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a b s t r a c t

The validation and verification of models and numerical methods for interfacial two-phase flow simula-
tion is still a challenge and standards have not yet been established. Mostly comparing with analytical
solutions, many validation studies so far have considered simple or simplified two-phase flow scenarios.
While this is mandatory for method development, complementary, validation against more complex test-
cases is essential, in order to prove the method’s final scope of capabilities. However, one reason for the
absence of such two-phase flow benchmark studies is the lack of freely accessible, detailed and high-
quality experimental data.

The Priority Program SPP 1506 Transport Processes at Fluidic Interfaces by the German Research Founda-
tion DFG proposes a benchmark problem for validation of interfacial two-phase flow solvers by means of
specifically designed experiments for Taylor Bubble Flow. The benchmark experiments aim at providing
detailed and local data as a basis for validation. This contribution demonstrates its use by assessing and
approving the reliability and accuracy of the solvers used by several research groups within the priority
program. Special emphasis is set upon different approaches to surface tension calculation both for inter-
face capturing and interface tracking methods. Data and material of the presented benchmark can be
freely downloaded from the website of SPP 1506 (http://www.dfg-spp1506.de/taylor-bubble).

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Taylor bubbles are elongated bubbles which almost completely
fill the cross-sectional area of (commonly) straight channels –
without wetting its confining walls but being surrounded by a thin
liquid film. The flow of multiple subsequent Taylor bubbles in a
channel is known as Taylor flow (also: bubble train flow), where
a liquid slug separates two subsequent Taylor bubbles.

Taylor flow in narrow channels is used in many micro-fluidic
applications, inter alia, micro-process engineering, catalysis
(coated monolith reactors), material synthesis, analysis of biologi-
cal or chemical probes. Recent reviews of Taylor flow are given in
[1,2].

Main advantages of Taylor flow in milli- or micro-channels are
its

� high values of specific exchange area (interfacial area density
per unit volume), and consequently its high heat and mass
transfer rates,

� low axial dispersion due to separation of the liquid by bub-
bles into distinct slugs,

� high mixing rates within the liquid slugs due to recirculation
and

� short diffusion lengths for mass transfer from the gaseous
phase through the thin liquid film to the channel wall (e.g.,
a catalytic wash-coat).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2014.06.030&domain=pdf
http://www.dfg-spp1506.de/taylor-bubble
http://dx.doi.org/10.1016/j.compfluid.2014.06.030
mailto:bothe@csi.tu-darmstadt.de
http://dx.doi.org/10.1016/j.compfluid.2014.06.030
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


1 Detailed velocity field data shall be provided in a forthcoming publication in order
to complement the present Taylor bubble benchmark.
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1.1. Hydrodynamics of Taylor bubbles

The hydrodynamics of Taylor bubbles in small (milli/micro-)
channels is predominately determined by viscous (friction) and
surface tension forces, with the inertial forces becoming important
only at higher flow velocities. The relevant dimensionless groups
are the Capillary number Ca ¼ gLUB=r (ratio of viscous to surface
tension force) and the Reynolds number Re ¼ qLdhUB=gL, where
UB denotes the magnitude of the bubble velocity, dh the hydraulic
diameter of the channel, r the surface tension, and qL and gL the
liquid density and dynamic viscosity, respectively.

As for the current state of scientific knowledge, it is stated in [1]
that, while hydrodynamics of formed Taylor bubbles in fully devel-
oped flow and pure liquid systems is generally understood for
cylindrical channels, further research is especially required for
non-cylindrical channels. Since the interfacial area density is a
central measure with respect to process intensification and perfor-
mance of milli/micro-apparatus, the interfacial surface of a Taylor
bubble at specific operation conditions is of pivotal interest. More-
over, diffusion lengths in Taylor bubble flow are directly related to
process intensification and performance as well. Hence, due to
their direct accessibility, relevant target quantities of experimental
and theoretical studies are mostly related to the bubble’s interface
geometry:

Liquid film thickness. For cylindrical channels of diameter d the
liquid film thickness d is constant along the circumference of
the bubble surface for a wide range of Ca and can be described
by dF=dB ¼ 0:66Ca2=3=ð1þ 3:33Ca2=3Þ – cf. [3,4]. The effect of
inertial forces on the liquid film thickness is not significant up
to Re � 50 for Ca < 0:01 [4, Fig. 5].
For quadratic channel cross-sections, it is known that the liquid
film thickness is not constant, but varies along the circumfer-
ence of the bubble’s surface. For Ca in the range 0:04 . . . 0:1
transition takes place and the Taylor bubble can no longer be
considered axis-symmetric [5,6], while for even lower values
of Ca the bubble clearly penetrates into the corners of the
channel.
Bubble shape. The front and rear end of the bubble obey the
shape of hemispheres for low values of Ca. The higher the val-
ues of Ca, the lower the interfacial curvature on the channel axis
at the bubble rear and the higher the curvature at its front. For
high values of Ca the bubble’s rear shows a dent, where the cur-
vature of the trailing menisci becomes negative. Within the
liquid slug a bypass flow can be observed for Ca > 0:7, while
for Ca < 0:7 there is a recirculation flow [7].
For quadratic channel cross-sections the shape deformation of
the Taylor bubble’s front and rear is known to behave qualita-
tively similar to the circular case. Latest three-dimensional
numerical studies [8] of Taylor bubble flow of viscous squalane
and nitrogen in a quadratic channel show steepening of the
front shape and flattening at the bubble’s rear – in good agree-
ment with experimental results. However, this study has been
restricted to moderate/high values of Ca.

1.2. Validation benchmark with Taylor bubbles

Taylor bubbles as a validation benchmark provide the essential
advantage of being predominantly governed by the Capillary num-
ber as control parameter: for given fluids the Capillary number can
be varied by one to two orders of magnitude by changing the bub-
ble velocity. Alternatively, an even larger variation can be achieved
by changing the liquid’s viscosity. A pivotal measure for validation
of the hydrodynamics, employing different numerical methods and
codes is the three-dimensional shape of the Taylor bubble for
distinct values of Ca.
Ultimately, with the Taylor bubble validation benchmark, we
aim at providing a comprehensive assessment and objective mea-
sure of accuracy and reliability of interfacial two- phase flow solv-
ers. For this purpose, we propose this validation benchmark based
on specifically designed high-resolution experiments to assess the
interfacial shape of a Taylor bubble.1 It is believed that such a
detailed benchmark for two-phase flow is of similar use as single-
phase benchmarks such as the ‘NACA airfoil’ [9,10] or the ‘Ahmed
car body’ [11–13] for external flow configurations, and the rearward
facing step [14] or the turbulent channel flow of [15] as for internal
flow configurations, which have become established over the last
two decades.

In this study, we perform Direct Numerical Simulations (DNS)
of a single rising Taylor bubble in a square milli-channel, in order
to examine the influence of various numerical methods for surface
tension calculation for both interface capturing and interface track-
ing methods. Hence, our main focus is on the quantitative compar-
ison of the shape of a rising Taylor bubble by means of geometrical
target quantities (such as distances, curvatures and film thickness)
at locations, where deficiencies in surface tension calculation
procedures become visible. We compare different interfacial two-
phase solvers and their underlying numerical methods – namely
the Volume-of-Fluid (VoF) and Level-Set (LS) interface capturing
methods as implemented in the codes FS3D, TURBIT-VOF and
DROPS, and the Arbitrary Lagrangian Eulerian (ALE) interface
tracking method of OpenFOAM – with detailed and local data
obtained by high-resolution X-ray tomography.

In doing so, we present a code-to-experiment comparison for a
realistic three-dimensional Taylor bubble flow problem. However,
we shall also emphasize the relevance of basic (mostly simple or
simplified) test cases for verification and validation (V&V) during
method development. Targeted method development would be
infeasible without such test cases, which enable to focus on single
aspects of two-phase flow in a more isolated manner than it is pos-
sible with benchmarks exhibiting a complex interplay of multiple
two-phase flow aspects. Simplifications or simplified scenarios
often allow for an explicit analytical (or, exact) reference solution,
with which numerical results can be compared. Both for interface
capturing and for interface tracking methodologies such V&V test
cases can be set out in two categories, namely purely numerical
verification cases to test numerical algorithms or discretization
methods regarding distinct terms within the governing equations,
and physical validation cases to assess a selected model with
respect to its capability to correctly capture a distinct interfacial
condition, transport process or phenomenon. Advection tests, for
instance, prescribe simple constant (translation and rotation advec-
tion tests) and complex, possibly time-varying (shear and deforma-
tion advection tests) velocity fields in order to evaluate numerical
errors related to the advection term or algorithm, and to assess
the corresponding interface-stability and shape-preserving proper-
ties of the method. Established cases with simple constant velocity
fields are interface translation (cf. [16,17]) and rotation tests, e.g.
the well-known Zalesak disk [18]. Moreover, tests in which com-
plex velocity fields are prescribed have been established, such as
interface shear and deformation tests as proposed in [19–21], to
mention a few. Validation tests for surface tension implementa-
tions cover both static resp. steady and dynamic resp. unsteady
cases, and help to assess the interfacial balance of surface tension,
viscous and inertia effects. Well-known representatives are the
static drop in equilibrium (’equilibrium rod’) by Brackbill et al.
[22–24], the so-called Bretherton problem for an elongated bubble
in a tube [25] and the creeping flow around a single spherical



Fig. 1. Sketch of the experimental setup.
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bubble by Hadamard & Rybczinski [26,27] as for static/steady cases.
Examples of dynamic/unsteady cases are the capillary wave
[28–33], oscillating inviscid/viscous droplet [28,34–38], two-phase
Poisseuille flow [39,40] and the Rayleigh–Taylor instability
[41–44].

Clearly, within the scope of this paper we cannot explain all
numerical techniques used in our solvers. That is, we do not
perform a pure (numerical) code-to-code comparison for a two-
dimensional benchmark problem (as is mostly done, cf. [45] for
instance). Instead, for each of the solvers we outline the main
numerical components and give references to relevant literature
for further information. Consequently, our focus shall not be on
pure numerical target quantities (relative error norms, conver-
gence orders etc.) and computational costs resp. efficiency (compu-
tation time). However, since the present flow problem exhibits a
low capillary number, and thus the numerical treatment of surface
tension is an important issue, we provide a detailed description of
the numerical methods used for surface tension calculation. This
also illustrates that very different approaches are used in the four
solvers that we validate against the proposed Taylor bubble
benchmark.

The remainder of the paper is organized as follows. In the
upcoming section we briefly describe the experimental setup as
well as data processing enabling us to perform a quantitative com-
parison with the experimental data obtained from X-ray tomogra-
phy. Section 3 describes the theoretical basis of the numerical
simulations performed. We set out both the underlying mathemat-
ical model and the numerical methods of the interfacial two-phase
flow solvers employed in this study. Emphasis is upon the method-
ology and numerical approximations for surface tension
calculation. Next, we present the numerical results along with a
discussion on quality and errors (Section 4). Finally, Section 5
provides a summary and conclusions.
2. Experiment

Experimental investigations aiming at the disclosure of hydro-
dynamic properties of Taylor bubble flow such as wall film thick-
ness, bubble velocity, slug length and pressure loss were
performed by various authors in the past [5,4,46–48,49]. Here, a
new measurement principle based on synchrotron X-ray visualiza-
tion and tomographic reconstruction has been applied to measure
the exact shape of rising Taylor bubble in a square milli-channel.
2.1. Experimental setup

The experimental setup is schematically depicted in Fig. 1.
Within a loop, the liquid is pumped through a vertically aligned
square borosilicate glass capillary with a wall thickness of approx-
imately 0.25 mm. The hydraulic diameter was determined to be
1.979 mm. Pressurized air was injected into the liquid by means
of a high-speed injection valve. The valve was attached to the
remaining port of the T-junction at the lower end of the capillary
tube. The length of the capillary was 90 dh. The consumed two-
phase mixture was fed through a flexible tube at the top of the cap-
illary back to the liquid container, where the gas is separated from
the liquid. By controlling pump power and inlet tube resistance the
fluid velocity was varied. Then, by changing the duty cycle of the
valve, the specific Taylor bubble flow regime was produced. The
temperatures of the fluid were measured both at the entrance
and at the exit of the capillary.

The visualization experiments were conducted at the synchro-
tron radiation source ANKA (Karlsruhe Institute of Technology).
White X-ray radiation provided at the TOPO/TOMO beamline [50]
was used to project a 1.78 mm by 2.31 mm wide portion of the
capillary at a distance of 70dh above the gas injection valve onto
a fast X-ray image detector. The detectors high-speed camera
was read out at frame rates up to 36,000 fps. Beside producing
plain radiographic images, the capillary was also very slowly
rotated during the passage of a bubble train by means of a linear
rotary motor within a limited range of angular positions. In doing
so, a set of tomographic projection images has been produced
showing the bubbles at different projection angles, which is
required for the reconstruction of the three-dimensional bubble
shape.

2.2. Data processing

Image processing algorithms were used to extract the bubble
shape information from the images. Since the recorded images
only show a part of the bubble due to the restricted field of view,
a visualization of the whole bubble was created by superposition
of consecutive raw X-ray images. The bubble’s instantaneous
velocity was measured by following its tip positions as the bubble
moves through the field of view. The bubble’s length was calcu-
lated from the previously determined instantaneous velocity and
the time duration that elapsed between the occurrences of the
front and rear meniscus crossing the center of the image. A careful
analysis of the image brightness distribution at the edge of the pro-
jected bubble was performed and thus the projected liquid film
thickness – i.e. the distance between the bubble’s interface and
the channel’s edge – was obtained. The well known backprojection
reconstruction algorithm was used to obtain the three-dimen-
sional shape from the projection images. Since the bubbles’ tips
served as reference points for image registration, the reconstruc-
tion was only possible for the bubble front and rear shape. From
these results, both the longitudinal and diagonal film thickness
was obtained. To disclose the surface mean curvature the recon-
structed volume data as well as the extracted surface coordinates
were smoothed in order to numerically compute the required
second-order mixed derivatives.

2.3. Experimental results

An aqueous solution of 76.9% glycerol (Sigma Aldrich 49770)
and 23.1% deionized water was used as liquid. The difference
between the inlet- and outlet temperature of the liquid was
2.7 K, and the average temperature at the position where the
X-ray beam impinges the capillary was estimated to be 27.9 �C.
Using tabulated values for density, surface tension and viscosity
[51], the Capillary and Reynolds number were determined to be
Ca ¼ 0:088 and Re ¼ 17:0.

Since the total capture time of the high-speed camera was
limited to 4.7 s for the chosen frame rate of 36,000fps, only three



Fig. 3. Axial and diagonal bubbles shapes.
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bubbles were captured during the experimental run, of which only
one bubble is considered here. Also, the imaging window height
was substantially shorter than the observed bubble. Fig. 2a shows
a superimposed image of the Taylor bubble as a result from all X-
ray images of that single bubble superimposed at their calculated
positions and after subtracting the structures of the glass capillary
from the picture. The bubble velocity was measured to be
205.6 mm/s at the moment as it passed the X-ray beam; the length
of the bubble was 7.2 mm. Fig. 2b shows the bubble’s contour as it
was determined from Fig. 2a – with sub-pixel resolution at the
edge of the bubble where the image brightness crosses the back-
ground intensity level.

The tomographic dataset consisted of only 351 projections,
which thus resulted in a rather noisy reconstruction. Moreover,
the tomographic dataset covered only an angular range of
128�, therefore only roughly a quarter of the reconstruction
was considered to be valid. The reconstructed data were
scanned at different heights and the axial and diagonal bubble
shape was fitted using polynomial splines. The so determined
axial bubble shape was then scaled to bring it in coincidence
with the axial bubble shape from the two-dimensional projec-
tion. Fig. 3 shows both axial and diagonal bubble shape for
comparison. Splines were used to estimate the bubbles cross
section using the information from axial and diagonal radii.
From this, the bubble volume was calculated to be 17:5mm3.
The maximum curvature was found as 4055:0 m�1 within the
longitudinal plane.

Data from other experimental runs confirmed, that the bubble
velocity fluctuated by 0.7%, and the bubble length fluctuated by
1.5%, each from bubble to bubble. However, the obtained plots
of the projected bubble interface at the front and the rear did
(a) Superimposed X-ray (b) Extracted projected
bubble shape.projections.

Fig. 2. Superimposed X-ray projections of a single Taylor bubble moving in a square
capillary. The walls of the capillary are removed from the image by subtraction
(left). The extracted projected axial bubble shape (right).
not vary between each other in the direction normal to the
interface by more than 0.1% with respect to the hydraulic diame-
ter. The uncertainty of the bubble’s volume V can be estimated if
we consider a cylindrical bullet of length l and radius r. The rel-
ative error is then DV=V ¼ Dl=lþ 2Dr=r. The bubble length was
computed from the bubble velocity, which itself was determined
by detecting the passage of the bubble’s tip and rear in the
images at a precision of 0.39% resulting from the uncertainty of
the linear regression of the tracked tip positions over a distance
of about 204 pixel within 200 consecutive frames each. As the
uncertainty in the extracted bubble shape is 0.1%, the radii thus
were extracted at a precision of 2 lm. Consequently, DV=V is
below 0.41% for the above described bubble. Moreover, the accu-
racies of calculated capillary and Reynolds number are dictated
mostly by the variance of liquid’s viscosity, which is a function
of the liquids temperature. Temperature measurements of the
liquid at the inlet and the outlet of the capillary were done at a
precision of �0:5 K, which in turn causes the uncertainties of Ca
and Re to be 3.5%. Additional 0.5% uncertainty in these values
resulted from the limited detector resolution of 5 lm. The radio-
graphic projections show (due to the highly redundant data)
superior image quality and are thus privileged to serve as refer-
ence for bubble shape measurements. The tomographic recon-
struction however still suffered from the high noise level and
thus still required the application of spline interpolation to obtain
three dimensional shapes. Furthermore, the projection data were
gathered from a set of consecutive bubbles, thus the 3D recon-
struction corresponds only to the ensemble average of the bubble
train. Despite their slight inaccuracies we consider the experi-
mental results to be of interest, since for the first time a three
dimensional measurement of the bubble’s shape has been
accomplished.
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3. Numerical simulations

In order to perform Direct Numerical Simulations (DNS) of two-
phase interfacial flows, in principle two methodologies are to be
distinguished, namely interface capturing and interface tracking.
While the first family of methods captures the position of a fluid
interface from a marker field stored on a spatially fixed computa-
tional mesh, the latter family directly tracks the interface position
by utilizing a moving mesh approach, in which the interface itself
is represented either by a surface mesh aligned to a set of cell faces
while the volume mesh is moving to take into account the interface
motion, or by a surface mesh which is moving relative to a fixed
volume mesh tracking the interface motion. The latter approach,
so-called Front tracking [52], is not considered below.

This study is concerned with both the interface capturing (ICM)
and the interface tracking methodology (ITM): as for the ICM we
consider a Level-Set method [53–56] and two Volume-of-Fluid
methods [57–59]; as for an ITM we consider the Arbitrary Lagrang-
ian Eulerian method [60,61]. The methods are implemented in the
Finite Element code DROPS and the Finite Volume codes FS3D,
TURBIT-VOF and OpenFOAM (interTrackFoam),2 respectively.
All codes are based on the sharp interface model, i.e. the two-phase
Navier–Stokes equations.

3.1. Mathematical model

We presume a sharp jump of material properties at the inter-
face (sharp interface model). The fluid interface itself is a surface
of discontinuity of zero thickness, which separates both fluid phase
regions, for which we consider two immiscible Newtonian fluids at
isothermal conditions.

Employing the surface Reynolds transport and divergence theo-
rem, the integral balance of a general intensive quantity U readsZ

VnRðtÞ
@twþr � wvð Þð Þ dV þ

Z
RðtÞ\V

sjþ wðv � vRÞt � nR dS

¼
Z

VnRðtÞ
�r � jþ fð Þ dV þ

Z
RðtÞ\V

�rR � jR þ f Rð Þ dS; ð1Þ

where v denotes the bulk velocity and vR the interface velocity with
RðtÞ representing the fluid interface cutting through an arbitrary
fixed control volume V � X with X ¼ X1ðtÞ [X2ðtÞ. nR represents
the interface unit normal. f and f R denote volume- and area-specific
source terms and j resp. jR volume- and area-specific fluxes.

Localization yields the so-called generic transport equation for
U, i.e.

@twþr � wv þ jð Þ ¼ f in X1ðtÞ [X2ðtÞ; ð2Þ

along with the interfacial jump conditions3

sw v � vRð Þ þ jt � nR ¼ �rR � jR þ f R on RðtÞ: ð3Þ

For incompressible fluids, the transport equations for mass
ðw ¼ qÞ and linear momentum ðw ¼ qvÞ read

r � v ¼ 0 in X n RðtÞ; ð4Þ
@tðqvÞ þ r � qvvð Þ ¼ �rpþr � sþ qg in X n RðtÞ: ð5Þ

Herein, the viscous stress tensor for a Newtonian fluid reads

s ¼ g rv þ rvð ÞT
� �

. g denotes the dynamic fluid viscosity, q its
2 OpenFOAM comprises of over 80 solvers to simulate specific problems in CCM
and over 170 utilities. Hence, in order to avoid ambiguity, a closer specification of at
least the used solver family is necessary, which we provide in the brackets.

3 with the jump bracket being defined as swtðt;xÞ :¼ limh!0þðwðt;xþ hnRÞ�
wðt;x� hnRÞÞ for x 2 RðtÞ.
density, and g is the gravitational acceleration. Moreover, the jump
conditions at the interface read

svt ¼ 0 on RðtÞ; ð6Þ
spI� st � nR ¼ rjnR on RðtÞ; ð7Þ

where a constant surface tension r (i.e., no Marangoni effects), no
phase change (due to evaporation or condensation) and no-slip at
the interface have been assumed. Herein, j denotes twice the mean
interface curvature, j ¼ rR � ð�nRÞ.

Interface Capturing Method. In interface capturing methods,
Eqs. (4) and (5) are solved in the so-called one-field formulation –
inherently taking into account corresponding jump conditions
according to (6) and (7). For this one-field formulation, specific
marker functions are utilized enabling us to capture the interface
position implicitly. Then, both density and viscosity fields can be
evaluated locally. In Volume-of-Fluid methods this is accomplished
by means of a phase indicator function resulting in a volume frac-
tion field, whereas in Level-Set methods a signed distance function
is used resulting in a level-set field.

The one-field formulation of the momentum transport accord-
ing to (5) reads

@tðqvÞ þ r � qvvð Þ ¼ �rpþr � sþ qgþ fR; ð8Þ

where the singular surface tension force has been modified towards
a volumetric interfacial force density according to

fR ¼ rjnRdR; ð9Þ

due to surface tension. Effectively, the interfacial momentum jump
condition is incorporated employing the Dirac distribution dR,
which is evaluated method-specifically using the corresponding
marker function. Details with special emphasis on surface tension
treatment are provided in the remainder on a per-method basis.

Interface Tracking Method. In interface tracking methods, the
fluid interface itself is represented by a computational mesh
boundary. Consequently, interface tracking inherently exhibits an
explicit rather than an implicit interface representation as for
interface capturing methods. The flow of each fluid phase is gov-
erned by a separate set of conservation equations in Arbitrary
Lagrangian Eulerian (ALE) formulation [60,61] being associated with
separate fluid domains and coupled via interfacial boundary condi-
tions. In doing so, interface tracking methods do not impose the
interfacial jump conditions according to (6) and (7) within a corre-
sponding one-field formulation of the transport equations, but
they enforce them as boundary conditions (incl. the effect of sur-
face tension).

The integral form of the governing equations (cp. (4) and (5)
without interfacial terms for a moving (non-material) control vol-
ume) reads

d
dt

Z
VðtÞ

dV �
Z

SðtÞ
vS � ndS ¼ 0; ð10Þ

d
dt

Z
VðtÞ

qdV þ
Z

SðtÞ
q v � vSð Þ � ndS ¼ 0 ð11Þ

and

d
dt

Z
VðtÞ

qv dV þ
Z

SðtÞ
q v � vSð Þv � ndS ¼

Z
SðtÞ

r � ndSþ
Z

VðtÞ
qgdV :

ð12Þ

The above equations govern (as before) isothermal flow of
incompressible fluid within an arbitrary volume VðtÞ bounded by
its surface SðtÞ with unit normal n – namely the so-called Space
Conservation Law (SCL) according to (10), mass conservation (11)
and linear momentum conservation (12). Herein, vS represents
the velocity of SðtÞ. For Newtonian fluids, the total momentum flux



Fig. 4. Sketch of piecewise linear approximation of interface based on ~/h for 2D
case.
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tensor r can be decomposed as r ¼ �pIþ s with the viscous stress
tensor being modeled for Newtonian fluids as before, i.e.

s ¼ g rv þ rvð ÞT
� �

.

Note that – as the transport equations for the phase fraction or
the level-set is central to the aforementioned interface capturing
methods – the SCL according to (10) is central to the interface
tracking method. It provides the relationship between the rate of
change of the volume VðtÞ and the corresponding surface velocity
vS causing this change.

3.2. Numerical methods

3.2.1. Level-set method
– DROPS
As for an interface capturing method, we consider the Level-Set

method as implemented in the in-house three-dimensional finite
element package DROPS [62]. The code is written in C++. It is based
on a level-set formulation including non-standard techniques such
as an extended finite element method for the pressure approxima-
tion and a modified Laplace–Beltrami technique for surface tension
computation. For a detailed description the interested reader is
referred to [63,64] and the DROPS internet homepage [65].

Applied models and methods. For capturing the a priori
unknown interface the level-set method is employed. The level-
set function, denoted by / ¼ /ðx; tÞ, is a scalar function with
/ðx; tÞ < 0 for x 2 X1ðtÞ;/ðx; tÞ > 0 for x 2 X2ðtÞ and /ðx; tÞ ¼ 0 for
x 2 RðtÞ. Ideally, the level set function is a signed distance function.
In this method, the interface RðtÞ is given only implicitly as the
zero-level of the level-set function. The interface motion is
described by the linear hyperbolic level-set equation

@t/þ v � r/ ¼ 0 ð13Þ

for t P 0 and x 2 X. With this, the density q and viscosity g can be
expressed as jumping coefficients in terms of the level-set function
– qð/Þ;gð/Þ. The effect of the surface tension is expressed in terms
of a force localized at the interface. The localized surface tension
force is given as f R ¼ rjdRnR with dR the Dirac d-function with sup-
port only on R. The resulting continuous model (4), (8) and (13) is
also used in [66–69], for example.

Solving for Eq. (13) only in order to capture the interface is
insufficient as the level-set function would degenerate over time
affecting the treatment of discontinuities and the surface tension.
To avoid this a reparametrization scheme for the level-set function
was implemented such that / remains close to a signed distance
function. Moreover, the reparametrization smoothens the level-
set function in the vicinity of the interface and thus stabilizes its
evolution. A known problem of the level-set formulation is that
mass conservation is not inherently preserved in a discretized for-
mulation. This numerical error in volume, however, vanishes for
grid size going to zero. An interface shift is applied to compensate
for the volume loss – cf. [63].

Finite element discretization. The spatial discretization is
based on a multilevel hierarchy of tetrahedral grids. A stable adap-
tive refinement algorithm [70] has been implemented which
allows for higher resolution close to the bubble surface. As time
evolves, the grid is updated by refinement and coarsening to keep
the higher resolution in the vicinity of the bubble surface.

For the discretization of the flow variables and the level-set
function a finite element approach is used – cf. [64]. For the spatial
discretization of the velocity v and the pressure p the LBB-stable
Hood-Taylor P2-P1 finite element pair is used. The pressure space
is enriched with a so-called extended finite element method
(XFEM) leading to ansatz functions which allow for discontinuities
at the approximate zero-level of the level-set functions – cf. [71].
The level-set function / is discretized by continuous piecewise
quadratic finite elements. The finite element method for the
level-set advection Eq. (13) is stabilized by a standard streamline
diffusion technique [72].

For the finite element discretization of the Navier–Stokes equa-
tions, integrals over tetrahedra T have to be evaluated, having dis-
continuous integrands (due to discontinuous q;g) if T is cut by R.
Note that in such cases we do not apply any smoothing (e.g., by
using a smoothed Heaviside function), but integrate over the parts
Xi \ T; i ¼ 1;2, where the integrands are continuous and thus stan-
dard quadrature rules can be applied. Thus, our approach is a sharp
interface method. Therefore one needs an approximation Rh of the
zero level of /. This is done by replacing the piecewise quadratic
approximation /h by a piecewise linear approximation ~/h on a
once refined mesh. The resulting approximate interface (which is
the zero level of ~/h) is piecewise planar which facilitates quadra-
ture significantly. A sketch of the discrete interface resulting from
this approach is displayed in Fig. 4.

Surface tension calculation. For the numerical treatment of
the surface force term f R, a modified Laplace–Beltrami technique
is applied to avoid an explicit computation of the curvature which
would involve the approximate evaluation of second order deriva-
tives. As the force is only localized at the interface R, its weak for-
mulation is evaluated as a surface integral on R.

The surface tension functional

f RðwÞ ¼ �r
Z

R
jw � nds

is reformulated using the identity�DRidR ¼ jn and applying partial
integration

f RðwÞ ¼ r
Z

R
rRidR � rRwds:

In order to render the surface tension functional computational fea-
sible, we replace R by the approximate interface Rh. Thus, integra-
tion takes place on the discrete, piecewise planar interface Rh

constructed from the piecewise linear approximation ~/h. The sur-
face gradients rR can be written as Pr, with the tangential projec-
tion P :¼ I� nnT. In the discretization the choice for an
approximate normal nh is crucial. It turns out that using the normal
~nh to the piecewise planar approximate interface Rh leads to a poor
approximation. In [71] it was shown for the surface tension func-
tional for the corresponding numerical approximation ~f Rh

of the
surface tension function f R the error bound

sup
wh2Wh

f RðwhÞ � efRh
ðwhÞ

kwhk1
6 rc

ffiffiffi
h
p

ð14Þ

holds with a constant c, the characteristic mesh size h and the finite
element space of continuous piecewise quadratics Wh. Numerical
examples indicate that this estimate is sharp w.r.t. h. In [71] it is
suggested to use the piecewise quadratic information of /h to get
a more accurate normal nh ¼ r/h=kr/hk which is no longer piece-
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wise constant on the discrete interface Rh. Putting these ideas
together one obtains the discrete surface tension functional as

f Rh
ðwÞ ¼ r

Z
Rh

ðI� nhnT
h ÞridRh

� rRh
wds;

where rRh
denotes the surface gradient w.r.t. the normal ~nh. Using

this discretization of the surface tension functional improves the
estimate in (14) resulting in

sup
wh2Wh

f RðwhÞ � f Rh
ðwhÞ

kwhk1
6 rch: ð15Þ

More details concerning the interface approximation and discreti-
zation of the surface-tension force term can be found in [64,71].
Further, in [63] the convergence behavior of this surface tension
discretization is investigated. The effect of spurious velocities and
curvature treatment for different finite element discretizations is
also discussed in [73].

3.2.2. Volume-of-fluid method
– FS3D & TURBIT-VOF
As for a second interface capturing method, we consider the Vol-

ume-of-Fluid methods as they are implemented in the in-house
codes FS3D and TURBIT-VOF. The name FS3D means Free Surface
3D. The interested reader is referred to [74]. The code is written
in Fortran being actively developed at ITLR (Univ. Stuttgart) and
MMA (Center of Smart Interfaces, TU Darmstadt). The code has
been extensively validated, in particular, for hydrodynamics and
mass transfer of single rising bubbles with and without reaction
[75,76], Newtonian and non-Newtonian droplet collision [77,78]
and for hydrodynamics of falling films [79], in the course of which
its discretization practice and numerical methodology has proven
accurate and reliable. The code TURBIT-VOF – cf. [80,81] – is writ-
ten in Fortran and has been developed at Karlsruhe Institute of
Technology (KIT).

Applied models and methods. In VOF methods the interface
position is captured implicitly introducing the phase indicator f 1

(for brevity f in the remainder) for one of the phases (e.g. phase
1) along with its corresponding transport equation,

@t f þ v � rf ¼ 0; ð16Þ

where

f ðt;xÞ :¼ 1 if x 2 X1ðtÞ;
0 otherwise:

�
ð17Þ

Eq. (16) is complemented by (4) and (8) – which comprises the
two-phase problem, along with suitable initial and boundary con-
ditions. Herein, the interfacial momentum jump condition accord-
ing to (7) is incorporated employing the Dirac distribution
dR ¼ krfk. Note in passing that, while the level-set counter-part
kr/hk can be read in the common manner, the term krfk is to
be understood in the sense of functions of bounded variation
[82]. The interface curvature is evaluated as twice the mean curva-
ture j ¼ �rR � nR, where it is common practice to arrive at an
improved numerical approximation of nR by smoothing the f-field
by means of regularization techniques (mollification).

3.2.3. FS3D
Finite Volume discretization. The Volume-of-Fluid Code FS3D

[74] is based on Finite Volume discretization and solves for the
two-phase Navier–Stokes Eqs. (4) and (8) along with the phase
fraction advection Eq. (16) adopting the CGS system of units. The
interface is kept sharp during simulations by geometrically
reconstructing and advecting the interface, adopting the Piecewise
Linear Interface Calculation (PLIC) method [57,59,83] and a split
advection algorithm [74]. The underlying structured Cartesian grid
supports staggered variable arrangement with the velocity field
being stored on cell faces and the pressure field correspondingly
on cell centers. The code is massively parallelized using MPI and
OpenMP.

Time discretization is done using the Euler explicit method. The
solution of the pressure Poisson equation is accomplished by a pro-
jection method employing a geometric multigrid method. The
velocity update at each time step is achieved by means of a projec-
tion method [84], the result of which is the Poisson equation for
pressure–velocity coupling:

r � 1
qnþ1rpnþ1
� �

¼ r � ~v
Dt

; ð18Þ

where ~v denotes an intermediate velocity field, which has been cal-
culated from the velocity field vn at the old time level, taking into
account accelerations (inter alia) due to viscous, momentum and
surface tension forces, but excluding the pressure force. The
enforcement of a divergence-free (solenoidal) velocity field vnþ1 at
the new time level is accomplished by combining the pressure
pnþ1 from the Poisson equation and the intermediate velocity field
~v according to

vnþ1 ¼ ~v � Dt
qnþ1rpnþ1: ð19Þ

For momentum convection according to (8), the Gudonov-Splitting
is employed.

Surface tension calculation. As indicated before, the momen-
tum jump conditions according to (7) are incorporated by an addi-
tional force density fR taking into account the effect of surface
tension. For surface tension modeling, FS3D provides either the
Continuous Surface Stress (CSS) [85], Continuous Surface Force
(CSF) [22] or balanced CSF (bCFS) [24,86] method, respectively.
Being the most enhanced method with respect to accuracy and sta-
bility (cf. parasitic/spurious currents), we employ FS3D along with
the balanced Continuous Surface Force according to [24] in this
study. The basics of the bCSF method shall be briefly described in
the remainder of this section.

The basic idea of a balanced-force discretization of fR is twofold
[24] and related to a careful discretization of

(i) the interfacial curvature j and
(ii) the volume fraction gradient rf .

All terms constituting fR are to be discretized on the face cen-
ters of a computational cell rather than its center. Moreover, this
has to be accomplished such that its discretized form exactly bal-
ances with the discretized pressure force. I.e., the discretization
has to be done in exactly the same manner that is using the same
computational stencil.

ad (i) As for an accurate evaluation of the interfacial curvature
in the context of a balanced-force approach, different
methods being based on fitting of paraboloids and/or
(generalized) height functions are suitable [24,86,87]. In
this study, we employ FS3D’s implementation of general-
ized height functions for curvature estimation, following
Popinet et al. [87]. The overall algorithm is described best
in two parts: the first one comprises of a variable cell
stencil algorithm being used to determine ’local’ heights
relative to a common height level to calculate the interfa-
cial curvature from. In case the mesh resolution becomes
insufficient (e.g., in case of highly curved interface topol-
ogies), this generalized height function algorithm is
accompanied by a local paraboloid fitting algorithm: fit-
ting of a paraboloid to known surface points, stemming
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from the barycenters beyond reconstructed surfaces
(PLIC), is accomplished by means of a least-square fit.
Then the curvature can be calculated algebraically. How-
ever, this only becomes necessary if the first algorithm
part – starting in the direction of the volume fraction gra-
dient – fails to find any height function for curvature cal-
culation. Otherwise, for a two-dimensional scenario the
curvature in cell ði; jÞ from the generalized height function
h in x-direction is calculated as
Fig. 5.
direct n
jði;jÞ ¼
hyy;ði;jÞ

1þ h2
y;ði;jÞ

� �3=2 : ð20Þ
ad (ii) The discretized Poisson equation in x-direction for cell
ði; jÞ reads
1
Dx

pðiþ1;jÞ � pði;jÞ
qðiþ1=2;jÞ

�
pði;jÞ � pði�1;jÞ

qði�1=2;jÞ

 !
¼

~v ðiþ1=2;jÞ � ~v ði�1=2;jÞ

Dt
:

ð21Þ
Consequently, it is advantageous to employ a local formulation for
the discretized volume fraction gradient rf , solely taking into
account direct cell face neighbors [88], which only takes values from
row ðjÞ as well – cp. Eq. (21). For cell face ðiþ 1=2; jÞ this practice
leads to
rf xiþ1=2;j
¼

f ðiþ1;jÞ � f ði;jÞ
Dx

: ð22Þ
The underlying situation for the approximative evaluation of rf is
depicted schematically in Fig. 5 for the 2D case.

For more details on the balanced-force implementation and
curvature treatment in FS3D, and its effect on spurious currents
the interested reader is referred to [79,89].

3.2.4. TURBIT-VOF
Numerical method. The TURBIT-VOF code solves the locally

volume-averaged two-phase Navier–Stokes equation in non-
dimensional single field formulation for two incompressible New-
tonian fluids on a regular staggered Cartesian mesh by a Finite Vol-
ume Method. In each mesh cell containing both phases, the
interface is represented by a PLIC plane – as in FS3D. The interface
evolution is described by the volume fraction Eq. (16), the numer-
ical solution of which consists of two steps. In the first step, the
interface location is geometrically reconstructed by an in-house
PLIC algorithm called EPIRA. On a 3D structured orthogonal
non-equidistant fixed grid, it reconstructs a planar interface of
any orientation exactly (therefore its name which stands for Exact
Plane Interface Reconstruction Algorithm). In the second step the
fluxes of the liquid over the cell faces are computed by an unsplit
advection scheme. Time integration of the momentum equation is
performed by an explicit third order Runge–Kutta method. For
Numerical approximation of rf for row ðjÞ based on a narrow stencil (using
eighbors only) as utilized in this study for force-balanced CSF approach.
approximation of spatial derivatives second order central differ-
ence schemes are used. A divergence free velocity field is ensured
at the end of each time step by a projection method similar to that
in FS3D. The Poisson Eq. (18) is solved by a conjugate gradient
technique. For details we refer to [80,81,90].

Surface tension calculation. In the volume-averaged single
phase momentum formulation of TURBIT-VOF, the surface tension
term is given by

fR ¼ rjaRnR: ð23Þ

Here, j ¼ �rR � nR is twice the mean interface curvature, aR is
the volumetric interfacial area density, and nR is the unit normal
vector to the interface. In the volume-averaged formulation, the
Dirac delta function dR is thus represented by aR – cp. (9).

TURBIT-VOF employs a staggered grid such that the control vol-
umes for the three components of the Navier–Stokes equation are
shifted by half a mesh-width. Solving for the velocity components
uiþ1=2;j;k;v i;jþ1=2;k;wi;j;kþ1=2 requires that the surface tension term in
Eq. (23) is evaluated at staggered positions, too. We illustrate the
procedure for the first component of the Navier–Stokes equation
which requires specification of aR;nR and jat position
ðiþ 1=2; j; kÞ. These quantities are determined from the known
interface position and cell-centered unit normal vector nR;i;j;k (pro-
vided by the EPIRA algorithm). We use the following approxima-
tions where in single-phase mesh cells nR;i;j;k is set to zero.

The staggered unit normal vector is obtained from the
interpolation

nR;iþ1=2;j;k ¼
nR;i;j;k þ nR;iþ1;j;k

jnR;i;j;k þ nR;iþ1;j;kj
: ð24Þ

The staggered curvature is computed from the gradient of the unit
normal vector

jiþ1=2;j;k ¼ �
nx;iþ1;j;k � nx;i;j;k

Dxi
þ ny;iþ1=2;jþ1=2;k � ny;iþ1=2;j�1=2;k

Dyj

 

þ nz;iþ1=2;j;kþ1=2 � nz;iþ1=2;j;kþ1=2

Dzk

�
; ð25Þ

where the double-staggered unit normal vectors are given by

nR;iþ1=2;j�1=2;k ¼
nR;i;j;k þ nR;i;j�1;k þ nR;iþ1;j;k þ nR;iþ1;j�1;k

knR;i;j;k þ nR;i;j�1;k þ nR;iþ1;j;k þ nR;iþ1;j�1;kk
nR;iþ1=2;j;k�1=2 ¼

nR;i;j;k þ nR;i;j;k�1 þ nR;iþ1;j;k þ nR;iþ1;j;k�1

knR;i;j;k þ nR;i;j;k�1 þ nR;iþ1;j;k þ nR;iþ1;j;k�1k
ð26Þ

and nR ¼ ðnx;ny; nzÞT.
The staggered interfacial area density is given by

aR;iþ1=2;j;k ¼ AR;iþ1=2;j;k=Viþ1=2;j;k where AR;iþ1=2;j;k is the interfacial area
within the staggered mesh cell of volume Viþ1=2;j;k. The interfacial
area in the staggered mesh cell AR;iþ1=2;j;k is determined from the
reconstructed interface in the two neighboring centered mesh cells
ði; j; kÞ and ðiþ 1; j; kÞ. To this end, the area of the reconstructed pla-
nar interfaces in the two half-cells ½xi;j;k; xiþ1=2;j;k�	
½yi;j�1=2;k; yi;jþ1=2;k� 	 ½zi;j;k�1=2; zi;j;kþ1=2� and ½xiþ1=2;j;k; xiþ1;j;k�	
½yi;j�1=2;k; yi;jþ1=2;k� 	 ½zi;j;k�1=2; zi;j;kþ1=2� is computed and both values
are summed up to yield AR;iþ1=2;j;k.

The described surface tension model is non-standard. Potential
advantages are the fully localized representation of the surface ten-
sion force, i.e. it is non-zero only in mesh cells that actually contain
an interface. This is of benefit for film-like interfaces [91]. Further-
more, the method does not involve any mollification of the volume-
fraction. Disadvantageous is that the surface tension force and the
pressure gradient do not balance on a discrete level and it is unclear
how to achieve this. Another weakness is the computation of the
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interface curvature. Tests for stationary circular interfaces show
that the method is of order zero (i.e. the error of the curvature com-
putation does not reduce if the mesh is refined). To obtain an
improved estimation of the interface curvature we are currently
implementing a height-function based algorithm.

3.2.5. Interface tracking method
– OpenFOAM (interTrackFoam)
OpenFOAM – Open Field Operation And Manipulation – is a free

and Open Source C++ Class Library for Computational Continuum
Mechanics (CCM) and Multiphysics [92–94]. OpenFOAM features
efficient linear equation solvers with polyhedral cell support and
is massively parallelized in domain decomposition mode. Its
Object-Oriented-Programming enables to mimic data types and
basic operations of CCM using top-level syntax close to the conven-
tional mathematical notation for tensors and partial differential
equations. As for the adopted system of units, OpenFOAM is not
restricted to a specific set of units. By default, SI units are preset;
however, any other system of units can be adopted. Furthermore,
OpenFOAM attaches dimensions in form of an array of base unit
exponents to every physical quantity and field, allowing for dimen-
sion checking on any invoked tensor operation.

Applied models and methods. In this benchmark study we
employ OpenFOAM’s interface tracking method (interTrackFoam
solver family). The method is based on the discretized Space
Conservation Law (DGCL, cp. Eq. (10)) [95],

3Vn
P � 4Vo

P þ Voo
P

2Dt
¼

3
P

f dVn
f �

P
f dVo

f

2Dt
¼
X

f

ðuS � nÞf Sf ; ð27Þ

where so-called swept volumes, i.e. the volumes swept by each face
when moving from old to new position (Vn

P � Vo
P ¼:

P
f dVn

f and
Vo

P � Voo
P ¼:

P
f dVo

f – cf. Fig. 6b), alleviate the need to explicitly know
the velocity uS of the control volume faces. The three time levels
involved are the new (n), old (o) and second old (oo) time levels.
The above DSCL has been derived from (10) using the second order
three time level Backward Differencing Scheme (BDS) – consistent
with equation discretization (cf. pg. 20). Equation (27) is comple-
mented by discretized forms of (11) and (12).

The movement of the deforming interfacial boundary is
obtained as a part of the numerical two-phase flow solution. The
interface itself is represented by a computational mesh boundary,
the motion of which is accomplished by displacement of
corresponding mesh boundary faces and control points, taking into
(a) Interface movement by displacement
of corresponding mesh boundary faces and
control points.

Fig. 6. Interfac
account interfacial conditions by means of enforcing discretized
forms of (6) and (7). For a detailed description the interested reader
is referred to [96–99].

Using OpenFOAM, the original interface tracking methodology
of Muzaferija and Perić [61] has been significantly extended by
Tuković and Jasak [98] taking into account viscous and surface ten-
sion effects at the interface. The overall solution procedure is based
on the iterative Pressure Implicit with Splitting of Operators (PISO)
algorithm of Issa [100] for pressure–velocity coupling. The solution
procedure is of second-order accuracy in space and time – in par-
ticular, it is worth noting that the surface tension calculation is of
second order accuracy being based on a force-conservative
approach; moreover, the Rhie-Chow interpolation practice has
been improved (cf. [98] for details). The numerical method of the
interface tracking approach in OpenFOAM comprises collocated
(pseudo-staggered) Finite Area Method (FAM), a moving mesh
extension to its collocated Finite Volume Method (FVM) on
arbitrary polyhedral meshes along with automatic mesh motion
[92,98,99,101,102,103]. Since only small deformations are present,
Laplacian mesh motion as described by [92] is adopted in this
study.

The algorithm can be described briefly as follows: at the end of
each PISO step, which is performed on the mesh being fixed, the net
mass flux over the interface is non-zero. However, since we do not
consider phase change, i.e. no interfacial mass transfer takes place,
the net mass flux across the moving interface must be zero. Hence,
a correction DV 0f is needed for which the interface points have to
be moved (see Fig. 6a). For this, control points rc at the center of
each boundary face are defined. Next, the displacement directions
nf normal to the boundary are computed. In order to determine the
mesh displacement magnitude h at the interface, the DSCL accord-
ing to (27) is exploited. Then, the control points are moved along
the displacement directions, i.e.

rn
c ¼ ro

c þ hno
f ; ð28Þ

and the new positions of vertices rn
v are found applying least square

fit [98].
Finite Volume and Finite Area Discretization for Dynamic

Arbitrary Unstructured Meshes. We employ the unstructured
Finite Volume Method (FVM) for discretization of the governing
transport equations within the fluid bulk, while the unstructured
Finite Area Method (FAM) is used for discretization of interface
conditions and (if required) governing equations on the fluid
(b) Volumes swept by cell faces for
moving mesh with three involved
time levels.

e tracking.
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interface. The discretization procedure is divided into two steps:
domain discretization and equation discretization.

Domain discretization. Discretization of the computational
domain comprises temporal and spatial discretization. The tem-
poral domain is split into discrete time steps Dt, allowing for
adaptive time-stepping while solving for the governing equa-
tions in a time-marching manner. The bulk flow domains are
discretized by decomposing each into a finite number of convex
polyhedral control volumes (CVs – or simply cells) of arbitrary
shape (unstructured FVM), which do not overlap and com-
pletely fill up the spatial domains. Fig. 7a exemplarily depicts
a control volume VP . Its centroid is denoted P, while the cen-
troid of a neighboring cell shall be denoted N. The polygonal cell
face separating both cells is denoted f, where Sf is the face area
vector normal to the face f with the magnitude being equal to
the face area, Sf ¼ kSf k. The spatial discretization of the interfa-
cial domain according to unstructured FAM can be thought of
best as a two-dimensional collapse of its FVM counter-part,
however, accounting for curvature of the interfacial domain.
Fig. 7b shows a polygonal control area SP . Its centroid is denoted
P, the neighboring centroid N. The edge separating both control
faces is denoted e – its length Le and corresponding edge unit bi-
normal vector me, which is perpendicular to the edge vector e
and the edge normal ne and the careful evaluation of which is
pivotal for an consistent and accurate surface tension
treatment.
Equation discretization. A cell-centered (pseudo-staggered)
Finite Volume Method for unstructured meshes is applied for
discretization of the Navier–Stokes equations. The unstructured
Finite Volume/Area discretization is of second-order accuracy,
since it is based on the integral form of conservation equations,
transforms the surface integrals into sums of face/edge integrals
and approximates them along with the volume/surface inte-
grals to second-order accuracy by employing the mid-point
rule.
For all dependent variables we use central differencing, that is
we employ linear interpolation to calculate the face- respec-
tively edge-centered values from neighboring cell- resp. face-
centered values. A notable exception is the convective term
within the linear momentum equation, where we employ the
Gamma discretization scheme with deferred correction [104]
– locally blending second-order accurate linear interpolation
with the unconditionally bounded upwind interpolation to
ensure boundedness and stability. The diffusive term is discret-
ized implicitly using linear interpolation with explicit non-
orthogonal correction. Temporal discretization is accomplished
by means of the fully implicit second order three time level
(a) Polyhedral control volume.

Fig. 7. Control volume resp. area for unstructu
Backward Differencing Scheme (BDS), commonly referred to
as Gear’s scheme.

Surface tension calculation. As for interface capturing meth-
ods, inaccuracies or inconsistencies in surface tension calculation
will cause unphysical so-called parasitic or spurious currents to
arise at the interface. As a consequence, not only accuracy but also
stability and robustness of a solution method might become
severely biased. Hence OpenFOAM’s interface tracking method
employs a novel force-conservative procedure for surface tension
calculation.

To include surface tension and viscous effects, adequate bound-
ary conditions are enforced at the interface adopting a Dirichlet–
Neumann coupling approach – details are provided in [98,99].
For surface tension treatment, Tuković and Jasak derived the
force-conservative approach. The surface divergence is evaluated
according to Weatherburn [105]. In what follows, we briefly
describe the conceptual approach of the force-conservative surface
tension calculation.

Given a fluid interface discretized by arbitrary polygonal control
areas (as depicted in Fig. 7b) constituting an unstructured surface
mesh which separates two bulk fluid domains, the corresponding
surface tension force acting on a single control area Sf reads:

Fr
Sf
¼
I
@Sf

mrdL ¼
X

e

Z
Le

mrdL ¼
X

e

ðrmÞeLe: ð29Þ

With Le denoting the edge lengths, ðrmÞe is to be interpreted as
the surface tension force per unit length. Obviously, such an
approach ensures the surface tension force Fr

Sf
of the closed polyg-

onal surface Sf becoming exactly zero, if ðrmÞe is evaluated
accurately and ðrmÞe for two control areas are consistent, that is
parallel but opposite in sign taking the same value in magnitude.

Applying the surface divergence theorem and the midpoint rule
and further assuming a constant surface tension coefficient
(r 
 const), the surface tension force Fr

Sf
can be rewritten as (cp.

Fig. 7b)

Fr
Sf
¼
Z

Sf

rjndS � rjf nf Sf : ð30Þ

However, equivalently we use the surface tension force (area)
density

ðjrÞf ¼ rjf ¼ r 1
Sf

nf �
X

e

meLe: ð31Þ

Thus, from (30) it is Fr
Sf
¼ rðnf nf Þ �

P
emeLe, which merely states the

fact that the normal component of the surface tension force Fr
Sf
(b) Polygonal control area.

red finite volume and finite area method.
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according to Eqn. (29) equals
R

Sf
rjndS representing the normal

contribution to Fr
Sf

.
The inherent fulfillment of the total surface tension force

becoming exactly zero on a closed surface is achieved within the
numerical method by ensuring a

(i) consistent evaluation of both the normal and tangential com-
ponents of Fr

Sf
(even for constant surface tension coefficients

as presumed in this study),
(ii) accurate approximation of the surface tension force per unit

length ðrmÞe.

Both aspects are pivotal for a force-conservative approach to
surface tension calculation within an interface tracking
framework:

ad (i) On an unstructured polygonal surface mesh the nor-
mal of a face is commonly determined by triangula-
tion (face decomposition into triangles) and
adequate averaging of the normals of resulting trian-
gles. Consequently, in order to ensure force-conser-
vativeness, the tangential part of the surface
tension force has to be taken into account as well
(even for cases with constant surface tension coeffi-
cient). The implementation is done consistently as
ðrSrÞf ¼ r=SP

P
emeLe � rjf nf .

ad (ii) The relevant bi-normal unit vector me in the surface
tension force per unit length term is calculated as
ðrmÞe ¼
riê	 ni þ rjê	 nj

2
¼ r ê	 ni þ nj

2
; ð32Þ
where ê ¼ e=kek; ni and nj denote the interfacial unit normal vec-
tors in face vertex points i and j, respectively (cp. Fig. 7b). Note that
a constant surface tension coefficient has been assumed in which
case ri ¼ rj ¼ r. In doing so, the accuracy of the approximation of
ðrmÞe inherently depends on the accuracy of the approximation
of interfacial normal vectors in control area vertices. These are cal-
culated by means of least squares bi-quadratic surface fittings using
the respective local coordinate systems (cf. [98] for details). Alter-
natives such as a pairwise-weighted averaging of normal vectors
from neighboring edges adjacent to a vertex has proven less accu-
rate and, hence, shall be disregarded in this study.

For more details on the force-conservative approach to surface
tension in the interface tracking framework and on curvature eval-
uation in OpenFOAM’s interface tracking solvers, as well as its
effect on spurious currents, the interested reader is referred to
[98,106,107].
4. Results and discussion

We consider the quasi-stationary case of an upward rising
Taylor Bubble which is moving due to buoyancy and pressure
forces in an infinitely long square channel with cross section
1.98 mm 	 1.98 mm. The fluid system considered consists of glyc-
erin and water constituting the liquid phase and air as the gaseous
phase (cf. Section 2 for details on the experimental setup). The
bubble volume has been determined experimentally to
17:5 mm3. The material properties of the liquid are given by the
density qL ¼ 1195:6 kg=m3 and viscosity gL ¼ 28:54 � 10�3 kg=ms;
those of the gas phase are given by the density qG ¼ 1:3 kg=m3

and viscosity gG ¼ 20 � 10�6 kg=ms. The surface tension coefficient
is r ¼ 66:69 � 10�3 kg=s2. The stationary rising velocity of the
Taylor bubble has been determined experimentally to
vb ¼ 205:57 mm=s with a co-current underlying flow of a priori
unknown liquid mean flow velocity.

4.1. Case setup & solution control

Case setup. In order to set up the case of an infinitely long square
channel with a single rising Taylor bubble in co-current flow, differ-
ent method- and code-specific approaches have been chosen –
namely a periodic unit cell approach (DROPS and TURBIT-VOF), a
moving window technique (FS3D) and a Moving Reference Frame
(MRF) technique (OpenFOAM – channelBubbleInterTrack-

Foam). The different approaches and set boundary conditions are
depicted in Fig. 8.

Periodic unit cell approach. We consider a periodic unit cell of
length 6dh, where dh ¼ 1:98 mm is the hydraulic diameter. Peri-
odicity is applied for the bottom and top face of the simulation
domain (cp. Fig. 8a), whereas standard no-slip boundary condi-
tions hold for all other boundaries. For a physically meaningful
periodicity condition, we subtract a given linear decreasing part
from p obtaining ~p. This is the periodic part of the pressure and
serves as an unknown field in the simulations. The linear
decreasing part acts as a driving force to the system, being
adjusted such that the desired target value for the bubble veloc-
ity is achieved up to a certain tolerance.
Moreover, the bubble length has been assumed to be consider-
ably smaller than the unit cell length and furthermore the inter-
action between two periodic bubbles is assumed to be
negligible. This assumption seems to be valid as simulations
with a unit cell length of 10dh give comparable results.
Moving window technique. The mesh is fixed in the lab frame,
which requires that the computational domain is shifted with
the Taylor bubble to keep its center of mass in the center of
the computational domain. In doing so, it becomes necessary
to copy all fields accordingly. Consequently, a new row of cells
needs to be inserted at the domain’s top boundary, with the
new field values derived from the corresponding boundary con-
ditions (cf. Fig. 8b). In order to achieve the desired target value
for the bubble velocity up to a certain tolerance, the liquid mean
flow velocity in the channel has been adjusted.
Moving Reference Frame technique. A non-inertial frame of refer-
ence is attached to the centroid of the rising Taylor bubble. The
position of the computational domain is adjusted s.t. the Taylor
bubble always remains centered (Moving Reference Frame,
MRF); bubble acceleration is considered by means of non-iner-
tial reference frame adjustment due to virtual forces. The effect
of rising (resp. frame) velocity and co-current flow velocity is
taken into account within the MRF framework (cf. Fig. 8c). As
before for the window technique, the liquid mean flow velocity
has been adjusted such that the desired bubble velocity is
achieved up to a certain tolerance.

As for initialization, it is worth noting that for interface tracking
the initial mesh has been obtained by automatic meshing of the
two fluid domains (bubble and surrounding liquid separately),
enforcing the two mesh boundary patches which represent the
interface to be conformal. We employed the mesh module of Sal-
ome v. 6.4.0 (Netgen algorithms). In order to ensure an initial
shape which is close to the stationary solution of the Taylor bubble
and moreover exhibits the reference volume, we made use of a
semi-analytical axisymmetric solution provided by Wörner et al.
[108] based on work of Dumitrescu [46] for a Taylor bubble rising
in a vertical tube under the assumption of potential flow.

The simulation in the Finite Element code DROPS used meshes
which have been adaptively refined two times towards the inter-
face, resulting in approximately 321,000 velocity unknowns and



(a) Periodic unit cell
approach.

(b) Moving window
technique.

(c) Moving Reference
Frame (MFR) tech-
nique.

Fig. 8. Different approaches to case-setup of Taylor bubble flow in a channel.

Table 1
Validation results – geometrical target quantities and deviations from experimental mean reference values.

DROPS FS3D TURBIT-VOF OpenFOAMa Experiment

bubble length 7.23 mm (0.42%) 7.197 mm (0.04%) 7.11 mm (1.25%) 7.202 mm (0.03%) 7.20 ± 0.06 mm
min. film thickness (diagonal cut) 0.4392 mm (1.41%) 0.4362 mm (0.72%) 0.4420 mm (2.05%) 0.4566 mm (5.43%) 0.4331 ± 0.0004 mm
min. film thickness (longitudinal cut) 0.049 mm (3.06%) 0.0477 mm (5.46%) 0.028 mm (44.67%) 0.059 mm (16.83%) 0.0505 ± 0.0001 mm

a Solver channelBubbleInterTrackFoam: modified version of bubbleInterTrackFoam as publicly released in OpenFOAM-ext v. 1.6.
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26,000 pressure unknowns, where the number of unknowns is not
constant due to adaptive refinement/coarsening steps within the
simulation. Where the film thickness is smallest, the film is only
resolved by two velocity unknowns. However, note that the
approximation of the velocity field is piecewise quadratic. As for
the Finite Volume codes, the numerical simulation with FS3D have
been accomplished using a uniform mesh density of 512 cells in
vertical and 64 cells in both horizontal directions, where symmetry
boundary conditions where used in order to reduce the overall size
of the computational domain while maintaining a sufficient mesh
resolution. The computations in TURBIT-VOF have been performed
without any assumption regarding symmetry. In each direction the
mesh is uniform with 100 mesh cells in both horizontal directions
and 480 mesh cells in the vertical direction. For OpenFOAM inter-
face tracking simulations the mesh comprised of 300,439 polyhe-
dra and 489 hexahedra with a spatial resolution adaptively
increased towards the interfacial boundary. Thereby, the spatial
resolutions for the Finite Volume codes correspond to a resolution
of the liquid film in the longitudinal cut by at least 2–3 mesh cells.

Solution control. Since we consider a quasi-stationary case, a
stop-criterion for simulation runs is central and needs to be care-
fully defined for all codes employed in this study: we found the
bubble terminal rising velocity along with the bubble length to
be sensitive criteria to assess quasi-stationarity of the flow state.
If both are converged up to a prescribed tolerance, the numerical
solution is considered quasi-stationary and consequently the sim-
ulation is stopped.

Mesh independence. As two-phase flow solvers are often found
to exhibit poor or even erratic convergence rates with mesh refine-
ment, which is known to be intimately linked to convergence prop-
erties of the employed numerical approach to surface tension/
curvature calculation, the consideration of mesh-independence is
mandatory. In this study, we have performed both coarse- and
fine-resolution simulations. Based on these simulations, we con-
sider the results presented hereafter as mesh-independent. As an
example, for all approaches the maximum deviation of the Taylor
bubble length, as a very sensitive validation quantity, stays well
below 0.3%.

However, due to tremendous computational costs for further
refinement levels of the meshes, we are neither able to accomplish
comprehensive mesh-independence studies nor can we provide
sound estimates of convergence rates on the basis of the presented
Taylor bubble simulations. Certainly, this would be also out-of-scope
of the present benchmark contribution. For more detailed informa-
tion on the numerical properties of the approaches, which are used
here for the Direct Numerical Simulation of Taylor bubble flow, the
interested reader is referred to [63,73,79,89,98,106,107]. Neverthe-
less, with this Taylor bubble benchmark contribution it is believed
to provide a reasonable basis for further scientific discussion upon
the validation regarding accuracy of both interface capturing and
tracking techniques with different surface tension treatments.

4.2. Simulation results

Results are presented in Table 1 and in Figs. 9 and 10. For a
quantitative comparison of the shape of the Taylor bubble by
means of geometrical target quantities, we consider the bubble
length and the film thickness at locations, where deficiencies in
surface tension calculation procedures become visible. Moreover,
the cuts through the bubble surface yield shape profiles which
enable for a local analysis and discussion of deviations from the
experimentally obtained bubble shape.

Target quantities. Geometrical target quantities for a quantita-
tive validation are depicted in Table 1 along with the corre-
sponding deviations from the experimental reference value.
Moreover, we provide uncertainties for the experimental refer-
ence values.
For the evaluation of minimal film widths within the longitudi-
nal and diagonal cutting plane, we calculate the distances of the



Fig. 9. Shape profile of Taylor bubble for distinct cutting planes through flow domain.

Fig. 10. Close-up view of Taylor bubble tip and rear for longitudinal cutting plane.

348 H. Marschall et al. / Computers & Fluids 102 (2014) 336–352
bubble surface to the channel axis at distinct axial positions.
Then, the two maximum values in distance within the longitu-
dinal and diagonal cutting planes, respectively, correspond to
minimal values in film thickness in these planes. Note in pass-
ing that – specific to the underlying approach – we either used
iso- or PLIC-surfaces (interface capturing) or the interfacial sur-
face mesh (interface tracking) for approximating the position of
the bubble surface from discrete data. The length of the Taylor
bubble is calculated from the maximum and minimum of the
longitudinal component of interface position vector, which
again can be obtained from the approach-specific interface rep-
resentation.
As for interfacial curvatures, we compare maximum values
obtained for the stationary solutions. All codes predict the
location of maximum interfacial curvature within the planes
perpendicular to the channel walls, where the liquid lm
thickness becomes minimal. In order to accurately quantify
the corresponding curvature maximum values, it is important
to note that the distinct numerical methods result in very dif-
ferent interface representations, hence, requiring for a post-
processing algorithm for curvature computation which is ex-
ible, accurate and robust at the same time. We employed
the so-called Algebraic Point Set Surfaces (APSS) method
[109,110], which defines a smooth surface from a set of
points applying local moving least squares (MLS) tting of
algebraic spheres. Thus, only relying on point data, the APSS
method is capable of dealing with different geometrical inter-
face approximations, in our case ranging from disjunct piece-
wise planar interface representations for the VOF interface
capturing approach to a closed polygonal surface mesh inter-
face representation for the ALE interface tracking approach, as
illustrated in Fig. 11. Here, we used the point set of the iso-
surface representations as input for the APSS method for all
interface capturing cases, while for the interface tracking case
the vertex points were considered directly. For noisy point
data sets – as observed for the experimental data due to a
rather noisy reconstruction from the tomographic dataset
with only 351 projections and for the point sets extracted
from the VOF results due to comparably coarse mesh resolu-
tions – the so-called HC-Laplacian Smoothing algorithm has
been applied before curvature computation by the APSS
method, since this algorithm avoids (to a sufficient extent)
the well-known problems of shrinkage and deformation dur-
ing Laplacian smoothing operations [111].



Fig. 11. Close-up view of different approach-specific interface representations at
the Taylor bubble’s rear % (location of maximum interfacial curvature).
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The maximum interfacial curvatures have been computed as
4083:4 m�1 (DROPS), 4045:0 m�1 (FS3D), 4306:4 m�1 (TUR-
BIT-VOF) and 4020:9 m�1 (OpenFOAM/interTrackFoam).
The corresponding value of maximum interfacial curvature
gained from post-processing the experimental result is
4055:0 m�1, comparing well with the results obtained
numerically.
Shape profiles. Shape profiles of the Taylor bubble are gained
from diagonal and longitudinal cutting planes by intersection
with the respective interfacial surface representation (iso-sur-
face, PLIC-surface, or surface mesh representation) – cf. Fig. 9.
A corresponding close-up view is shown as an example for
the longitudinal cutting plane in Fig. 10.

The terminal bubble velocity has been evaluated as 206.92 mm/
s (Dp ¼ 267:4 Pa), 197.46 mm/s (vL ¼ 0:1382 m=s), 207.8 mm/s
(Dp ¼ 275:57 Pa) and 205.77 mm/s (vL ¼ 0:1261 m=s) for DROPS,
FS3D, TURBIT-VOF and OpenFOAM (channelBubbleInter-
TrackFoam), respectively. Experimentally the terminal rising
velocity of the Taylor bubble has been determined to
vb ¼ 205:57� 0:82 mm=s. Note that, specific to the approach used
for case setup, the corresponding pressure differences resp. chan-
nel inlet velocities have been adjusted in order to arrive at the
desired bubble velocity.

4.3. Discussion

A quantitative validation for the given case of a single rising
Taylor bubble in a square milli-channel is achieved by both exam-
ining the bubble’s shape profiles in longitudinal and diagonal cuts
through the flow domain, and by comparing with geometrical tar-
get quantities related to the bubble shape. The obtained validation
quantities are provided in Table 1. The bubble’s shape profile is
depicted in Fig. 9 and 10.

While for comparability of the bubble tip and rear profiles the
shapes have been vertically aligned to each other in Fig. 10 (both
in 10a and 10b), this is intentionally not done in Fig. 9, where
the shape profiles have been aligned to a common position of the
bubble tips. From comparing solely the bubble shapes provided
in Fig. 10 one might conclude that all solvers show very similar
results. In particular, the interfacial curvatures are well captured
for the bubbles’ tip part, and still a decent agreement with the
experimental reference could be declared for its rear part. How-
ever, examining the bubble shapes as shown in Fig. 9 (cp. the error
bar in Inset A of Figs. 9a and 9b), a closer study of uncertainties and
possible error sources is advisable before judging the agreement
between numerical and experimental results. Distinct experimen-
tal uncertainties which give rise to errors and consequently consti-
tute possible reasons for deviations between experimental and
numerical results are to be discussed.

Main contributions to uncertainty in our numerical results
(beside numerical errors) stem from three sources of experimental
uncertainties – entering the resulting quality of our numerical sim-
ulations both directly and indirectly. The experimentally deter-
mined bubble volume is subject to uncertainty, and an inaccurate
initial bubble volume would directly result in erroneous numerical
results, in particular, a wrong length of the Taylor bubble. More-
over, prescribing an inaccurate rising velocity would directly
impact both the solution control (stop criterion for quasi-stationa-
rity) and possibly the numerical setting itself in terms of the
boundary conditions imposing a wrong pressure gradient Dp over
the channel’s height (cp. periodic unit cell approach depicted in
Fig. 8a) or an erroneously preset mean flow velocity vL at the chan-
nel’s inlet (cp. moving window and moving reference frame
approach in Figs. 8b and 8c, respectively). Indirectly, an inaccurate
length of the Taylor bubble could lead to wrong conclusions
whether the agreement between experimental and numerical
results can be declared acceptable.

As for the first aspect of a correct initial bubble volume, the
numerical initialization procedures themselves need to be assessed
with respect to their accuracy as well. However, inaccuracies due
to initialization have been found negligible. The precision of initial-
ization procedures with respect to the reference bubble volume
reached from utmost accurate (machine tolerance for the LS
method) to a small relative error of about 3 � 10�3% (at maximum)
due to geometrical tolerances during PLIC interface construction.
The initial volume error for the interface tracking simulations has
been found to be 7:5 � 10�6% due to the meshing procedure for
initialization. The tolerable error between experimental and simu-
lation results is 0.8% for the bubble length and 0.1% for the film
thickness. Note that the measurement error bound for the bubble
lengths has been estimated as 0.41%. The experimentally deter-
mined bubble volume, which is used to initialize the numerical
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simulations, has an error of 0.39%. Thus, this leads to another (indi-
rect) contribution to the measurement-induced error of the simu-
lated bubble length of the same magnitude, such that the overall
error bound used for the assessment of numerical results is 0.8%.

Concluding, we find in view of the discussion in Section 2
regarding the accuracy of the measurements and initialization pro-
cedures, and from the error bar depicted in Figs. 9a and 9b that all
solvers (though they employ very different approaches to surface
tension calculation) do show similar results. A good agreement
between numerical and experimental results can be declared,
especially if either a force-balanced or a force-conservative
approach to surface tension calculation has been employed (cf.
results achieved with FS3D and OpenFOAM). Moreover, the geo-
metrical target quantities for validation as provided in Table 1,
i.e. the obtained lengths of the Taylor bubble and the minimal film
thicknesses in longitudinal and diagonal cuts, do show acceptable
agreement both between numerical and experimental results as
well as among the numerical simulation results.

Note that the topic of numerical accuracy, efficiency and stabil-
ity is not within the scope of the present study and will be
addressed in future work. However, it is the authors’ intention to
pass over some experiences and observations to the reader which
are related to the above aspects and were gained in this study
employing the particular interfacial solvers.

� For a meaningful validation, the use of sensitive and (wherever
possible) local and three-dimensional data is highly recom-
mended.
The use of a mean film width, for instance, which is averaged
over a reference length (e.g. the hydraulic channel diameter),
is rather insensitive w.r.t. to different numerical approaches
and discretization practices, and thus does not reveal possible
deficiencies as can be seen from Fig. 9a, where the mean film
thickness in all cases would still indicate good agreement. As
a better target quantity for validation, it should be replaced
by the length of the Taylor bubble, which is much more sensi-
tive and more accessible in experiments. Additionally, the eval-
uation of minimal film thickness is recommended, since its
value has been found to be subject of notable changes during
the simulations – at a location, where any change of the numer-
ical method for surface tension calculation has significant influ-
ence w.r.t. the interface location. Moreover, the evaluation of
the minimal film thickness in both the longitudinal and diago-
nal cutting plane captures the influence of the Ca number on
the bubble shape, since the Taylor bubble penetrates into the
corners of the square channel for low values of Ca (cp. Table 1).
� For a high-fidelity surface-tension treatment one has to con-

sider both accurate and consistent numerical approximations
of interfacial force densities (interface capturing methods) and
interfacial force per unit length vectors (interface tracking
methods). Balanced-force and – where this is inherently
ensured (e.g. for the discretization practice underlying the
interface tracking methodology) – force-conservative
approaches to surface tension calculation are central.
For interface tracking methods, the use of least squares bi-
quadratic surface fitting for the approximation of interfacial
normal vectors in control area vertices seems advisable for an
accurate surface tension calculation. When applying level-set
techniques to a ’sharp-interface’ surface tension treatment the
question for an approximate interface with discrete normals
which allow to apply numerical integration arises. The level-set
function is an approximation to a signed distance function.
Exploiting this property for the derivation of interfacial normals
is crucial for an accurate surface tension discretization. In the
context of finite element approximations for the momentum
equation it is important to provide pressure approximations with
discontinuities at the discrete interface in order to compensate
for the locality of the surface tension force. For Volume-of-Fluid
methods, the accuracy and consistent choice of a (narrow) com-
putational stencil for discretization of the interfacial normal
approximation are crucial. In particular, as a recent study with
TURBIT-VOF has shown for a 2D test case with circular interface,
a height-function based approach to curvature calculation is of a
higher accuracy and better convergence than the method cur-
rently implemented (which may also yield locally different val-
ues between the three staggered curvatures). However, the
method needs to be extended to 3D, and thus a comparison with
the presented 3D benchmark problem of a single rising Taylor
bubble shall be subject to future publications.

5. Summary & conclusions

The present study is concerned with the validation of interfacial
two-phase flow solvers, examining the shape of a single rising Tay-
lor bubble in a square milli-channel. By means of a quantitative
comparison of simulation results from conceptually different inter-
face capturing and tracking methods with a detailed and local
experimental data basis, we propose this benchmark experiment
to form a validation basis for other methods and codes. In particu-
lar, the presented Taylor bubble benchmark with its emphasis on an
accurate evaluation of the bubble’s shape and geometrical target
quantities is considered to provide a reasonable basis for the assess-
ment of applicability and validity of different method-inherent
approaches to surface tension calculation both for interface captur-
ing and tracking techniques.

The virtue and advantage of force-conservative and force-bal-
anced numerical models to surface tension have become evident.
Future directions for research and development of models and
numerical methods for interfacial two-phase flows should be
devoted to a foundation by means of a conceptual combination
of these two approaches – for both interface capturing and tracking
methods.
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