface mesh Γh induced by
Th can be highly shape irregular, the following lemma shows that a maximum angle
property holds.

Lemma 3.1. Assume an outer triangulation Th from the regular family {Th}h>0

and let Γh be consistent with Th. For any S ∈ Th there exists φmin > 0, depending
only on α from (3.1), such that:

a) if T = S ∩ Γh is a triangle element, then

0 < φi,T ≤ π − φmin i = 1, 2, 3, (3.2)

holds, where φi,T are the inner angles of the element T .
b) if T = S ∩ Γh is a quadrilateral element, then

φi,T ≥ φmin, i = 1, 2, 3, 4, (3.3)

holds, where φi,T are the inner angles of the element T .
Proof. Take S ∈ Th. Let θmin > 0 be such that all inner angles of all sides of S and

all angles between edges of S and their opposite side are in the interval [θmin, π−θmin].
From the stability property it follows that

π

2
> θmin ≥ c(α) > 0

holds with a constant c(α) that depends only on α from (3.1).
We first treat the case where T = S ∩ Γh is a triangle T = BCD, as illustrated

in Fig. 3.1. Consider the angle φ := ∠BCD. Then either φ ≤ π − θmin and (3.2) is

A

B

C

D

EF

Fig. 3.1.

proved with φmin = θmin or φ ∈ (π − θmin, π). Hence, we treat the latter case. Note
that

|CF |
|AC|

= sin(∠CAF ) ≥ sin θmin
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and ∠BDC < π−φ < θmin <
π
2 . Take E on the line through DB such that CE ⊥ DB,

and F in the plane through ABD such that CF is perpendicular to this plane. Hence,
|CF | ≤ |CE| holds. Using the sine rule we get

sin(∠ADC) =
|AC|
|CD|

sin(∠CAD) ≤ |AC|
|CD|

≤ 1

sin θmin

|CF |
|CD|

≤ 1

sin θmin

|CE|
|CD|

=
1

sin θmin
sin(∠BDC) ≤ sin(π − φ)

sin θmin
=

sin(φ)

sin θmin
< 1.

Hence, ∠ADC ≤ arcsin( sinφ
sin θmin

) ≤ 2 sinφ
sin θmin

holds. This yields

∠ADB < ∠ADC + ∠CDB ≤ 2
sinφ

sin θmin
+ π − φ.

With the same arguments we obtain

∠ABD ≤ 2
sinφ

sin θmin
+ π − φ.

Since ∠DAB ≤ π − θmin and ∠DAB = π − (∠ADB + ∠ABD) we get

θmin ≤ 4
sinφ

sin θmin
+ 2π − 2φ. (3.4)

For φ ∈ (π − θmin, π) the inequality (3.4) holds iff φ ≤ φ0, where φ0 is the unique
solution in ( 1

2π, π) of 2 sinφ0 + (π − φ0) sin θmin = 1
2θmin sin θmin. This proves the

result in a).

We now consider the case where T = S ∩ Γh is a quadrilateral T = ABCD, as
illustrated in Fig. 3.2. Consider the angle φ := ∠DAB. Then either φ ∈ (0, θmin) or

P

O

Q

A

B

C
D

E

F

G

Fig. 3.2.

φ ∈ [θmin, π). We only should treat the former case. Take E on the line through AB
such that DE ⊥ AB, and F in the plane through OPQ such that DF is perpendicular
to this plane. Hence, |DF | ≤ |DE| holds and

sinφ =
|DE|
|AD|

.
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Furthermore, using |DF ||OD| = sin(∠DOF ) ≥ sin θmin we get

sin(∠OAD) =
|OD|
|AD|

sin(∠AOD) ≤ |OD|
|AD|

≤ 1

sin θmin

|DF |
|AD|

≤ 1

sin θmin

|DE|
|AD|

=
sinφ

sin θmin
< 1.

This implies

∠OAD ≤ arcsin
( sinφ

sin θmin

)
≤ 2

sinφ

sin θmin
.

Hence, since ∠DAB = φ ≤ 2 sinφ, we obtain

∠OAB < ∠OAD + ∠DAB ≤
(
1 +

1

sin θmin

)
2 sinφ.

Using ∠OAB = π − ∠PAB and ∠PAB < π − ∠OPQ < π − θmin results in

θmin <
(
1 +

1

sin θmin

)
2 sinφ. (3.5)

For φ ∈ (0, θmin) the inequality (3.5) holds iff φ ≥ φ0, where φ0 is the unique solution
in (0, 1

2π) of θmin =
(
1 + 1

sin θmin

)
2 sinφ0. Thus the result in b) holds.

The lemma readily yields the following result.
Theorem 3.2. Consider a regular family of tetrahedral triangulations {Th}h>0

and a surface triangulation Γh = ∪T∈Fh
T that is consistent to Th. Assume that any

quadrilateral element T = S ∩ Γh, S ∈ Th, is divided in two triangles by connecting
its vertex with largest inner angle with its opposite vertex. The resulting surface
triangulation satisfies the following maximal angle condition. There exists φmin > 0
depending only on α from (3.1) such that:

0 < sup
T∈Fh

φi,T ≤ π − φmin i = 1, 2, 3, (3.6)

where φi,T are the inner angles of the element T .
Proof. If T = S ∩ Γh is a triangle, then (3.6) directly follows from (3.2). Let

T = S ∩ Γh be a quadrilateral, with its four inner angles denoted by θ4 ≥ θ3 ≥ θ2 ≥
θ1 > 0. From the result in (3.3) we have θi ≥ φmin for all i. The vertex with angle θ4

is connected with the opposite vertex. Let T1 be one of the resulting triangles. One of
the angles of T1 is θj with j ∈ {1, 2, 3}. From θj ≥ φmin it follows that the other two

angles are both bounded by π−φmin. Furthermore, from θj = 2π−θ4−
∑3
i=1,i6=j θi ≤

2π − θj − 2φmin it follows that θj ≤ π − φmin holds.

In the remainder we assume that quadrilaterals are subdivided in the way as explained
in Theorem 3.2. Hence, the inner angles in the surface triangulation Fh are bounded
by a constant θ∗ < π that depends only on the stability (close to Γ) of the outer
tetrahedral triangulation Th. In particular θ∗ is independent of h and of how Γh
intersects the outer triangulation Th.

4. Application in a finite element method. In this section, we use the max-
imum angle property of the surface triangulation to derive an optimal finite element
interpolation result. On Fh we consider the space of linear finite element functions:

Vh = {vh ∈ C(Γh) : vh ∈ P1(T ) for all T ∈ Fh}. (4.1)
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This finite element space is the same as the one studied by Dziuk in [5], but an
important difference is that in the approach in [5] the triangulations have to be shape
regular. In general, the finite element space Vh is different from the surface finite
element space constructed in [9, 8].

Below we derive an approximation result for the finite element space Vh. Since
the discrete surface Γh varies with h, we have to explain in which sense Γh is close to
Γ. For this we use a standard setting applied in the analysis of discretization methods
for partial differential equations on surfaces, e.g. [5, 4, 6, 7, 9].

Let U := {x ∈ R3 | dist(x,Γ) < c } be a sufficiently small neighborhood of Γ.
We define T Γ

h := {T ∈ Th | meas2(T ∩ Γh) > 0 }, i.e., the collection of tetrahedra
which intersect the discrete surface Γh, and assume that T Γ

h ⊂ U . Let d be the signed
distance function to Γ, with d < 0 in the interior of Γ,

d : U → R, |d(x)| := dist(x,Γ) for all x ∈ U.

Thus Γ is the zero level set of d. Note that nΓ = ∇d on Γ. We define n(x) := ∇d(x)
for x ∈ U . Thus n is the outward pointing normal on Γ and ‖n(x)‖ = 1 for all x ∈ U .
Here and in the remainder ‖ · ‖ denotes the Euclidean norm on R3. We introduce a
local orthogonal coordinate system by using the projection p : U → Γ:

p(x) = x− d(x)n(x) for all x ∈ U.

We assume that the decomposition x = p(x) +d(x)n(x) is unique for all x ∈ U . Note
that n(x) = n

(
p(x)

)
for all x ∈ U . For a function v on Γ, its extension is defined as

ve(x) := v(p(x)), for all x ∈ U. (4.2)

The outward pointing (piecewise constant) unit normal on Γh is denoted by nh. Using
this local coordinate system we introduce the following assumptions on Γh:

p : Γh → Γ is bijective, (4.3)

max
x∈Γh

|d(x)| . h2, (4.4)

max
x∈Γh

‖n(x)− nh(x)‖ . h. (4.5)

In (4.4)-(4.5) we use the common notation, that the inequality holds with a constant
independent of h. In (4.5), only x ∈ Γh are considered for which nh(x) is well-defined.
Using these assumptions, the following result is derived in [5].

Lemma 4.1. For any function u ∈ H2(Γ), we have, for arbitrary T ∈ Fh and
T̃ := p(T ):

‖ue‖0,T ∼ ‖u‖0,T̃ , (4.6)

|ue|1,T ∼ |u|1,T̃ , (4.7)

|ue|2,T . |u|2,T̃ + h|u|1,T̃ , (4.8)

where A ∼ B means B . A . B and the constants in the inequalities are independent
of T and of h.

4.1. Finite element interpolation error. Based on the results in Lemma 4.1,
the maximum angle property and the approximation results derived in [1] we easily
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obtain an optimal bound for the interpolation error in the space Vh. Consider the
standard finite element nodal interpolation Ih : C(Γh)→ Vh:

(Ihv)(x) = v(x), for all x ∈ V, (4.9)

with V the set of vertices of the triangles in Γh.
Theorem 4.2. For any u ∈ H2(Γ) we have

‖ue − Ihue‖L2(Γh) . h2‖u‖H2(Γ), (4.10)

‖ue − Ihue‖H1(Γh) . h‖u‖H2(Γ). (4.11)

Proof. From standard interpolation theory we have

‖ue − Ihue‖L2(T ) . h2|ue|2,T ,

where the constant in the upper bound is independent of (the shape of) T . Using the
result in (4.8) and summing over T ∈ F proves the result (4.10). For the interpolation
error bound in the H1-norm we use the results from [1]. For the interpolation error
bounds derived in that paper the maximum angle property is essential. From [1] we
get

‖ue − Ihue‖H1(T ) . h‖u‖H2(T ).

Due to the maximum angle property the constant in the upper bound is independent
of T . Using the results in Lemma 4.1 and summing over T ∈ Fh we obtain the result
(4.11).

If one considers an H1(Γ) elliptic partial differential equation on Γ, the error for its
finite element discretization in the surface space Vh can be analyzed along the same
lines as in [5]. Using the interpolation error bounds in Theorem 4.2 and bounding the
geometric errors (due to approximation of Γ by Γh) with the use of the assumptions
(4.3)-(4.5) then results in optimal order discretization error bounds.

4.2. Conditioning of mass and stiffness matrix. Clearly the (strong) shape
irregularity of the surface triangulation will influence the conditioning of the mass
and stiffness matrices. Let N be the number of vertices in the surface triangulation
and {φi}Ni=1 the nodal basis of the finite element space Vh. The mass and stiffness
matrices are given by

M = (mij)
N
i,j=1, with mij =

∫
Γh

φiφj ds, (4.12)

A = (aij)
N
i,j=1, with aij =

∫
Γh

∇Γh
φi∇Γh

φj ds. (4.13)

We also need their scaled versions. Let DM and DA be the diagonals of M and A,
respectively. The scaled matrices are denoted by

Ms = D
− 1

2

M MD
− 1

2

M , As = D
− 1

2

A AD
− 1

2

A .

From a simple scaling argument it follows that the spectral condition number of Ms

is bounded uniformly in h and in the shape (ir)regularity of the surface triangulation.
For completeness we include a proof.
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Theorem 4.3. The following holds:

2√
2 + 2

≤ 〈Mv,v〉
〈DMv,v〉

≤ 4 for all v ∈ RN , v 6= 0.

Proof. The set of all vertices in Fh is denoted by V = { ξi | 1 ≤ i ≤ N }. Let

v ∈ RN and vh ∈ Vh be related by vh =
∑N
i=1 viφi, i.e., vi = vh(ξi). Consider a

triangle T ∈ Fh and let its three vertices be denoted by ξ1, ξ2, ξ3. Using quadrature
we obtain ∫

T

vh(s)2 ds =
|T |
3

(1

4
(v1 + v2)2 +

1

4
(v2 + v3)2 +

1

4
(v3 + v1)2

)
=
|T |
6

(
v2

1 + v2
2 + v2

3 + v1v2 + v2v3 + v3v1

)
.

Hence,
∫
T
vh(s)2 ds ≤ |T |3

∑3
i=1 v

2
i holds. From a sign argument it follows that at least

one of the three terms v1v2, v2v3 or v3v1 must be positive. Without loss of generality
we can assume v1v2 ≥ 0. Using |v2v3 + v3v1| ≤ 1√

2

(
v2

1 + v2
2 + v2

3

)
we get∫

T

vh(s)2 ds ≥ |T |
6

(
v2

1 + v2
2 + v2

3 −
1√
2

(v2
1 + v2

2 + v2
3)
)

=
|T |

6(
√

2 + 2)

(
v2

1 + v2
2 + v2

3

)
.

Note that 〈Mv,v〉 =
∫

Γh
vh(s)2 ds =

∑
T∈Fh

∫
T
vh(s)2 ds, and thus we obtain, with

V(T ) the set of the three vertices of T ,

2√
2 + 2

1

12

∑
T∈Fh

|T |
∑

ξ∈V(T )

vh(ξ)2 ≤ 〈Mv,v〉 ≤ 4
1

12

∑
T∈Fh

|T |
∑

ξ∈V(T )

vh(ξ)2. (4.14)

We observe that

1

12

∑
T∈Fh

|T |
∑

ξ∈V(T )

vh(ξ)2 =
1

12

N∑
i=1

|supp(φi)|v2
i (4.15)

holds. From the definition of DM it follows that

〈DMv,v〉 =

N∑
i=1

∫
Γh

φ2
i ds v

2
i =

N∑
i=1

v2
i

∑
T∈supp(φi)

∫
T

φ2
i ds

=

N∑
i=1

v2
i

∑
T∈supp(φi)

|T |
12

=
1

12

N∑
i=1

|supp(φi)|v2
i .

(4.16)

Combination of the results in (4.14), (4.15) and (4.16) completes the proof.

The diagonally scaled stiffness matrix As has a one dimensional kernel due to the
constant nodal mode. Thus, we consider the effective condition number cond(As) =
λmax(As)/λ2(As), where λ2 is the minimal nonzero eigenvalue. We shall argue below
that the condition number of As can not be bounded in general by a constant depen-
dent exclusively on Th, but not on Γh. Indeed, assume a smooth closed surface Γ, with
|Γ| = 1, and a smooth function u defined on Γ, such that ‖∇Γu‖L2(Γ) = ‖u‖H2(Γ) = 1.
Let Γh be the zero level of the piecewise linear Lagrange interpolant of the signed
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distance function to Γ. Denote uh = Ihu
e, as in Theorem 4.2, and v = (v1, . . . , vN )T

is the corresponding vector of nodal values. From the result in (4.11) we obtain

〈Av,v〉 = ‖∇Γh
uh‖L2(Γh) = 1 +O(h). (4.17)

On the other hand, if there is a node ξ in the volume triangulation Th such that
dist(ξ,Γh) < ε � 1, then there can appear a triangle in Fh with a minimal angle of
O(ε). This implies that there is a diagonal element in A of order O(ε−1). Without
lost of generality we may assume A11 = O(ε−1) and v1 = 1. Thus we get

〈DAv,v〉 ≥ A11v
2
1 = O(ε−1). (4.18)

Comparing (4.17) and (4.18) we conclude that cond(As) ≥ O(ε−1), with ε → 0.
Results of numerical experiments in the next section demonstrate that the blow up
of cond(As) can be seen in some cases.

One might also be interested in a more general dependence of the eigenvalues
of As on the distribution of tetrahedral nodes in Th in a neighborhood of Γh. To a
certain extend this question is addressed in [8].

A strong growth of the condition number of the scaled stiffness matrix as in (4.17)-
(4.18) does not necessarily lead to a severe slown down of iterative solvers. This is
illustrated and discussed in section 5. One possibility to reduce the condition number
deterioration sketched above is to ’glue’ together nodes of Fh which have a distance
less than ε from each other, with some sufficiently small ε. We did not investigate
this idea further.

5. Numerical experiment. In this section we present a few results of numerical
experiments which illustrate the interpolation estimates from Theorem 4.2 and the
conditioning of mass and stiffness matrices. Assume the surface Γ, which is the unit
sphere Γ = {x ∈ R3 | ‖x‖ = 1 }, is embedded in the bulk domain Ω = [−2, 2]3. The
signed distance function to Γ is denoted by d. We construct a hierarchy of uniform
tetrahedral triangulations {Th} for Ω, with h ∈ {1/2, 1/4, 1/8, 1/16, 1/32}. Let dh be
the piecewise nodal Lagrangian interpolant of d. The triangulated surface is given by

Γh =
⋃
T∈Fh

T = {x ∈ Ω | dh(x) = 0 }.

The corresponding finite element space Vh consists of all piecewise affine functions with
respect to Fh, as defined in (4.1). For h ∈ {1/2, 1/4, 1/8, 1/16, 1/32}, the resulting
dimensions of Vh are N = 164, 812, 3500, 14264, 57632, respectively. In agreement
with the 2D nature of Γh, we have N ∼ h−2.

To illustrate the result of Theorem 4.2, we present the interpolation errors ‖ue −
Ihu

e‖L2(Γh) and |ue − Ihue|1,Γh
for the smooth function

u(x) =
1

π
x1x2 arctan(2x3)

defined on the unit sphere, with x = (x1, x2, x3)T . The dependence of the interpola-
tion errors on the number of degrees of freedom N is shown in Figure 5.1 (left). We
observe the optimal error reduction behavior, consistent with the estimates in (4.10),
(4.11).

Further, for the same sequence of meshes we compute the spectral condition
numbers of the mass matrix M and the diagonally scaled mass matrix Ms. The
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Fig. 5.1. Left: Interpolation error as a function of # d.o.f.; Right: The condition number of
the mass matrix as a function of of # d.o.f.

dependence of the condition numbers on the number of degrees of freedom N is
illustrated in Figure 5.1 (right). As was proved in Theorem 4.3, the scaled mass
matrix has a uniformly bounded condition number.

We discussed in section 4.2 that the situation with the effective conditioning of
the scaled stiffness matrix is more delicate. To illustrate numerically the dependence
of cond(As) on the position of Γh with respect to the outer triangulation, we perform
the following series of experiments. Let Γ be the boundary of the unit sphere with
the center located in (0, 0, zc). The discrete surface Γh is defined as described above,
induced by the uniform outer triangulations. Now we compute the effective condition
number of As varying both the mesh size of the outer grid h and the sphere’s center
location zc. Results presented in Table 5.1 show the strong dependence of cond(As)
on the sphere location. The dramatic decrease of cond(As) for zc = 0 happens because
in that case certain nodes of Th lie exactly on Γh. Otherwise these nodes result in
triangles in Fh that may have very sharp angles which then lead to the blow up
of cond(As). We also note that the interpolation errors (not shown) were (almost)
independent on the position of Γh with respect to the outer triangulation.

In Table 5.1 we also show the total number of iterations for the diagonally pre-
conditioned CG method applied to solve Ax = b up to the relative residual tolerance
of 10−10. Note that the number of iterations depends on zc in a much less dramatic
way than cond(As) does. The explanation of this observation is the following: Few
nodes ‘close’ to Γh lead to a small number of outliers in the spectrum of As. The
small number of outliers in the spectrum is well known to result only in temporal
stagnation period(s) in the convergence history of a Krylov subspace method rather
than in a permanent low convergence rate, see, e.g., [10] and references cited therein.
This phenomenon is illustrated in Figure 5.2, where we show the convergence histories
of the CG method for Ax = b with the diagonal preconditioner and different values
of zc.
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